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It is shown that a small amount of dissipation, caused by current flow in a lossy external circuit, can
produce a disruption of steady-state cycloidal electron flow in a crossed-field gap, leading to the
establishment of a turbulent steady state that is close to, but not exactly, Brillouin flow. This
disruption, which has nothing to do with a diocotron or cyclotron instability, is fundamentally
caused by the failure of a subset of the emitted electrons to return to the cathode surface as a result
of resistive dissipation. This mechanism was revealed in particle simulations, and was confirmed by
an analytic theory. These near-Brillouin states differ in several interesting respects from classic
Brillouin flow, the most important of which is the presence of a microsheath and a time-varying
potential minimum very close to the cathode surface. They are essentially identical to that produced
when (i) injected current exceeds a certain critical valBe J. Christenson and Y. Y. Lau, Phys.
Plasmasl, 3725(1994] or (ii) a small rf electric field is applied to the gép. J. Christenson and

Y. Y. Lau, Phys. Rev. Lett76, 3324(1996]. It is speculated that such near-Brillouin states are
generic in vacuum crossed-field devices, due to the ease with which the cycloidal equilibrium can
be disrupted. Another novel aspect of this paper is the introduction of transformations by which the
nonlinear, coupled partial differential equations in the Eulerian descrigéqoation of motion,
continuity equation, Poisson equation, and the circuit equasimmreduced to an equivalent system

of very simple linear ordinary differential equations. 96 American Institute of Physics.
[S1070-664X96)01012-9

I. INTRODUCTION verse direction. Newly emitted particles atmostly) re-
flected from the potential minimum, and returned to the cath-
When electrons are emitted from a cathode into ade. Not all emitted particles are reflected, however. The
vacuum gap to which a dc voltage is applied, and which idepth of the potential minimum varies in time, periodically
immersed in a transverse magnetic fieBl> By, a steady allowing some newly injected particles to pass into the main
state may be established in which each electron executesfiaw, 2 Of course, some members of the main flow must then
Simple, CyCIOidaI orbit and returns to the cathode with thereturn to the cathode to maintain a balance, on average, be-
same energy with which it was emitted. HeBp, is the Hull tween the injected and ejected partic|e fluxes.
cutoff magnetic fleld' An example is illustrated in Flg 1. The average density of the |ayer in this state is very
These steady flows are characterized by smoothly varyingjose to the classical Brillouin value, given by setting the
time-independent denSity and pOtential profiles. Electrortaveragé p|asma frequencyop equa' to the Cyc'otron fre-
density is largest at the cathode and at the turning point at thguency(). Densities and potentials are not time independent,
top of the layer. A steady state of this form can be estabyyt rather oscillate with small amplitudes about mean
lished if and only if the emitted current density,is below a  yajues? This flow is therefore similar, but not identical, to
critical value,J., that depends on the gap voltage, gap spacg|assical Brillouin flow? For want of a better term, we shall
ing, and magnetic field A good estimate of the critical emit- ¢4/ it near-Brillouin (nB) flow. [The classical Brillouin flow
ted current, for zero beam injection velocity, is obtainedis characterized by constant density W-mﬁ:QZ between

from the condition of a zero electric field at the cathéde.  ,_g andx = D[1—1—(B,y/B)Z], and by laminar flow ve-
When the emitted current is above the critical value, th%city 7 =90x in the EXB direction]

character of the resulting turbulent state, found by computer  aggitional analytical and numerical studies show that
simulation, is much different. In this case, as shown in Refqg fiow, far from being an unusual state, is actually difficult
2, the electron density builds to the point that a potentiak, 4y0id in practice, even when currents are well below the
minimum is established close to the cathode surface. Thosgitical value. For example, it has recently been discovered
particles out beyond the potential minimum execute orbit§nat the steady-state cycloidal flow below critical current is
that are nearly laminar, with very little energy in the trans-very unstable, being easily disrupted by the application of a
small rf potential’ This disruption is fundamentally one di-
Apresent address: Department of Electrical Engineering and Computer Sdmensional in nature and therefore has nothing to do with a

ences, University of California, Berkeley, California 94720-1770. diocotron or cyclotron |nstab|||t9|t is caused by the failure
YAlso at Science Applications International Corporation, McLean, Virginia of a subset of the emitted electrons to return to the cathode
22102.

9AIso at Applied Physics Program, University of Michigan, Ann Arbor, Surface due to the action Qf the rf field. As a re_sult, charge
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current, it is the trailing part of the electron floWe., the

I 3 T electrons emitted subsequentlihat fails to return to the
+l @B cathode.(By high injection current, we mean a significant
Vo— V(1) fraction of the critical current, as defined more precisely be-
-7 t=t, % low.) Given an injection current, there is a threshold resis-

R%—;:O } tance beyond which the cycloidal flow collapses into the nB
m 0 m _ flow. We next develop an analytic theory to calculate this
n ¥ threshold resistance. It turns out that, up to the timé (hat
t=0 t=2t; the lead electron takes to reach the maximum excursion from
the cathoddFig. 1), the formulation can be done exactly in
FIG. 1. The model. In the absence of the resi®pran electron emitted at terms of very simple, linear ordinary differential equat'_ons'
x=0 att=0 reaches a maximum height &t t;, and returns tx=0 at ~ Space charge effects are fully accounted for and no linear-
t=2tr. ization is performed. In effect, we have transformed the non-
linear, coupled partial differential equations in the Eulerian
description(equation of motion, continuity equation, Poisson
equation, and the circuit equatipimto an equivalent system
of linear ordinary differential equations before orbit crossing
the flow in this case evolves to nB flow, just as if the injectedoccurs' F(_)'t>tT' the formulation is approxm_ate. These lin-
current were above the critical value. ear equations are then solved, both numerically and pertur-
V\Patively, to yield the threshold resistance by requiring that

In the present paper, another way that the cycloidal flo /e lead elect t 1o return to th thode in th ¢
may be disrupted is described. Again, the effect is one di- € lead electrons not fo return 1o the cathode in the case o

mensional. Specifically, we show that the interaction of ar{ow |nJ§ct|on currer;t. '_rtr;]ese f_tnlalyt!c “TS;J."S wereltfmfmd to Ze
injected beam with an external circuit containing some losg" 900d agreement with particie simuation results for mod-

disrupts the cycloidal equilibrium, which, again, developser""te'y low values od up to about 1/3). . .
into NB flow. In Sec. I, we present the model and the simulation re-

Since the amount of resistance needed to cause this di§ylts' In Sec. ”_I’ we formulgte the anglytlp theory and
ruption is very small, and since all physical circuits havePresent the solution, both by direct numerical integration and

some dissipation, we conjecture that nB flow is generic to aIPy asymptotic expansion. Concluding remarks are given in

vacuum crossed-field devices. In fact, we further conjectur(§ec' V.

that dissipationper se is not required. This is because the

energy lost by an electron could instead just as well be storelé' MODEL AND SIMULATION RESULTS

temporarily in a reactive element. It seems that almost any The model used in the simulations is shown in Fig. 1. It
perturbation encountered in reality on cycloidal flow mayis a simple one-dimensional anode—cathode gap of separa-
drive the flow unstable, resulting in a final state of nB flow.tion D=0.002 16 m and electrode aree=0.003 122 A,

This conjectured “universality” of nB flow, if correct, thatis immersed in a constant transverse insulating magnetic
would require, for example, that the electron density near dield B=0.27 T(B>B,). An external circuit consisting of a
thermionic cathode in a crossed-field device would dependonstant resistand® and a steady voltag€,=12 000 V is
strongly only on the magnetic field value via the relationconnected to the gap. This gap voltage gives the Hull cutoff
wh~0? and be insensitive to the cathode temperature, whicimagnetic fieldB,=(2mV,/eD?)*?=0.171 T. At timet=0,
determines the emission rate by the Richardson—Dushmahe switch is closedFig. 1). Electrons begin to be injected
law ® into the gap at a constant rate with a constant current density

Note that the fundamental mechanism leading to nB flowd, and the gap voltag#/y(t), begins to ramp from zero to its
is the same in all cases, namely some or all electrons enterirgquilibrium value as current flows through the external cir-
the gap lose energy during their orbit, preventing them froncuit. The cathode potential is always held at zero volts and
returning to the cathode. Altogether, then, three regimes ithe anode potential is allowed to fluctuate. It must be remem-
which nB flow is produced have been identified, vie.  bered that due to the magnetic field that insulates the gap
J>J. .2 (ii) I<J., with a small rf voltage appliedand iii ) against electron flow, the current, flowing through the ex-
J<J., with a small resistance in external circuit. In all three ternal circuit(and across the gafs the displacement current
cases, the form of nB flow produced is essentially the saméanduced at the anode. This displacement current has two

In this paper, we concentrate only on the resistive destasomponents, the familiar terr@ dV,/dt and the induced
bilization of the cycloidal flow. We shall first show, via com- current as a result of electron motion in the gap. Here,
puter simulation using the one-dimensional cede1'®that  C=Aey/D is the capacitance in vacuum. One further simpli-
a very small resistand® may destabilize the cycloidal flow. fication of our model is that the electrons are all emitted at a
Examination of the computer runs reveals that the collapse dfingle velocityuy. The electron emission energy is 0.5 eV,
the cycloidal flow occurs concomitantly when at least someawhich implies a critical current density,=229 800 A/nf,
of the emitted electrons fail to return to the cathode. In theor critical current .= AJ.=717 A?* We restrict our studies
case of low injected current, it is the leading part of theto J<J,.
electron flow(i.e., the first emitted electropghat fails to The computer simulations were done using the one-
return to the cathode, whereas in the case of high injectedimensional electrostatic particle-in-céRIC) code,ppp1®

smooths in spageto a value near the classical Brillouin
limit, with w3=07. It is found by computer simulation that
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2E+07 sequent development into the turbulent nB state. Figure 2
(a) shows the evolution of the phase-space ploisys x, of the
Ve ensemble of electrons. Figuréa®is taken at=0.15 ns, Fig.
07 T 2(b) att=1.5 ns, and finally Fig. @) att=20 ns. The case
(mls) shown in these figures is for an emitted currenf ef15% of
IE J. with an external resistance of Q. This set of plots is
2E+07 . . e
typical of the onset of the instability in the range of moder-
2E4+07 . .
(b) ately low em|tte.d. electron current. Figurdap shoyvs the
lead electrons failing to return to the cathode. In Figdp) 2ve
Vx 01 see that after many cycles, there is a buildup of space charge
(mfs) within the gap as subsequent electrons fail to return to the
cathode. And, finally, in Fig. @) we see the phase-space
-2E+07 plot that is typical of all nB flows.
2E+07 Since this nB flow is essentially identical to that pro-
(C) duced when(i) injected current] exceeds a certain critical
Ve valueJ 2 or (i) a small rf electric field is applied to the gép,
0 T : we recapitulate the main properties of the nB flow that were
(mfs) observed from the simulatich(a) The electrons in the gap
display time-dependent, turbulent behavi@). The particle
'2E+070 X (m) 0.00216 phase space is greatly contracteduif, and the electron

density profile flattens out i, extending from the cathode

FIG. 2. Phase space pld® immediately after one cycloidal orbith) after to roughly the classical eIeCtron_ S_heath thickness,
ten cycloidal orbits, andc) in the final turbulent, near-Brillouin state. D[1-+V1—-(Bn/B)]. The latter quantity is less than the
maximum excursion, from the cathode, of the electron orbit
in the stable, time-independent cage). The time-averaged
The remainder of this section is a discussion of the observagplasma frequency satisfieg,=(}, the cyclotron frequency.
tions from the PIC simulation. In all cases we studied, at &d) The direction of the cathode surface electric field, and the
fixed value of the injection current densily we found that  sign of the cathode surface charge density, indicate the pres-
there is a threshold resistance above which the electron floence of a potential minimum in the immediate vicinity of the
becomes turbulentFig. 20 and below which the cycloidal cathode surface. Thus, a microsheath is always pre&nt.
electron flow remain stable and time independéiig. 3). In  The potential minimum in the microsheath is oscillatory, and
all cases where the cycloidal electron flow becomes turbuits depth is on the order of the injection energy of the elec-
lent, there is buildup of space charge within the gap that isrons.(f) The space charg® in the gap, the surface charge
caused by the failure in some portion of the emitted electronsn the cathod& , and the total charge associated with the
to return to the cathode. The final turbulent state is alwaygap,Q=Qx+ Qg , are all nearly constant. Moreove;; is
the nB state. approximately equal t&CV,, C being the vacuum capaci-
The route to the nB state differs in detail, depending ontance.
the level of injected current. For example, at the intermediate  Returning to the resistive destabilization of the cycloidal
level of injection current(roughly in the range 0.QG<J flow, we show in Fig. 3 the threshold resistance for the onset
<0.7J;, in which most of the simulations were performed of turbulence obtained from the PIC simulation. Also shown
the failure of the lead electron, defined as that emitted fromare the results obtained from an analytic theory, which gives
the cathode at=0, to return to the cathode signals the sub-the threshold resistance required to prohibit the lead electron
from returning to the cathode in the intermediate current
range. The small numerical values of the threshold resistor,
4 of order only a few ohms as shown in Fig. 3, prompted our
speculation that the nB state is almost inevitable in practice.
At high injection currents, roughly in the range
0.73.<J<J., the leading electrons always return to the
cathode at the critical resistance; although, with a large
enough external resistance it is possible to cause the lead
electrons to fail to return to the cathode. For the lowest ex-
ternal resistance that causes instability here, it is a group of
electrons released after tinte=0 that fail to return to the
0 100200 300 400 500 600 cathode and cause a buildup of space charge within the gap,
I (amps) thereby triggering the disruption of the cycloidal flow.
m Finally, for very low injection currents, fod~0 up to
FIG. 3. Threshold resistance for the onset of turbulence according to particlglbOUt 0'050.’ the CyCIOIdaI ﬂowsare. Stl." UDStable to an.
simulation. Also shown is the threshold resistance to prevent the lead ele€Xternal resistance; however, the criterion is no longer sim-
tron from returning to the cathode, according to the analytic theory. ply that the leading electrons do not return to the cathode.

(ohms)
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With a small resistance, while the electrons emitted at time Ao
t=0 may not return to the cathode after one Larmor cyote li(induced = (?
at any time thereaft@rthe perturbation in space charge is not

sufficient to trigger a collapse of the cycloidal flow. For the by Ramo’s theorem*? The total induced current may be
cycloidal flow to evolve to the nB state, the external resis-obtained by summing all such charge sheets within the gap:
tance must be large enough that the energy dissipation in the

&Xi(t,ti)
a

2

resistor by the very small displacement current is sufficient | (induced= >, (AL") (L)

to cause electrons that are emitted after one Larmor period to [ D Jt

fail to return to the cathode in addition to the lead electron. Al axi(tt)

Thus as the emitted electron density goes to zero, the critical =D EI (At) o 3

resistance must increase.
We should point out that extensive numerical téstg.,  \where we have used E().

by varying particle weighting, or time step, up to two orders  The current (t) that passes through the resistBig. 1)

of magnitude, or cell size, or combination of shtiave been s the sum of Eq(3) and the familiar ternC dV,/dt, where
performed to show that the nB states and the mechanismg = Ae,/D is the gap capacitan¢é!? Thus, we have
that lead to them are not a numerical artifact.

In the next section, we present the analytic theory that dVy(t) LA ft ¢ IX(t,%o)
determines the threshold resistance above which the lead dt D o st
electron does not return to the cathode, and the results of this

theory are in good agreement with simulation in the interme\VNere we have taken the continuum limit by replacing the

diate injection current regiméig. 3. summqtion in Eq(3) with the integral in Eq(4)'. In Eq. (4),

X(t,tg) is thex coordinate of an electron at tintethat was
emitted fromx=0 at an earlier timé,. From this definition,
it is clear that

I(t)=C 4

Ill. ANALYTIC THEORY

In most of our simulations, strong hints of instability

emerge once the first electrons fail to return to the cathode at _ IX(1,to) _

L . - . X(tg,t9) =0, Uo- %)
the end of their first cycloidal periodrig. 2(a)]. This would ot t=t,
allow progressive buildup of the space charge in the gap ) )
[Fig. 2(b)] and trigger breakdown of the cycloidal fldiFig. The Kirchhoff voltage lawyo=V,+RI (cf. Fig. 1) then
2(c)]. Given below is an analytic theory that describes the'eads as
onset of the resistive'instability according to this scenariq. dVy(t) AJ [t ax(tto)
When such a theory is used to deduce the threshold resis- RC T +V4(1)=Vo—R o dtg pramt (6)
tance for the onset of the instability, good agreement with 0
simulation is obtained. where we have used Ef). Equation(6) is the circuit equa-
A. Formulation tion that governs the evolution of the gap voltage.

) o The equation of motion for a single electron reads as
We shall use the Lagrangian description to formulate the

circuit equation, the force lawwith the continuity equation a7xi(t,t;) O (tt) = € E(x; ) )
taken into account and the Poisson equation. Since we are a2 ne m e

dealing with a one-dimensional model with a monoenergetic hereQ—eB/m is the elect lotron f B
emission velocity, an electron that is releases-af at time wherel=ebim IS the electron cyclotron frequency anas

t=t; represents the entire electron sheet that is released froFa]e tOt?.l Izliﬁtrtlc' f'eltq’ mcltiglrlg lth? tlmle'v?.ryltn.g space
x=0 att=t;. Letx;(t,t;) be thex coordinate of this electron c ?r:ge Iel ta flsthac |n?fon a tge;; rlc()jn. mdp ICII tInE:P f
sheet at time(t>t,). is the neglect of the self-magnetic field and relativistic ef-

Consider the electrons that are released frond (Fig. fects. The total electric fiel& at positionx=x; is the sum of

1) between the time interva) andt; + At; . The thickness of ';he.va(;:gurz f'eld;.vngfaEd trfﬁs?acte:ihargﬁ f'eltd' .It IS
this incremental electron sheet s =u, At; and the sur- 2c'Ved [N APPENIX ALct. Eq. (A6) for t<ty, wherety is

face charge densityin C/m?) of this incremental electron the tlme It takes_the lead electr_on to r_ea_ch the maximum
excursion. See Fig.]1In the continuum limit, Eq(7) then

sheet is
reads as
oi=pg AX;=pgUp At;=J At;, 1
i~ Po i -pO oAt . i N . (1) 52X(t,to) , e Vg(t) 3 ‘
whereu, and p, is, respectively, the initial velocity and the oz PO = 5 <D odto X(t,tp)

initial volume charge densitfin C/m®), andJ= pgu, is the
injection current density that is constant in space and in time Jto
(t>0). By convention, we taker, p, J, and the electronic - —) Ostoststy. (8
charge,e, to be positive. Charge conservatitre., the con-

tinuity equation is automatically satisfied if the same is Note that Eqs(6) and(8) are the governing integrodif-
used when this incremental electron sheet moves within théerential equations fov/(t) andx(t,ty). They are linear, but
gap. Motion of this electron sheet provides an induced curthey are also exact, as no linearization has been made and the

rent, given by time-varying space charge field is accounted for completely.

€0
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A simple transformation, to be introduced shortly, cast these '\79(0):0_

two equations into linear ordinary differential equations.

(159

To simplify the notation, we shall use the dimensionlessc()ndition(15@ follows Eq.(5), condition(15b) follows (10)

guantities defined as follows:

=0t TOEQto, TTEQtT, é( 7, ’TO)EX(t,to)/D,
~ U v eVy v eVy 9
Y=0p Yo" mad? V9T ma?p?’ ©)
i =RCO

o méoﬂsD’ r= '

We shall also introduce the function
p(7)= | aro é(r,m0), (10

in terms of which we can nondimensionalize E8). as

[?26( T, TO) = =
2 T&(r10) = V(1) +I[p(7) ~ 7ol
0<7o<7<77. (11
It is straightforward to verify from Eq(10) that
dp(7) er IE(7,70)
dr o
12)

&*p(r) _ +de 9*&(7,70)
dTZ 0 0 7o r77'2 '

upon using the initial conditions, Ed5). In terms of the
dimensionless quantities defined in Ef), the circuit equa-
tion (6) is normalized to read as

dVg(r) ~  —  ~dp(7)
9 V. _
4 tVa(N=Vo—rd ——,

where we have used the first part of Ej2). The governing
equation forp(r) may be obtained by integrating E¢L1)
with respect tor, from zero tor. This yields

d?p(7)
dr?

r (13

2
TP(T)—g),

+p(7)=Uy+ 7\79( 7) +J

0<7<rr, (14

where we have used the second part of @¢).
Note that Eqs(13) and(14) are linear ordinary differen-
tial equations governing the evolution pf7) andVg(7). The

and(12), and condition(15¢) follows (13) whose right-hand
member does not exhibit a delta functionrat0 [and hence
V4(7) must be continuous at=0, leading to Eq(150)].

If we examine only the trajectory of a lead electron, we
set ;=0 in Eq. (11). With &n=&(7,0), Eq. (11) gives the
following equation for the trajectory of the lead electron:

d*¢(7)

gz FED=Vg(1)+p(n), 0<7<7r. (16)

Since the three governing equatiofs3), (14), and(16) for
Vq(7), p(7), and&(7) are exact, we have in effect transformed
the nonlinear partialdifferential equations in the equivalent
Eulerian descriptiorfEuler's equation of motion, continuity
equation, Poisson equation, and the circuit equation, in a
finite geometry to these thresimple linear ordinarydiffer-
ential equations for @r<z;.

The force law for the lead electrons, Ed.6), may be
extended tor>r; in an approximate manner. Assuming that
the electron orbits in the-y plane are symmetrical about
=77 (Or t=t; in Fig. 1), we find that forr> 7 there is an
additional term attached to the right-hand member of Eqg.
(16). In Appendix A, we show that this additional term is
—2J(7— 7). Thus, Eq.(16) may be extended to reddf.

Eqg. (A8)] as

d’&(7)
dr?

+&(1)=Vy(1)+I[p(r)—2(7— r)h(r—77)],

0<7<277, (17)
whereh is the unit step functionh(x)=0, x<0; h(x)=1,
x>0.

Similarly, the circuit equatiortl4) needs to be extended
to =>7r. However, for the purpose of calculating the lead
electrons’ trajectories, this is unnecessary. The underlying
reason is that the numerical value &fis much less than
unity, even if the injection current reaches the critical value
[see Eq(19) below]. The modification to Eq(14) for 7>z
is the introduction of an additional term to its right-hand
member, and that term is proportional 3o Such a modifi-
cation in the solution op(7) will hardly change the solution
of &(7) in Eq. (17) sincep(7) in Eq. (17) is already multiplied
by the small quantityd. Using this argument, we may even

solution ofp(7) andVy(7) may then be used in the right-hand gimplify Eq. (14) to read as

member of Eqg.(11), which then becomes a very simple

second-order ordinary differential equatiorsiwith 7, being
treated as a parameter. These equatiti®y, (13), and(14),

d?p(7)

———+p(7)=Uy+ TVQ(T), 0<r=27, (18

are exact; no approximation has been introduced to derive

them. The initial conditions fo&(7,7), p(7), andV(7) are

& 1 —~
&(79,79)=0, g(+7_70) =Ug, (159
., dp(n)|
p(0)=0, e T:O—O, (15b)

Phys. Plasmas, Vol. 3, No. 12, December 1996

and at the same time extend the interval of validity to
27, when the lead electrons are about to return to the
cathode surface.

We shall solve Egs(13), (17), and (18) subject to the
initial conditions(15), and determine the threshold resistance
r beyond which the lead electrons fail to return to the cath-
ode surface.

Christenson et al. 4459



B. Numerical results . 3 ; ; 1 ; , ;

We shall first show the results of a direct numerical in-
tegration of Eq(13), (17), and(18). This allows immediate
comparison with the particle simulation results shown in Sec.
II. We next develop the perturbative solution to these equa-
tions based on the smallness of the dimensionless parameter
J. Specifically, we obtain the approximate solution &)
explicitly.

Using the parameters specified in Sec. Il, we obtain the
following numerical values of the dimensionless quantities

defined in Eq(9), 0 0.2 0.4 0.6 08
J=2.75<107 5% (1/1 A), r=0.608x(R/1 ), Jide

Dimensionless Resistance

~ _ 19
Vy=0.201, uy=0.0041. (19 FIG. 4. Threshold resistance, as a function of injection current in units of
o ] ~ ) o the critical current at various values Vf,:(BH/B)l’ZIZ, to prevent the lead
The critical current id C:7l7~A, andJ<0.02 if the IT]LECted electron from returning to the cathode according to the asymptotic theory.

currentl <I.. We taker andV to be of order unity;) and
Uy to be much less than unity.

2
1. Direct integration d“po(7)

2

We numerically integrate Eq$13), (17), and(18) up to dr _
the neighborhood of=27;, where r; is obtained from the and to the first order id,
Llewellyn solutioné?3for cycloidal flows. We remark that

+po(7)= rVgo( 7, 0<7r=2m, (210

7 approachesr in the limit of zero injection current. We r dVo(7) +V (1)=—r M (223
then determine the value of the resis®rbeyond which dr ot dr ’

&(1)>0 for 7 around 2+. This is then the threshold resis- d2¢,(7) _

tance that prohibits the lead electron from returning to the 12 +£&1(7)=Vg1(7) +[po(7) — 2(7— m)h(7—m)],
cathode according to the analytic formulation. The result is dr

shown in Fig. 3. There we see that the threshold resistance 0<r=2m, (22b

for the moderately low injection current cases is indeed de- )
termined by the failure of the lead electron to return to the ~ d°P1(7)
cathode surface. At high injection current, the lead electron dr?

strikes the cathode after the first cycloidal period while theWhere we have further approximateg=1.

subsequent electrons will miss the cathode according to our ", oo equatioi81a—(219 are easily solved

simulation results. In such a case, the lead electron’s failur . :
to reach the cathode is NOT the criterion in the determina-'tao yield closed form solutions fOVQO(T)' &(7). and po(7).

tion of the threshold resistor. This is the main reason for thechJ)?ren Ofslij(ggitlzti(jr?gf?:g\évs ;Z etg rz(i)(ivtfx:)orzgégg)rlg;()?)osﬁg

discrepancy b(_atwe_en the s]mu!a_tlon_ results and the analytrggl(T) into (22b) enables us to obtain a closed form solution
theory shown in Fig. 3 at high injection current levels. for &(7) (which is best obtained by a symbolic manipulation
program because of the tedious, though straightforward alge-
< bra). Appendix B records the zeroth- and first-order solu-
SinceJ is a small parameter according to E49), we  tions. Thus, from these closed form solutions, we obtain, to

+p1(7—):7-vg1(7-)1 0<r=2m, (220

2. Perturbative solutions

expand the solutions in power seriesJof first order inJ,
E(7)=Eo(7) +IE(7) + (1) - E(7)=&o()+I&(7), (23
(7)=po(7)+Ip1(7)+I%po(T) + -+ (200  Wwhich determines the condition on the threshold resistance,
E pi in pi _ at a givend, by requiring thaté(7)>0 for = around 2r. The
V(1) =Vgo(7) +IVgy(7) +I?Vgo(7) + -+ . result is also shown in Fig. 3, which shows good agreement

For simplicity, we now assume that the electrons are emitte&’et\"’e.en thig asymptotic theory, direct numerical intggrqtion,
with zero energy. Thug,=0 and all of the initial conditions and 5|mulat|9n results fof up to about 240 A.’ which is
for £ p, andV, become homogeneolsf. Eq. (15)]. With 1/31.. The discrepancy between the asymptotic results and

this assumption, substitution of the expansi@f) into (13), direct i_nteg_ration Ehown in F_ig. 3 dariseéis fromhthe additionz_al
(17), and(18) yields, to the zeroth order id, approxn_natlo_ns that were !_ntro luced in the asymptotic
theory:(i) ug is assumed zerdii) 71 is assumed to be, and

d'\w/go( T) ~ ~ (iii) only zeroth- and first-order terms ithare kept.
Ly +Vgo(7)=Vo, (213 The soundness of the perturbative solution under the as-
a2 sumptionuy=0 enables us to construct the universal curves
So(T = (Fig. 4) on the normalized threshold resistangebased on
+ = <7< . : = :
a7 Té(M=Vgo(n), O<r=2m, (210 Eq.(23), as a function ofl/J, at various values of,. In Fig.
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4, V, is restricted to less thahsinceVy=(B,/B)%/2 in the () (b)
absence of a resistdFig. 1). It is interesting to note that the x(t',0)
curves in Fig. 4 are insensitive ¥, for J/J.<0.3, and these
curves are expected to give a reasonable indication of the
threshold resistor in this low-current regime.

A Xy B A
IV. CONCLUDING REMARKS [ /B Sy
0 2tpt t, ot 2t

Throughout the years, two types of equilibrium have ;=0 t;=tg
been envisioned in electron flows in a crossed electric and
magnetic field. The first one is the “multistream model,” in FIG. 5. () ElectronsA andB arriving atx=x, at the same time. Lead
which the electrons are emitted from the cathode and returf{€SOnA is injected at=1;=0, and electro is injected at timd later.

. A . . . (b) Trajectory of lead electro\, under the assumption that its orbit is

to the cathode in the equilibrium state, as studied in thiSymmetrical about=t; .
paper. The second one is the “single stream model” or
“Brillouin model” in which the electrons are injected exter-
nally in the form of a parallel, laminar flow in equilibrium.
Extensive numerical simulations, mostly done in the past _deé(x) Vg
with the inclusion of two-dimensional effects for either E(x)=- Tdx E+EJ’(X)' (A2)
magnetrof* or crossed-field amplifie} did show that the
nonlinear states contain a very significant component of Bril- o
louin flow. In these simulations, the electrons are either emit- €D (D=Xj), X<Xj,
ted from the cathodgsole or injected externally. The E;(x)= . (A3)
present paper, together with the studies reported in Refs. 2, _9 X, X>X;,
4, and 7, show that the multistream equilibrium is highly €oD
unstable with respe_ct to one—dimengional p_erturbations. Viriuheresis the Dirac delta function ari; is the space charge
tually any pgrturbatlon encounter.ed in prgctlce would Ieaq tQield due to the charge sheet.
a collapse into the nB state, which consists of the classical g, t<t;, the lead electron has not yet reached the

Brillouin flow in the mean, superimposed by a turbulent ,,yimum excursion; . The electric fieldE(x;) at the posi-
background. Interestingly, such a collapse appears 10 be ifjon x s due to the electron sheets located both abewend

sensitive to the level of the emitted current. _ below x; . Upon using Eqs(A2) and (A3), we then have
It can be shown that, for the same gap spacing, the same

voltage, the same magnetic field, and the same circulating V o i

t, the multist ilibrium has a higher kineti Exi)=—p+ 2 —5(D=x)= 2 —5x,
current, the multistream equilibrium has a higher kinetic en- D & €D i Sl €D i
ergy density and higher electrostatic energy density than the (A4)
classical Brillouin flow. It is, therefore, understandable that _ . )
all multistream flows have the tendency to relax to the nBwhere the firs{second summation accounts for the portion

state, whether by dissipation or by rf modulation. In thisOf the space charge field due to the electrons lying above

sense, the nB state is an “attractol®’. (below) x; . Equation(A4) may be rearranged to read as
Vg d d
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APPENDIX A: EVALUATION OF THE ELECTRIC 3
FIELDS =— 5 ot 2 At x(tty), (A6)
In this appendix, we evaluate the electric fields in the o
planar model, for both<ty, andtr<t<2t; (Fig. . We  where we have used the fact thqtis the location of the
shall first calculate the electric field due to a single electrorelectron at timet that was released from the cathode at an
sheet with surface charge density; located ak=x; inside  earlier timet;. It is clear from (A6) that —E(x;), in the
the planar gap of widtiD. A voltageV is imposed across continuum limit, is the large parentheses in E8). Note that
the gap. Thus, we solve the Poisson equation, Eq. (A6) is exact, no approximation has been used.
d2(x) o) _ Fort>t; (but less than &), the lead electron is return-
o o o(x—=x;), #(0)=0, ¢(D)=Vg, (Al) ing to the cathode. Let us calculate only the electric field
0 experienced by the lead electron. This calculation is approxi-

for the electrostatic potential(x), from which we obtain the mate. Letx; be the position of the lead electrdfrig. 5),
electric fieldE(x), which is released from the cathode at titne t;, andt,;=0
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by definition. The electric field ak, is still governed by _ ~ [ e 7 r r3(5+r?) )
(A4), (A5), and the first part ofA6), which becomes, with Vgl(T):rVO| A+ |12 | (1719 +7(r —1))
Xj=Xq,
- 7 1
Y J J S 4_qgp2_
Ex)=— 22— —— 3 At x(tt)+— > At,. 2} (1728 (23— 1)codn)
D €D 5 R
(A7) r(5r2+1)sin(7)] 1) (B4)
— nl-1t,

The last summation is the total injection time interval be-
tween the lead electron and all the subsequent ones whose 3"

coordinates lie above, at timet. Now referring to Fig. %), E(m)=—2[7+sin(7)—m]h(7— ) +VO

let A be the lead electron, aril be the last electron, which (14157
just arrives ak, at timet. The injection time ofA is zero, by r r(r*+4r2-9) 2
definition. The injection time oB is tg, which we need to X 112 ( 1+r3 T) > +(7=r1)
calculate. Note thatg is the last summation in Edq7).

To facilitate the calculation ofg, we now assume that cog 1) 4 5
all electrons follow the same trajectories. Specifically, the + (1+r2)4 r(15%+4r°+1)
lead electron has the trajector(t’,0) as a function of’, as )
shown in Fig. Bb) and such a trajectory is repeated by all + 7 (1+4r2+14—2r% | + sin(7)
subsequent electrons. We further approximate that this tra- 2 2(1+r?)°

jectory is symmetrical about' =t, that is, the portion of

trajectory between the time interved, tr) is the mirror im- X 5 (10r6—23r4—12rz—3)+r7-(1+5r2)) ]
age of that betweent{,2t;), as shown in Fig. &). Under 1+r
these symmetry assumptions, it is clear from Fidp) 3hat it (B5)

takes the time intervalt2—t (measured from the time of its
injection from the cathodefor an electron to reach the po- ;A- W. Hull, Phys. Rev.18, 31 (1921). N
sition x=x, for the first time. Now, referring to Fig.(8), if P. J. Christenson and Y. Y. Lau, Phys. Plasmiag725 (1994 ibid.

. N . > . Erratum:3, 4293(1996.
B is to reach the point=x, at timet, then its launch time 3For zero initial velocity andB>B,,, the critical current density is NOT

must bet—(2ty—t) which is 2¢—ty). Thustg=2(t—ty) achieved under the space charge limited condition of the zero surface
and this is the approximate value of the last sum in&q). electric field. However, the current density computed under the assump-

Thus fort>t, Eq. (A7) gives the approximate electric

field experienced by a lead electron: electric field assumption for the relativistic regime is given by R. V. Love-
v J J lace and E. Ott, Phys. Fluids, 1263(1974, while Ronet al. (Ref. 5 did
__ 9 v oy ) e _ not invoke such an assumption.
E(x1)= D €D EJ: Aty xj(tty)+ 60><2(t tr). 4p. J. Christenson, Ph.D. thesis, University of Michigan, Ann Arbor, 1996.
(A8) 5A. Ron, A. A. Mondelli, and N. Rostoker, IEEE Trans. Plasma 88-1,
85 (1973.
It is easy to see frontA8) that —E(x,), in the continuum  °L. Brillouin, Phys. Rev.67, 260(1945.

i ; ; ’P. J. Christenson and Y. Y. Lau, Phys. Rev. L&6, 3324(1996.
- m > . y
limit, gives the right-hand member ¢17) for 7> 8See, e.g., R. C. DavidsorRhysics of Nonneutral Plasmagddison—
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