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It is shown that a small amount of dissipation, caused by current flow in a lossy external circuit, can
produce a disruption of steady-state cycloidal electron flow in a crossed-field gap, leading to the
establishment of a turbulent steady state that is close to, but not exactly, Brillouin flow. This
disruption, which has nothing to do with a diocotron or cyclotron instability, is fundamentally
caused by the failure of a subset of the emitted electrons to return to the cathode surface as a result
of resistive dissipation. This mechanism was revealed in particle simulations, and was confirmed by
an analytic theory. These near-Brillouin states differ in several interesting respects from classic
Brillouin flow, the most important of which is the presence of a microsheath and a time-varying
potential minimum very close to the cathode surface. They are essentially identical to that produced
when ~i! injected current exceeds a certain critical value@P. J. Christenson and Y. Y. Lau, Phys.
Plasmas1, 3725~1994!# or ~ii ! a small rf electric field is applied to the gap@P. J. Christenson and
Y. Y. Lau, Phys. Rev. Lett.76, 3324 ~1996!#. It is speculated that such near-Brillouin states are
generic in vacuum crossed-field devices, due to the ease with which the cycloidal equilibrium can
be disrupted. Another novel aspect of this paper is the introduction of transformations by which the
nonlinear, coupled partial differential equations in the Eulerian description~equation of motion,
continuity equation, Poisson equation, and the circuit equation! are reduced to an equivalent system
of very simple linear ordinary differential equations. ©1996 American Institute of Physics.
@S1070-664X~96!01012-9#

I. INTRODUCTION

When electrons are emitted from a cathode into a
vacuum gap to which a dc voltage is applied, and which is
immersed in a transverse magnetic field,B.BH , a steady
state may be established in which each electron executes a
simple, cycloidal orbit and returns to the cathode with the
same energy with which it was emitted. Here,BH is the Hull
cutoff magnetic field.1 An example is illustrated in Fig. 1.
These steady flows are characterized by smoothly varying,
time-independent density and potential profiles. Electron
density is largest at the cathode and at the turning point at the
top of the layer. A steady state of this form can be estab-
lished if and only if the emitted current density,J, is below a
critical value,Jc , that depends on the gap voltage, gap spac-
ing, and magnetic field.2 A good estimate of the critical emit-
ted current, for zero beam injection velocity, is obtained
from the condition of a zero electric field at the cathode.2–5

When the emitted current is above the critical value, the
character of the resulting turbulent state, found by computer
simulation, is much different. In this case, as shown in Ref.
2, the electron density builds to the point that a potential
minimum is established close to the cathode surface. Those
particles out beyond the potential minimum execute orbits
that are nearly laminar, with very little energy in the trans-

verse direction. Newly emitted particles are~mostly! re-
flected from the potential minimum, and returned to the cath-
ode. Not all emitted particles are reflected, however. The
depth of the potential minimum varies in time, periodically
allowing some newly injected particles to pass into the main
flow.2,4Of course, some members of the main flow must then
return to the cathode to maintain a balance, on average, be-
tween the injected and ejected particle fluxes.

The average density of the layer in this state is very
close to the classical Brillouin value, given by setting the
~average! plasma frequencyvp equal to the cyclotron fre-
quencyV. Densities and potentials are not time independent,
but rather oscillate with small amplitudes about mean
values.4 This flow is therefore similar, but not identical, to
classical Brillouin flow.6 For want of a better term, we shall
call it near-Brillouin~nB! flow. @The classical Brillouin flow
is characterized by constant density withvp

25V2 between
x50 andx 5 D@12A12(BH /B)

2#, and by laminar flow ve-
locity vW 5 ŷVx in theE3B direction.#

Additional analytical and numerical studies show that
nB flow, far from being an unusual state, is actually difficult
to avoid in practice, even when currents are well below the
critical value. For example, it has recently been discovered
that the steady-state cycloidal flow below critical current is
very unstable, being easily disrupted by the application of a
small rf potential.7 This disruption is fundamentally one di-
mensional in nature and therefore has nothing to do with a
diocotron or cyclotron instability.8 It is caused by the failure
of a subset of the emitted electrons to return to the cathode
surface due to the action of the rf field. As a result, charge
accumulates and the density of the layer builds in time~and
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smooths in space! to a value near the classical Brillouin
limit, with vp

25V2. It is found by computer simulation that
the flow in this case evolves to nB flow, just as if the injected
current were above the critical value.

In the present paper, another way that the cycloidal flow
may be disrupted is described. Again, the effect is one di-
mensional. Specifically, we show that the interaction of an
injected beam with an external circuit containing some loss
disrupts the cycloidal equilibrium, which, again, develops
into nB flow.

Since the amount of resistance needed to cause this dis-
ruption is very small, and since all physical circuits have
some dissipation, we conjecture that nB flow is generic to all
vacuum crossed-field devices. In fact, we further conjecture
that dissipation,per se, is not required. This is because the
energy lost by an electron could instead just as well be stored
temporarily in a reactive element. It seems that almost any
perturbation encountered in reality on cycloidal flow may
drive the flow unstable, resulting in a final state of nB flow.

This conjectured ‘‘universality’’ of nB flow, if correct,
would require, for example, that the electron density near a
thermionic cathode in a crossed-field device would depend
strongly only on the magnetic field value via the relation
vp
2'V2 and be insensitive to the cathode temperature, which

determines the emission rate by the Richardson–Dushman
law.9

Note that the fundamental mechanism leading to nB flow
is the same in all cases, namely some or all electrons entering
the gap lose energy during their orbit, preventing them from
returning to the cathode. Altogether, then, three regimes in
which nB flow is produced have been identified, viz.~i!
J.Jc ,

2 ~ii ! J,Jc , with a small rf voltage applied,
7 and~iii !

J,Jc , with a small resistance in external circuit. In all three
cases, the form of nB flow produced is essentially the same.

In this paper, we concentrate only on the resistive desta-
bilization of the cycloidal flow. We shall first show, via com-
puter simulation using the one-dimensional codePDP1,10 that
a very small resistanceR may destabilize the cycloidal flow.
Examination of the computer runs reveals that the collapse of
the cycloidal flow occurs concomitantly when at least some
of the emitted electrons fail to return to the cathode. In the
case of low injected current, it is the leading part of the
electron flow ~i.e., the first emitted electrons! that fails to
return to the cathode, whereas in the case of high injected

current, it is the trailing part of the electron flow~i.e., the
electrons emitted subsequently! that fails to return to the
cathode.~By high injection current, we mean a significant
fraction of the critical current, as defined more precisely be-
low.! Given an injection current, there is a threshold resis-
tance beyond which the cycloidal flow collapses into the nB
flow. We next develop an analytic theory to calculate this
threshold resistance. It turns out that, up to the time (tT) that
the lead electron takes to reach the maximum excursion from
the cathode~Fig. 1!, the formulation can be done exactly in
terms of very simple, linear ordinary differential equations.
Space charge effects are fully accounted for and no linear-
ization is performed. In effect, we have transformed the non-
linear, coupled partial differential equations in the Eulerian
description~equation of motion, continuity equation, Poisson
equation, and the circuit equation! into an equivalent system
of linear ordinary differential equations before orbit crossing
occurs. Fort.tT , the formulation is approximate. These lin-
ear equations are then solved, both numerically and pertur-
batively, to yield the threshold resistance by requiring that
the lead electrons not to return to the cathode in the case of
low injection current. These analytic results were found to be
in good agreement with particle simulation results for mod-
erately low values ofJ up to about 1/3Jc .

In Sec. II, we present the model and the simulation re-
sults. In Sec. III, we formulate the analytic theory and
present the solution, both by direct numerical integration and
by asymptotic expansion. Concluding remarks are given in
Sec. IV.

II. MODEL AND SIMULATION RESULTS

The model used in the simulations is shown in Fig. 1. It
is a simple one-dimensional anode–cathode gap of separa-
tion D50.002 16 m and electrode areaA50.003 122 m2,
that is immersed in a constant transverse insulating magnetic
field B50.27 T ~B.BH!. An external circuit consisting of a
constant resistanceR and a steady voltageV0512 000 V is
connected to the gap. This gap voltage gives the Hull cutoff
magnetic fieldBH5(2mV0/eD

2)1/250.171 T. At timet50,
the switch is closed~Fig. 1!. Electrons begin to be injected
into the gap at a constant rate with a constant current density
J, and the gap voltage,Vg(t), begins to ramp from zero to its
equilibrium value as current flows through the external cir-
cuit. The cathode potential is always held at zero volts and
the anode potential is allowed to fluctuate. It must be remem-
bered that due to the magnetic field that insulates the gap
against electron flow, the current,I , flowing through the ex-
ternal circuit~and across the gap! is the displacement current
induced at the anode. This displacement current has two
components, the familiar termC dVg/dt and the induced
current as a result of electron motion in the gap. Here,
C5Ae0/D is the capacitance in vacuum. One further simpli-
fication of our model is that the electrons are all emitted at a
single velocityu0. The electron emission energy is 0.5 eV,
which implies a critical current density,Jc5229 800 A/m2,
or critical currentI c5AJc5717 A.2,4 We restrict our studies
to J,Jc .

The computer simulations were done using the one-
dimensional electrostatic particle-in-cell~PIC! code,PDP1.10

FIG. 1. The model. In the absence of the resistorR, an electron emitted at
x50 at t50 reaches a maximum height att5tT , and returns tox50 at
t52tT .
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The remainder of this section is a discussion of the observa-
tions from the PIC simulation. In all cases we studied, at a
fixed value of the injection current densityJ, we found that
there is a threshold resistance above which the electron flow
becomes turbulent~Fig. 2! and below which the cycloidal
electron flow remain stable and time independent~Fig. 3!. In
all cases where the cycloidal electron flow becomes turbu-
lent, there is buildup of space charge within the gap that is
caused by the failure in some portion of the emitted electrons
to return to the cathode. The final turbulent state is always
the nB state.

The route to the nB state differs in detail, depending on
the level of injected current. For example, at the intermediate
level of injection current~roughly in the range 0.05Jc,J
,0.7Jc , in which most of the simulations were performed!,
the failure of the lead electron, defined as that emitted from
the cathode att50, to return to the cathode signals the sub-

sequent development into the turbulent nB state. Figure 2
shows the evolution of the phase-space plots,vx vs x, of the
ensemble of electrons. Figure 2~a! is taken att50.15 ns, Fig.
2~b! at t51.5 ns, and finally Fig. 2~c! at t520 ns. The case
shown in these figures is for an emitted current ofJ515% of
Jc with an external resistance of 1V. This set of plots is
typical of the onset of the instability in the range of moder-
ately low emitted electron current. Figure 2~a! shows the
lead electrons failing to return to the cathode. In Fig. 2~b! we
see that after many cycles, there is a buildup of space charge
within the gap as subsequent electrons fail to return to the
cathode. And, finally, in Fig. 2~c! we see the phase-space
plot that is typical of all nB flows.

Since this nB flow is essentially identical to that pro-
duced when~i! injected currentJ exceeds a certain critical
valueJc

2 or ~ii ! a small rf electric field is applied to the gap,7

we recapitulate the main properties of the nB flow that were
observed from the simulation:4 ~a! The electrons in the gap
display time-dependent, turbulent behavior.~b! The particle
phase space is greatly contracted invx , and the electron
density profile flattens out inx, extending from the cathode
to roughly the classical electron sheath thickness,
D@12A12(BH /B)

2#. The latter quantity is less than the
maximum excursion, from the cathode, of the electron orbit
in the stable, time-independent case.~c! The time-averaged
plasma frequency satisfiesvp5V, the cyclotron frequency.
~d! The direction of the cathode surface electric field, and the
sign of the cathode surface charge density, indicate the pres-
ence of a potential minimum in the immediate vicinity of the
cathode surface. Thus, a microsheath is always present.~e!
The potential minimum in the microsheath is oscillatory, and
its depth is on the order of the injection energy of the elec-
trons.~f! The space chargeQG in the gap, the surface charge
on the cathodeQK , and the total charge associated with the
gap,QT5QK1QG , are all nearly constant. Moreover,QT is
approximately equal toCV0, C being the vacuum capaci-
tance.

Returning to the resistive destabilization of the cycloidal
flow, we show in Fig. 3 the threshold resistance for the onset
of turbulence obtained from the PIC simulation. Also shown
are the results obtained from an analytic theory, which gives
the threshold resistance required to prohibit the lead electron
from returning to the cathode in the intermediate current
range. The small numerical values of the threshold resistor,
of order only a few ohms as shown in Fig. 3, prompted our
speculation that the nB state is almost inevitable in practice.

At high injection currents, roughly in the range
0.7Jc,J,Jc , the leading electrons always return to the
cathode at the critical resistance; although, with a large
enough external resistance it is possible to cause the lead
electrons to fail to return to the cathode. For the lowest ex-
ternal resistance that causes instability here, it is a group of
electrons released after timet50 that fail to return to the
cathode and cause a buildup of space charge within the gap,
thereby triggering the disruption of the cycloidal flow.

Finally, for very low injection currents, forJ'0 up to
about 0.05Jc , the cycloidal flowsare still unstable to an
external resistance; however, the criterion is no longer sim-
ply that the leading electrons do not return to the cathode.

FIG. 2. Phase space plots~a! immediately after one cycloidal orbit,~b! after
ten cycloidal orbits, and~c! in the final turbulent, near-Brillouin state.

FIG. 3. Threshold resistance for the onset of turbulence according to particle
simulation. Also shown is the threshold resistance to prevent the lead elec-
tron from returning to the cathode, according to the analytic theory.

4457Phys. Plasmas, Vol. 3, No. 12, December 1996 Christenson et al.



With a small resistance, while the electrons emitted at time
t50 may not return to the cathode after one Larmor cycle~or
at any time thereafter!, the perturbation in space charge is not
sufficient to trigger a collapse of the cycloidal flow. For the
cycloidal flow to evolve to the nB state, the external resis-
tance must be large enough that the energy dissipation in the
resistor by the very small displacement current is sufficient
to cause electrons that are emitted after one Larmor period to
fail to return to the cathode in addition to the lead electron.
Thus as the emitted electron density goes to zero, the critical
resistance must increase.

We should point out that extensive numerical tests~e.g.,
by varying particle weighting, or time step, up to two orders
of magnitude, or cell size, or combination of such! have been
performed4 to show that the nB states and the mechanisms
that lead to them are not a numerical artifact.

In the next section, we present the analytic theory that
determines the threshold resistance above which the lead
electron does not return to the cathode, and the results of this
theory are in good agreement with simulation in the interme-
diate injection current regime~Fig. 3!.

III. ANALYTIC THEORY

In most of our simulations, strong hints of instability
emerge once the first electrons fail to return to the cathode at
the end of their first cycloidal period@Fig. 2~a!#. This would
allow progressive buildup of the space charge in the gap
@Fig. 2~b!# and trigger breakdown of the cycloidal flow@Fig.
2~c!#. Given below is an analytic theory that describes the
onset of the resistive instability according to this scenario.
When such a theory is used to deduce the threshold resis-
tance for the onset of the instability, good agreement with
simulation is obtained.

A. Formulation

We shall use the Lagrangian description to formulate the
circuit equation, the force law~with the continuity equation
taken into account!, and the Poisson equation. Since we are
dealing with a one-dimensional model with a monoenergetic
emission velocity, an electron that is released atx50 at time
t5t i represents the entire electron sheet that is released from
x50 at t5t i . Let xi(t,t i) be thex coordinate of this electron
sheet at timet(t.t i).

Consider the electrons that are released fromx50 ~Fig.
1! between the time intervalt i andt i1Dt i . The thickness of
this incremental electron sheet isDxi5u0 Dt i and the sur-
face charge density~in C/m2! of this incremental electron
sheet is

s i5r0 Dxi5r0u0 Dt i5J Dt i , ~1!

whereu0 andr0 is, respectively, the initial velocity and the
initial volume charge density~in C/m3!, andJ5r0u0 is the
injection current density that is constant in space and in time
~t.0!. By convention, we takes, r, J, and the electronic
charge,e, to be positive. Charge conservation~i.e., the con-
tinuity equation! is automatically satisfied if the samesi is
used when this incremental electron sheet moves within the
gap. Motion of this electron sheet provides an induced cur-
rent, given by

I i~ induced!5SAs i

D D ]xi~ t,t i !

]t
, ~2!

by Ramo’s theorem.11,12 The total induced current may be
obtained by summing all such charge sheets within the gap:

I ~ induced!5(
i

SAs i

D D ]xi~ t,t i !

]t

5
AJ

D (
i

~Dt i !
]xi~ t,t i !

]t
, ~3!

where we have used Eq.~1!.
The currentI (t) that passes through the resistor~Fig. 1!

is the sum of Eq.~3! and the familiar termC dVg/dt, where
C5Ae0/D is the gap capacitance.11,12 Thus, we have

I ~ t !5C
dVg~ t !

dt
1
AJ

D E
0

t

dt0
]x~ t,t0!

]t
, ~4!

where we have taken the continuum limit by replacing the
summation in Eq.~3! with the integral in Eq.~4!. In Eq. ~4!,
x(t,t0) is thex coordinate of an electron at timet that was
emitted fromx50 at an earlier timet0. From this definition,
it is clear that

x~ t0 ,t0!50,
]x~ t,t0!

]t U
t5t0

5u0 . ~5!

The Kirchhoff voltage law,V05Vg1RI ~cf. Fig. 1! then
reads as

RC
dVg~ t !

dt
1Vg~ t !5V02R

AJ

D E
0

t

dt0
]x~ t,t0!

]t
, ~6!

where we have used Eq.~4!. Equation~6! is the circuit equa-
tion that governs the evolution of the gap voltage.

The equation of motion for a single electron reads as

]2xi~ t,t i !

]t2
1V2xi~ t,t i !52

e

m
E~xi ,t !, ~7!

whereV5eB/m is the electron cyclotron frequency andE is
the total electric field, including the time-varying space
charge field that is acting on that electron. Implicit in Eq.~7!
is the neglect of the self-magnetic field and relativistic ef-
fects. The total electric fieldE at positionx5xi is the sum of
the vacuum field2Vg/D and the space charge field. It is
derived in Appendix A@cf. Eq. ~A6! for t,tT , wheretT is
the time it takes the lead electron to reach the maximum
excursion. See Fig. 1#. In the continuum limit, Eq.~7! then
reads as

]2x~ t,t0!

]t2
1V2x~ t,t0!5

e

m SVg~ t !

D
1

J

e0D
E
0

t

dt0 x~ t,t0!

2
Jt0
e0

D , 0<t0<t<tT . ~8!

Note that Eqs.~6! and ~8! are the governing integrodif-
ferential equations forVg(t) andx(t,t0). They are linear, but
they are also exact, as no linearization has been made and the
time-varying space charge field is accounted for completely.
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A simple transformation, to be introduced shortly, cast these
two equations into linear ordinary differential equations.

To simplify the notation, we shall use the dimensionless
quantities defined as follows:

t[Vt, t0[Vt0 , tT[VtT , j~t,t0![x~ t,t0!/D,

ũ0[
u0

VD
, Ṽ0[

eV0
mV2D2 , Ṽg[

eVg
mV2D2 , ~9!

J̃[
eJ

me0V
3D

, r[RCV.

We shall also introduce the function

p~t!5E
0

t

dt0 j~t,t0!, ~10!

in terms of which we can nondimensionalize Eq.~8! as

]2j~t,t0!

]t2
1j~t,t0!5Ṽg~t!1 J̃@p~t!2t0#,

0,t0,t,tT . ~11!

It is straightforward to verify from Eq.~10! that

dp~t!

dt
5E

0

t

dt0
]j~t,t0!

]t
,

~12!
d2p~t!

dt2
5ũ01E

0

t

dt0
]2j~t,t0!

]t2
,

upon using the initial conditions, Eq.~5!. In terms of the
dimensionless quantities defined in Eq.~9!, the circuit equa-
tion ~6! is normalized to read as

r
dṼg~t!

dt
1Ṽg~t!5Ṽ02rJ̃

dp~t!

dt
, ~13!

where we have used the first part of Eq.~12!. The governing
equation forp~t! may be obtained by integrating Eq.~11!
with respect tot0 from zero tot. This yields

d2p~t!

dt2
1p~t!5ũ01tṼg~t!1 J̃S tp~t!2

t2

2 D ,
0,t,tT , ~14!

where we have used the second part of Eq.~12!.
Note that Eqs.~13! and~14! are linear ordinary differen-

tial equations governing the evolution ofp~t! andṼg~t!. The
solution ofp~t! andṼg~t! may then be used in the right-hand
member of Eq.~11!, which then becomes a very simple
second-order ordinary differential equation int with t0 being
treated as a parameter. These equations,~11!, ~13!, and~14!,
are exact; no approximation has been introduced to derive
them. The initial conditions forj~t,t0!, p~t!, andṼg~t! are

j~t0 ,t0!50,
]j~t,t0!

]t U
t5t0

5ũ0 , ~15a!

p~0!50,
dp~t!

dt U
t50

50, ~15b!

Ṽg~0!50. ~15c!

Condition~15a! follows Eq.~5!, condition~15b! follows ~10!
and~12!, and condition~15c! follows ~13! whose right-hand
member does not exhibit a delta function att50 @and hence
Ṽg~t! must be continuous att50, leading to Eq.~15c!#.

If we examine only the trajectory of a lead electron, we
set t050 in Eq. ~11!. With j~t![j~t,0!, Eq. ~11! gives the
following equation for the trajectory of the lead electron:

d2j~t!

dt2
1j~t!5Ṽg~t!1 J̃p~t!, 0,t,tT . ~16!

Since the three governing equations,~13!, ~14!, and~16! for
Ṽg~t!, p~t!, andj~t! are exact, we have in effect transformed
thenonlinear partialdifferential equations in the equivalent
Eulerian description~Euler’s equation of motion, continuity
equation, Poisson equation, and the circuit equation, in a
finite geometry! to these threesimple linear ordinarydiffer-
ential equations for 0,t,tT .

The force law for the lead electrons, Eq.~16!, may be
extended tot.tT in an approximate manner. Assuming that
the electron orbits in thex-y plane are symmetrical about
t5tT ~or t5tT in Fig. 1!, we find that fort.tT there is an
additional term attached to the right-hand member of Eq.
~16!. In Appendix A, we show that this additional term is
22J̃(t2tT). Thus, Eq.~16! may be extended to read@cf.
Eq. ~A8!# as

d2j~t!

dt2
1j~t!5Ṽg~t!1 J̃@p~t!22~t2tT!h~t2tT!#,

0,t,2tT , ~17!

whereh is the unit step function:h(x)50, x,0; h(x)51,
x.0.

Similarly, the circuit equation~14! needs to be extended
to t.tT . However, for the purpose of calculating the lead
electrons’ trajectories, this is unnecessary. The underlying
reason is that the numerical value ofJ̃ is much less than
unity, even if the injection current reaches the critical value
@see Eq.~19! below#. The modification to Eq.~14! for t.tT
is the introduction of an additional term to its right-hand
member, and that term is proportional toJ̃. Such a modifi-
cation in the solution ofp~t! will hardly change the solution
of j~t! in Eq. ~17! sincep~t! in Eq. ~17! is already multiplied
by the small quantityJ̃. Using this argument, we may even
simplify Eq. ~14! to read as

d2p~t!

dt2
1p~t!5ũ01tṼg~t!, 0,t&2tT , ~18!

and at the same time extend the interval of validity to
t'2tT , when the lead electrons are about to return to the
cathode surface.

We shall solve Eqs.~13!, ~17!, and ~18! subject to the
initial conditions~15!, and determine the threshold resistance
r beyond which the lead electrons fail to return to the cath-
ode surface.
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B. Numerical results

We shall first show the results of a direct numerical in-
tegration of Eq.~13!, ~17!, and~18!. This allows immediate
comparison with the particle simulation results shown in Sec.
II. We next develop the perturbative solution to these equa-
tions based on the smallness of the dimensionless parameter
J̃. Specifically, we obtain the approximate solution ofj~t!
explicitly.

Using the parameters specified in Sec. II, we obtain the
following numerical values of the dimensionless quantities
defined in Eq.~9!,

J̃52.75310253~ I /1 A!, r50.6083~R/1 V!,
~19!

Ṽ050.201, ũ050.0041.

The critical current isI c5717 A, andJ̃,0.02 if the injected
currentI,I c . We taker and Ṽ0 to be of order unity;J̃ and
ũ0 to be much less than unity.

1. Direct integration

We numerically integrate Eqs.~13!, ~17!, and~18! up to
the neighborhood oft52tT , wheretT is obtained from the
Llewellyn solutions2,12,13for cycloidal flows. We remark that
tT approachesp in the limit of zero injection current. We
then determine the value of the resistorR beyond which
j~t!.0 for t around 2tT . This is then the threshold resis-
tance that prohibits the lead electron from returning to the
cathode according to the analytic formulation. The result is
shown in Fig. 3. There we see that the threshold resistance
for the moderately low injection current cases is indeed de-
termined by the failure of the lead electron to return to the
cathode surface. At high injection current, the lead electron
strikes the cathode after the first cycloidal period while the
subsequent electrons will miss the cathode according to our
simulation results. In such a case, the lead electron’s failure
to reach the cathode is NOT the criterion in the determina-
tion of the threshold resistor. This is the main reason for the
discrepancy between the simulation results and the analytic
theory shown in Fig. 3 at high injection current levels.

2. Perturbative solutions

Since J̃ is a small parameter according to Eq.~19!, we
expand the solutions in power series ofJ̃:

j~t!5j0~t!1 J̃j1~t!1 J̃2j2~t!1••• ,

p~t!5p0~t!1 J̃p1~t!1 J̃2p2~t!1••• , ~20!

Ṽg~t!5Ṽg0~t!1 J̃Ṽg1~t!1 J̃2Ṽg2~t!1••• .

For simplicity, we now assume that the electrons are emitted
with zero energy. Thusũ050 and all of the initial conditions
for j, p, and Ṽg become homogeneous@cf. Eq. ~15!#. With
this assumption, substitution of the expansion~20! into ~13!,
~17!, and~18! yields, to the zeroth order inJ̃,

r
dṼg0~t!

dt
1Ṽg0~t!5Ṽ0 , ~21a!

d2j0~t!

dt2
1j0~t!5Ṽg0~t!, 0,t&2p, ~21b!

d2p0~t!

dt2
1p0~t!5tṼg0~t!, 0,t&2p, ~21c!

and to the first order inJ̃,

r
dṼg1~t!

dt
1Ṽg1~t!52r

dp0~t!

dt
, ~22a!

d2j1~t!

dt2
1j1~t!5Ṽg1~t!1@p0~t!22~t2p!h~t2p!#,

0,t&2p, ~22b!

d2p1~t!

dt2
1p1~t!5tṼg1~t!, 0,t&2p, ~22c!

where we have further approximatedtT5p.
The zeroth-order equations~21a!–~21c! are easily solved

to yield closed form solutions forṼg0~t!, j0~t!, and p0~t!.
Use ofp0~t! in ~22a! allows us to solve forṼg1~t! in closed
form. Substitution of these algebraic expressions ofp0~t! and
Ṽg1~t! into ~22b! enables us to obtain a closed form solution
for j1~t! ~which is best obtained by a symbolic manipulation
program because of the tedious, though straightforward alge-
bra!. Appendix B records the zeroth- and first-order solu-
tions. Thus, from these closed form solutions, we obtain, to
first order inJ̃,

j~t!5j0~t!1 J̃j1~t!, ~23!

which determines the condition on the threshold resistance,
at a givenJ̃, by requiring thatj~t!.0 for t around 2p. The
result is also shown in Fig. 3, which shows good agreement
between this asymptotic theory, direct numerical integration,
and simulation results forI up to about 240 A, which is
1/3I c . The discrepancy between the asymptotic results and
direct integration shown in Fig. 3 arises from the additional
approximations that were introduced in the asymptotic
theory:~i! u0 is assumed zero,~ii ! tT is assumed to bep, and
~iii ! only zeroth- and first-order terms inJ̃ are kept.

The soundness of the perturbative solution under the as-
sumptionu050 enables us to construct the universal curves
~Fig. 4! on the normalized threshold resistancer , based on
Eq. ~23!, as a function ofJ/Jc at various values ofṼ0. In Fig.

FIG. 4. Threshold resistance, as a function of injection current in units of
the critical current at various values ofṼ05~BH/B!1/2/2, to prevent the lead
electron from returning to the cathode according to the asymptotic theory.
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4, Ṽ0 is restricted to less than12 sinceṼ05~BH/B!2/2 in the
absence of a resistor~Fig. 1!. It is interesting to note that the
curves in Fig. 4 are insensitive toṼ0 for J/Jc,0.3, and these
curves are expected to give a reasonable indication of the
threshold resistor in this low-current regime.

IV. CONCLUDING REMARKS

Throughout the years, two types of equilibrium have
been envisioned in electron flows in a crossed electric and
magnetic field. The first one is the ‘‘multistream model,’’ in
which the electrons are emitted from the cathode and return
to the cathode in the equilibrium state, as studied in this
paper. The second one is the ‘‘single stream model’’ or
‘‘Brillouin model’’ in which the electrons are injected exter-
nally in the form of a parallel, laminar flow in equilibrium.
Extensive numerical simulations, mostly done in the past
with the inclusion of two-dimensional effects for either
magnetron14 or crossed-field amplifier,15 did show that the
nonlinear states contain a very significant component of Bril-
louin flow. In these simulations, the electrons are either emit-
ted from the cathode~sole! or injected externally. The
present paper, together with the studies reported in Refs. 2,
4, and 7, show that the multistream equilibrium is highly
unstable with respect to one-dimensional perturbations. Vir-
tually any perturbation encountered in practice would lead to
a collapse into the nB state, which consists of the classical
Brillouin flow in the mean, superimposed by a turbulent
background. Interestingly, such a collapse appears to be in-
sensitive to the level of the emitted current.

It can be shown that, for the same gap spacing, the same
voltage, the same magnetic field, and the same circulating
current, the multistream equilibrium has a higher kinetic en-
ergy density and higher electrostatic energy density than the
classical Brillouin flow. It is, therefore, understandable that
all multistream flows have the tendency to relax to the nB
state, whether by dissipation or by rf modulation. In this
sense, the nB state is an ‘‘attractor’’.16
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APPENDIX A: EVALUATION OF THE ELECTRIC
FIELDS

In this appendix, we evaluate the electric fields in the
planar model, for botht,tT , and tT,t,2tT ~Fig. 1!. We
shall first calculate the electric field due to a single electron
sheet with surface charge density2sj located atx5xj inside
the planar gap of widthD. A voltageVg is imposed across
the gap. Thus, we solve the Poisson equation,

d2f~x!

dx2
5

s j

e0
d~x2xj !, f~0!50, f~D !5Vg , ~A1!

for the electrostatic potentialf(x), from which we obtain the
electric fieldE(x),

E~x!52
df~x!

dx
52

Vg

D
1Ej~x!, ~A2!

Ej~x!5H s j

e0D
~D2xj !, x,xj ,

2
s j

e0D
xj , x.xj ,

~A3!

whered is the Dirac delta function andEj is the space charge
field due to the charge sheetsj .

For t,tT , the lead electron has not yet reached the
maximum excursionxT . The electric fieldE(xi) at the posi-
tion xi is due to the electron sheets located both abovexi and
below xi . Upon using Eqs.~A2! and ~A3!, we then have

E~xi !52
Vg

D
1 (

xi,xj

s j

e0D
~D2xj !2 (

xi.xj

s j

e0D
xj ,

~A4!

where the first~second! summation accounts for the portion
of the space charge field due to the electrons lying above
~below! xi . Equation~A4! may be rearranged to read as

E~xi !52
Vg

D
1 (

xi,xj

s j

e0
2(

j

s j

e0D
xj , ~A5!

where the last summation is over allxj , i.e., over all space
charge. Upon using Eq.~1! of the main text,~A5! becomes

E~xi !52
Vg

D
1

J

e0
(
xi,xj

Dt j2
J

e0D
(
j

Dt j xj~ t,t j !

52
Vg

D
1

J

e0
t i2

J

e0D
(
j

Dt j xj~ t,t j !, ~A6!

where we have used the fact thatxi is the location of the
electron at timet that was released from the cathode at an
earlier time t i . It is clear from ~A6! that 2E(xi), in the
continuum limit, is the large parentheses in Eq.~8!. Note that
Eq. ~A6! is exact, no approximation has been used.

For t.tT ~but less than 2tT!, the lead electron is return-
ing to the cathode. Let us calculate only the electric field
experienced by the lead electron. This calculation is approxi-
mate. Letx1 be the position of the lead electron~Fig. 5!,
which is released from the cathode at timet i5t1 , andt150

FIG. 5. ~a! ElectronsA andB arriving at x5x1 at the same timet. Lead
electronA is injected att5t i50, and electronB is injected at timetB later.
~b! Trajectory of lead electronA, under the assumption that its orbit is
symmetrical aboutt5tT .

4461Phys. Plasmas, Vol. 3, No. 12, December 1996 Christenson et al.



by definition. The electric field atx1 is still governed by
~A4!, ~A5!, and the first part of~A6!, which becomes, with
xi5x1 ,

E~x1!52
Vg

D
2

J

e0D
(
j

Dt j xj~ t,t j !1
J

e0
(
x1,xj

Dt j .

~A7!

The last summation is the total injection time interval be-
tween the lead electron and all the subsequent ones whosex
coordinates lie abovex1 at timet. Now referring to Fig. 5~a!,
let A be the lead electron, andB be the last electron, which
just arrives atx1 at timet. The injection time ofA is zero, by
definition. The injection time ofB is tB , which we need to
calculate. Note thattB is the last summation in Eq.~7!.

To facilitate the calculation oftB , we now assume that
all electrons follow the same trajectories. Specifically, the
lead electron has the trajectory,x(t8,0) as a function oft8, as
shown in Fig. 5~b! and such a trajectory is repeated by all
subsequent electrons. We further approximate that this tra-
jectory is symmetrical aboutt85tT , that is, the portion of
trajectory between the time interval~0, tT! is the mirror im-
age of that between (tT,2tT), as shown in Fig. 5~b!. Under
these symmetry assumptions, it is clear from Fig. 5~b! that it
takes the time interval 2tT2t ~measured from the time of its
injection from the cathode! for an electron to reach the po-
sition x5x1 for the first time. Now, referring to Fig. 5~a!, if
B is to reach the pointx5x1 at time t, then its launch time
must bet2(2tT2t) which is 2(t2tT). Thus tB52(t2tT)
and this is the approximate value of the last sum in Eq.~A7!.

Thus for t.tT , Eq. ~A7! gives the approximate electric
field experienced by a lead electron:

E~x1!52
Vg

D
2

J

e0D
(
j

Dt j xj~ t,t j !1
J

e0
32~ t2tT!.

~A8!

It is easy to see from~A8! that 2E(x1), in the continuum
limit, gives the right-hand member of~17! for t.tT .

APPENDIX B: PERTURBATIVE SOLUTIONS

In this appendix, we record the zeroth-order solutions
Ṽg0~t!, p0~t!, j0~t! and the first-order solutionsṼg1~t! and
j1~t!. The first-order solutionp1~t! is neither needed nor
computed.

The solutions forṼg0~t!, p0~t!, andx0~t! read as

Ṽg0~t!5Ṽ0~12e2t/r !, ~B1!

p0~t!5Ṽ0S t2
r 2e2t/r

~11r 2! S 2r

11r 2
1t D

1
1

~11r 2!2
@2r 3 cos~t!2~113r 2!sin~t!# D ,

~B2!

j0~t!5Ṽ0S 12
1

11r 2
@r 2e2t/r2cos~t!2r sin~t!# D .

~B3!

The solutions forṼg1~t! andx1~t! read as

Ṽg1~t!5rṼ0H e2t/r

~11r 2! F r

11r 2 S r 3~51r 2!

~11r 2!
1t~r 221! D

2
t2

2 G2
1

~11r 2!3
@~2r 423r 221!cos~t!

2r ~5r 211!sin~t!#21J , ~B4!

j1~t!522@t1sin~t!2p#h~t2p!1Ṽ0H r 3e2t/r

~11r 2!2

3F r

11r 2 S r ~r 414r 229!

~11r 2!
24t D2

t2

2 G1~t2r !

1
cos~t!

~11r 2!4 F r ~15r 414r 211!

1
t

2
~114r 21r 422r 6!G1

sin~t!

2~11r 2!3

3S 1

11r 2
~10r 6223r 4212r 223!1r t~115r 2! D J .

~B5!
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