Head-on collision of drops—A numerical investigation
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The head-on collision of equal sized drops is studied by full numerical simulations. The Navier—
Stokes equations are solved for the fluid motion both inside and outside the drops using a front
tracking/finite difference technique. The drops are accelerated toward each other by a body force
that is turned off before the drops collide. When the drops collide, the fluid between them is pushed
outward leaving a thin layer bounded by the drop surface. This layer gets progressively thinner as
the drops continue to deform, and in several of our calculations we artificially remove this double
layer at prescribed times, thus modeling rupture. If no rupture takes place, the drops always rebound,
but if the film is ruptured the drops may coalesce permanently or coalesce temporarily and then split
again. Although the numerically predicted boundaries between permanent and temporary
coalescence are found to be consistent with experimental observations, the exact location of these
boundaries in parameter space is found to depend on the time of ruptur&99® American
Institute of Physicg.S1070-663196)01201-§

I. INTRODUCTION where two drops become one; separation collision, where the
The dynamics of fluid drops is of considerable impor_drops temporarily become one but then break up again; and

tance in a number of engineering applications and natura?hattering coIIisiqn, where the impact is so strong t'h.at the
processes. The combustion of fuel sprays, spray paintinj_j',mps break_u_p into several smallgr_drops. In addition to
various coating processes, as well as rain are only a few ead-on collisions, off-centered colhsm(where the drops
the more common examples. While it is often possible to®PProach each other along parallel, but different pasie
focus attention on the dynamic of a single drop and how itdiScussed by both Azhgriz and Poo and Jiengl. The form
interacts with the surrounding flow, it is necessary to accoun?f the coII_|§|on depends on the size of t_he drops, thqr re_la-
for the interactions between the drops and their collectivdVe Velocities, and the physical properties of the fluids in-
effect on the flow when the number of drops per unit volumev0lved. For a given combination of drop and ambient fluids,
is high. The collision of two drops is an extreme case of twoSOmMe of these collision regimes are not observed. Water
drop interaction and has been the topic of several investigsdrops in air, for example, usually do not exhibit bouncing at
tions. The collision process generally involves large deforatmospheric pressures, but Qian and Eavave recently
mations and rupture of the interface separating the drops, ariiown experimentally that the film between the colliding
has not been amenable to detailed theoretical analysis. Prétops takes longer to drain at higher pressugesl denser
vious studies are therefore mostly experimental, but someambient fluid, and the drops are therefore more likely to
times supplemented by greatly simplified theoretical argubounce than to coalesce. Other investigations of drop colli-
ment. Here, we present numerical simulations of the head-o#ions may be found in Bradley and Stowodvysotsky and
collision of two drops, where the full Navier—Stokes equa-Shraiber} and Ashgriz and Givi, for example. The major
tions are solved to give a detailed picture of the flow duringgoal of these investigations has been to clarify the bound-

collision. aries between the major collision categories and explain how
Previous investigations of droplet collision have beenthey depend on the properties of the problem.
motivated by raindrop formatiotBradley and Stow,Spen- Theoretical investigations of drop behavior have almost

gler and Gokhalé and othery by efforts to predict the phase all been concerned with the oscillations of a single drop. The
distribution in agitated liquid—liquid dispersiori®ark and linear oscillations of inviscid drops are well understdsde,
Blair®), by concern about blade erosion due to dispersed lige.g., LamB%, and several authors have looked at nonlinear
uid drops in low-pressure turbines(Ryley and effects. Recent work includes analysis by Tsamopoulos and
Bennett-Cowefl) and by fuel spray behavididshgriz and ~ Brown' and computations by Patzek al'? The decay of
Givi®). Recent experimental studies include those of Azhgridinear oscillations due to viscosity was analyzed in an ap-
and Po8 and Jiang, Umemura, and Ldwyho show several proximate way by Lami? in the limit of small viscosity, and
photographs of the various modes of collision for both watera more detailed analysis was later carried out by Reid,
and hydrocarbon drops. The collisions of drops that approacMiller and Scrivent* and others. Numerical investigations of
each other head-on can generally be classified into four maiviscous effects can be found in Fodfewho used the
categories: bouncing collision, where the drops rebound oMarker-And-Cell (MAC) method to solve the full Navier—
each other without ever coalescing; coalescence collisiorStokes equations, and Lundgren and MansBireho used a
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boundary integral method, modified to account for small vis- |
cous dissipation in an approximate way. Simple models for }
drop collisions, used to rationalize experimental findings, |
have been presented by Ryley and Bennett-Cotgthzier- }
Smithet al,'” Park and Blaif Azhgriz and Pod&,and Jiang, }
Umemura, and Law. .y
Head-on collisions of two drops of the same size are L
identical to the collision of one drop with a flat wall if full ! )
slip boundary conditions are assumed at the wall and wetting '/ /
|
|
|
|
|
|
|
|
|

Fuil-slip
 walls

/
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effects are ignored. Collision of one drop with a wall has
been simulated numerically by a number of authors. The first
were Harlow and Shanndfiwho used the MAC method and
ignored viscosity and surface tension. Fddso used the
MAC method, but included both surface tension and viscos-
ity. His results for the evolution of rebounding drops, at low
Reynolds and Weber numbers, were compared with experi-
mental observations by Bradley and Stbwho found good

agreement, but made the interesting observation that “this .
complicated treatment gives little insight into the physical Pa
processes involved.” Other computations of drop collisions |
with a solid wall by MAC-like methods have been reported }
by Trapaga and Szekel), Tsurutaniet al,?* and Marchi —
et al?2 Another approach has recently been presented by Fu- ‘
kai et al?>?*who use a moving finite element method. Fukai z P, M,
et al® extend Foote’s result to a much broader range of

Weber and Reynolds number, and Fu&aal?* examine the i
effect of wetting. Foote’s results were apparently overlooked

by Fukai et al, who concluded, after a review of previous FIG. 1. The computational setup. The axisymmetric domain is bounded by
investigations, that fixed mesh techniques like the MACHull-slip walls and resolved by a regular grid.

method are not well suited for this problem! Foote’s results

and those presented here do not support that conclusion. A

lr.e\./lew off ;:xpenm_er?tal a?g anafllytlc?ll mvestlgaltlotr)]s of COI'that of the fluid in the drop and therefore has little effect on
Istons of drops with a solid surface has recently been COMzphe evolution, here we solve for the fluid motion in the whole

piled by Reir:> Unlike collision of drops with a flat wall, domain. The Navier—Stokes equations are valid for both the

b!nary .CO||ISIOI’]S Of, drOPS are frequently fully 'three- fluid in the drop as well as the ambient fluid, and a single set
dimensional. Numerical simulations of such situations are. equations can be written for the whole domain:

currently ;17 its infancy; sgg Nobait, Nobari and B
Tryggvasort,” and Lafaurieet al: dpu — - —

yg'Ighe rest of the paper is laid out as follows: In Sec. llwe gt v PUU= ~VpHf+V-p(Vutvu

discuss briefly the numerical method that has been described

in more detail elsewhere. Section Ill contains our results and _Uf KNS(X—X;)dA. 1)
Sec. IV is devoted to discussions. In Sec. V we summarize s

our results. Preliminary results were presented at the 45t
Annual Meeting of the Fluid Dynamics Division of the

American Physical SocietfNobari and Tryggvasdn).

ﬂere,ﬁ is the velocity,p is the pressure, angdand u are the
discontinuous density and viscosity fields, respectively. Sur-
face tension is added as a delta force where the interface
between the drop and the ambient fluid is. Hérie a three-
dimensional delta function. The integral is over the surface
The numerical technique used for the simulations preof the drop,S, resulting in a force distribution that is smooth
sented in this paper is a front tracking method for multifluidand continuous along the drop surface, but concentrated in a
flows developed by Unvertf and discussed by Unverdi and delta function if we move normal to the surface. In addition,
Tryggvasort*2 The actual code is an axisymmetric version o is the surface tension coefficient,is twice the mean cur-
of the method, described in Jan and Tryggva$adere, we  vature, andh is an outward pointing normal to the surface of
only briefly outline the procedure. the drop. Herd is the body force used to give the drops their
The physical problem and the computational domain ignitial velocity. The main reason for solving for the flow in
sketched in Fig. 1. The domain is axisymmetric and thethe whole computational domain is that we can then use the
drops are initially placed near each end. A force that is turnednethod developed by Unverdi and TryggvaSoft with
off before the drops collide is used to give the drops an initiaiminimal changes. Generally, the effect of the ambient fluid is
velocity toward each other. Although in many cases the densmall (although in high-pressure sprays, for example, it is
sity and viscosity of the ambient fluid is much smaller thannot), so here we select the properties of the ambient fluid in

Il. FORMULATION AND NUMERICAL METHOD
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such a way that its influence on the motion of the drops idrops generally approach from afar, it is also slightly more
minimal. Notice that1) implicitly enforces the correct stress realistic. When the effect of the surrounding fluid on the
boundary conditions at the surface of the drop as can beotion before collision is small, as is the case here, both
verified by integrating the momentum equation across thenethods will result in nearly identical conditions at collision.

boundary between the fluids. To make comparisons between various runs easier, we set the
The above equations are supplemented by the incomtime equal to zero when the centers of the drops are one

pressibility conditions diameter apart. If the drops were exactly spherical, they
V.U=0. @) would touch at this instant. In our case, since the drops are

moving in another fluid, they have generally deformed
When combined with the momentum equatiof®,leads to  slightly before impact and there is therefore a layer of ambi-
a nonseparable elliptic equation for the pressure: ent fluid between them at this time.
) _ To solve the Navier—Stokes equations we use a fixed,
V-(1p)Vp=Q, @ regular, staggered grid and discretize the momentum equa-
whereQ is the divergence of Eq1), excluding the pressure tions using a conservative, second-order centered difference
term and divided by the density. We also have equations ofcheme for the spatial variables and an explicit first-order

state for the density and viscosity: time integration method. We have used second-order time
ip integration in other problems and generally find little differ-
—+u-Vp=0, (4)  ences for relatively short simulations times as those of inter-
o est here. The effect does show up in long time simulations
o _ and is usually accompanied by a failure to conserve mass. In
EJFU'V,U«:O- (5  the computations discussed here, mass is always conserved

within a fraction of a percent. The interface is represented by
These last two equations simply state that density and visseparate computational points that are moved by interpolat-

cosity within each fluid remains constant. ing their velocity from the grid. These points are connected
Nondimensionalization gives a Weber and a Reynoldso form a front that is used to keep the density and viscosity
number defined by stratification sharp and to calculate surface tension. At each
pg DU2 pUD time step information must be passed between the front and
We= : Re= , the stationary grid. This is done by a method that has become

a Hd known as the Immersed Boundary Method and is based on

whereD is the initial diameter of each drop and is the  assigning the information carried by the front to the nearest
relative velocity of the drops at impact. In addition, the den-grid points. While this replaces the sharp interface by a
sity ratior = p4/p, and the viscosity ratid =u4/ u, must be  slightly smoother grid interface, numerical diffusion of the
specified. Here, the subscrigtdenotes the fluid in the drop steep density gradient is eliminated since the grid field is
and o the ambient fluid. When presenting our results wereconstructed at each step.

scale lengths by the initial diameter of the spherical drop and  The original Immersed Boundary Method was developed
velocity by V=U/2, the speed of one drop before impact. Toby Peskin and collaboratotsee, e.g., Peskifjy for homoge-
nondimensionalize time we have the choice of two inherenteous flows. The extension to multifluid flows includes a
time scales: One is the advection tifl#V of the drops number of additional complications. The first is that density
before impact and the other is the natural oscillation time fomow depends on the position of the interface and has to be
the drop,7q = (/4)\pD?3 o. While most of our results are updated at each time step. There are several ways to do this,
presented using the advective time scale, in some cases thet we use a variant of the method developed by Unv&rdi,
latter is the more natural on@s pointed out already by where the density jump at the interface is distributed onto the

Foote?). fixed grid to generate a grid-density-gradient field. The di-
The force used to drive the drops together initially isvergence of this field is equal to the Laplacian of the density
taken as field, and the resulting Poisson equation can be solved effi-

f.=A(p—po)signz—z.) ©) ciently by a Fas_t Poisson Sol_ver. The particglar attrqction of
z P Po)SI9 e these methods is that close interfaces can interact in a very
so the force acts only on the drops. Hérds an adjustable natural way, since the grid-density-gradients simply cancel.
constant and, is midway between the drops. This force is Therefore, when two interfaces come close together the full
turned off before the actual collision takes place. In most ofinfluence of the surface tension forces from both interfaces is
our simulations the drops are initially put about one diameteincluded in the momentum equations, but the mass of the
apart(two diameters between their cenfeamd A is varied fluids in the thin layer between the interfaces—which is very
to give different collision velocities. When simulating colli- small—is neglected. A second complication is that the pres-
sions of a single drop with a wall, other authors have simplysure equation now has a nonconstant coefficientis non-
started the simulations with a drop of a uniformly moving separablesince the density varies. This prevents the use of
fluid touching the wall(see Foot¥ and Fukaiet al,?® for Fast Poisson Solvers based on Fourier Methods, or variants
examplg. Since we are computing the motion of the sur-thereof, and we have used a multigrid packagepprAck,
rounding fluid as well, the present method is slightly simplerfrom NCAR (see Adam® for a descriptioi with slight
to implement. Since drops colliding with a wall or other modifications due to our staggered grid.
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mental mode. The drop oscillates and the amplitude of the
fundamental mode is plotted in the figure. The oscillation
T~ period is close to what is predicted by LatAtformula num-
T ber 10 on p. 47pwith 7.omn,{79=1.03. The decay also com-
ﬂ av pares well with formula 12 on p. 641 in Lamb. The envelope
v \/ for the oscillations, as computed by Lamb’s equation, is plot-

ted in Fig. 2. We have compared several cases and find, as
1.0

1.03

1.01
/
!
]

Amplitude

0.99

expected, that as the perturbation amplitude and the viscosity
becomes smaller, fully resolved simulations give results in
close agreement with the theoretical predictions. For large-
amplitude perturbations, the oscillation frequency is also
well predicted by Lamb’s formula, if the diameter of a sphere
of the same volume as the drop is used. The axisymmetric
FIG. 2. Oscillations of a single drop. Comparison with analytical predic- code has also been Compared with a fuIIy three-dimensional

tions. The computed oscillation period is about 3% higher than predicted bx/ . fth d heck . L | .
linear theory for completely inviscid drops. The rate of decay is also com- erS|0n_ of the code to check consistency in implementation
(Nobari and Tryggvasdh).

pared with the approximate theory of Larttbe dashed line The drop is in
a computational domain that is 2.5 by 5 times the drop radius and is resolved
by a 64 by 128 grid.

0.97

20 3.0

Y,

0.0

The computation of the surface tension poses yet anothem RESULTS
difficulty. Generally, curvature is very sensitive to minor ir-
regularities in the interface shape and it is difficult to achieve In this section we first consider collisions where the in-
accuracy and robustness at the same time. Howevgr, by COMrface between the drops is not ruptured. Then we discuss
puting the surface forces on each front element directly by ollisions where the interface is ruptured and the drops coa-
integrating the tension over the boundary of each elemen &sce. All the calculationgexcept the one in Fig. Jawere

we obtain a “conservative” way to compute these forces. In . o . : .
y P one on a uniform grid with 64 by 256 grid points in the

particular, we ensure that the net surface tension on the dro?) . 2 . . .
is zero. This is important for long time simulations since adial and axial directions, respectively. The time required

even small errors can lead to a net force that moves the drdg" €ch run ranged from 10 to 40 h on a HP735 workstation,
in an unphysical way. See Jan and Tryggvdsdor details. depending on the governing parameters.

Last, contrary to previous computations with the Im- A, Bouncing drops
mersed Boundary Method, the interface deforms greatly in
our simulations, and it is necessary to add and delete com-

putational elements during the course of the calculationdiMes. Here, We-32, Re=98,r =15, and\=350. Initially, a
While this is a major task for fully three-dimensional simu- constant force acts on the drops to accelerate them toward

lations, here the interface is simply a line and such modifi-£ach other. When the drops are about half a diameter apart,
cations are a simple matter. the force is turned off, but the drops have acquired enough
The method and the code have been tested in variog®omentum to continue toward each other and collide. When

ways, such as by extensive grid refinement studies, comparibe drops collide, they are in nearly uniform motion. As the
son with other published workincluding the rising bubble drops come in contact, the fluid between them is squeezed
computations of Ryskin and L&) and analytical solutions. away and the drops bulge out at the equator of the combined
For details see Jdhand Nobar?® Generally, both analytical fluid mass. The bulk of the fluid continues to move forward
solutions and other simulations are limited to relativelyand then outward to the rim of the drop. Surface tension
simple cases. We include one test in Fig. 2, where we comeventually inhibits further outward motion of the rim and
pare the oscillations of a single drop with analytical predic-forces the fluid back toward the axis of symmetry. While
tions. Here a single drop is perturbed slightly by the fundakinetic energy is converted into surface tension energy dur-

Figure 3 shows the collision of two drops, at several
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FIG. 3. Collision of two drops. Here We32, Re=98, r =15, and\=350. The nondimensional timecaled by the initial velocity and the drop diametisr

noted in each frame. The grid used here is 64 by 256 grid points.
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t=0.5 1=1.25 t=1.8 =3.0

64x | 32x 64x | 32x B4x - 32x| |B4x | 32x
256 = 128 256 | 128 256 | 128| [256 | 128

5
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FIG. 4. Resolution test. Selected frames from the computation in Ritpe3
left half) are compared with results obtained on a twice as coarse(tped
right half). The evolution on the coarser grid is slightly slower than on the
finer grid.

" t=0.6

t=1.0

. L . . t=1.6
ing the initial deformation, the reversed motion converts sur-

face tension energy back into kinetic energy and the drops
rebound since the interface between the drops is not allowed
to rupture.

To show that this calculatiofwhich was done on a 64
by 256 grid gives an essentially fully converged solution,
we compare selected frames from the run in Fig. 3 with
Compmatior-ls dpne on a coarser, 32 by 128 grid in Fig. 4, IG. 6. The pressure for selected frames from the computation in Fig. 3.
The most significant (j|fference is that the coarsely resolve otice that the vertical scale is different in each frame. The times are the
drops have moved slightly less apart at the end of the rugame as in Fig. 5.
compared with the well-resolved ones, suggesting slightly
larger loss of energy for low resolution. In all of our simu-

lations we have monitored the volume of the drgpet ex-  there is a thin boundary layer, visible as a “kink” in the
plicitly conserved by the codeand found that even for col- streamlines. In the next frame, the region where the velocity
lisions involving severe deformations the volume change iss uniform and the streamlines are straight has nearly disap-
always less than a fraction of a percent. We also note that thgeared as more and more of the fluid is squeezed outward.
relatively low value of the density ratia, used here, was Near the rim of the resulting disk the outward velocity even-
found to be sufficiently large so that a further decrease haqja"y goes to zero, and in the third frame the outer rim is
an insignificant effect on the results. starting to flow inward, even though the middle of the disk is

For additional insight into the collision process, we plotstjl| getting thinner(the droplet never becomes completely
the streamlines for the whole flow field at several times i”stationary, thus the kinetic energy is never exactly xéFbis
Flg 5. In the first frame the drOpS have CO"ided, and Whilereversed flow region continues to grow and in the fourth
most of the drop fluid is still moving forward with a uniform  frame the flow is dominated by a large recirculation region of
velocity, the fluid in a small region near the collision plane isgpposite circulation to the initial one. This development con-
moving outward. The forward motion of the drops has in-tinyes in the next two frames as the drops rebound. Since the
duced a circulation in the whole fluid domain, leading to motion of the ambient fluid near the walls of the domain is
closed streamlines. In the outer fluid, near the drop surfacgow toward the collision plane, a small amount of the fluid
with the original circulation accumulates near the outer
walls. Notice that the flow field during recovery is not simply
t=0.2 t=0.6 t=0.8 t=1.0 t=1.2 t=1.6 the reverse of the initial flow. While the drop was getting
flatter, considerable amount of the drop fluid remained in
uniform motion during a large part of the collision phase;
during recovery the streamlines bend more uniformly.

The pressure field inside the drops, at the same times as
in Fig. 5, is plotted in Fig. 6. Because of a finite resolution,
= = ‘ fﬁ the pressure is not exactly discontinuous across the interface,

g ‘ ‘ \ but changes smoothly over two to three grid spaces. For a
relatively fine resolution, as is the case here, this transition
zone is thin. Initially, the pressure is nearly uniform within
the drops, but as they collide and are brought to a halt, the
pressure on the centerline, at the point of contact, increases.
As the contact region increases, the high-pressure area
moves to the rim of the disk, and at maximum deformation,
FIG. 5. Streamlines for selected frames from the computations in Fig. 3.when the drop is nearly stationary, the pressure is highest in
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FIG. 7. Selected frames for the collision of two drops at¥86, r =15, \=350, and different Reynolds numbers. The nondimensional tiraged on initial
velocity and drop diametgis noted in each framdéa) Re=28. (b) Re=58. (c) Re=123.

1.0

the outer torus, where the curvature is highest. This high
pressure drives the flow back during rebounding, and as the
drops separate the high-pressure region is again on the con- =
tact plane. Here the drops are elongated during separation it

(a)
\Total loss
and the pressure is therefore highest near the ends where the "g 1
curvature is highest. Notice that the vertical scale in each
frame is different. )

Experimental observation suggest that the effect of the
Reynolds number is small, once it is high enough. Although I
our Reynolds numpers are some'what Igwer than those'often 50 60 100 140 180
encountered experimentally, we find a similar trend. In Fig. 7 Reynolds number
we compare the results for a single Weber number and three
Reynolds numbers. Except for the very lowest Re, the solu-
tions are quite similar. A more detailed comparison is given
in Fig. 8. (The case shown in Fig. 3 has the same Weber
number and is also included in the comparisons made in Fig.
8.) In Fig. 8(@) the energy loss during initial impagip to the
maximum deformationand the total energy loss are com-
pared for the different Reynolds numbers. Figufie) 8hows
the coefficient of restitutiorithe ratio of the relative veloci-
ties of the drops just before and just after colligiamd the
maximum radius, plotted versus the Reynolds number. The —— N
restitution coefficient and the energy loss are computed when 60 100 140 180
the distance between the center of mass of the drops is one Reynolds number
diameter, since there is a small energy dissipation after theiG. 8. Diagnostics for the simulations in Figs. 7 anda.Loss of energy
drops separate due to friction from the outer fluid. All the versus Reynolds number. The lower line shows the loss in total energy
graphs show that the collision becomes relatively indepengurind the first half of the collisioriup to maximum deformatigrand the

. . top line shows the total loss during the collisigh) Coefficient of restitu-
dent of the Reynolds number for the highest values simugg, (ratio of the relative velocities of the drops before and after collision
lated. and the maximum radius versus Reynolds number.

Inital loss
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FIG. 9. Selected frames for the collision of two drops atRé,r =15,\=350, and different We. The nondimensional titbased on initial velocity and drop
diametey is noted in each framéa) We=13. (b) We=66. (c) We=112.

1.2

With collisions at high Reynolds numbers becoming
relatively independent of the Reynolds number, the Weber
number remains the main controlling parameter. Its influence
on the collisions is examined in Fig. 9, where the drops are
shown at several times for three different Weber numbers
and Re=96. In the top row the Weber number is smaller than
in the computations in Figs. 3 and 4, but in the two lower
rows the Weber numbers are larger. There are obviously con-
siderable differences. First, the collision takes longer for o
higher Weber numbers, in the units used heb¢\(). Sec- - ' ' ' ' '

. 2.0 0.0 20 4.0
ond, the deformation depends strongly on the Weber number. Y(DIV)
For the lowest Weber number the drops deform only slightly
during the collision and return to a nearly spherical shape
immediately following separation. As the Weber number is
increased the deformation increase considerably and the
drops become greatly elongated as they separate. We have
run the code at higher Weber numbers, but generally found it
difficult to follow the computations throughout a complete
bouncing due to instabilities in the thin film near the center-
line. Whether this is a resolution problem or due to a physi-
cal instability has not been resolved. The question is most
likely of marginal physical relevance since very thin films
are likely to rupture for these high Weber numbers.

The velocities of the center of mass of the drops in Fig.

9 are plotted in Fig. 1@). For the lowest Weber numbers the FIG. 10. (a) Center of mass drop velocities versus time for the runs in Figs.

YelOCity changes smoothly from_DOSitive to negative, indicat-g and 3 versus nondimensional tinb) Force on the symmetry plane ver-
ing a nearly constant deceleration of the center of mass. Asus time(scaled by the initial velocity of the drop and its diamgter

We=3

- — -We=13
————— We=32
—-—-We=66

@)
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FIG. 11. Energies for the runs in Figs. 9 and 3 versus time. Here, time is —-
nondimensionalized by the oscillation period of a single drop. Except for the (©)
very lowest Weber number, the collision time is nearly constant when mea- ]
sured in these unit¢a) Kinetic energy.(b) Surface tension energy. 0
‘} -
<
the Weber number increases, the velocity decreases more
rapidly, and the curve develops a kink at the point of maxi- 2
mum deformation, where the velocity of the center of mass ]
remains essentially zero as the drops become flatter. This w
“waiting” becomes longer as the Weber number increases g ————————————
and the final velocity of the drops after rebounding decreases 0 30 60 90 120
due to the larger dissipation in the more deformed drops. Weber number

Figu-re 1@b) shows the force Or-] the symmetry plane IG. 12. Diagnostics for the simulations in Figs. 9 anda3.Loss of energy
versus time. As the Weber _numbe.r increases, the dl‘OpS b érs.us Weber number. The lower line shows tHe loss in' total energy during
come “softer” and the maximum is lower. For the lowest the first half of the collisior(up to maximum deformatigrand the top line
Weber number the force has a single maximum, but for thehows the total loss during the collisiofl) Coefficient of restitution and
higher Weber numbers there is a Iarge maximum at the initiafverage collision fqrce versus Weber numiger.Time of collision in units
. of period of oscillation of a single drop versus Weber number.
impact and another smaller one as the drops recover their
shape and bounce back. The average force also decreases
since the contact time increases and the net change of mo-
mentum during the collision becomes smaller since the finaslightly due to viscous dissipation. As the drops collide, ki-
velocities are lower due to larger dissipation for larger defornetic energy is converted to surface tension endigg.
mation. 11(b)], and in all cases the kinetic energy is reduced to nearly

In Fig. 11 we examine the kinetic energy, zero. The amount recovered depends strongly on the Weber
Ev=J apgm(vZ+v2)r dA’, and the surface tension energy, number, with most energy dissipated for high Weber num-
Es=0(S4—S,) of one drop, versus time for the runs in Fig. bers where the deformations are large. This figure shows that
9 using time units based on the oscillation frequency of an the time units used here the time of collision is relatively
single drop. HereA is the cross-sectional area of the drop in constant for the higher Weber numbers. Furthermore, the
ther-z plane,S; is the surface area of the drop, aglis the  post-collision oscillations have nearly the same period—as
surface area of the initially spherical drop. The energy isexpected.
normalized by the kinetic energy of both drops at the mo-  Figure 12 summarizes the results for different Weber
ment of collision. Initially, only the kinetic energyFig. = numbers: As the Weber number increases, the drops deform
11(a)] increases as the drops are set in motion by the appliethore and the energy losses increfSig. 12a)], with nearly
force field. When the force is turned off, the energy decreaseall the initial kinetic energy being dissipated at the highest
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FIG. 13. The evolution following rupture of the interface separating the drops for the simulation in Fig. 3. In both cases the drops coalesce péananently.
Rupture att=0.4. (b) Rupture at=0.6.

We. The initial losses, up to maximum deformation, arelayer down to such a small scale, but the computations in
about a third of the total losses for low We and increase tdrig. 4 suggest that the large-scale motion is well predicted
about half the losses for high We. As the deformation andand does not depend strongly on the resolution of this layer.
energy dissipation increases, the restitution coefficient anive suspect that this is mainly due to a very simple flow in
the average collision forciFig. 12b)] decrease. The colli- the film. If the surface is clean and the curvature small, the
sion time[Fig. 12c)], measured in units based on the oscil-flow in the film is likely to be a plug flow with velocity equal
lation period of a single drop—and defined as the time fromyo the fluid velocity inside the drop. When the layer is rup-
when the drops would first touch if they remained sphericatured, however, the resulting change in the interface topology
until the time when the drops actually separate—decreasegsually leads to dramatically different evolution than when
slightly at low Weber numbers and then remains relativelythe |ayer is not ruptured. The theory of film rupture between
constant at higher We. This simple dependency of the collipypbles or drops is currently being developee, e.g.,
sion time on We has been observed befdsee, e.g.. pavisetal® and Yiantsios and Davl¥, and while it ap-
Foote”®). For bouncing drops the collision time is, of course, pears possible that such a theory could be combined with full
of a critical importance, since it influences not only the totalgjmylations, we take a mord hocapproach here and rup-
force exerted by the drop, but may also be important fokyre the interface at a prescribed time by removing surfaces
mass and heat transfer. Furthermore, for coalescence to taligsi 5re very close. Such an instantaneous change in topol-
place it is necessary that thg collision take; sufficient!y IongOgy is, of course, an approximation to what happens in real-
time so that fluid can be drained from the film separating th& “while the influence of molecular forces, where the actual
drops. Translated into dimensional variables, constanf oy re takes place, is confined to a small area, an extremely
Teolisio/ T4 Means, for example, that for a given fluid and rapid motion of the surrounding film generally follows,
drops size the collision time does not depend on the Ve'°Cit¥vhere surface tension forces pull the remaining sheets and

of th"eddr]?ps. L.OW mpz(ajc’: veIOC|t||(aé|9yv Wﬁ) w'" Iee}d 00 fiament together, often leading to further rupture and the
sma e.ormatlons, and farge ve 00|t|.é$|g 9 to large formation of small droplets. We ignore these rapid small-
deformations, but the time in contact is the same. However,

: . " $cale processes entirely, also throwing away any small iso-
for the same fluids and same impact velocities, larger drOpPated drops that may be formed following the rupture. Mod-
will have a longer contact time. Similarly, for the same size

: . S . .-eling the rupture by a discontinuous change in the structure
and impact velocities, drops with higher surface tension will . . : . i
. of the interface is therefore a little like modeling a shock
bounce off each other faster than low surface tension drops. . I o AR
wave by a discontinuity. Although this “shock” is in time,
rather than space, the analogy is made even more appropriate

B. Coalescing drops by the fact that usually the topology change is accompanied

In the computations in the preceding section we did noby a loss of surface and total energy.
rupture the layer between the drops, and therefore the drops In Fig. 13 we show a collision with the same governing
could never coalesce. Real drops, however, generally cogarameters as in Fig. 3, but here the interface is ruptured
lesce(bouncing is actually somewhat rarand the interface once the drops are close enough by simply removing the
has to be ruptured for simulations of realistic collisions. Thindouble interface, leaving a single drop with an indented
films usually rupture when their thickness becomes compawaist. The time when rupture takes place is prescribed at the
rable with the intermolecular spacingbout 100-400 A, beginning of the simulation, and in Fig. (&8 the film is
see, for example, Bradley and SthwWe cannot resolve the ruptured at time 0.4(Obviously, prescribing rupture times
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FIG. 14.' The ENergies versus time for the smu_latlpns in Fig(@3and (b) . drops att=0.2 for Re=98,r=15 gand§)\=350 (dashed lingand frc))r dropgs
are as in Fig. 13. The solid line denotes the kinetic energy, surface tensmmat bouncesolid line). (a) The maximum radius versus Weber numigby.

energy, and the total energy, when the film between the drops is not rupture{;lh . .

. " e maximum surface tension energy versus Weber number.
and the drops rebound. The dashed lines show the same quantities after the 9y
interface has been ruptured and the drops are allowed to coalesce.

Fig. 13a) to the frames in Fig. 1®), where the interface is
before a well-defined film has formed is meaningless. Theuptured at time 0.6. The evolution is comparable to the pre-
results for bouncing drops are used to determine when a thinious case, but the maximum deformation is smaller. Figure
film is present. Surface tension pulls the indentation out- 14 shows the evolution of the energies for the runs in Fig. 13,
ward initially, but after the drop has reached its maximumas well as the run in Fig. 3, where no rupture takes place. The
deformation, surface tension pulls the waist inward and thenergies are normalized by the total kinetic energy of the
drop elongates before starting to oscillate around the spherdrops at collision, and here we have not subtracted the sur-
cal equilibrium shape. The sensitivity of the evolution to theface tension energy of the initially spherical drops as in Fig.
exact time of rupture can be seen by comparing the frames ihl(b). As the interface is ruptured, considerable surface area
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FIG. 16. The evolution following rupture of the interface separating the drops fer8&eRe=140,r =15, and\=350. In(a) the drops eventually separate
again, following initial coalescence, but {b) the drops remain onéa) Rupture at=0.2. (b) Rupture att=0.5.
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disappears and there is therefore a discontinuous reduction in
the surface energas well as the total energyin reality this
energy is dissipated when the ruptured film breaks into small
drops or is stored as surface energy of these small drops, but
here the film is simply removed. The kinetic energy is, of
course, unchanged by the rupture, but its subsequent evolu-
tion is different than in the nonrupturing case. Notice that in
Fig. 14b) there is a larger energy loss and that the post-
coalescence oscillations are smaller than in Figajl4

We have repeated the computations in Fig. 9, where the
Reynolds number is held constaiiRe=96) and the Weber
number varied, and ruptured the film between the drops at a
predetermined nondimensional tirtte=0.2). This early time
was selected such that a well-defined contact layer had
formed(so that removing it did not alter the total volume of
the drop by any significant amoynbut energy losses due to
coalescence would be small. For the We numbers simulated
here (up to 100 the drops coalesce permanently and Fig.
15(@) compares the maximum radius for these cases to the
results where the drops rebound. When coalescence takes
place, the maximum radius is larger. However, since some
energy is lost when the thin film is removed, the maximum
surface energyFig. 15b)] is smaller than for bouncing
drops.
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Another simulation for more energetic drops, -Rel0

and We=65, is shown in Fig. 16, where the evolution fol- FIG. 17. The energy versus time for the simulations in Fig.(@6and (b)
! ’ ’ are as in Fig. 16. The solid line denotes the kinetic energy, surface tension

lowing rupture for two different rupture time®.2 and 0.5iS  energy, and the total energy when no rupturing takes place and the drops
shown. In both cases the drop first continues to become flatebound. The dashed lines show the same quantities after the interface has
ter and then the motion is reversed, eventually leading to &een ruptured and the drops are allowed to coalesce.
very elongated drop. For the first case where rupture is at an
early time, this elongation leads to a breakup of the drop into
two drops, but when the rupture is later this breakup does not
take place. In Fig. 17, the energies are plotted versus timgy piSCUSSION
As the film is ruptured, there is a drop in surface energy, and
therefore total energy. Surface energy falls slightly following In the modeling of droplet collisions the most basic
the rupture, as the cusp left by the rupture is pulled back. Thguestion is what type of collision will result for a given set of
rate of decrease of kinetic energy is slowed, but not reverse@éxternal parameters. Most models proposed in the literature
suggesting that considerable dissipation is taking place. Atherefore try to predict the boundaries between the various
the combined drop continues to deform, surface energy ineollision modes. The simulations in the preceding section
creases again, reaching a maximum where the kinetic energyive detailed information about both the drop shape and the
is minimum. Notice that the maximum is considerably latervelocity field as a function of time and can help validate the
than when the interface is not ruptured. When the film isvarious hypotheses made in the construction of simple mod-
ruptured early, Fig. 1(@), the loss of energy is smaller than els.
when the film is ruptured later, Fig. (). Thus, the maxi- Both Ashgriz and Pdband Jianget al.” present simple
mum kinetic energy when the drop recovers its sphericaénergy arguments to explain the outcome of drop collisions.
shape is larger, and subsequently, the surface energy at lalte basic difference between these models is that Ashgriz
time, when the kinetic energy has become nearly zero is alsand Poo neglect dissipative effects whereas Jeing. in-
slightly larger. This suggests that early coalescence promotedude dissipation during deformation. For drops that coa-
a secondary separation. lesce, Jianget al. argue that the dissipation up to maximum
We have also conducted a few simulations at even highedeformation is independent of the viscosity of the fluid and
Reynolds and Weber numbers. Figure 18 shows the evolutiothat most of it takes place in a thin layer near the contact
of the interface for Re185 and We=115, where the inter- plane between the drops.
face is ruptured at=0.2. After coalescence and the initial From Fig. 8 we see that while the collision becomes
formation of a flat “disk” the drops stretch apart, forming a relatively independent of the Reynolds number as Re in-
chain of three nearly equal sized drops. Here, we have resreases, the energy dissipation does not go to zero. Indeed,
moved the filament connecting the drops after stretchingthere seems to be some support for the assertion that the
thus again modeled rupture. The size of the middle drop i®€nergy lossparticularly during the initial deformatigrbe-
considerably larger here than in Fig. 16. In experiments, seveomes independent of the Reynolds number. To examine this
eral drops are often formed for more energetic collisions. in more detail, we plot the dissipation per unit volume,
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FIG. 18. The evolution following rupture of the interface separating the drops ferM®, Re=185,r =15, and\=350.
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v, Iv,\? tion is occurring in a different place than they assumed, the
(7 E) rest of their argument seems to be supported by the plot.
While the contour plots of the highest Reynolds numbers, at

2 t=0.2, are not identical, they are considerably closer to each
' () other than to the plot for the lowest Reynolds number, thus

) . .suggesting some level of convergence. We note that this is
for selected times and three different Reynolds numbers "&c?ugally agmore stringent test th%n the argument of Jiang

Fi?‘ 196Her:e, Wi:S%,_ as in _Fig? i_agddI_Thehtim_e_s_V\l/gre et al. require; here we are comparing the pointwise dissipa-
selected where the dissipation Is high during the initial Im-s,, *\\hereas their discussion is based on the integrated

pact(t=0.2 e_md durmg.reb.ountﬂt:l.Z). The figure s_hows . value. Similar trend is seen during the rebound stége
that the maximum d|ss_|pat|op does not take placg na th”"=1.2), where the maximum dissipation takes place near the
Ig\yer nea; the staggatmr} ;?]ow:jt, as aﬁsumid by mrfd’ symmetry line away from the contact plane, where the
ut T‘ea” € oudterHe ge oft el hrop,hw heret e'strearzllnefs Atreamlines converge. Overall, the dissipation is not as local-
turning outward. However, although the maximum dissipay,eq g during the initial deformation, and the differences

between the plots for the highest Reynolds numbers are

greater. Although energy dissipation during collision may be-
=12 come independent of Reynolds number for-Re, we note
Re=58 that for coalescing drops, any excess energy must be dissi-
pated by oscillations and the decay thus depends on Re.

The dissipation of energy has a significant influence on

the evolution of the drops after the initial contact. In particu-
lar, large dissipation reduces the maximum deformation. An
upper bound on the maximum surface area is easily deter-
mined (see, e.g., Jiangt al.’): Since kinetic energy is con-
verted into surface tension energy during collision, the sur-
1.2 face area is maximum if no energy is lost and all the initial
Re=98 kinetic energy is converted into surface tension energy:

3

t=0.2
Re=58

t=0.2
Re=98

IMgV2+ 0S,= 0Smax- (8

Here, we ignore the outer fluid completely. Aldd,, is the
mass of a single drop anl, and S, are the initial and
maximum surface area, respectively. Assuming the drops to
i be initially spherical, and using the definition of the Weber
number, this can be written as

t=0.2
Re=123

t=1.2
Re123 Shax 47r3pV2 We

s, 1t oagamz 1t g ©

This line is plotted in Fig. 20, along with the computed
SmadS, for both the bouncing drops in Figs. 9-12 and the
coalescing drops in Fig. 15. In both cases the maximum sur-
face area is not achieved due to losses of energy. Since the
interface is ruptured at a constant nondimensional time based
on d/V (not oscillation period,ry) the drops are slightly

FG. 19. Dissinati volume for bouncing d Her6.2 for th more deformed when the film is ruptured at higher Weber
o e s o i A5 apumbers and the diference between bouncing and coalese-
A=350; Re=58 for top row; Re=98 for the middle row; and Re123 for ~ INg drops therefore increases with We. In addition to our
the bottom row. The same contour levels are used in all frames. numerical results, we have also plotted data from Jiang
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~ lision. In most cases the interface was rupturet=Q.2. The
experimental data does not extend down to low Reynolds
numbers, but our numerical data suggest—as one might
expect—that reflective collisions do not take place at low
Reynolds numbers. Although the comparison can only be
gualitative—we do not, after all, have a physical model for
. the rupture time—the agreement is good where we have
- _ggg{g;{gg,gfgg;s data. The numerical results also suggest a natural extension
— - — - Experiment of the experimental results to low Reynolds numbers.
- - ' . While the limited number of computations that we have
0.0 er7918 20 done for reflective collisions does not allow us to draw gen-
eral conclusions, the plot of the energies in Fig. 17 suggest a
FIG. 20. Maximum surface area. The top line is the theoretical predictionrelatively simple criteria for separation following initial coa-
when there are no losses. The solid line is for bouncing drops and the dash¢dscence: Comparing the two graphs, we see that the surface
line is for dr‘ops that coalesce. The dash—dotted line is a fit to experimentefension energy during rebound exceeds that of two dﬁbtﬁ’s
data from Jianget al. . .= . .
horizontal ling in Fig. 17a), where the drops separate, but in
Fig. 17b), where the drops do not separate, the losses are
et al” in Fig. 20. The dotted line is a straight line fit to their Sufficiently large so that surface tension energy does not ex-
data points. Overall there is a reasonable agreeftieaata ceed tha_lt of tyvp isolated drops. We therefore suspect that the
is, for example, bounded by our bouncing drppsut the d_rops will sp_llt_ if the losses due to coalescence and deforma-
slope of the experimental data is somewhat different thadion are sufficiently small, or that
shown by either one of our curves. We expect that this is due 1 2 _
to differences in the time that the film ruptures. At low Weber 2(MoVTH 7S0) = b >205,, (19
numbers, when the velocities are low, the time it takes tavhereS, is the surface area of a single spherical drop @nd
drain the film is likely to be long and losses due to ruptureis the total losses due to both viscous dissipation and inter-
large. At higher We the opposite will hold. We note also thatface rupture. While the viscous losses are fully predicted by
Jianget al. had to estimate the surface area from measureeur computations, the losses due to rupture require accurate
ments of the drop radius, and some of the differences coulthformation about the time of rupture.
be due to inaccuracies in this estimate.
Computations at high Re and We require fine resolution
and long computational time. We have therefore simulateq/_ CONCLUSIONS
only a few cases of reflective collisions where the drops
separate again, following an initial coalescence. Using these The computations of head-on collisions of two drops of
few runs and experimental data from the literature we ShOW@qual size presented here are, in many ways, quite similar to
in Fig. 21, the boundaries between coalescence and reflectiyRose of Footé? 20 yrs ago. Foote simulated the collision of
collisions in the Re—We plane. The crosses that are com single drop with a wall, and except for a larger range of
nected by a solid line, are obtained from the data presentggarameters and finer resolution, our simulations of bouncing
by Jianget al,” and the line to the far right is from the high drops are nearly identical. The new element here is the ex-
Reynolds number experiments of Ashgriz and Pdthe  ploration of how the drops coalesce and their behavior after
circles represent our simulations. Open circles show a coaoalescence. While the details of the rupturing of the film
lescence collision and filled circles stand for a reflective colbetween the drops remains unresolved, the computations
suggest that since the evolution is relatively insensitive to the
resolution of the layer between the drops, the drainage pro-

Smax/So=1+We/d8 -

20

Smax/So
1.0

0.0

cess before rupture is primarily a one-way coupling, in the
] . sense that while the drop behavior affects the draining, the
gc\ﬂ % exact film behavior has a minimal impact on the rest of the
g . ‘ ///é evolutior_1. The ruptur(_e time, on the other hand, is critical to
g - { Temporary coalescence the continuing evolution of the drops, and depends on how
?8- %// fast the film is drained. These observations suggest that a
g | ‘ subgrid model, which takes the computed pressure and ve-
g Joee e : We=24 locity of the drop fluid and predicts the rupture time, which
o > Permanent coalescence is then the only information returned back to the drop simu-
0 150 300 450 lations, would give a procedure that had a fully predictive

Reynolds number capability. Such a subgrid model for the rupture, that is suit-
able for our approach, has been presented by Jacgmin and

FIG. 21. The boundaries between coalescing and separating collisions in ﬂ‘IEOStelfO but has not been incorporated into our code yet. We

Re-We plane. Open circles are computations where the drops coalesceflyia that accurate prediction of the time of rupture requires
permanently, dark circles are computations where the drops separated again. . . .
The solid line is data from Jianet al. and the dashed line is an extrapola- Careful tracking of the front and that numerical techniques

tion based on the computational results. that relay on grid based reconstruction of the interf@gh
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