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The linearized, relativistic Vlasov equations are analyzed for the stability of flute-like modes in an
infinite, collisionless plasma with a cold background and a relativistic annular electron beam sit-
uated in a uniform external magnetic field. Neglecting self-fields, a dispersion equation is obtained
for small thickness beams. It is found that oscillations with frequency near harmonics of the gyro-
frequency of the relativistic electrons are unstable. The most unstable oscillations are shown to be
those with long wavelengths relative to the thickness of the beam. Growth rates and conditions for
instability are given for systems where the beam particles are charge neutralized by cold background
ions, and when the beam particles are dilute compared with the background species. For rarefied
beams, an instability occurs at the hybrid frequency of the background species where the growth
rate depends on the beam thickness. As the background density increases, a critical value can be
reached where the long-wavelength oscillations are stabilized; and short-wavelength oscillations
become most unstable. For these modes growth rates are maximized with respect to the harmonic
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number £, and beam velocity 8 = v/c.

INTRODUCTION

One of the earliest known unstable electrostatic
oscillations in plasma is the streaming instability
which arises when a beam of nonrelativistic electrons
streams through a background of cold unmagnetized
plasma. When the beam is relativistic and the
system is situated in an externally applied magnetic
field, the question regarding the stability of these
modes arises again and its relevance to such devices
as astron or the electron ring accelerator may be
particularly meaningful. In this paper we examine
the stability of electrostatic oscillations propagating
normal to the magnetic field in an infinite, low beta
system consisting of an annular relativistic electron
beam and a background of cold ions and electrons.
Neglecting the self-magnetic field of the relativistic
electrons, we obtain a dispersion relation for small
thickness beams which predicts unstable oscillations
at or near gyroharmonics of the relativistic electrons,
and wavelengths “at multiples” of the Larmor
radius of these particles.

If a given cyclotron harmonic frequency is equal
to the cold background hybrid frequency, we find
that long wavelength oscillations, i.e., wavelengths
much greater than the beam thickness, are most
unstable. This hybrid condition can occur for either
low background densities with high beam speed or
at high background densities and low beam speeds.

The more general case of oscillations at arbitrary
cyclotron harmonic is likewise most unstable for
long wavelength modes. However, these modes can
be stabilized when a critical value of either the
background or beam densities is reached. Short

wavelength oscillations then become most unstable
with growth rates that maximize with respect to
both the harmonic number and beam speed. Beam
thicknesses up to 0.2a;, where az is the gyroradius
of the relativistic electrons, are within the scope of
this investigation.

BASIC EQUATIONS AND ANALYSIS

For electrostatic oscillations in plasma systems of
interest here, the basic equations are the relativistic
Vlasov-Poisson equations':

Uy + e Pt 2 = 0, 0
V-E(z,) = 4zp(z,), @

where f(z,, w) is the distribution funetion, z, =
(x, ict), u, = (u, icy), u = yvis the reduced velocity,

= (1 —*/)7* = (1 + 4*/c>)"?, m is the rest
mass, Fy, is the field tensor, and p is the charge
density. In these equations the Greek indices take on
the values one through four while the Latin indices
go from one to three. Noting that F,; = iE; and
us = icy, the above equations can readily be put in
the familiar form
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Fic. 1. Particle orbits.

where the subscript j denotes the specie. Assuming
that the system is initially in static equilibrium and
quasineutral in a uniform external magnetic field,
we solve the linearized set of equations by the
familiar approach® of obtaining the perturbed
distribution function by integrating Eq. (3) along
the unperturbed orbits, and substituting the result
in Eq. (4) to obtain the perturbed potential. If we
consider cylindrical perturbations of the form

p(x,) = p(r) exp [¢(18 + k.2)] exp (pf), 6))
U(x,) = ¥(@) exp [i(10 + k.2)] exp (pt),  (6)

then the result is an integrodifferential equation in
the perturbed potential ¢(r)
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In obtaining this equation we have utilized the fact
that the equilibrium distribution function, f;, is a
funetion of the constants of motion ., u, and the
canonical angular momentum L, given by

2
Ly = mau, sin (p — 6) + m,;Q; L. &)
The quantities u, and u, denote the reduced velocity
of the particle perpendicular and parallel to the
external magnetic field, respectively, and @; =
e;B,/m;c is the cyclotron frequency. The various
angles in both configuration and velocity space that
appear in the above expressions and in the following
orbit equations:
L
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2’ =z + ugs, t = s

are shown in Fig. 1 where the unprimed parameters
denote the initial particle position. In the non-
relativistic limit, Eq. (7) reduces to that of Shima
and Fowler’ which they used to examine the stability
of flute modes at ion gyroharmonies in an inhomo-
geneous magnetized plasma.

The equilibrium system examined is composed of
a cold homogeneous background of electrons and
ions and an annular beam of relativistic electrons
in a uniform external magnetic field. The distribution
funetion for the background species is

fOi.e ="N;. Omu, (10}
where n denotes the constant particle density. For
the relativistic electrons we take a distribution
funetion of the form

for(us, Lg, u.)

= Né(uy — uyo) 8(Ly — Loo) 8(u,),  (11)

where N is proportional to the surface density of
particles in the beam and L,, regulates the thickness.
The motion of these particles parallel to the magnetic
field is assumed to be negligible compared with that
normal to the field so that the relativistic factor v is
approximately (1 -+ u?2/c®)"/?. This distribution
funetion, although somewhat idealized, has been
shown by Sestero and Zannetti* to represent a self-
consistent astron E layer. The radial distribution of
the relativistic electron particle density is obtained
by integrating Eq. (11) over velocity space; the
result is

N
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We note that the density is distributed between two
distances, r, and 7,, which define the thickness of
the beam, A = r, — r,; they are obtained by simply
setting the denominator of Eq. (12) equal to zero.
Restricting the analysis to small beam thicknesses,
one finds that the number density evaluated at
r = ay is approximately, ng(ag) = 2N/mgA.
Because of the condition of neglecting the self-field
of the beam particles, the beam thickness A cannot
be made vanishingly small. For further details on
this point and a discussion of the condition of

nE(T) = fftm d’u =

12)
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minimum thickness for this eccentric particle orbit
distribution function, the reader is referred to an
article by Nocentini et al.’

Since we are interested in flute-like modes, we
set k, = 0in Eq. (7) and replace p by —7w, where w
is the frequency of oscillation. We treat the distri-
bution function for the beam as if it produced a
continuous spatial density, peaked at a distance
r = ap from the magnetic axis with an effective
thickness A, i.e., a Gaussian-like variation in the
variable r, peaked at r = az. The problem is then
viewed as an eigenvalue problem with ¥{r) being
finite at the origin and vanishing at infinity. The
radial perturbed potential, ¢(r), for small beam
thicknesses, is then given by the ordinary Bessel
functions, J,(kr) and %k is determined from
Ji(kaz) = 0. This means azimuthally propagating
oscillations at r = az; moreover, it implies that for
a given £, and at the first zero of the derivative of the
Bessel function, the potential is maximum at r = ag
and the electric field is colinear with the propagation
vector.® The resulting dispersion equation for small
beam thicknesses, 4 = A/2a; < 1is
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where the three highest orders in w — {wz, have been
retained. The dielectric constant of the background
is given by ¢ in which w,; and w,, are the plasma
frequencies of the ions and electrons, respectively.
The relativistic electron plasma frequency, wpg, is
evaluated at r = a; and is given by

_ drenglag)  4me’ N 1
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while their cyclotron frequency is given by
Q E eB,)
= B _ P 1
@Eo Yio mey 1o ( 5)

withyio = (1 + ul,/c)"* = 1 — )"~

Implicit in the use of the Viasov—Poissov equation
is a “‘quasielectrostatic’”’ condition which for these
modes of oscillation restricts the analysis to low
values of 8,. Moreover, neglect of the self-magnetic
field readily implies that (wpz/wge)® < 1.
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SOLUTION OF DISPERSION EQUATION

Before proceeding with the calculation of growth
rates for a particular situation, let us briefly examine
some of the quantities appearing in the dispersion
relation. The quantity £A in Eq. (13) is proportional
to the ratio of beam thickness A to the wavelength
of the oscillation A. Thus, one can only hope to solve
Eq. (13) for Im w in the two extremes; short wave-
lengths, A << A and long wavelengths, A > A. Since
the analysis is limited to small beam thicknesses,
these two limits, respectively, imply large and small
values of the harmonic number ¢.

In analyzing the dispersion equation, we focus our
attention first on cases where the harmonic frequency
is equal to the background hybrid frequency and
then treat the more general case where such an
equality does not occur. In all cases we examine the
results where the beam is charge neutralized by the
background ions on the one hand, and where the
beam density is much less than the charge neutralized
background. These extremes reflect themselves on
the range of values ¢, the background dielectric
constant, can assume. Since in all cases the beam is
treated as tenuous, i.e., wpx/wge << 1, we see that
when the beam is charged neutralized by the ions,
¢ takes on a value of approximately unity. In the
case where the beam is dilute compared with the
background species, the range of values of ¢ is not
limited but ean be negative or positive depending on
the harmonic number and background density.

OSCILLATIONS AT THE HYBRID FREQUENCY

When « =¢ fwgz is set equal to the background
hybrid frequency, ¢ in Eq. (13) becomes approxi-
mately zero, and the harmonic number { assumes
the value

(.02 172
= 'YLn(l + _Ei) . (16)

Q
As pointed out earlier this condition can only occur
when the electron beam is dilute compared with the
background species. If, in addition, the “quasi-
electrostatic” condition is ignored, Eq. (16) can
readily be satisfied for low-density plasmas if the
particle speed in the beam is appropriately large.
This occurs for only certain values of background
densities and beam speeds since £ is an integer. In
view of this, the right-hand side of Eq. (13) becomes
zero and the resulting relation is independent of the
beam density. Solution of this equation shows that
all flute-like modes are unstable with the long wave-
length oscillations being most unstable. The growth
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rates for these latter modes are given by

Y “\1/2

Imo = wEiA ; By K (?) ,
17
g Qv (17)

Imow = % (fA)lﬂ; By > (Z) .

which maximize at a value of 8, = (2)"/%. Not only
are these oscillations more unstable than the short
wavelength oscillations but they are more likely to
oceur since at a given beam speed Eq. (16) is more
readily satisfied at low background densities.

OSCILLATIONS AT ARBITRARY HARMONICS

The more general solution to the dispersion equa-
tion is obtained when the harmonie frequency is not
equal to the hybrid frequency. In this analysis no
restriction is made to the dilute beam case and
results applicable to dense beams are also included.
These two systems can be characterized by their
approximate values of ¢, i.e., for the dilute beam

2
2 A~ — __.__92‘___
€ —= 1 fzwi;o . Qf (18)
while for the dense beam
0.)2'
€1 — z5-~1 (19)
WEo

Short wavelength oscillations (i.e., large values
of £) are found to be unstable for all values of 8, and
all values of ¢*. For small 8, the growth rate increases
until it reaches a maximum value given by

e o ()

which in turn maximizes at a value of 8, =~ (2)"
This ocecurs at low background densities, i.e.,
wy./Q K 1, for either dense or dilute beams. Equa-
tion (20) further reveals that the growth rate is also
maximized with respect to the harmonic number £,
For the dilute beam case, and at low background
densities, this value is given by

Imw = (20)

X 1 .
‘= 'no[l + 51 (ws; )] 21
while at high densities it has the value
Z = 31/Z’Y.Lo e (22)

In the case of dense beams no such maximization
with respect to £ occurs.

Long wavelength oscillations are also unstable
with growth rates given by
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with instability conditions being

€ >0

Imo =

and

WpE 1 1

Po > (ewm> (kan/d) e 4
The first condition is readily satisfied for the dense
beam case. For dilute beams, this same condition
along with Eq. (18) shows that for £ > v,,, growing
modes can occur for background densities up to a
critical value, after which they become stable. The
second of Eqs. (24) is simply a relationship between
beam speed and beam density. For a given beam
speed, instability oceurs for densities up to a critical
value, determined by the equality of this relation,
and stability thereafter. It is clear that if one or both
conditions are violated, the long wavelength oscilla-
tions become stabilized leaving short wavelengths
as the only unstable modes with growth rates as
given by Eq. (20).

For relatively high values of 8,, no maximization
of Eq. (23) with respect to £ occurs. This growth
rate does, however, maximize with respect to §, at a
value of approximately (2)'* for low background
densities as before.

DISCUSSION

The above analysis could be utilized in predicting
the instabilities which might arise in the system
described as it “evolves” in time. In the initial
stages when the beam particles are at some speed
but the densities of both the background and beam
species are low, one could expect to observe a single
dominant unstable mode at the hybrid frequency of
the background, i.e., at the harmonic given by Eq.
(16). This would occur first since the growth rate of
this mode, as given in Eq. (20), is dependent on beam
thickness and not on beam density. As the densities
of the system increase, the instability at the hybrid
frequency would disappear, resulting in the appear-
ance of unstable oscillations at all harmonics, with
the lower harmonics being most unstable. It should
be noted, that the hybrid frequency instability can
occur again, however, since the densities are greater,
the growth rate at other harmonics would dominate.
These growth rates are given in Eqgs. (20) and (23)
for the high and low harmonics, respectively. With a
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further increase in density the lower harmonies can
ultimately be stabilized as expressed in Eq. (24)
leaving the higher harmonics and the possibility of a
hybrid frequency instability as the only remaining
unstable modes.

ACKNOWLEDGMENTS

The authors are grateful to Dr. T. XK. Fowler for
suggesting this problem.
This work was supported by the United States

THE PHYSICS OF FLUIDS

VOLUME

1855

Atomic Energy Commission under Contract AT(11-
1)-1478 with the University of Michigan.

1 K. Imre, Phys. Fluids 5, 459 (1962).

2 M. Rosenbluth, N. Krall, and N. Rostoker, Nucl. Fusion
Suppl. Pt. 1, 143 (1962).

3Y. Shima and T. K. Fowler, Phys. Fluids 8, 2245 (1965).

¢ A. Sestro and M. Zannetti, Phys. Rev. Letters 19, 1377
(1967).

5 A. Nocentini, H. L. Berk, and R. N. Sudan, J. Plasma
Phys. 2, 311 (1968).

¢ E. G. Harris, J. Nucl. Energy Pt. C, 2, 138 (1961).

13, NUMBER 7 JULY 1970

Temperature Gradient Effects and Plasma Confinement in é
Q-Device

ErnsT GUILINO

Institut fiir Plasmaphysik GmbH, Garching bei Munich, Federal Republic of Germany
(Received 29 July 1969; final manuscript received 28 January 1970)

Azimuthal components of the electric field in @-machine plasmas may occur if the distribution of
temperature over the end plates deviates from rotational symmetry. In this case, EyX B, drifts
give rise to plasma loss rates which may be comparable in magnitude to Bohm diffusion. This effect
is verified experimentally in a double-ended @ machine. A new heater system for the end plates
using rotating cathodes yields temperature distributions which are symmetrical within less than 0.1%.
Under these conditions the loss rate is reduced by a factor of 10 to 60 as compared to operation

with conventional heater systems.

1. INTRODUCTION

If the plasma of a @ machine is assumed to be in
thermodynamic equilibrium, the mean lifetime of the
ions should only be limited by recombination at
the hot end plates."> In a real experiment, how-
ever, the plasma density is necessarily inhomo-
geneous. Classical diffusion due to plasma resis-
tivity as well as diffusion caused by encounters of
ions with the hot end plates® give rise to radial
plasma loss and, hence, to material transport along
the magnetic lines of force. Thermodynamic equi-
librium, therefore, cannot be achieved in practice.
However, if the magnetic field is strong enough,
radial loss rates are small as compared with end
plate recombination. Possible secondary effects
(e.g., diffusion fluxes may alter the velocity dis-
tribution) are usually neglected. If no further devia-
tions from equilibrium are introduced by the experi-
mental set-up, the ion density n at a given neutral
input flux j, is determined approximately by the
familiar relation®

. v, 2
o= 8 Rie, T)La (e, T) " W

v @) o

(Richardson—Dushman equation),

La (¢;, T) = <%> exp <e(—%—k_T—UQ) 4

(Saha—Langmuir equation),

where ¢; and ¢, denote effective work functions
of the polyerystalline end plate surface governing
thermal electron emission and contact ionization,
respectively.® The remaining symbols have their
usual meaning.

In steady state the total ion loss rate ® has to be
balanced by contact ionization of alkali atoms from
the neutral beam. The probability of ionization of
either ions are neutrals striking the end plate is
given by

R ®



