THE UN IV ERS IT Y OF MI CHI GAN COLLEGE OF ENGINEERING Department of Engineering Mechanics Meteorological Laboratories Interim Report VISUAL RESOLUTION AND OPTICAL SCINTILLATION OVER SNOW, ICE, AND FROZEN GROUND Donald J. Portman Associate Research Meteorologist Edward Ryznar Assistant Research Meteorologist Floyd C. Elder Assistant Research Meteorologist Vincent E. Noble Associate Research Physicist ORA Project 03372 under contract with: U. S. ARMY COLD REGIONS RESEARCH AND ENGINEERING LABORATORY CORPS OF ENGINEERS HANOVER, NEW HAMPSHIRE CONTRACT NO. DA-ll-190-ENG-78 administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR September 1961

PREFACE The work described in this report was conducted under U. S. Army Cold Regions Research and Engineering Laboratory, Corps of Engineers, Contract No. DA-11-190-ENG-78. The purpose was to investigate visual resolution and optical scintillation over snow, ice and frozen ground in such a way as to contribute, in general, to their predictability for various meteorological conditions. Only horizontal optical paths in clear air, one to two meters above the surfaces, were considered. Work on the contract included specifically (1) measurement of visual resolution, optical scintillation, and micrometeorological variables over snow, ice and frozen ground and (2) processing and analysis of the data obtained. This report gives the results of the analysis and measurement programs, a description of the equipment and procedures used, and a tabulation of the data obtained. The authors wish to express their appreciation to Mr. Dwight Meeks for assistance in the measurement phase of the investigation, Mr. William Tank of Boeing Aircraft Company for his valuable assistance in the comparison of methods of spectral analysis, (Mrs.) Ruth Baehr for her work in data processing and (Mrs.) Joy Beil for typing the final report.

TABLE OF CONTENTS Page PREFACE LIST OF TABLES LIST OF FIGURES vi ABSTRACT v 4 i i,. INTRODUICT ION 1.1 The Problem 1 1.2 Previous Work 1 1.3 Plan of the investigation 2 2. ONCLUS IONS 5 2.1 Visual Resolution and Scintillation 2,2 Visual Resolution and Wind, Temperature and Surface Conditions 5 2.3 Visual Resolution and Height and Length of Optical Path 6 3. RESUL,TS 7 3.1 Measurement Program 3.1.1 Visual Resolution and Scintillation Data 3.1.2 Scintillation and Meteorological Data 7 3.1.3 Magnetic Tape Recordings 8 3.2 Analysis Program 8 3.2.1 Visual Resolution and Scintillation Relationships $ 5.2,2 Scintillation and Micrometeorological Relationships 10 3.2.3 Scintillation Power Spectra 12 352.4 Scintillation and Path Length 14 4. DISCUSSION 38 4.1 Scintillation and Micrometeorological Parameters 38 4.1.1 Index of Refraction Fluctuations 38 4,1.2 Scintillation and the Temperature Profile 4c 4.1.3 Scintillation and Average Wind Speed 41 4.1.4 The Combined Effects of Wind Speed and Temperature Cradient 42 4.1.5 Scintillation and Surface Roughness )2 4. ol.6 Scintillation and the Richardson Number 43 4.1i7 Scintillation Power Spectra 45 4.1.8 Scintillation and Path Length 47 4.2 Visual Resolution and Scintillation 48 4o2.1 Over Snow at Night 48 4.2.2 Over Snow in Daylight 51 4.253 Over Frozen Ground at Night 51 4.2.4 Over Frozen Ground in Daylight 51 4.2.5 Over ice 52 iii

TABLE OF CONTENTS (Continued) Page 5. EQUIPMENT AND PROCEDURES 53 5.1 Visual Resolution Equipment and Measurement Procedures 53 5.2 Scintillation Equipment and Measurement Procedures 53 5.2.1 General 53 5,2.2 D.C. Component Indicating System 54 5o2.3 A.C. Component Indicating System 54 5.2.4 Magnetic Tape Recording System 55 5.3 Meteorological Measurement System 56 5.3.1 Temperature Sensing and Recording Equipment 56 5.3.2 Wind Sensing and Recording Equipment 56 5.4 Data Reduction, Processing and Analysis Methods 57 5.4.1 Temperature 57 5.4.2 Wind 57 5.4.3 Scintillation Per Cent Modulation 57 5o4.4 Scintillation Power Spectra 58 5.5 Experiment Site Description 58 5.5.1 Keweenaw Field Station 58 5.5o2 Willow Run Airport 59 5,5o3 Ford Lake 59 REFERENCES 78 APPENDIX 80 iv

LIST OF TABLES Table Page I Visual Resolution and Scintillation Data 15 II Landolt Broken Ring Resolution Chart Data 19 III Observation Periods and Weather Summaries 20 IV Periods of Magnetic Tape Recordings 22 V Roughness Values for Snow 11 VI Summary of Meteorological Measurements Coincident with Power Spectra of Scintillation 1i7

LIST OF FIGURES Figure Page 1 Predicting Visual Resolution from Meteorological and Surface Conditions 3 2 Percentage Frequency of Per Cent Modulation for Three Categories of Wind Speed During Overcast Skies at Night Over Snow 24 3 Percentage Frequency of Per Cent Modulation for Four Categories of Wind Speed During Clear or Scattered (less than 0.6 cloudiness) Sky Conditions at Night Over Snow 25 4 Per Cent Modulation vs Smallest Slot Size Discernible at Night Over Snow 26 5 Per Cent Modulation vs Si:.allest Slot Size Discernible at Night and During Daytime Over Frozen Ground 27 6 Spectral Resolution Factor vs Smallest Slot Size Discernible at Night Over Snow for Eight 2-minute Periods 28 7 Per Cent Modulation vs Inversion Magnitude Between 4 and 0.5 Meters Over Snow (Logarithmic Coordinates) 29 8 Per Cent Modulation vs Inversion Magnitude Between 4 and 0.5 Meters Over Snow (Linear Coordinates) 30 9 Per Cent Modulation vs Wind Speed at 2 Meters at Night Over Snow 31 10 Relationship of Per Cent Modulation to Inversion Magnitude Between 4 and 0.5 Meters and Wind Speed at 2 Meters at Night Over Snow 32 11 Per Cent Modulation per Unit Temperature Difference Between 1 and 2 Meters vs Richardson Number Over Snow for All Observations 33 12 Power Spectra of Scintillation for Stable Conditions Over Snow for Eight Periods 34 13 Normalized Power Spectra of Scintillation for Stable Conditions Over Snow for Eight Periods 35 14 Normalized Power Spectra (Wave Number) of Scintillation for Stable Conditions Over Snow for Eight Periods 36

LIST OF FIGURES (Continued) Figure Page 15 Per Cent Modulation vs Path Length 37 16 Landolt Broken-ring Resolution Chart, Telephotometer and Communication System 60 -17 Observer, Telescope, D. C. Light Source and Communication System 60 18 Block Diagram of Scintillation Measurement System 61 19 Three-inch Refracting Telescope with Attached Photometer 62 20 Interior of Photometer 63 21 Schematic Circuit Diagram of Scintillation Measurement System 64 22 Calibration Curve for D. C. Meter 65 23 Calibration Curve for A. C. Recorder 66 24 Frequency Response Curve for the A. C. Amplifier 67 25 Frequency Modulation Magnetic Tape Recorder System 68 26 Schematic Circuit Diagramn of Low Frequency Pre-amplifier 69 27 Frequency Response Curve for the Low Frequency Pre-amplifier 70 28 Schematic Diagrari of the F-M Record Module 71 29 Micrometeorological Profile Mast with Anemometers and Shielded Thermocouples 72 30 Schematic Circuit Diagram of Wind Profile Recording System 73 31 Anemometer Comparison Technique 74 32 Results of Three Methods of Spectral Analysis 75 33 Keweenaw Field Station Measurement Site 76 34 Willow Run Airport Measurerment Site 77 vii

ABSTRACT Optical scintillation, visual resolution, and wind and temperature profiles were measured over snow, ice, and frozen ground. The data were analyzed to determine relationships between (1) scintillation and visual resolution and (2) scintillation and meteorological and surface conditions. The experimental results included (1) estimates of the limit of visual resolution, (2) telephotometer measurements of the apparent fluctuations in brightness (scintillation) of an artificial light source, and (3) measurements of wind direction and of the vertical distributions of wind speed and temperature. The optical path was 543 meters long and 1.5 meters above uniform horizontal surfaces. All scintillation and meteorological data are given in an appendix. The principal results of the analysis showed that for turbulent flow in stable stratification over snow (1) visual resolution deteriorated systematically as scintillation increased in intensity and (2) scintillation intensity increased with increase in vertical temperature gradient. Scintillation was at a minimum in the absence of thermal stratification and at a maximum in very stable thermial stratification during the transition from laminar to turbulent flow. For a given temperature gradient, scintillation increased with increase in wind speed. When wind and temperature gradients were combined in terms of Richardson number and related to scintillation it was found that the data obtained over snow indicated a critical Richardson number of about 0.35. Scintillation power spectra for eight periods revealed characteristics that could be related to visual resolution, Richardson number and the mean wind speed component normal to the optical path. These and other relationships are discussed and equipment and measurement procedures are described. viii

1. INT RODUCTION lo1 The Problem Visual detection and recognition of distant objects is critically dependent on atmospheric conditions in the line of sight. In addition to contrast attenuation due to absorption and scattering of light by suspended particles and droplets, there are important diffraction and refraction effects caused by fluctuations in atmospheric density. To an observer viewing a distant object these effects appear as rapid changes in brightness (or intensity), position, and size. The net effect is to blur the image and, effectively, to reduce the apparent contrast between an object and its background. Brightness fluctuations are termed scintillation and image motion is called shimmer. These phenomena are most pronounced in clear weather, when the visual resolution otherwise would be unimpeded. They act, therefore, as the limiting factors in the ultimate resolution obtainable with optical devices for distant viewing. The atmospheric density fluctuations responsible for scintlillation and shimmer are the result of incomplete turbulent mixing of thermally stratified layers. The condition is common in the lower atmosphere because (1) it is nearly always turbulent and (2) during the day, the sun is constantly heating the ground surface more than the air, and at night, the surface is cooling faster than the air. Thermal stratification is absent only in very cloudy and windy conditions and during brief periods near sunrise and sunset (in most climates) when the vertical temperature gradient changes sign. S cint illation and shimmer appear to vary in a complex manner with turbulence and thermal stratification. They are absent in isothermal conditions and have a maximum intensity, dependent upon wind and surface roughness conditions, for maximum vertical temperature gradients. The dependence of scintillation and shimmer on meteorological Conditions near the ground suggests that if quantitative relationships were knownr, it would be possible to predict the deterioration in visual resolution from meteorological and surface data for any time and region of concern. The informati ton gained would have a variety of applications in cold region operations and investigations, It could be applied, for example, to operational problems in surveying, military surveillance, and communications methods utilizing light propagation. In addition, the testing of optical systems in variaable environmental conditions might require that scintillation and shimmer be i.olated from other attenuation effects. 1.2 Previous Work Work for the U. S. Army Cold Regions Research and Engineering Laboratories (then SiPRE) on relationships between visual resolution and meteorological and surface conditions was begun by the University of Michigan personnel in earmuT 1960o In effect, it was a continuation of earlier work directed toward the design of optical sensors for combat area surveillance. In that work a series of field experiments were based on the measurement of scintillation olf a spot

light directed along a 2000 ft horizontal path to a telephotometer. The light path was about 1.5 meters above the ground on the eastern edge of Willow Run airfield. This location assured a relatively horizontal and homogeneous trajectory for air moving through the optical path from the west. In this way it was possible to characterize turbulence and thermal stratification in the optical path by measuring vertical wind and temperature gradients at a single location. Results of the measurements confirmed early predictions that scintillation (1) would be absent when there is no height variation in average potential temperature, (2) could be as severe at night when temperature increases with height (inversion) as during the day when temperature decreases with height (lapse) and (3) increases with increase in length of optical path. Further consideration of the dependency of scintillation on turbulence and thermal stratification suggested that, for constant average density and for a given light source and optical system the degree of scintillation should depend on the following parameters: 1. Mean vertical gradient in potential temperature; 2. Mean wind speed; 3. Mean wind direction relative to the optical path; 4. Surface roughness; Height of optical path; 6, Length of optical path. 1.3 Plan of the Investigation Field experiments were based on the idea that empirical relationships among the six parameters and measured scintillation would make it possible to predict or estimate scintillation from ordinary meteorological and terrain information. Then from relationships between scintillation and visual resolution the desired goal could be achieved. A more direct approach would include measurements of visual resolution and the appropriate meteorological variables only. There is an important difficulty in this approach, however. Since the meteorological variables have a wide range of values and exist in a wide range of combinations, it is necessary to conduct a large number of experiments to establish general relationships for reliable predictors. At the same time statistically reliable measurements of visual resolution must be made for each experiment. Since the latter require direct visual observations for realistic application to practical problems, they are subject to both psychological and physiological influences and should, ideally, be conducted with suitable replication. The combination of meteorological variability and experimental replication would require an impractically large number of experiments. The direct recording of scintillation reduces, therefore, the number of field observations required. If a unique relationship between scintillation

and visual resolution can be established, then scintillation measurements, free from subjectivity, can be easily made for a wide variety of meteorological variables The reasoning developed for determining general relationships between visual resolution and meteorological and surface conditions is summarized schematically in Figure 1. Field experiments are conducted to determine relationships indicated by arrows b and c. These, with general micromreteorological knowledge of relationships shown by arrow a make it possible to estimate visual resolution directly from meteorological and surface data. Figure 1 Predicting Visual Resolution from Meteorological and Surface Conditions!Meteorologicall Vertical temperature; gradient'and surface Wind speed and Visual I i-+| - 9direction >IScintillationo _ information Surface roughness Resolution< Length and height of optical path Most of the observations reported and discussed in this report were made at the CRIEEL Keweenaw Field Station in February and March 1960. The field was covered with snow about 0.5 ri.eters deep and the optical path was about 1.5 meters above the snow and 543 meters long. Scintillation and average vertical wind and temperature gradients were measured as in the experiments at the Willow Run field station mentioned earlier. Visual resolution was determined by an observer viewing a Landolt broken-ring resolution chart through a 12-power telescope. The observer was positioned at the light source and the resolution chart near the telephotometero The observations were made mainly at night to avoid undesirable influences of background light on the telephotometer and to obtain data for a wide range of stable thermal gradients (inversions). The resolution chart was uniformly illuminated with flood lights for all nighttime observations. The fact that nocturnal vision is necessarily restricted does not limit the significance of findings based on these observations. As indicated above, the analysis seeks to relate visual resolution to meteorological conditions independent of time of day. Since, however, inversions are common over high latitude snow surfaces, even in daylight, the results should be particularly

useful for cold region operations. The conclusions listed in the following section are general statements relating visual resolution to scintillation and to wind and temperature conditions over snow and frozen ground in the absence of significant absorption or scattering by suspended materials. They are based on the results of simultaneous field measurements of (1) visual resolution and scintillation and (2) scintillation and wind and temperature conditions. The results themselves are described and discussed in following sections, and, finally, the equipment and procedures are described.

2. C ONCLIUS IONS 2.1 Visual Resolution and Scintillation a. Visual resolution and scintillation (apparent brightness fluctuations of a distant light source) are inversely related; visual resolution deteriorates as scintillation increases and vice-versa. b. Limited results from spectral measurements of scintillation suggest that visual resolution depends specifically on the product of (1) the relative amount of scintillation caused by turbulent inhomogeneities whose sizes are equal to and smaller than the size of the element being resolved and (2) the wind speed component normal to the line of sight. 2.2 Visual Resolution and Wind, Temperature and Surface Conditions a. Because of the dependence of the index of refraction on air density, visual resolution is poorer at low temperatures and at high pressures than for the opposite condition (high temperatures and low pressures) for equivalent conditions of turbulence and thermal stratification. b. In turbulent flow visual resolution deteriorates with increase in average vertical temperature gradient, Best resolution exists in the absence of temperature gradients and, therefore, in windy and cloudy conditions for all seasons, times of day and kinds of surface. c. Visual resolution deteriorates with increasing mean wind speed for conditions otherwise constant. Since, however, in turbulent flow mean wind speed and vertical temperature gradient are inversely related, the effect is not apparent except at very low wind speeds when small increases in speed cause initial mixing of stably stratified layers. d. The combined effect of stable thermal stratification (inversion condition) and turbulence on visual resolution may be expressed through the following relationships between scintillation and a characteristic Richardson number: The relative amount of scintillation per unit temperature gradient decreases rapidly as the Richardson number increases from near zero to a critical value and decreases less rapidly at higher Richardson numbers. The critical value was found to be about +0.35 for the experiments conducted over snow. e. For positive Richardson numbers greater than about 0.355, visual resolution is apparently controlled by distortions in image caused by internal gravity waves in the transition between laminar and turbulent flow. Because of the random occurrence of the internal waves and the high variability of very low wind speeds visual resolution is extremely variable under these conditions. f. Visual resolution deteriorates with increase in aerodynamic roughness of the underlying surface for equivalent conditions of wind speed and thermal

stratification. Since snow and ice surfaces are relatively smooth and often overlain with stably stratified air, their roughness effects on visual resolution are relatively insignificant at heights of the order of one meter or greater. The greater roughness of frozen ground, on the other hand, may be expected to influence turbulence in such a way that, for equivalent thermal stratification and mean wind speed, visual resolution over it would be inferior to that over snow and ice surfaces. The effect, however, would most likely be masked by differences in thermal stratification caused by both the roughness and thermal characteristics of the different surfaces. g. Visual resolution is optimum for wind direction parallel to the optical path and minimurm for the wind normal to the path. 2.3 Visual Resolution and Height and Length of Optical Path a. Visual resolution improves with increase in height of the optical path since temperature gradient, wind shear and roughness effects decrease with height. b. Visual resolution deteriorates with increase of length of optical path independently of image size effects.

30 RESULTS 3.1 Measurement Program 3.1 1 Visual Resolution and Scintillation Data —Data from simultaneous measurements of visual resolution and scintillation are listed for various periods of observation in Table I. Most of the data were obtained at the CRREL Keweenaw Field Station, Houghton, Michigan in February and March, 1960, over a snow surface at night. There are a few data, however, obtained in the daytime. The remainder of the observations, except for a very few over ice on Ford Lake near Ypsilanti, Michigan, were made over frozen ground at the University of Michigan Micrometeorological Field Station located at the Willow Run Airporto The latter are about equally divided between day and night. Visual resolut ion was measured in terrmls of the smallest broken ring whose orientation could be positively identified by an observer with a 24 power telescope at a distance of 1780 feeto For convenience the broken rings are numbered according to size as shown in Table II. A detailed description of the equipment and procedures used in this measurement is given in Section 5.1. Scintillation is measured in terms of per cent modulation (Pm or % mod. ) a measure of the relative intensity of brightness fluctuations as "seen" by the telephotometer. It is 100 times the ratio of the average equivalent sine wave peak-to-peak voltage output (A.C. component) of the phototube to its average output level (D.C. component). A description of the measuring circuit is given in Section 5o2. 351.2 Scintillation and Meteorological Data —All scintillation and micrometeorological data obtained over snow at Keweenaw Field Station, over frozen ground at the Willow Run Airport and over ice at Ford Lake are tabulated in the Appendix. The data include total anemometer revolutions at 0.5, 1, 2 and 4 meters (nominal) above the surface for successive two-minute intervals and simultaneous averages of temperature differences between 0.5 meters and 1, 2 and 4 meters, wind direction and scintillation per cent modulation (Pm). Approximately 42 hours of data were obtained over snow, 18 hours over frozen ground and 3 hours over ice. (a) Dates and times for all measurement periods are listed in Table III with information on cloudiness, wind, temperature, humidity and station pressure for each period. The meteorological data for the snow observations were taken from the standard WBAN form prepared at the Houghton Airport FAA weather station. The remaining data were taken from the WBAN form prepared at the Weather Bureau Station at Willow Run Airport. (b)j Figures 2 and 3 show the observed distributions of scintillation intensity for various wind speed and sky conditions over snow at night. The percentage frequency of occurrence of values of Pm are shown for various wind speeds for overcast (Figure 2) and clear or scattered (less than 0.6 cloudiness)

sky conditions (Figure 3). With an overcast sky the most frequently occurring values of Pm increased with increasing wind speed but did not exceed 35% mod. With a wind speed less than 2 mph these values were less than 10% mod about 85 per cent of the time and with a wind speed between 2 mph and 4 mph they were between 10 and 20o mod about 75 per cent of the time, etc. With a clear or scattered sky condition, and a wind speed less than 2 mph, values varied from less than 10 to about 85% mod. As the wind speed increased, the distributions became less skewed, and at wind speeds of 6-8 mph, a distinct peak occurred at about 35% mod with no occurrence above about 45% mod. 3.1.3 Magnetic Tape Recordings —Direct magnetic tape recordings of the telephotometer output were made for approximately 10 hours and 18 minutes over snow, 1 hour and 19 minutes over frozen ground and 21 minutes over ice. The periods of recording are listed in Table IV and descriptions of the recording equipment and procedures are given in Section 5,2.4. The recordings are contained in a total of 12 reels of tape which are filed at the University of Michigan Meteorological Laboratory at Willow Run, 3.2 Analysis Program 3.2.1 Visual Resolution and Scintillation Relationships (a) The results of grouping and plotting visual resolution and scintillation data for observations over snow at night are shown in Figure 4 and are discussed in Section 4.2.1. Average values of Pm for various broken ring slot sizes (visual resolution limits) are shown in relation to slot size. The slot size (Table II) is the length of a side of the approximately square gap in the broken ring. Each point on the graph corresponds to the slot size for the smallest broken ring whose orientation could be identified positively in a series of trials during the two-minute period for which the average Pm was measured. The equipment and procedures for visual resolution determination are described in Section 5.1 The number at the base of each vertical line segment refers to the number of observations included in computing the average Pm. Each vertical line segment, measured on the ordinate scale, equals two times the standard deviation for the mean on which it is centered. The results shown in Figure 4 reveal a consistent deterioration in visual resolution as scintillation increases in intensity. They form the primary basis for relating visual resolution to wind and temperature conditions over snow during inversion conditions, i.e., for stable stratification. The following statements summarize the observer's experiences in identifying broken ring orientations for the nighttime observations shown in Figure 4: (1) During very low scintillation (1-15%o mod) the observer discerned the orientation of all rings as large as or larger than number 11 at all

times and as small as number 13 some of the time. (2) During low scintillation (16-30* mod) the observer discerned the orientation of all rings as large as or larger than number 7 at all times and as small. as number 13 some of the time. 3) During moderate scintillation (31-45* mod) the observer discerned the orientation of all rings as large as or larger than number 7 at at all times but seldom as small as number 9. (4, During high scintillation 46-60% mod) the observer discerned the orientation of all rings as large as or larger then number 6 at all times but seldom as small as number 9. " During very high scintillation (greater than 60% mod) the observer discerned the orientation of rings as large as or larger than number 5 at all times, but very seldom as small as number 7. bb) The daytime observations of visual resolution over snow were too limited in range to permit analysis for systematic relationships with scintillation or meteorological conditions. As discussed in Section 4.2.2, the results show a correspondence between a very low average scintillation level (5-20* mod) and relatively good visual resolution. Ring numbers 13 and 14 were nearly always visible. (c) The results for visual resolution and scintillation measured over frozen ground are shown.n Figure 5 and are discussed in Sections 4.2,2 and 4.2.4. Curves for both daytime and nighttime observations are included. Standard deviations were not computed because of the relatively small number of observations for each plotted point. The nighttime results over frozen ground, although restricted in range, appear quite similar to those obtained over snow. X d) The daytime results over frozen ground show a smaller variation in visual resolution with the same range of Pm than do the nighttime results for either snow or frozen ground. The differences may be due to measurement techni.ques as explained in Section 4.204. The following statements summarize the observer's experiences in identifying broken ring orientations for the daytime observations over frozen ground shown in Figure 5 t(.) Duri.ng very low scintillati.on (1-15* mod) the observer discerned the orientation of all rings as large or larger than number 14 at all times and number 15 occasionallyo (2) During low scintillation (16-30* mod) the observer discerned the orlentatiAon of all rings as large as or larger than number 14 at all times.

(3) During moderate scintillation (31-45%o mod) the observer discerned the orientation of all rings as large as or larger than number 12 at all times and number 13 quite often. (4) During high scintillation (46-60% mod) the observer discerned the orientation of all rings as large as or larger than number 10 at all times and number 11 occasionally. (5) During very high scintillation (greater than 60% mod) the observer discerned the orientation of ring number 8 most of the time. Occasionally number 10 was discernible. (e) Figure 6 shows a relationship between visual resolution and a spectral resolution factor for eight selected 2 minute measurement periods. Scintillation power spectra for the eight periods are given in Section 3.2.3. Slot size scaled on the ordinate is, as before, the size of the slot on the smallest broken ring whose orientation could be identified positively. The spectral resolution factor is the product of (1) the average component of the wind speed normal to the line of sight and (2) a measure of the total relative power due to thermal discontinuity elements whose length scales are equal to and less than the slot size at the limit of resolution. Specifically, the spectral resolution factor, F, is given by F = Vn Wp(k) d k = 2 Wp(f) d f!/s Vn/2/as in which Vn = wind speed component normal to line of sight, cm/sec s = slot size at the limit of resolution, cmo Wp(k) = power per unit wavelength (mv)2/cm-1 k = wave number 2tf/Vn, cycles/cm f = scintillation frequency, cycles/sec Wp(f) = power per unit and width (mv)2/cps The results shown in this figure as discussed in Section 4.2.1 are based on limited data and no account has been taken of the "aperture integration~" 3~2.2 Scintillation and Micrometeorological Relationships — (a) Figure 7 shows the observed relationship between scintillation (Pm) and inversion magnitude between 4 and 0.5 meters for all data obtained at night over snow~ Each plotted point represents the mean of all Pm observations for each one-degree temperature difference interval. The number of cases for each point is indicated in the figure in addition to the standard logarithmic deviation for each point. 10

The results, discussed in Section 4,,1i2, show a systematic increase in scintillation with increasing inversion magnitude. The same data plotted in linear coordinates are shown in Figure 8, (b( The observed relationship between scintillation (Pm) and the wind speed at 2 meters for all data obtained at night over snow is shown in Figure 9 and is discussed in Section 4.13. The data were grouped for wind speed intervals of 0.9 mph and the number of two-minute periods, averaged for each point is indicated, as in previous figures. Except for winds less than 2 mph and between 8 and 10 mph, Pm shows a general tendency to decrease as the wind speed increases. For 0-2 and 8-10 mph there is an increase in Pm with increasing wind speed. (c) Figure 10 shows the average relationship of wind speed, temperature difference and Pmo. it is discussed in Section 4.1.4. Two-minute average values of Pm were averaged for wind speed intervals of one mph and temperature difference intervals of one degree C and isolines of Pm were drawn. The dashed lines are estimates of the behavior of the isolines in an apparently narrow region separating the area that includes all observations from that which includes none. The figure shows that, in general O (I1 For a given temperature difference, Pm increases with increasing wind speed, and (2) For a given wind speed, Pm increases with increase in temperature difference. (d) Aerodynamic roughness parameters, computed from wind profiles during five separate adiabatic periods for the KFES snow surface, are given in Table V. Table V Feb., 1960 EST Zo, cm. 5 1540-1556 0.014 9 1118-1134 0.008 12 (afternoon) 0.010 18 1500-1516 o0.006 1p9 2220-2236 0.037 The method of computation and a brief discussion are given in Section 4.1.5. (e) A relationship between Pm and Richardson number for the observations made in inversion conditions over snow is shown in Figure 11o Plotted in 11

logarithmic coordinates are Pm per unit temperature difference, Pm/AT, and positive Richardson numbers, +Ri. As indicated, AT is the temperature difference between one and two meters (nominal). Richardson numbers were computed according to LettauVs definition (Lettau, 1957) from wind and temperature data from the same two heights. _g o/ e z Thus Ri = T T ( / ~z)2 2g zl2 (o2 - G1) in n T2 (U2 - ul) in which g = acceleration due to gravity, cm/sec2. T = average temperature, deg. A. 0 = average potential temperature, deg. C. u = average wind speed, cm/sec. 2 (z1 z2)1/2 z1.2 = (Z1Z2), cm. n = ( 2/l )1/2 The number of two-minute periods averaged for each point is indicated in the figure, and the standard linear deviation for each mean is indicated by the length of the vertical line segment extending above and below each point, It should be noted that because the standard deviations were computed on a linear basis and shown on a logarithmic scale, the line segments are not directly comparable for different regions of the scale. The two lines whose equations are shown in the figure were obtained by linear regression with each point weighted according to the number of observations averaged. The results of this analysis shows that Pm/AT varies as Ri-0.72 for +0.005 > Ri +0.35 and as Ri-0o08 for +0.35 Ri +150. The significance of the apparent discontinuity and other aspects of the results are discussed in Section 4.1.6. 3.2.3 Scintillation Power Spectra —Power spectra for eight selected two-minute periods are shown in Figure 12. The relative power per unit frequency is scaled in terms of the square of the millivolt output of the harmonic wave analyzer and graphed for frequencies ranging from 2.5 to 100 cycles per second. A detailed description of the method of analysis is given in Section 5.4. 3o The eight periods were selected mainly on the basis of visual resolution and Pm data. They provide the basic data for computing spectral resolution 12

factors presented in Figure 6. For the eight periods there is a visual resolution range corresponding to a slot size range of 0.61 to 3.68 cm. Pm ranged from 11 to 62 for the eight periods. These and other appropriate data are included in Table VI. Table VI Summary of Meteorological Measurements Coincident with Power Spectra of Scintillation U V T-T V o'~ Date Time.m n 2mlm n 0 196o EST cm/sec cm/sec +Ri Deg.C Sky % Mod +Ri cm/sec 2/13 2131-33 137.2 68.6 0.19 1.7 Clear 62 3 T 7 017 4. I 2/15 20o54-56 94.o 60.3 0.16 1.3 Clear 64.4 IV 2/23 2125-27 309.9 130.9 0.13 0.9 Clear 40 0~24 121o 4 VIII 2/24 2051-33 146.1 111.9 0.35 0.4 1500 ft Ovcst 13 >i 35 /8 0632-34 53.0 50.9 0.60 2.0 Clear 62 1 V 2/20 2017-19 71.9 46.2 3.77 0.8 Hi Sctd 28 1.65 63.4 VL 2/12 2336-38 96.5 9352 0.59 1.5 Clear 29 2 VII 2/19 2031-33 462.3 264,3 0.01 0.05 1500 ft Brkn 11 0.01 264.3 In general, the spectra show large variations in relative power for frequencies between 2.5 and 20 cps. Except for periods VII and VIII, maxima appear to be at frequencies less than 2.5 cps. The maximum for period VII is at 5 cps and that for period VIII at 7"5 cps. To make more direct comparisons, the spectra were normalized by a factor 200 W (f) df.5 p for an arbitrary reference spectrum~ The normalized spectra are displayed in'Figure 13, grouped in four categories according to similarities in shapes. Shown also are the appropriate average Richardson numbers and wind components normal to the optical path. The similarities of the spectra within each group are clearly evident, It is significant to note, in this regard, that the spectra are essentially statistically independent samples insofar as they are widely separated in time, 13

Figure 14 shows the same normalized power spectra in terms of wave number, k, defined by 2 E f k = Vn These spectra may be compared with those in Figure 13 to see the effect of the wind component normal to the optical path. 3.2.4 Scintillation and Path Length —Figure 15 shows data obtained over grass on two separate nights (curves 1 and 3) and one day (curve 2) with individual light sources at 400, 800 1200, 1600 and 2000 feet from the telephotometer, Richardson numbers (Ri) wind speed at 2 meters (u2m), wind direction relative to the optical path (o< ), average temperature difference between 2 and 1 meters (T2m - Tlm), and the slope of each curve computed by a least squares method are also given. The results, as discussed in Section 4.1.8, show that scintillation increases systematically with increase in length of optical path according to the relationship PmC LP in which p: 0.9 for T2m - Tlm A +0.2~C and p 0.8 for T2m - Tlm = +0.8~C.

Table I VISUAL RESOLUTION AND SCINTILLATION DATA Nighttime over snow, KFS, 1960 T Time Time Date EST Slot No. Pm EST Slot No. Pm 12 Feb. 1926 11 19 2344 12 21 1942 11 20 2346 13 20 1946 11 17 2348 12 23 2002 11 24 2352 13 18 2016 11 22 2358 13 18 2032 12 19 0000 11 31 2048 9 36 ooo0006 11 22 2102 10 24 0008 12 16 2218 10 29 0016 11 20 2226 10 26 0022 11 18 2326 11 34 0024 10 23 2336 11 29 0030 9 29 2338 11 29 0036 11 29 2340 10 29 0040 9 36 2342 10 25 13 Feb. 2030 8 59 2116 9 45 2054 8 39 2120 845 2040 7 39 2124 7 69 2042 7 45 2126 7 59 2046 7 52 2128 6 59 2050 8 39 2130 6 62 2052 9 38 2132 63 2056 6 45 2136 7 59 20B 6 49 2140 9 41 2104 6 59 2142 8 43 2112 6 72 14 Feb, 2018 12 12 2114 11 21 2028 12 23 2140 11 10 2048 11 16 2304 11 21 19 Feb. 2214 11 12 2222 11 12 20 Feb. 2012 9 28 2040 7 27 2018 8 28 2044 7 24 2020 i10 29 2050 7 30 2026 9 23 2056 7 26 2036 8 22 2206 8 48 2038 8 23 2207 7 53 15

VISUAL RESOLUTION AND SCINTILLATION DATA (Continued) Nighttime over snow, KFS, 1960, (Continued) Time Time Date EST Slot No. Pm EST Slot No. Pm 20 Feb. 2208 6 55 2228 10 24 (Continued) 2210 7 52 2230 11 20 2212 8 56 2232 10 21 2214 8 54 2236 9 22 2216 8 52 2238 11 20 2222 8 32 2240 11 17 2226 9 32 23 Feb. 2114 9 36 2152 9 36 2124 9 42 2238 10 30 2130 9 39 2258 11 26 2148 10 34 24 Feb. 2016 11 25 2034 12 13 2024 12 20 2038 12 13 2026 13 15 2042 12 13 2032 13 13 29 Feb. 2122 8 28 2124 9 30 2 Mar. 1952 11 21 2002 12 20 1954 11 22 2018 11 17 2000 12 20 2026 12 16 7 Mar. 1832 11 34 1900 13 18 1836 13 26 1904 13 26 184o 13 15 1910 12 34 1848 13 19 1912 13 30 1854 13 16 1914 13 29 8 Mar. 0628 9 76 0718 9 47 0632 9 63 0720 9 40 0640 8 47 0732 9 55 0710 8 45 16

VISUAL RESOLUTION AND SCINTILLATION DATA (Continued) Daytime over snow, KFS, 1960 T ime T ime Date EST Slot Noo Pm EST Slot No. Pm 5 Feb. 1558 14 4 1602 13 4 1600 13 4 9 Feb. 1142 13 5 1144 13 5 12 Feb. 100 13 500 13 10 13 12 N.ghttime over frozen ground, WRL, 1961 T i.me Time Date EST Slot No. Pm EST Slot No, Pm 2 5 an. 1956 12 13 2042 11 14 2014 13 10 2052 12 5 2016 12 12 2054 13 5 2038 12 7 2108 12 20 2040 11 17 2110 12 22 6 Feb. 1946 11 35 14 Feb. 2020 12 24 2120 12 32 2028 12 32 2126 12 31 2114 13 23 2152 12 26 15 Mar, 2~04 13 27 2146 13 28 2C44 13 23 2108, 15 23 Daytime over frozen ground, WEL, 1961 Time T ime Date EST Slot No. Pm EST Slot No. Pm 8 Feb. 1424 14 12 1532 14 20 1436 14 18 1538 15 12 17

VISUAL RESOLUTION AND SCINTILLATION DATA (Continued) Daytime over frozen ground, WRL, 1961 (Continued) Time Time Date EST Slot No. Pm EST Slot Noo Pm 16 Mar, 1440 7 90 1511 8 94 1446 11 53 1536 7 83 1448 7 83 1537 10 65 1454 7 83 1538 11 47 1506 8 94 1540 10 58 1507 10 78 1541 9 82 1508 8 95 1542 8 90 1509 8 85 1543 7 88 1510 10 83 1544 7 83 Nighttime over ice, Ford Lake, 1961 Time Time Date EST Slot No. Pm EST Slot No. Pm 20 Feb. 2050 14 7 2146 14 4 Daytime over ice, Ford Lake, 1961 Time Time Date EST Slot No. Pm EST Slot No. Pm 21 Feb. 1506 16 11 18

Table II LANDOLT BROKEN RING RESOLUTION CHART DATA Slot Di amo Slot Size Slot Diam. Slot Size Noo in.)'in ) No. (in.) (in.) 1 17'. 76 3.55 12 1.53.30 2 14.21 2.84 13 1.22.24 3 L 157 2.277 14.98.196 4 9.10 1.82 15.78.156 5 1428 16.625.125 6 5.82 1.17 17.50.10 4.66 e93 18.4o.o80 s8 5, 753.75 19.32.064 9 2.98 o 59 20.26.051 10 2.38.46 21.20.041 11 1.91 19

Table III OBSERVATION PERIODS AND WEATHER SUMMARIES Over snow, KFS, 1960 Ave. Ave. Ave. Sta. Ave. Wind Temp. Dew Pto Press. Date Time (EST) Cloudiness Vel.(mph) 0C 0C (mb) Feb. 3 2125-2324 Clear SSW 11 -6 -8 985 4 1545-1815 Hi sctd E 8 -4 -7 983 2130-2230 500 ft ovcst E 11 -3 -4 982 5 1520-1650 10,000 ft ovcst NW 6 -1 -2 970 9 1115-1200 2000 ft ovcst/lt snw N 9 -12 -14 962 2130-2220 1600 ft ovcst/lt snw ENE 10 -12 -13 967 12 1900- Hi sctd NW 6 -12 -14 989 13/0100 13 1917-2210 Clear Lt/vrbl -15 -17 983 14 1930-2307 Hi sctd becoming ESE 5 -8 -12 976 2800 ft ovcst 18 1405-1611 1200 ft ovcst/lt snw NW 12 -8 -9 972 19 2141-2248 2000 ft ovcst/lt snw NW 13 -9 -12 983 20 2000-2250 Clear NNE 4 -15 -17 985 23 2100-2300 Clear N 8 -10 -13 985 24 2000-2130 1500 ft brkn vrbl NW 1 -10 -12 984 ovcst 27 1820-2100 1500 ft brkn NW 1 -13 -15 982 becoming clear 29 2020-2140 Clear becoming WNW 4 -14 -16 986 1200 ft ovcst Mar. 1 1925-2210 1500 ft brkn Lt/vrbl -15 -16 992 becoming clear 2 1840-2030 1500 ft brkn vrbl Lt/vrbl -10 -14 990 ovcst 7 1820-1920 Hi thin ovcst NNW 1 -10 -16 990 20

OBSERVATION PERIODS AND WEATHER SUMMARIES (Continued) Over snow, KFS, 1960 (Continued) Ave. Ave. Ave. Sta. Ave. Wind Temp. Dew Pt. Press. Date Time (EST) Cloudiness Vel.(mph) 0C 0C (mb) Mar. 8 0545-0745 Clear NW 1 -18 -20 99( 14 0945-1030 2000 ft brkn Lt/vrbl -5 -8 988 Over frozen ground, WRL, 1961 Ave. Ave. Ave. Stao Ave. Wind Temp. Dew Pt. Press. Date Time (EST) Cloudiness Vel.(mph) 0C 0C (mb) Jan~ 25 1954-2117 Hi sctd Lt/vrbl -11 -17 1005 Feb. 6 1944-2214 Clear N 8 -1 -10 1000 8 1404-1540 Clear NW 10 +7 -7 987 14 1956-2152 Hi thin brkn WNW 6 +1 -4 996 Mar. 15 1932-2144 6000 ft sctd becoming WNW 12 +1 -8 979 5500 ft brkn 16 1434-1608 4000 ft sctd becoming NW 18 -1 -12 986 5000 ft brkn 3a 1344-1600 Clear W 7 +8 -10 988 1658-2226 S 8 +6 -8 988 Over ice, Ford Lake, 1961 Ave. Ave. Ave. Sta. Ave. Wind Temp. Dew Pt. Presso Date Time (EST) Cloudiness Vel.(mph) 0C 0C (mb) Feb. 23 1958-2156 Hi thin brkn Lt/vrbl -2 -6 1001 21 1502-1528 Hi thin brkn SSE 6 +9 -7 993 21

Table IV PERIODS OF MAGNETIC TAPE RECORDINGS Over snow, KFS, 1960 Date Time (EST) Date Time (EST) 12 Feb. 1915-1920 20 Feb. 1845-1850 1930-1935 1910-1915 1945-1950 2013-2026 2000-2005 2156-2246 2015-2020 2026-2027:35 23 Feb. 2108-2156 2030-2035:30 2237-2245 2037-2039:15 2252-2302 2045-2052 2103-2105 24 Feb. 2015-2020 2230-2235 2029-2043 2245-2254:15 2300-2308:15 27 Feb. 1840-1845 2315-2323 1855-1900 2330-2338 1920-1925 2345-2348 1950-1955 2000-2005 13 Feb. 0001-0005 2015-2025 0015-0023 2045-20553 0030-0036 0045-0050 29 Feb. 2040-2110 2030-2035 2120-2134:30 2039-2056 2101-2149 1 Mar. 1950-2015 0o25-2030 14 Feb. 2010-2020 2040-2045 2047-2048:45 2050-2100 2111-2116 2115-2120 2137-2143 2125-2135 2238-2243 2145-2150 2303-2307 2200-2210 18 Feb. 1436-1440 2 Mar. 1950-2005 1441-1444 2015-2030 19 Feb. 2139-2149 8 Mar. 0625-0635 2213-2225 0715-0 22 0731-0736 14 Mar. 0955-loo1000 1007-1011 22

PERIODS OF MAGNETIC TAPE RECORDINGS (Continued) Over frozen ground, WRL, 1961 Date Time (EST) Date Time (EST) 25 Jan. 2000-2010 14 Feb. 2002-2009 2031-2046 2058-2105 2108-2115 2138-2144 6 Feb. 1955-2000 30 Mar. 1357-1405 1445-1450 8 Eebo 1429-1433 1531-1536 Over ice, Ford Lake, 1961 Date Time (EST) Date Time (EST) 20 Feb. 2015-2025 2049-2100 23

80o 70 o 0-2 mph ~~~~~60 A~~~~~ 2.1-4 mph 60 o 4.1-6mph W 50 (-) Z z b.I cr40 o 30 a: 0 Q 20 0%, 20tl I 0 10 0 10 20 30 40 50 60 70 80 90 % MOD. Figure 2. Percentage Frequency of Per Cent Modulation for Three Categories of Wind Speed During Overcast Skies at Night Over Snow.

80 70 0 0-2 mph 60 A 2.1-4 mph 6E 4.1-6 mph wLL 50 6.1-8m ph z 0 a: 40 0 oo e20- 1 10 0 10 20 30 40 50 60 70 80 90 % MOD. Figure 3. Percentage Frequency of Per Cent Modulation for Four Categories of Wind Speed During a Clear or Scattered (less than 0.6 cloudiness) Sky Condition at Night Over Snow.

100 90 80 70 60 T T ( 60 0 50 1 1 E T 8 Q 40 0 G)) 30 T 20 14 20 00 1 i 10 I I 28 t I0 1314 L I I I I, l I I I I I I I I.1.2.3.4.5.6.7.8.9 1.0 1.1 1.2 1.3 1.4 1.5 SLOT SIZE (in.) Figure 4. Per Cent Modulation vs Smallest Slot Size Discernible at Night Over Snow. The number of observations averaged for each point is shown and the standard deviation for each point is indicated by a vertical line segment.

100 5 I O 80 70 3 6 60 2 50 0 E (0 DAYTIME 40 NIGHT TIME 30 20 10 103!0 0 I, I I I I.... I 0.1.2.3.4.5.6.7.8.9 1.0 SLOT SIZE (in.) Figure 5. Per Cent Modulation vs Smallest Slot Size Discernible at Night and During Daytime over Frozen Ground. The number of observations averaged for each point is indicated. 27

10 O ZI oE - I _O o0 0 o1.0 0 CC) 0.1 I I I I I.01 0.1 1.0 10 100 SPECTRAL RESOLUTION FACTOR Figure 6. Spectral Resolution Factor vs Smallest Slot Size Discernible at Night over Snow for the Eight 2-minute Periods Identified in Table VI.

100 90 80. 70 60 50 40 30-4 J 4 I I 56 87 15 20 1153 6 5657 E 1 130 170 5 In (Pm) 3.68 0.34 In ( T4M - TO.5M)l 0.1 1.0 10.0 T4 M To.5 M DEG C. Figure 7. Per Cent Modulation vs Inversion Magnitude Between 4 and 0.5 Meters Over Snow in Logarithmic Coordinates. Each point is the average of all per cent modulation observations for each one degree temperature difference. The number of observations of per cent modulation averaged for each point is shown and the standard logarithmic deviation for each point is indicated by a vertical line segment. 29

50 O 0 O 41 15 40 87 0 0 56 75 0 30 0 0 57 30~ 0(i) 62 64 53 0 82 E 20 1 a. 130 0 170 10 0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 TEMP. DIFF. (~C.) Figure 8. Per Cent Modulation vs Inversion Magnitude Between 4 and 0.5 Meters Over Snow in Linear Coordinates for the Same Data Shown in Figure 7.

50 40 0 0 129 0 0 150 0 30t 111 154 46 0 0 0< 31 16 34 42 3 1 E 20-0 19 a. 55 59 1 26 10 o 20 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 9.0 9.9 10.8 11.7 12.6 WIND SPEED (mph) Figure 9. Per Cent Modulation vs Wind Speed at 2 Meters over Snow at Night. Each point is the average of all per cent modulation observations for each 0.9 mph wind speed interval. The number of observations of per cent modulation averaged for each point is indicated.

12 \ ~\ \\\ 10 60%O/o \\\ \\\ 9 8 50%~0 \ o 7 7 ~~~~~~~~~\\ 2,, LL 6 4~-0%........'0 W 4 130% \ -10% 0 2 3 4 5 6 7 8 9 0 I 12 WIND SPEED (mph) Figure 10. Relationship of Per Cent Modulation to Inversion Magnitude Between 4 and 0.5 Meters and Wind Speed at 2 Meters over Snow for all Nighttime Observations. 52

1000 _ Ri < 0.35 In(Pm/AT) - 2.31-0.72 In Ri'- Ri > 0.35 In(Pm/AT) 2.94-0.08 In Ri 32 100 77 00 - ~~~~~~~~~~~37 )~~ 1 1. 134.001.01 1 10 100 + Ri Figure 11. Per Cent Modulation per Unit Temperature Difference Between 1 and 2 Meters vs Richardson Number over Snow for all Daytime and Nighttime Observations. The number of observations of Pm/AT averaged for each point is shown and the standard linear deviation is indicated by a vertical line segment.

108I 8.1~ 6.5 R Vn R I Vn n o=PERIOD I 0.19 69 cm/sec o=PERIODI C 3.77 46 cm/sec 6.0 - o =PERIOD II 0.60 55 cm/sec o =PERIODi 0.59 926 cm/sec A=PPERIOD = 0.16 60 cm/sec 0= PERI0D=0.13 131 cm/sec 0=PERIOD 0.35 112 c 5.5 V 50 - 4.5 ~4.03.5 3.0 2,5 2.0 - 1.5 - \ \\t \ 1.0 0.5 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 00 FPEQUENCY (CPS) Figure 12. Power Spectra of Scintillation for Stable Conditions over Snow for Eight Periods Identified in Table VI.

GROUP I GROUP 2 4.5- Ri= 1.65 Ri= 0.01 Vn= 63.4 cm/sec. Vn= 264.3 cm/sec. 4.0 =PERIOD ]I o =PERIOD MI o =PERIOD v A=PERIOD ME 3.5 3.0 2.5 2.0 1.5 1.0 0.5 55. O GROUP 3 GROUP 4 4.5 Ri=O.17 Ri =0.24 Vn=64.4 cm/sec. Vn= 121.4 cm/sec. 4.0P o=PERIOD I 0 =PERIOD 1E = PERIOD r o = PERIOD 3.5 30 2,5 2.0 1.5 1.0 0.5 0 5 10 15 20 25:O 40 50 70 100 0 5 10 15 2025 30 40 50 70 100 FREQUENCY (CPS) Figure 13. Normalized Power Spectra of Scintillation for Stable Conditions over Snow for Eight Periods Identified in Table VI.

5.0 GROUP I GROUP 2 Ri 1.65 Ri =O.01 Vn= 63.4 cm/sec. Vn =264.3 cm/sec. 4.0 A = PERIOD IT A = PERIOD MI o = PERIOD V 3.5 0 = PERIOD vr 3.0 2.5 2.0 1.5 1.0 0.5 5.0 4.5- GROUP 3 _ GROUP 4 Ri =0.17 Ri =0.24 4.0 - Vn =64.4 cm/sec, Vn = 121.4 cm/sec. o = PERIOD I o = PERIOD =T o = PERIOD l lT 0 = PERIOD= 3.53.0 2.5 2.0 1.5 1.0 0.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 WAVE NUMBER ) Figure 14. Normalized Power Spectra (Wave Number) of Scintillation for Stable Conditions over Snow for Eight Periods Identified in Table VI.

100 1. Ri =+O.035 U2M = 6.1mph C = 035~ - T2MIT TaM TIM +O.80C SLOPE = 0.78 2 2. Ri =- 0.065 U2M =6.4mph OC = 090 I/S T -:-T-2M TM=-0.25 0C SLOPE = 0.85 E I X0 3. Ri=+0.II a. U2M = 7.5 mph 7< t a/ T2M-T1 M- M+ 0.2~C SLOPE = 0.88 I,,,, I I, I,, I,,,, I1 100 1000 10,000 DISTANCE (FEET) Figure 15. Per Cent Modulation vs Path Length

4. DISCUSSION 4.1 Scintillation and Micrometeorological Parameters 4.1.1 Index of Refraction Fluctuations —The dependence of visual resolution and scintillation on turbulence and thermal stratification arises basically from the fact that the speed of light varies with the density of the medium in which it propagates. Variations in density associated with turbulent mixing of thermally stratified layers create distortions in wave propagation which may be described as perturbations in both amplitude and phase. The effects of the perturbations appear as fluctuations in brightness of light from small objects and variations in shape and size for larger objects. The relationship of the speed of light to the density of the medium through which it propagates is expressed by means of the index of refraction, n, which is the ratio of speed, c, in a vacuum to the speed, v, in the medium. Thus n = c/v (1) and for air at pressures on the order of one atmosphere n = 1+ Ap (2) in which A is a constant and p is the density. To show the separate effects of temperature, pressure and water vapor the equation of state is introduced (Fleagle, 1950) (p-e) A1 + e e A2 n = 1 + RT (3) in which p = atmospheric pressure (mb) e = water vapor pressure (mb) = ratio of molecular weights of water vapor and dry air = 0.622 R = gas constant for dry air = 2.876 x 106cm2 sec-2 deg-1 Al 2.28 A2 = 3.25 The relative significance of temperature and water vapor in index of refraction fluctuations may be determined by differentiating (partially) Equation (3): -(p-e) Al - e e A2 an/ aT = RT

A2 - A1 and n/ i e = RT Then J)n/ J e -0.13T &n/ CT -1.14p + 0.13e If extreme values of T, p and e are selected from the Appendix so as to maximize the ratio given by Equation (4), it is seen that the ratio for any of the experiments could not be as large as 0.04. Thus, a variation of humidity as large as 25mb would never be as significant as a temperature variation of 1~C. It is clear that the effects of humidity variations are entirely negligible when dealing with optical wave lengths. Equation (3) may be reduced, therefore, to n = 1+ AR T Partial differentiation again, yields Al p /~ ~ = - - T2 (6) and A RT Then 3n/ p = _T (8) an/ aT p T For the data in the Appendix the maximum possible value of - would be less than p 1/3, showing that a pressure variation would have to be greater than 3mb to be equivalent to a 10C temperature variation to cause equivalent changes in index of refraction. G. I. Taylor (1936) showed that the mean pressure variation _p2,_ in turbulent flow is of the same order as 1/2 p ( u + v2 + w2)~ If (u2 + v2 + w2) is as large as 3.2 X 104 cm2/sec2*, then the pressure variation would amount to about 0n02mb. This would be equivalent to a temperature change of less than 0.007'C in its influence on the index of refraction. Clark (19553) has reported short period pressure fluctuation measurements obtained over a six-week period in winter. *Take u = 6 mps and u2 n - 0.2T and w2 r 1/2 u2 (cf. Sutton (1953) p. 250-254.) 39

Although he does not give complete information with which to apply his published calibration curve, the strongest fluctuation reported could not have been as large as 0.025 mb. An interesting feature of his results is that pressure fluctuations are considerably weaker with a surface layer inversion than without. The significance of these values may be assessed in terms of temperature variations found in typical conditions in the atmospheric surface layer. Perepelkina (1957) found, for example, that for stable stratification the standard deviation of temperature measurements at a height of 1.7 meters could be expressed, for limited data, as: UT = - o.o8 (T1 - T4) in which T1 and T4 represent mean values of temperature at 1 meter and 4 meters respectively. Analysis of similar data published by Lettau and Davidson (1957) for the Great Plains Turbulence Field Program gives, on the other hand, a factor of at least twice that obtained by Perepelkina. In the Appendix it is seen that the range of (T1 - T4) varies from zero to about -10~C so that temperature fluctuations for these data may be expected to vary from zero to as high as 1 or 1.5~Co The foregoing discussion shows that, except for adiabatic and nearly adiabatic conditions, temperature fluctuations in turbulent flow are responsible for scintillation and the related deterioration in visual resolution. Equation (6) may be used, consequently, for relating temperature differences to index of refraction differences. For a given temperature differential, the index of refraction differential varies inversely as the square of the absolute temperature and directly as pressure. Thus, it can be expected that for given temperature fluctuations scintillation effects will be most severe in clear weather at sea level (high pressure) in high latitude (low temperature). 4.1.2 Scintillation and the Temperature Profile —The data analysis was directed toward relating scintillation and visual resolution to temperature and wind structure with the general assumption that fluctuations in pressure and water vapor content were negligible in comparison to those of temperature on their influence on index of refraction fluctuations. This led to the plan of relating statistics of scintillation to parameters related to thermal stratification and turbulence in the surface layer of the atmosphere. For a horizontal and statistically homogeneous surface, temperature fluctuations at a point may be thought of as the result of vertical motions which move parcels of air from their average mean position in a layer characterized by an average temperature height distribution. The model assumes that small motions are adiabatic. It is clear that for a given vertical displacement, the temperature deviation from the mean will be greater for greater average vertical temperature gradients. Perepelkina's findings quoted above support this idea as do the findings of other investigators. It follows, therefore, that in turbulent flow scintillation should

depend directly on the mean vertical temperature gradient. Perhaps the most striking evidence of this fact is the common observation that shimmer is absent, or at least at a minimum, when the temperature gradient vanishes near sunset, sunrise and during very windy and cloudy conditions. Figure 7 shows the relationship of scintillation to inversion magnitude over snow. Each point is the mean of many two-minute averages of Pm within successive one-degree temperature difference increments. The temperature differences were obtained from the 4 and 0.5 meter heights. The number of samples in each point is indicated. Standard logarithmic deviations are shown by the vertical line segments for each point. The data were subjected to a weighted linear regression analysis which resulted in the line shown in the figure. Because the data are not categorized according to turbulence characteristics, pressure, or absolute temperature, each point represents an average for a large range of these conditions. The systematic increase of scintillation with inversion magnitude is clearly evident. A flattening of the curve is indicated at the greatest temperature difference values, an expected condition for the onset of laminar motion. The slope of the line is 0.34, which compares to a slope of 0.35 given by Tatarsk-, et.al., (1958) for similar work conducted at night over grass in the steppe region of Russiao However, Tatarski, et.al., used the temperature difference between 8 and 2 meters in their relationship and their optical path was about 1 meter above the earth's surface. The results of both investigations confirm the significance of the vertical temperature gradient in controlling the intensity of scintillation. When combined with the results relating Pm to visual resolution (Figure 4 ), the figure gives basic information for estimating visual resolution from information on the most critical parameter relating visual resolution to weather conditions. 4olo 3 Scintillation and Average Wind Speed —The influence of wind speed on scintillation takes place directly through the effects of wind shear in creating vertical motions. For a given roughness and average temperature gradient, the wind shear at a given height is directly determined by wind speed. Thus, it may be expected that an increase in wind speed, other things being constant, would increase the intensity of vertical motions and hence scintillation. The same wind shear effects, on the other hand., tend to decrease the temperature gradient through a mixing actiono The influence of wind speed on scintillation should depend strongly on the temperature gradient as well as on the roughness and, perhaps, on other dynamic influences such as its variability determined by external conditions. In a general way, the data plotted in Figure 9 show that scintillation (Pm) at first gradually and then rapidly decreases with increase in wind speed, except for a region between zero and 2 mph where it increases with wind speed. It appears, therefore, that these data reflect the decrease in temperature gradient with increasing wind speed instead of an expected increase in Pm with increase in vertical motionso The exception is the zero to 2 mph region where, 41

because all data here represent stable stratification conditions, it can be expected that slight increases in wind disturb otherwise laminar or near-laminar flow in which scintillation would be at a minimum. Further discussion of this matter is given in Section 4.1.6. There appears to be no obvious reason for the discontinuities in the curve between 6 and 9 mph. It is likely that these data represent different conditions than does the remainder of the data. In spite of the irregularities the results indicate that in stable stratification over snow, except for very low wind speed, scintillation decreases with increasing wind speed. 4.1.4 The Combined Effects of Wind Speed and Temperature Gradient — Figure 10 suggests that for a given temperature difference, Pm increases with increasing wind speed up to a maximum value —dependent on the temperature difference —and then decreases. The point of inflection on the wind speed scale is inversely related to the temperature difference. This may be explained by the fact that, while the wind speed and Pm are measured at about 2 and l.5m, respectively, the temperature differences used here were those between 4 and 0.5 meters. Thus the actual gradient at the effective level of scintillation measurement may change with respect to T4 - TO.5 depending on the variation of wind speed with height. A more detailed analysis of wind and temperature data would presumably show a continued increase of Pm with wind speed for a given temperature gradient at the height of Pm measurement. A similar effect is noted for increasing the inversion magnitude for a given wind speed in the region of 4 mph at very large inversions. This characteristic, shown specifically in the Pm = 60 line, is apparently related to the flattening observed at large inversion values in Figure 7, indicative of flow transitional between lamiinar and turbulent. 4.1.5 Scintillation and Surface Roughness —Insofar as surface roughness elements are responsible for vertical motion in an otherwise uniform field of horizontal motion, it may be expected that the aerodynamic roughness of a snow surface would exert some influence on scintillation and visual resolution independent of temperature gradient and wind shear effects. It is known, however, that the influence of roughness does not extend far in the vertical and that this extent is dependent upon the size and distribution of roughness elements, wind speed and thermal stratification. For relatively smooth surfaces and for stable thermal stratification the roughness effects are the smallest and extend the least distance in the vertical. Aerodynamic roughness, zo, were computed for five separate adiabatic periods for the KFS snow surface using Prandtl's logarithmic wind height relationship in which u ix in z/zo and the extrapolation method used by Davidson and Barad (1956) applied to the four heights of measurement. 42

Thus, in zin z 0 O - u n 4 4 u in which S(oa -0 Lo) + (v -v l) t(u 4 + u-2 + 1 + u0.5) in in z4 + ln z2 + in z1 + In Z 0.5 A In z l in z4 + In z2 - In zl - in zo.5 The computed values of z0 for a snow surface ranged from 0.006 cm to 0.037 cm. Because of the small variation of zo, its effects on scintillation could not be isolated from the effects of thermal stratification and wind. Furthermore, the effects of roughness differences between snow and ground surfaces on scintillation could not be isolated because identical micrometeorological conditions were not observed during the measurement programs over snow and frozen ground. 4!l.o6 Scintillation and the Richardson Number —In studying the characteristics of scintillation it was convenient to look primarily for relationships between the degree of scint-illation and the temperature profile and to regard the wind, roughness, and height as secondary factors affecting both the temperature profile and the turbulence. Wind speed, roughness, and height may be related through the wind speed shear, Du/ z. Thus, several parameters can be grouped conveniently in the non-dimensional Richardson number, Ri, defined by: g ae/ a z T ( u/ a z)2 This ratio describes the relative intensity of turbulence for shear flow with buoyancy effects Batchelor (195Q, p. 2046) explains it as follows: "Think of a fluid parcel that migrates vertically a distance,, through a mean shear flow with an accompanying mean density gradient a p/ 3 z, The buoyancy force acting on it is of the order of p og, where d p = J 5 p/ 3 z. The work done against this force is d pg The difference in mean velocity at the two positions is 5 u. The kinetic energy released by the migration is thus of the order p( 6u)2 If the work done against buoyancy forces is much larger than the kinetic energy released the motion will extinguish itself; and if the work done against buoyancy forces is much less than the kinetic energy released, the buoyancy forces will have only a small effect on the motion. The ratio of the two energies may be put

in the form of Richardson number as usually quoted..." If it is assumed that the Richardson number characterizes the intensity of turbulence and, therefore, the vertical motions, it should also characterize the amount of scintillation for a given mean temperature gradient. The reasoning follows from the idea that fluctuations in light intensity will be greater for greater density discontinuities between turbulent eddies and that these, in turn, will be greater, not only for greater mean gradients, but also for greater vertical motions. The reasoning would appear to be valid for turbulent flow in either stable or unstable stratification. For stable stratification, however, a limit would be reached at a critical Richardson number since in laminar flow no scintillation would be expected. Because both turbulence and thermal stratification are required conditions for the existence of scintillation, it is clear that instable stratification scintillation is limited on one end of the stability scale by the absence of thermal stratification and, on the other, by the absence of turbulence. Since the original hypothesis of Richardson (1920) that the critical value of Ri was unity for determining whether or not stably stratified flow would be turbulent, a number of investigators have attempted to determine whether or not a universal critical value existed, and if so, whether or not it is unity. The works of Ellison (1957), Townsend (1958) and Stewart (1959) may be cited as relatively recent contributions to the subject. It appears that if a critical value exists, it exists for only a given set of external flow conditions. The transition between turbulent and laminar flow is not an abrupt one. It is characterized apparently by the occurrence of internal gravity waves which may, in effect, "break" in a random fashion. Long (1959) gives ample analytical and experimental evident in support of internal waves as a characteristic feature of stably stratified flow. Such waves are to be expected,therefore) in the highly stable flow observed occasionally during the KFS experiments. Evidence for their existence, furthermore, might be expected in both visual resolution and scintillation data. Specifically, visual resolution in the presence of gravity waves would be expected to be better than that in the presence of turbulence but poorer than that for pure laminar motion. In the last condition, for long optical paths, steady but vertically elongated images are observed. Superposition of internal waves would create image motion as well as variations in distortion, probably of a relatively large scale. Such imnage distortion and motion were, in fact, observed during experiments at KFS over snow for relatively brief periods of very strong inversion and very light wind. During such periods, furthermore, the scintillation minimum was similar to that observed during adiabatic periods. It was observed, furthermore, that small increases in wind speed often caused the situation to change abruptly to short intervals of very strong scintillation with the highest observed Pm values. The observations support the idea of the presence of internal gravity waves with frequent breaking to brief periods of turbulent flow. These conditions obviously represent a situation in which both visual resolution and scintillation oscillate between extrerme values in relatively short time intervals,

in order to explore the relationships between scintillation and Ri for different conditions of stable flow, the ratio of Pm to mean temperature gradient, T2 - T1, was related to Ri for all data obtained over snow. The result is shown in Figure 11 presented in Section 3.2.2, As expected from the foregoing reasoning, the ratio Pm/AT decreases systematically with increasing Ri. It is clear that a continuous curve could have represented the data as well as the two straight lines. The latter were chosen arbitrarily, however, with the thought that their intersection would specify a critical Ri for the conditions of the measurements. The lines shown were computed with linear regress-ion and, as it turned out, the point of intersection at Pm/AT G 20, Ri = 0.35 fell at a data point, for which the number of observations was 159. This point was included only in the computations for the line representing conditions at Ri = 0.35. The apparent change in slope at Ri = 0.35 may be taken as evidence in support of the idea of a change from turbulent flow to flow characterized mainly by gravity waves. The Pm/AT, Ri line would have zero slope for pure laminar motion. Although it may be argued that the slope for Ri > 0.35 is not significantly different from zero, the mean value of Pm/AT for this region of the curve suggests that, on the average, the observed values of Pm were larger than those representing the "noise" level of the system as observed during adiabatic periods. insofar as the Richardson number may be considered a universal parameter to characterize turbulent and near-turbulent flow with thermal stratification, these results represent a fundamental relationship for estimating scintillation from wind and temperature information over a snow surface. 4.1.7 Scintillation Power Spectra —In addition to the correlation between the average intensity of scintillation (as measured by Pm) and visual resolution it is reasonable to expect that the spectral characteristics of scintillation would have an important relatlionship to one s ability to see a particular pattern. Specifically, for a given measured Pm, it may be expected that different limits of resolution may be:found depending on whether the main variations in light intensity are of relatively high or low frequency. From another point of view, it may be reasoned that both the size and the speed of inhomogeneities in index of refraction would have an influence on the limit of resolution and that, insofar as these are measured by spectral characteristics of scintillation, the latter should reveal important information for relating visual resolution to meteorological conditionso The inadequacy of the average scintillation intensity, alone, as a parameter to specfyr visual resolution conditions is apparent in the scatter of the data shown in iFgure 4. Although several hours of data were recorded on magnetic tape for power spectral analysis, only eight two-minute periods could be analyzed. The results of the analysis are presented in Section 302.3 and in Figures 12, 13, and 140 (The method of analysis is described in Section 54, 3 and the meteorological conditions for each spectrum are summarized in Table VL) Each of the three

figures shows all eight spectra but each is a different representation to facilitate comparison of the spectra and to relate their characteristics to flow properties. In the first of these, Figure 12, the spectra are shown as measured. Each spectrum represents an independent observation insofar as all except period; I and III were obtained on separate days. Periods I and III were obtained on the same day but were more than 30 minutes apart. There are large variations in relative power for frequencies between 2.5 and 20 cps, but perhaps the greatest differences are in the total areas represented by j 200 Wp(f) df for each spectrum. The areas should be proportional to the Pm values measured for the periods. A comparison shows good agreement for all spectra except those for periods VII and VIII. The discrepancies may be accredited to possible frequency dependency of the A. C. recording circuit. This question is being investigated, To make more direct comparison possible, the spectra were normalized, as explained in Section 3.2.3, by a factor to give a constant value to the area under each curve. Figure 13 shows the normalized spectra grouped into four categories according to similarities in their shapes. Shown also are the appropriate average Richardson numbers and wind components normal to the optical path. The spectra in the first group represent periods during which Ri is greater than 0.35, the critical value suggested by Figure 11. The high values of relative power for low frequencies in comparison to the spectra in group 3 (lower, left), which represents periods of comparable cross-wind, for example, support the idea that internal gravity waves were responsible for much of the scintillation observed here. The effect of cross wind speed should be seen by comparing groups 3 and 4 which have comparable Richardson numbers but crosswind speeds which differ by a factor of 2. One would expect a relative increase in power for the higher frequencies for the higher cross wind. This is not evident here although the expected opposite effect at the lower frequencies is suggested. The spectrum in the upper right represents a period of small Ri and relatively high cross-wind. An expected decrease in power for the lower frequencies is clearly evident. Theoretical and experimental work by Tatarski indicates that the frequency spectrum of the fluctuations of light intensity depends on f (\I /Vn) according to the relationship, f W(f) F( Jw(f) df

where L is the optical path length, A is the wave length of light, and other terms have their usual meanings. If this relationship is valid, the normal component of the wind should explain differences in individual spectra, If the frequency spectra are reduiced in terms of wave number a normalization for wind speed is accomplished. Figure 14 shows the same eight spectra in terms of Wp(f) vs k where k = -2vfo While some of the differences among spectra are accounted for by the cross-path wind component, it can be seen that a large amount of variance is yet unexplained. It is probable that some of the observed differences are due to the inadequacies in measurement of the wind components. However, the theoretical derivation by Tatarski is based upon assumptions that permit applications to atmospheric conditions not greatly different from adiabatic. It also cannot hold for the condition where the wind is parallel to the light path. Thus it is not surprising that differences in spectra remain even after normalization for movement of the total field of view. It is hoped that analysis of more spectra will permit isolation of the remaining influences. 4.1.8 Scintillation and Path Length —The increase of scintillation and other optical effects of turbulence with increase in length of optical path is a commonly observed phenomenon. On a bright day, for example, the more distant an object, the more it appears to move and to be distorted. The distance effect is also easily observed in the case of stellar scintillation, which, for a given star, has been found to increase as its position changes from near zenith to near the horizon, increasing the length of the atmospheric path. Apparently the first systematic observations of the variation of scintillation with length of path near the ground were made by Siedentopf and Wisshak (1948). They found that the relationship between Pm and length of path had the characteristics of a saturation curve that nearly reached its limiting value at a path length of 1200 meters. A more detailed analysis shows that their data may be represented by three straight lines for different path lengths, L, as follows: 80m < L < 400m Pm a L1 3 40C0m < L < lOOOm Pm c< L0'75 1000m N L < 160om Pm o LO.10 Gurvich, Tatarski and Cvang (1958), however, have presented both theory and experimental results that correspond to Pm < L 91 for 100m < L < 2000rm. Their results are based on the theory of wave propagation in an isotropic *The change in angle between the optical path and atmospheric density gradients may have an influence on the observed scintillation increase, also) although this effect apparently has not been recognized by the astronomers. 4y

turbulent field in which the index of refraction may be regarded as a conservative passive additive. It is assumed that the correlation between index of refraction values at two points in space is proportional to the 2/3 power of the distance between them in accordance with the Kolmogorov equilibrium range for isotropic turbulence. An additional restriction for the specific result cited here is that 0 << L << Lo in which.Co is the internal, or micro, scale of turbulence (m1 cmo), X is the wave length of light, Lo is the external, or macro, scale of turbulence (i 10 to 100 m) and L is the length of optical path. This means that the theory should apply to path lengths greater than 200 meters if the other conditions are met, Their experimental results were obtained by moving a light source to different positions corresponding to L = 250, 500, 1000 and 2000m, Both theoretical and experimental results are given in terms of a quantity, _- {=lnI - lnI 2 in which I is the apparent intensity of the light source. It can be shown that or is related to Pm by a constant factor, for Pm significantly less than 100. The results of experiments at the Willow Run field station, as shown in Figure 15 are in close agreement with the findings of Gurvich, et. al. for small temperature gradients, both for lapse and for inversion conditions. The set of data for T2m - Tlm = +0.8'C suggests that Pm increases less rapidly with path length for stable stratification, Unfortunately neither Siedentopf and Wisshak nor Gurvich, et. al,, report their findings in terms of temperature gradients so that additional experimental results are needed to explore the validity of these ideas. 4.2 Visual Resolution and Scintillation 4.2.1 Over Snow at Night —The relationship between scintillation and visual resolution shown in Figure 4 includes 126 observations obtained over snow at night. The standard deviations and the number of observations of Pm for each slot size at the limit of resolution are shown. A systematic decrease in resolution capability with increasing Pm is clearly evident except for low scintillation, high resolution conditions. The small change of Pm with slot size for these conditions indicates the limitation imposed on the method of observation by the observer's ocular qualities, the magnifying power of the telescope, the illumination of the resolution chart, and other factors which are less obvious, but possibly as important. (See Section 5o1 for a description of the equipment and procedures used for visual resolution determination ) 48

The scatter of individual observations, as indicated by the standard deviations, mray be explained by a number of factors, Perhaps one of the most important for conditions of poor resolution was the time variability of scintillation. This was particularly pronounced during periods of extreme thermal stratification and very light wind, The variability influenced the measurements because of the time required to establish the limit of resolution. As a result, the final slot size accepted as the resolution limit in some cases may not have been a good measure of the average conditions for a two-minute intervals An appreciation of the observational problem may be gained from the observer's comments recorded during a period of strong and variable scintillation. The following statements were made during a period when the limit of resolution was determined to be a relatively large slot size of 0.93 inches. "The vertical gradient in shimmer'object motion) is very high. The lower two charts on the turntable (about 0.75 meters above snow) are distorting to diffuse elliptical shapes which are dancing up and down. At times the lower portions appear fused with the snow surface. The uppermost charts (about 1.8 meters above snow) are much more distinct and circular. The legs of the tripod (standing on the snow near the chart) appear curved and the tripod appears to have been lifted. The shed which houses the telephotometer also appears to have shrunk in width and expanded vertically. It appears as if water were flowing near the snow surface nearly obliterating the bottom of the shed," Spatial variations in image distortion were clearly evident in such conditions. At times a well-defined layer of maximum distortion was observed to move upward as high as the uppermost rings on the chart, distorting each target as it moved, Above Lhe upper, and beneath the lower, limits of the layer no distortion was present and the resolution was good. When the wind speed exceeded about 8 mph, however, the distortion was not great and was uniformly distributed with height. The foregoing comments suggest that under many conditions the parameter Pm is not likely to be well correlated with resolution limit. If the AC component measurement systems respond equally well to all frequencies of scintillation, Pm is a measure only of the intensity of distortions and gives no information on their size or speed. It may be reasoned, therefore, that the scatter indicated in Figure 4 Ray be reduced by a consideration of spectral characteristics of scintillation, Thus, the power spectra for the eight two-minute periods listed in Table Vi were selected for a preliminary analysis of their relationship to visual resolution. As the data in the table reveal, the eight periods represent a large range of resolution and scintillation conditions as well as some periods for which the general relationship shown in Figure 4 is clearly not represented. Analysis of spectral characteristics of these periods might be expected, therefore, to suggest relationships that would have less scatter than those involving only per cent modulation~ 49

Figure 6 represents a relationship between visual resolution and spectral characteristics of scintillation in terms of a "spectral resolution factor" for the eight periods. The spectral resolution factor was derived with the assumption that size, speed and local, small-scale gradients associated with index of refraction discontinuities would all contribute to the limit of visual resolution. It was reasoned, in addition, that the major influences determining a given resolution limit would be those associated with discontinuities having characteristic lengths equal to or less than the slot size dimension. Effects of larger discontinuities would tend to displace the total image rather than to distort and to confuse its boundaries. A measure of these effects may be obtained from a scintillation frequency spectrum if it is transformed to a wave number spectrum by the relationship 2i f k = f Vn in which k = wave number, cycles/cm f = frequency, cycles/sec Vn = average wind speed normal to the optical path. The total scintillation "power", then, due to discontinuity effects equal to and smaller than the slot size, s, representing the limit of resolution, is Wp (k) dk 1 l/s The effect of speed may be included simply by multiplying by Vn, so that a spectral resolution factor may be defined as F = Vn W (k) dk il/s which transforms to F = 2 t Wp W(F) df Vn/2ets for direct computation from frequency spectra, The transformation involved in this development requires the entire field of index of refraction discontinuities to have a uniform velocity normal to the optical path and the field itself not to change in time~ The effect of the telephotomreter aperture integration, furthermore, has been neglected so that spectral characteristics for wave lengths of the order of the diameter of

the aperture and less do not bear direct relationships to the index of refraction discontinui.ties as do spectral characteristics for larger wave lengths. In spite of these approximations, the spectral resolution factor appears to have a close relationship to the limit of resolution. Because of the very few data used in the analysis, however, the results must be regarded as highly tentative. Another factor that may be responsible for part of the scatter of the basic data used in preparing Figure 4 is that the observations were made by two observers. One observer made all observations before 29 February 1960; the other all observations over a snow surface after that date. It is worth noting in this connection that visual resolution estimates for the eight periods selected for spectral analysis were made by the first observer, except for that of period Ii. This may account for the apparently anomolous position of the point for period 1I in Figure 6. Finally, it should be mentioned that unavoidable variations in both physiological and psychological responses of any one observer may have an important influence on all observations of this nature. In view of this fact and of the variability of atmospheric influences on visual resolution, future work should include both photographic measurements of resolution and scintillation spectral characteristics. 4.2.2 Over Snow in Daylight —The relatively few observations of visual resolution made over snow in daylight correspond in a general way with results for the data obtained at night. The resolution was relatively good and the Pm was low for most of the observations as would be expected from the fact that all temperature differences measured for the daytime observation periods were relatively small. The data are too few to isolate a possible effect of daylight on the observer's performance. 4.2.3 Over Frozen Ground at Night —Visual resolution determinations made over frozen ground at night are shown in Figure 5o Although the number of observations was limited, the relationship and behavior with respect to scintillation were very similar to those observed over snow at night. 4.2.4 Over Frozen Ground in Daylight —Visual resolution measurements made over frozen ground in daylight are also shown in Figure 5o Although there are relatively few observations it is clear that, in comparison to nighttime data for both snow and frozen ground, the changes in Pm for a given resolution increment are significantly larger for these data. Although part of the difference may be the result of natural effects, there are at least two aspects of the measurement method that must be considered. First, there is the possibility that illumination of the resolution chart by daylight had an important influence on the observer's ability to see the targets. It can be argued that this would influence the findings in the direction observed.

A second, and perhaps more significant factor, was that for these observations the telephotometer was equipped with an internal aperture to reduce the influence of daylight on the phototube response. Following the observations, it was learned that the internal aperture had the effect of increasing the Pm values by an amount that increased with increase in intensity of scintillation. However, the aperture was required only on very bright days. Additional experimentation is considered necessary to establish corrections in order to make direct comparisons between measurements obtained with and without the internal aperture. Although direct comparisons are not possible with these data, it was the experience of the observer that visual resolution in daylight over frozen ground responded to temperature structure and general meteorological conditions in a way quite similar to that observed at night. 4.2o5 Over Ice —Because a shorter optical path (1600 feet) was necessary over ice and because suitable weather conditions were not experienced, the few visual resolution determinations are not considered comparable to those made over snow and frozen ground.

5. EQUIPMENT AND PROCEDURES 5.1 Visual Resolution Equipment and Measurement Procedures A Landolt broken-ring resolution chart was used to determine an obseirver's visual resolution capabilities for different scintillation conditions. Figure 16 shows the chart as it appeared during measurements over ice. The visual targets were black broken rings (C-shaped figures) photographically reproduced and dry-ri;ounted on 20-inch white cardboard disks. The contrast between each black ring and the white background was 0.96. At any one time, six disks with rings of different sizes were attached peripherally to a larger disk that could be rotated to permit any ring to appear in the viewing position at the height of 1.5 meters. Once in the viewing position, each broken ring could also be rotated to any desired orientation. For nighttime operation, the chart was uniformly illuminated by an intense flood light. Twenty-one broken rings having outside diameters from 0.20 to 17.76 inches were available. The slot sizes, or gap widths, of the broken rings equaled the ring thicknesses and ranged from 0 04 to 3.55 inches. Each broken ring was 1.25 times as large as the previous one in the series. The ratio 1.25, selected on the basis of experimental results obtained by Fritz (1928), was used by Gordon (1959) in tests to evaluate the optical design of night binoculars. The resolution chart was located near the telephotometer and operated by a person in telephone communication with an observer stationed near the light source. The latter viewed the chart with a 24-power telescope and reported his estimate of the orientation of each broken ring brought into viewing position by the chart operator, Progressively smaller broken rings, with arbitrary orientations, were moved into position until the observer, in the judgment of the chart operator, could no longer discern the correct orientation. The recorded limit of visual resolution was the slot size of the smallest broken ring whose orientation could be correctly identified. The times of the determinations were noted in order to relate the resolution limits to corresponding measurements of scintillation. Except for three periods of observation over snow, after 27 February 1960, all resolution determinations were made by the same observer. 5.2 Scintillation Equipment and Measurement Procedures 5.2.1 General —A block diagram of the instrumentation used to measure scintillation is shown in Figure 18, A 5-inch diameter, 12 volt, sealed beam lamp was directed to a 3-inch refracting telescope-photometer system located about 1780 feet away. The telescope, a Warner and Swasey, Model No. 667 azimuth instrument, is shown with the photometer in Figure 19. The photometer alone, with a side removed, is shown in Figure 20. A DuMont type 6467 multiplier phototube, located at the focus of the interior lens system, provided an electrical analog of the luminous flux at the otelescope objective. A schematic circuit diagram of the scintillation measurement system is shown in Figure 21. The photometer output (proportional to average apparent

brightness of the source) is indicated by a microammeter galvanometer damped to prevent response to rapid fluctuations. A convenient average brightness level is maintained by inserting neutral density filters in the photometer, The average meter reading is controlled, in addition, by adjustment of the gain of the multiplier phototube. The average brightness is termed "DC level" for purposes of evaluation and is calibrated in units of millivolts wLth referen-ce to ground potential. To obtain a measure of the mean magnitude of the fluctuations in brightness the electrical output of the multiplier phototube is amplified by a low frequency amplifier, rectified and then integrated. The system is calibrated in terms of equivalent sine-wave peak-to-peak voltage. The observed magnitude is termed the "AC level" and, since this value is also related to the "DC level," scintillation is finally evaluated as a ratio of AC to DC levels and termed "per cent modulation," In this way scintillation measurement is independent of slow changes in source brightness due to attenuation variations or battery and lamp aging. The electrical output of the multiplier phototube contains all information necessary for analysis of the frequency spectra of the scintillation, Since analysis in the field in "real time" is difficult to accomplish, the data are recorded on magnetic tape by means of frequency modulation of a constantfrequency carrier signal. The recorded data are retained for subsequent analysis in the laboratory by techniques described in Section 5.453. Detailed descriptions of the measuring circuits are given in the following three sub-sections. 5.2.2 DC Component Indicating System —The "DC level" is indicated. by a 0-25 microammeter in the cathode circuit of the cathode follower. The meter is adjusted to "zero out" the dark current of the multiplier phototube or background light level and is damped to the extent that it does not respond to rapid fluctuations in the phototube current resulting from the light scintillation, The "DC level" is calibrated in terms of the voltage at the grid of the cathode follower tube. A potentiometer measurement is used as a reference standard. The sensitivity is adjustable to a chosen calibration by means of the cathode load resistor, R(5), (Figure 21). Figure 22 shows the linear response of the DC indicating system. The DC reading is directly proportional to the average light intensity incident upon the phototube although no calibration in terms of luminous flux density has been made. 5,2.3 AC Component Indicating System —The phototube signal is capacitorcoupled to a three-stage amplifier resulting in elimination of the average or "DC" component. The amplified signal is rectified by the crystal diodes V(4) and V(5)o Capacitor C(10) and resistor R(24) form a rapid charge, low leakage circuit which smooths the peaks of the applied voltage. The charge on capacitor C(10) determines the bias on the balanced amplifier V(3). The difference in

plate current of the two triodes is determined by the charge on capacitor C(10) and, therefore, is a function of the amplitude of the charging voltage. The AC measuring system is calibrated in terms of an AC voltage applied at the grid of the cathode follower tube, V. A Ballantine, Model 316, Infrasonic, peak-to-peak voltmeter was employed as a standard. Since the gain of the amplifier is adjustable, sensitivity of the system is variable over a certain range. A typical calibration curve is shown in Figure 23. The response of the meter is approximately linear down to a level of about 50 millivolts, below which the calibration approaches the noise level. The cathode follower V(2) has a limited linear range of response and, therefore, the gain is a function of the DC bias. Separate AC calibrations are necessary for each of the DC levels of operation. The output of the AC meter is recorded on an Esterline Angus 0-1 milliampere recorder, The "AC level" is evaluated in terms of equivalent sine-wave peak-to-peak amplitude. For input signals other than constant amplitude sine waves, the output could differ by an unknown amount from the true mean peak amplitude. The frequency response curve is shown in Figure 24. Response falls off below about 4 cps due to the discharge rate of the storage circuit. Also, the linear amplifier response is limited to frequencies below about 400 cps. All calibration was accomplished at 30 cps. Final evaluation of scintillation is accomplished as a ratio of AC to DC level. This gives a measure of scintillation that is independent of the gain of the multiplier phototube and avoids the necessity of calibration of the system in terms of luminous flux density. Precise definition of the ratio, termed per cent modulation, is known only in terms of equivalent sine wave modulation since the AC meter does not indicate true amplitude of the actual noise signal. For a sine wave input of constant amplitude, AC 2.828 RMS Voltage Modulation = DC X 100 DC Voltage X100 5.2.4 Magnetic Tape Recording System —The electrical analog of scintillation is recorded directly with a magnetic tape system similar to that described by McLaughlin and Prout (1959)o The major component is a modified Ampex Model 601 dual-channel tape recorder one channel of which is used for data and the other for voice announcements. A photograph of the recording system is shown in Figure 25. The multiplier phototube signal is taken directly from the load resistor of the cathode follower stage and supplied to the input of a low frequency pre-amplifiero A schenmati.n diagram of the pre-amplifier is shown in Figure 26. A curve of the amplifier frequency response is shown in Figure 27. The gain is nearly constant between 1 and 300 cps with the -3Db points at 0.6 and 600 cps.

The output from the low frequency amplifier is fed through a step attenuator to a frequency modulation module similar in electrical design to that of the Ampex FR-100 recording system. The circuit diagram is shown in Figure No. 28. The carrier frequency is determined by a standard Ampex center-frequency plug-in unit. The low frequency amplifier, f-m module combination provides a means of recording directly the analog signal of scint.llation in the frequency range from 0.6 to 600 cps at a tape speed of 7 1/2 inches per second. o53 Meteorological Measurement System Wind and temperature profiles and wind direction were measured continuously throughout all periods of scintillation measurement. The profiles were measured with sensors at nominal heights of 0.5, 1.0, 2.0 and 4.0 meters and the wind direction at about 4 meters. 5.3.1 Temperature Sensing and Recording Equipment —The temperature sensors were 36 B and S gauge copper-constantan thermocouple junctions supported in flat-plate radiation shields similar to those described by Portman (19553. The shields were supported at the end of 24 inch arms on an aluminum mast as shown in Figure 29. The mast was oriented with the arms normal to the mean wind direction when possible. In this way the influence of the m1ast on measurements of both temperature and wind was reduced to a minimum. Similar thermocouple radiation shields have been tested for radiation error (Portman, 1960). The tests show that an error of significant magnitude in the measurement of air temperature Amlay result under certain conditions. The error becomes most serious under conditions of low sun angle and low wind speed. Since most of the measurements during this program were made at night, it is believed that errors due to radiation effect were small. For measurements over snow the thermocouple circuit was arranged to yield temperature differences for the three height intervals, 0~5 to 1, O~5 to 2, and 0.5 to 4 meters. For measurements over frozen ground and ice, the intervals were 1 to 2 and 1 to 4 meters and, in addition, the absolute temperature at 1 meter was recorded. These were recorded in sequence for one third minute intervals on a Leeds and Northrup Speedomax Model S, AZAR recorder A Leeds and Northrup DC amplifier was employed to provide the desired sensitivity of about 0.10C per chart scale division, Periodically, an absolute air temperature at the 0.5 meter level was measured with an Assman or a standard sling psychrometer. 5,3.2 Wind Sensing and Recording Equipment —Wind speed was measured with Beckman and Whitley Model 170-34 anemometers. They were supported on the same mast as that used for the thermocouple radiation shields as shown in Figure 29. The anemometers were adjusted so that the cups were at the same level as the radiation shields to provide a reasure of wind and temperature at identical heights above the surface.

Wind speeds were recorded with a four-channel pulse counting system. A schematic diagram of the system is shown in Figure 30. Each revolution of the anemometer cups produces a single pulse which is amplified and indicated on the Veeder Root Decade counter. The counters provide decade outputs which are recorded on an Esterline Angus 20-pen operation recorder. A permanent record of each revolution of the anemometer cups is thus obtained. The anemometers were compared for similarity of calibration by exposure on a horizontal bar as shown in Figure 31. The bar was oriented normal to the wind in an area of uniform terrain. Several comparisons made throughout the program indicated that less than a 1% difference in calibration existed among the four sensors employed. A continuous record of wind direction was obtained with a military version of the Bendix "aerovane," Wind Measuring Set AN/GMQ-11, and Wind Speed and Direction Recorder RO-2/GMQ. Records were not reliable for periods of low wind due to the rather high response threshold (2 to 3 knots) of this equipment. A chart speed of 6" per hour was employed to permit an estimation of the mean wind direction for each 2 minute period of the record. 5.4 Data Reduction, Processing and Analysis Methods All data recorded continuously on strip-charts, vizo, wind speed and direction, temperature and the AC component of scintillation, were reduced and processed to obtain averages for two-minute intervals, The visual resolution and DC component of scintillation were logged manually for the appropriate intervals and needed no processing prior to tabulation. The spectral analysis was made for two-minute intervals to correspond with other data analysis. Details of the methods used are described in the following sub-sections. 5.4.1 Temperature —Two-minute averages were determined by estimating visually the average ordinate for the continuous trace with the aid of a transparent overlay. Because of the sampling rate, each two minute interval contained two separate one-third minute records. The resulting average voltages were converted to temperature difference. 5.4o2 Wind —Wind speeds were determined by counting total revolutions for each two minute interval as indicated on the operations recorder chart, The two-minute sum was converted to wind speed according to calibration information supplied by the manufacturer. Average wind direction was determined from the continuous record in a way similar to that used for temperature. 5.4o3 Scintillation Per Cent Modulation —Two-minute average values of the AC component were obtained from the continuous recording in a way similar to that used for temperature. After conversion from ordinate values to millivolts according to calibration information, the average value was divided by the DC value logged for the corresponding time interval to obtain the per cent modulat i on o

59~4.4 Scintillation Power Spectra —The spectral information presented in this report was obtained by the method of time compression with a magnetic tape-loop machine and subsequent frequency analysis with a harmonic wave analyzer. The tape-loop machine was capable of four speeds ranging from 7 1/2 ips to 60 ips and could use a loop up to 75 ft in length. The wave analyzer, a Hewlett-Packard Model 300A, was used with an Esterline Angus recording milliammeter. The method used was similar to that described by Parks (1960). For each spectrum, two minutes of data originally recorded on magnetic tape at 7 1/2 ips with a f-m carrier of 6K75 kc, were transferred to a 75 foot tape loop tat 7 1/2 ips). The loop was then played back at 60 ips (shifting the carrier frequency to 54 kc), the signal was demodulated, and the analog output was fed into the wave analyzer. The wave analyzer gives an rmts value of the aiplitude for the frequency components in any 10 cps band over the range of 20 cps to 20 kc. The factor-of-eight time compression obtained by rapld play-back of the loop machine permitted analysis of the scintillation data for the rms amplitude in any 1l25 cps band over the range of 2.5 cps to 2500 cpso The rms amplitude of the frequency component was squaredfor display as power spectra. The above technique was selected after a comparison of three methods of wave analysis to evaluate the most efficient procedure in terms of time and accuracy, These methods were: (I) aMeasurement of the output of tuned passive filters (bandwidth a fixed percentage of the center frequency), (2) harmonic wave analysis with an analog computer (analysis carried out in real time, bandwidth a fixed percentage of the center frequency), and (3) time compression by means of a tape loop with harmonic analysis by means of an audio frequency wave analyzer. The time compression obtained by rapid playback of a magnetic tape loop significantly reduces the time required for data analysis. A particular two-minute segment from the data obtained on 8 March 1960 was subjected to three methods of analysis. In Figure 32 are compared the results obtained with a digital computer, and two loop-analyzer systems. The digital, and one analog analysis were done by personnel of the Boeing Aircraft Corporation~ The analog systems employed at Boeing automatically scans the frequency range while the system employed in this laboratory required manual scanning of the desired frequency range. These results demonstrate the accuracy of the present system. 5.5 Experiment Site Description 5.ol1 Keweenaw Field Station —The measurements over snow were made at the U. S. Army Cold RegLon Research and. Engineering Laboratory's Keweenaw Field Station at the Houghton, Michigan, municipal airporto The station is 1090 feet above sea level and about 500 feet above the level of Lake Superior, six miles to the northwest. Figure 33 is an aerial view of the field station~ The telephotometer was housed in a small "skid shack" and the indlicating and recording equip ment for both the telephotometer and the meicrometeorological sensors was located in

a van near it. The light source was 1780 feet from the telephotometer in a direction 30 deg from north, It was west of, and parallel to, the vehicle tracks shown in the photograph (Figure 33). The mast supporting anemometers and thermocouples was located near the optical path, 170 feet from the telephotometer. The aerovane was 80 feet north of the telephotometer. A uniform snow cover, about 0.5 rieters deep, covered the entire field for all observation periods. 5.5.2 Willow Run Airport —The measurements over frozen ground were made at the University of Michigan Micrometeorological Field Station located at the Willow Run Airport. The experimental area is enclosed within the dashed line shown in Figure 314. The 1780 foot optical path was oriented in a north-south direction along the east edge of the airfield. Observations were made only with winds which had a westerly component so that the air passed over a level and uniform surface for several thousand feet before it moved through the optical path. The area of the field station was covered uniformly with mixed grasses mowed to a height of abouit 10 cmo 5-5.3 Ford LaKe —The measurements over ice were made on a section of Ford Lake, approximately five miles from Willow Run Airport. The selection of the site was based on a suitable fetch across smooth ice with westerly winds. However, the optical path length was Limited to 1600 feet because of the size of the lakeo Very smooth, nearly transparent ice 15 inches thick existed during both periods of measurement. 59

...,,', ~...:..:~BB,.:,:,, 1:~~';:,,i~.i:::::D:::: iii?;~; i~;11!::-: - - - ~ - - i _ Figure 16. Landolt Broken-ring Chart, Telephotometer and Communications System.::'::: i. d ~ ~.'.:::;: ('iCiS —:'::i{;:' i:;':]:i!-Ef-:L:;it0:i:ffE w f i EE:: f; ~ EE?:0;1b;~~~~.::'. Figure 17. Observer, Telescope, D. C. Light Source, and Communications System.

Telephotometer Constant Light Source C -~ ]Optical Path 400 to 2000 ft DC Level AC Amplitude Pre-Amplifier Average Level and Indicator D gDCl Signalr iicalor | 1 ~1 Intensity I _ _ ~'~ AC Amplitude AC Signal Time Percent Modulation = AC x 100 ol~~~ | ~DC Magnetic Tape Recorder Pre-Amp I I o o o o Frequency Spectrum Analysis oa, I I 00 0 Figure 18. Block Diagram of Scintillation Measurement System.

I. II..I. .I.II. ,.....II1. —.:-:.:.:...-..:,,. I,. -I 1. I ,...:: -.:1..IIIII :.:.,..1,I I I'-. II..'', -.,:I:i-, - I-,.:, -.:::,.-'' I I,-., -I1. III11:,II I.,,.1-II I.-.,.., I-,.,.I..1I-.,,:..1,...,,:..,I.1.1.1,, - -,., -...,:-I:i:,,:I -1.-I, ..II1.-.... ..., ::::':..:,.,.-":.,,:,:, ::: ., —.,..,III11::,,,,,,:,III::.,,I. IIIIII,::,..:,:::,.,., -, -,"..,:..,..'',, . 1-I11.1. I.,I . 1..I I.1,.1II.I.II",.., -.II.IIli,::::.,,,,.,,. 1,I. I,.III.I.,I.11.1.'. -:,...""i-,: i ::.,:],:-,., I., I -.1.:,.:''.,. 1,.. -,., i..II.-I 11,::.,:.,,-.I I1.I-I..-.-,.,-,..1I-:,:,::,I-:1.-.,....,. li-.4,i:4,!.I: -:1I.:,..,I,: l,::,:.i::,i.::::i:::, ::.III,.,,., ",,,-. 1, 111.1..:III . I.1I.1I..1 i: 11:I,-I.:,,:. .:I.,". ...,.:. ,.,:,..,::.:::,:,, - ,,, ,:":,..::i:: :::.::::::.I...-.11..".I I..,::::.,.1.:I,I-.I:,:...,-:..I..,11_..: i,:.II I I:,, I:.,::: -11 11II1:1,.,,..IIII..II",:: -,,, ,, ":,''. I.1..I,1-1....II.I: -:::::.,.,:],::I1..I11I.":I,::, III1.I,:.::,,:,, I',.:,::, ":,::.,.:;:,..]::: 1:1. I.. I-:I_- I III"II..-:,I1- II: I,:,I. — I:,I ..1,I...:, :.....:,,:., ..::I-...1 ,,II-.11.I,:,,,:.::: . I.;,,,,.:..,:I —- — I1. I.I I..,I..I'l, ..- ::,:,::::,:III.:I..II,.II,:1 .. I,-::,..,,:." I I'. III I::I..,I..1 I: —: :...:",,,: _, I 1.::, II I..::,., —,-.1.1,I1: "I ,::.,,,:, ,.:::'...,::: ,:::::, ,..,:-_:::,,,-,,.I II 1, —11:II:,.1..,,, :::'__:.,i: :1 . '...,: :I I I I-I,.,.i.,:, :::: ::: ,,:,I.,I, I —lII. I I:::I I":, .,., -I1.II I,..:::::: .,,,., i.,"..,,,::,,-.:,_:,.::.-.1:i: ,: ,I ::,.::] - ,,,__:::,:.,:,::-::_...,:: ", :., ],,:I.,..:,: -:,, i,,,.::,:::,.]i,,::.::,:,:.:...:,.,:,....I,,.,,II I., I,-.1 -::.,,.,''..,,,, -:,.., :" I I, .1: I " I:1:1: ,, 1, 1, I, I IIII-I'::::::, i I::: i -.,. I, . I:.,,.II -I..,.. I,:,:.-..:.- I."......I..,,..I1,.",-......:,''.:,.:.,.I .::,:,::I.. I-II...ll..-,:,,..,: ", ",::,,:il,.,,:I.....,.::., I...I I.1 1. ,.,.11,,"i'i:]: , i ..::,'.:I,.:,II.:: :: :::. -11II.:I..., —,,11,,,..:::.:i,., I,-, -,II.1, II." . .. . 1.II::::;:: i :::]:::i :::...: II:., ..II,.,., ...,.:,-..d::,- -:1-.1...-.I.. II-1.. 1-1 I I. . II,:,: II:1-.II.::....:,:, -.,I-:.,,lI.I I.:,, "."....., ":]:... ." 1,:.-., .: 1.1,II..,:., ].i:.1]::: i:.,. I. :] :::i:::],...,.: II. -.1,II I.1 -, ,4 i no — . i"..., I..'':,..,:i!;":::.,::i,',.,....:ii,:i:i,. x-,.. 11 ]:11-1. ,''..::.,I-.-I -.1-1,-::.;::,i., 11- ]:I1-1.1- II -I:,:-::,::i.::.:..1 11,:.'. - I..,1-:I''II 1.,.;*i. ,:,, - i.,..I,:.,:...,, -.-II1.11,.1 I- , --- - . - 114:,i::I.II Ill..:I I .*:i 1,*,:i: ::::I:-::,::::!::,.,:::,: —:,.,],,-.-:],,., -:.'',.1 ..",I I ::,::i:iii 1-1:I1 I:... :,., 1:.111,.,: :] IX: -::-.,- : -I .. - , .:,,,*:ii ..." -,... -II:, I —-.-,-4 1. -. 1. i:.. I':,:,.::,,::::,::,I. —... ,::i::i:I-...'.,::::: — I I, 1''..I:I-, 11,,,". ...1 —l.. 1.11,..1 IIii;l.l..,:].-_:.,: 1-1...... - II II. -I11-.. -—::....,.- 11 I'll II. -...,,. —, -.1 -..-::1-I.-:'_:-.:,:_:::,i,:i:::::i_......,.''.''.-,, "'' 11-II - :.. 1.-I..., - -,- - - -.11,1:::,,,: I -11:I;-.. 1. ':.1 1. -.1.',. 11 I I -III-I..''.11 I,. ll-:.:.,::. , -:::., 111. : I I —-: 11 -:::,:::::1,:.::1 I I.- -—..-:]: 1.,,..-: —l I:. "I'll I —.11 I ll::,::::-:, : -.-,.: -,.- I., .." I-1. -..1 1. I : - .1,.I..1I11: I" I II 11 11 .''. I-,: 1:...:_:,,,,, 1-11I :::,:,.::.,i 1-1.1. -:::_-II I.-, .,,,-::I. —-,-:: -—,.-:-!!ii]-:,,:.-I,-...II.... 1.,. I11,:-_': -. - I-':, 1: -:- . ...:ii.11,., I I:::. I -''.. :,:::.:., -1-1:, 1-1-::: I:,:.",.:,::,:....,,.:,.,.:.,, I.I,: 11 I,::,:,., :,.1. - I-I., i,:.::;:, 1:,I II II.. I'll, I I.,, —,,,,..11I II""...-,I -I., ':-. 11I::-1..-. --.': -,.,:, —.1-,1::,:,:.- - I .., ",:,::::,::: ::::l. ]-, I —,.I::, -.1-1...''...:.,.:::::;:. I::::: 1-1.I:-,I,:.:I,.1 I., ,:::!::::::i:::!:!:!i::::]::::-:l:', — - '.,-.1-.: i",,.111'',... 1, . I'', '...." -::..,. -1-11, -:-.1-1. —"",:]:: -:.I.I., , . - -,..,.,.II.11,, -i-,,-,. I,, ".. !-1-,,:: : I-.:.: : —.'.:...l.:.::- 1:i,::;i.. I..,::1 ..::, : - , II'.,iii:iiiRI, --...i,:: Z;!::;i I -I.1 1:-,-,,::I!:.i:-1.111,11,:.........,II -1:1::. — , .,,,:. : ,,:::,. - 1,I 11-1.1- I -.:iiiili 11K:.:: 11.,:.::,::.::'':..::.:,il.I... . 111.1.II:,:.,:I.-I,.. ,,,I- ..,...,I -,: I -.,: ii'::-,-'' -.,.I II -.1......::.:-:-::.Ill. ,,,'-,.11 I:::,:::";:,i:;::,:::::I-", ..I I.::]::,::;;:,:::::,..J.-'-::.:.;:.::.i.::];.!:..,:::,.',I -,"'.._':I:::-.::i.im:i;.'.! - X-::,."',-:,:::,:-., :::, -. 1.:- - I.:..:... F,,:.11.1II.. ----.111-1..--.1'' II 1-1.-,I I —11,:..-.1I.1. I,.: - -.1 I .I: — -p..11, -, 11. : : -.11 - -.I...-I-1-.1. - - -. ...., -1- -,,:,I,,-.,'-'-,i::l-.::,:: "..,'"'..-:I.- i:,,,i.:......::,::i::::,:,.!: —-i- 1:,:,:,, !.....''X,:'. I-%. I:I- I.111 I I" -, . ,-.. :.-., ,.........,:6::::.,:::Ii,. -— I I .:- 1..1.11,, ,:-.!N:-' —.: -: — I'll, 111.- —., 1. I I -.,-... ----—'-:: - ,. ". 1. 1-1 I.F., I 11-1. - —, 1....,,., .. -.,-, -,:__, , -: . -- -I,- 11 ": ".".. - I.11 11 1.1- , -1. I . -. 11 :i:.:...,:11.I -, 1.11 I I,-::, - 11I0 —.:,]:: —::: —. --.1-1-11-1. :i!ii!i!!.- I 1..:,. '. —'', ,,:::::,:::::::j.; 1, !,: : - II::._ ,:.-:i::,:.,:: i , 11 i;::: I.-......:-. 11 lil:::i:i::. —-,, - I:-.::,!:::iliiI-.::,]:::::::..,.i:::,::::: "''...'':i,!,::.,::,::'',":.,::::,:,:. .., i:i,,,,..,II...'' -11,''..."..,:::;:i: '.:,,, :.:.., -,.,:..:-.: " -...-I..,:". I I —.::,:,,:i..i::::::::.'':,:',:'-,. -." - I 11 1,,:,:,::, —,:: ,,:::_.: "''. - "". :i.::i_::.:::-:-:, -II::-:::::::, i;i.:".,Albania:. 1.:i I 1. -4 -:"...,,''.-..,.::::''-:::i:.::,:::: -1 : , —.::: — l, 11 -:II.-I'l., ...,:F::..-.-i:,::.'_': 1: ..- I —:i,.::,:::i::i.-.,:-:::j,:jj, :!:iii:T:.,:..-:: II 1, - -,:,,,-. —, - I'l-F.-:l::-::, - I....I.:: ,- -',.,:., I'l. I.-'i, i:-.,:: —:,...I-.... 11, ] ll. —I 1-1 -, -*,],I,.:. 11 I -.. —I —:.:.l — -'',.I.. I-1. i.., 11 __:.,:: ,::,:::,::::::l::_i_::::"::,i.:.1 1.I.-.:,..'':'':l:.:::,::.],;i.l.. 1.II(1):!:,i:!,,::: 11 '.-!-ii.; i :::.:.,:-....:! I —-1.''I".,::, _:::::_'I- . -:.,:.:-::;!ji:i 1. —.::1.1- -- -:,.I1:,,:.,I-,. -:,:-.1-1-1 I II'll,.I. II.1::::;:;:::" 11 -.1 -::.-.:-:.,::1-bb,:::I I.1, :!]... i:::] ,.1-1. I..'', 11 I I -, :::::;!:- 1.::::i:::,...:i -:11: -, ,:-, "I:,, -'...'...I,:,. I -" 1: 1, -... I — I-,]:::]]::.-.-.- ::4;:I:i....:.i. .-. -..''. -, , -:.-:::,;.!:;:]::!;:,. -. I., -il,:,::i..:::-'' " I, I..:,:i,'.."', I-I...:,, -II-P - . -11 -.1 - I...::4- ----,",::i-..,:::- - :":'..- .I...:iii 1...- II 1".....:.:,:!i:,,.., i-,::,:,,"''..:,I' —.11.1: -: _,,:,::,:: :: 1,I1. 11 ::.-.:j":,., —-:- , -I,:,::.-,.I,:",:,:: I.,., -:.:'.III"._ IllII II, I:1. : :_:!::]:i;: ---- -,: I-.I 11-.I I 11: ...:::!i]i:;iiii:i, --.1., -. — 11,,.1, I 1-1. - I"......11 —,,-, — '-.., I,,'i:.:., ::::.,:,:::::,..,,,.::,,,: - -- I1,-I ll::-:,: .:: -': . ,''... - -:-:':-.'... 1, -- -:..: -::,,,::.I,--: -I, II-.,:.: :.::-I II I - : :'.... I:,. I.11 a ) —::,.:.:,: —.:.:.,:.::.:.:,,.,::,.,.:, -.,::].:''. I —:I...1,I".,:. I:, --, .::I:i:;:ii,.,:. I — I III..... —-,: ,::.,,,-,. : :l:::! ]::],i,::,:,! !ii:;::,, - :, _ ,II I::,:: :!:i:;::::.1.I.1 I..-I..I I:-., -,-I.:.-, 1., I-.....I1... ,I: —1. I -,::-.- I.1., ..... 11 -,., F..,,, 1,1-:1: -.1.11 1.I 1:- :, I I 11 ", ....,, 0 1II- 11-1 1. 1:1 —l-I I1, -]:i I.:.. -,,. I. —,:!'' .I...,. I-''::i,,:]-,.,;::...:_: — .. -.:.::II.I-,:'....11,: : :II",.,0-1"1"14111111111,. 1.II :,I "''. -::I,::::::: i.]:.:::,::,.": :,.: I,,11: ,,::.,::, :,:,:,.:,I I.1,..., -:::::...::'..::.-:,.:, -,,:::::, I-1-,: 1, . III — :i:i:!i!:..41-,00i!, —::,:],:.::,:.:::.,..:..::,:,-I, I, 1:11. 1-.1 -::,,.. :,. I .'':::.:_..:i -.i:::::,.-..:.,.i::.,: :......, I -:: ...,::,I.I,,.i,. ii, 4..i:i:i:. I,1. ,,I-I:I.I.- , 11.::::: ,,:, ", -- 1:::,-...111, -— l.1 11-1-11,-.:: - - -.....,:.,::::" il:::ii:i;.,-: -::.."::.:,:: — I-,:1.,-I:,.,.".. 11.i': 1. . I... - ,:],.:.1111.,- - -:-.-.:-'.-::i:,:i::i::Il.::: i,:_:x-i'',:,: —,::.::. I II.0 —. 1. :1.11 -.1 —l- -1 I - I.,:.:, .::::....:::-.::::i::i.:,i- -.., .,- —,:,:: 11, - -')..- I.I.,-. :,...I:::x:.], :: , "...11.., 1. -: _::,-. "i:.i,.-:!-:::,:- --:,I , ,:,: : II I.I.. I-:::I,: 11-., I, A 1 !:::::,::: -:,, ,::]:::::.:,:::,:-: ,-:,]::-:.,,::i:: 1: - I - 11::::i:,:: I .. I - I I -.,.I.111.,-i. Z...:111, I ..::,:: I; . " I 11. I : I ,I: I::,:.,.-.: :]:I:::.:I-,d:]..,]:,- i:,.4 ii ::].:.,I-.11 1::.. —ll-, I:;:::j.:::".i:!,,.::;:::::!:.:::i;:::::.:::,::!::., ::'':::::::::]::::;,:,:,:.,., — 111 I :::.], I.I.II'll:. . ::::i:::::I1. 11.::::,::,,:: -:,.''.'::.,.....".1 1,, I ,:,-.- ....1,..,1,I., II...,.. :!. 1,,-I.I -:.- -.::I.-:,1, . 1:-:.. ::..:,: I., iiiI.,...:1 1.0 -. -,...1:I —-,:.",.,:::,.:-I...:,. :,..: ,,..:-I. I".::: - ,.:: ]::i 1-:,I: ii:i:::,:- I i I:, :,,,-. II,:,.... -:.l-:::. 11 II..., 1, .-,i::,]:,:,:i:::::::,111%:,. —:'l.:-.,:.11,-.,.1-I11..- II,i.,.' 11:::I.....:.i..::1 -':- i,:- "...., ,.1 I,- - -:.1..I..". -::: .I. ...'::I .-.1 1,-,,.-I -111.1 -..: 11,i: : IIII-:1. ", I...-....'' I.-I, . .:4,:,::-, i:-....., ",I.I': ::..I - II 1:.-I.-., . I.. 11.- -". I... ,:::i::.,: - ,, 1..: .::,,,.:::::::-Ii:::,- I I,::. ,,:,,,I.:..-:: 1.11:.-':::,:,::_-.1........ I il-:,::: :,: ", -. 'El, - .,., —.. 11,.1''I'',.11 I..:,::::, i -:,...:, —.1.11- I..I,-1, I I I'll, - ,],-,-.-I.. ,-:. I . II.1- :, -,, l:-_:..... _.:.::_., I'I'll".,.''I'll-,:II:::::::- I:II 1.i - -,,:,. Ii i:,:', :!:.!:::;:::!.,::::,.i:.::!,:''.:1...:: -, ", II:.,I -.11''I:11-1.- 11-..-,::-,]., -,:_- 1-:II::!:.::!::::,::,!.i : ,, 11,:::.,,, I11:I..1:I..:,..'11-111.1II ": 11.1.I.::::i:,: "',: 1-1,,11.-, :l 11, -,.P-4 1.:!:i:iii:. :.: ,:,.,::,::,I ll 1.,11I::::I.:., :.I'. . ", 1-::".:...... : : I:-:,- I-I I -:I. I.I 1''.. -l',,.,:,:1-,::.I I I::,::::::::, -:.: I. —.-. - 1, -. 1. ,:. I., .I-I —,. 11.1 ---.1 I'- I- ,: -:1-I:Illll - -11 . 11 I,. I. I-1..1."I.1.1 I" .I,-,I::- 11-I. -.1 I-I-_,1. ::]4 -::-: ": I.:I,l -:,.l:::-:::l.,...I. I —,:-, -"i... II - I::: -,I:::ll:: I1,.I:: '::111, I.,.." I.. 1, -::-, .:II ", I 11 ::, ::II.III,. I:1,I,,II II-I 1. 11..,I,11 1,I. I.I i:::],,,:.: IIII.II:,I!.-I, I::..II I....1 II.1I-II..,::,: ;:,::.:I ,-...-,o-::; —,A ..,I :11 I —.,I-. I Id -.. I -''.I-'..I1-1-1--. I.I.,-I, I I.-,:. III:.:: I.,:II..II. —:::i::::.., .:::.,,]:"I.!;;;i!],,,,.],.,II: 4., .. I I::, 11 II.I,.: 1,.. I.I -I. I."II I...I1,,,I IIII :,..I...II''...,mliiiil:ii::::!-,I....:, - I-.-IIIIi: iij:j ,11...,I.. — ,II I.. II,:: III: ,,..:: i i : iil::i, ]:,.II., ... 1..:.. —,I11 IIIII,.:-.-.:, 1.I,:, ......-ii-iii. i....,..I..:II:: "I.I:_:..'.:,., I : I.... ..I :.:-:..%:..I-...".. i::..:, viIII.,,,i.;: -::., 11..I,: 11II.I.1 (1) ,II..I-I. I1..1 . iiiliiiii:-.":.:,,I.,:1, :1:,.,.:: :::.., ::,..I:::_;:.:..1: .,. -.1. .1111..1, I, I:II ., -I.i.I1.,-I ,, ...:,,_:_...II.I.,., I.1 .-I.1 I1,"IIII., I,.....III'-.-.., I. II. 1, i,:] i].:- : ", I. I. i,.. 10,.I.I 11 - 1, 11 l':::'l-l-.. ijiijI:.....1- -,.,,I, 11.1::. . I,.i-i:;Ijg..!:i:: 11 11 - - I, 11, II I1..:'l:-.:::,:::1 111.I I... I —, -II i, i::: I - - I., I 1- I - i,-i:,:::-.1...II, I:I.I''..'' I 11.11..,,..,..-I 1.II,-,::- I I I -.1., 11 -.A.,.- 11....1I.-........:-1.. IIII,I, —, .. -.11, ,.... I,,-.1,I.1 I,, -.- I'll I 1...-I 1.,I.:.i:]:ii!::,:,:.,. -. ..1.1,:-,:]... —.i 11-1.-Ii:.....'l'l!:l.1 I- ". 11, I I,.-.. I,.,:I... I... I I I11-1.. I- -U.,..", .. - —-..:::.: I. -:.:I.,, .: 1.I,.i- I..I I.11: .., 11 I.. I -,. II I-I,..!.4 -, 1..1 I.,:.-.. I1.. I,.:,:::, -.11,1-1',-:Miii....", I. :I,4iiiittinf,. V: 11I..i,:;:-::::;,.! -i,iiiwii-.-..,I -::11, 1. 1,-.1.,.., 1-.I-Iffill.;-iii IIII —:.,.1 N, -.:ll I, -.,,....Sw 1... 11- I .:,:', IIli, co :...:::.:1... I II I I- i:,::,: -.,;:i.,,:,.,:,:,.:::,.,,iiiii;i:i:.i.M..". wlII::,,..-,::w::i:j: 11 I I:r'...., -..1 I,-1 -. 11 -...''..l.:1111.1, I'll.I.. I-:,- - -,.. -— l-l'..1 ..II:.., 1. 1.I.. 1,:,,-I.....1: : -P 11I-.-I;]: .,I.- -.:i-.,II1.11.....:.1. I,,,I .. 1:..' — ..",I.II,-.1 II..1 - 1..-.:,-"I-.1II.,I, .:,:,::::, - I:, ;,i,.!!i::: ;i:.: -,:!!jjj. 1. --.1:,II-I').,-..,,,: : 1:]',:Ix: v I- 1.:.:,,. -1. I I II-.,,:-I "...I I::,:,,:- -...'. I I..,I. . - 1 I -., -:,-..i-. --::, 1:1;.- .II-,. -:.i:., 11 1. I,::iil?.?.,-...-..,;!,..I..1 11 I...4 1.1.11I: i,.::ii:; i:::j;::i:: :::,:,..:..1 -I I —.1 -;.,.,.I..:,I: —:.- I...:,:: :::,, 1".. I, I -."::: -1,.,:., I.. I..,;.:I... -l:...:...,.,,:.I..I,,.11,11... -,..I., II. I, -,, I.., I I.... 1. 1.I11I- I -:,- ,-II -:i:].......l-,.;i:i::im*,'.-%:,:, -4:4 . -1 -.1I-11 I 1- .. . --.-:: — I'I'll ijil;i:i:i-:.1.:.I.i:_, 1.:111I..1.11.I,.:-,:,:::::ij:jjijii -..-.1 11,.,:: - .II,I,:::]::::::-1.11 ., II . I......,-: — -:::::::::x I.- ".-Ii.'"' a, 1 :-.-.. -I.,::.:. -',:...:..-Fiwii.... ...II. -',:::1.-II...-,, 1.:.::I-4 .:: —,....,.1I-I -1-1::. -:,,,,II-.,:::::::::... -1.:,]::.:I11I.''..,,,.:..-: ::::::::.1.11:;!!!ii:ii,:II I I, :II -1...II,1..::i:!:,::, F.1, I- 11.1.1.11,I:1..:..,: —i,::.i!,!-...:... -... I -.,.. I11:...: ": I",,.:,: :,,. I -.IIllow ].::: I - —.,.,:.....:., —:::]. -I 11 I —,-,, 11 I'l. I.-,i:] -:.:.....,::,:::, ::IExistentialistically!: ii:,:, .. 10,.-III,,.1,-..1. ,. II...,., -.... I I...I.-I. —l. -:.:; — l I I''I, ,:i:::,,:::::.:",.,",.. -', ::ii 1, I I1.,-I.I1-1 I,:.-II..I :. 1, : - - I I- I 1,,i 1-1 I..1, 11,.", I.I11 -P I.III, 11 I I I -1.-. 1-:.:]::11, ..-I....:-,:-. II I- .. -,O....l.i.,"....."..,..I1..;.,-::Xi:;A'-:..11::, ,,, 11 I I...j::-:x:]f,`i:-..I: I, I-.1,.II — -,:-I I:::::-:: ,I11:, . —x.,., -'..I 1 1I. ,.:,:.:.;: I —.. I.I —III,,]:,.,-:II I.,- ..I.-I- . 1,,:... I.,.-, I-'-. i:.I.r4 . I,.I.i.:,.,,7::'i -.':7-,%. cii,.! I..,r7777:.:,::I,:::::i:::j:.:;: i : ::.::,,::-I.-11 I,''''III ..,I":I..::::.1'I 11I:11.. I I :, "',:.:::.:-. I .,I-,-I.1 '] 11 -,:.",:F, 1,II.: I i —,.., I1.11:.:.:', I1.II., .... 1.::.-.,'-::, - -,, 11-I.,I:,:: i.,:_:::::::,:,,. 4 ..., i:ix, -.....I1%,.-. - -.,.1..11I ,.;:;:::1.::::!,:,:i:., I., I I"I.,.i.,qd,." I ..::::I.,-..,.,..,,.::-.:i, ].,..""....-.:.....;,I I..:- 11 ..." II I,.".:::,-I ";:ini:ii:::.,.''.:;iii.1-1,,-,-11.'-,,'':...-'],:1 :i ,.,.:,.;::.I, I,: —]::i]-,. - 1. ..... i 1:, - r:.:F:,.:. - ". I —.. I..., ".. -11:]:::::::': i::.:,:'.::,:. .:. 1,-,.''. ,....":::,::,i:::,.::'.:-,",,:iii::;l:i,.:!,, -..''.iI:-,,,,,,i.". -:."..,.1. 1. i;.._- ,.I:. .-.-::.,::. -:-:I:::,.::;:::,i:!.''. --—, !:.;;;ii!]iiiiN 1,:: 1,:i:::_:::i -, ".., ...1,.., -I -11::.::,:]...- jllliI11..:,.:,l —.I iii:::::...:... .i ] i, "ii-iii.:..... 11.1 I'll..I — ".. ",.,:::.:,!.,:.,Iiii..:!,::, -<:::ii:i. -1- :... 11.,,'I., 1,,-"I"..i ::,. , ilIi, —-l "",,: -:-::.,-,.'',. —-'. —-..l;i. 1:: -...::..,,.,.:::il!:,:: -: -,:.,,:.:,::111 I 11.1I I!::::i:::,::,,,,. 1,. 1,..1. !:::; ii:%, "- I...,:::.II,.. -.':...::]..:.?.,::I- -I -.. - I I -:,::-,.:,:. I." :... i!!iiiiiiii::i i;: 11 - I,.. 1-:,,,I..., ,. _.". 1:,I1-1-1.1I-1. .:. ",,.-.: . (1) i::!:Ii::::ii:i: i::.:,...,,- I I.. 11.,.., I I, ";:. 1..1 -I-. - I.I.-II'',, 1: :,::. "-,.;,::::: 7X: ":-'.,::,:,:._:.::,.:.:,- -:, 11,.,:,:-.. -I. ... -:1.-..i, -,.-,I.- . ,.::11 ,::],.:::::.,:,:,.::": qw. ii]:i::.:i._:,x..I -:1- ..I,:-,.-,:,,",...114 1,.-I 11 I.",. ",,I: ,:.::,, -—,,-.,. 1.. ...,,,., :.,.ii: —— i —--— l —-— l,:1::]:i:;ii I 1.:..-:::. :.,.,::.,,i. -:7,:-::-:]!:i:::::::,:..,.,,,.,,.,"..,"-,-:i', :,:,:,::,::'"',:::.,".,.],::,::i:,"..'..,,....,:::.. I -::.::,.. —.1. -' :,:, ,',- ::i.:::.,.. - I e., 1: -P4,,.- i:". .'':-I11::. iil:ii:i,::I-,,:,..:::. I. il!;ilii,!.:,, i.::,,!.:..::i_,,., -:, I..,:...::,.:::,::.;:.."i''.:::::,::],.....I i.i I iiiiI. - 1.::,:,.::i,,,:::,.:]:,: II:, -.. ,:, ': .::i :,:ii::ji:::!:ii:'_.I.,.::,.,,j,,,.jIII li:ii] ii:i:::::': ;i,''.,',:::,:::i:-:,.:.i;,..-II- - il-'. -:-: —:::_ ': "i:,, i:::il: —. I,. I.,.1-. I., I.... I,.,0'':.;:,ii - 11.- I-. . I - II- .,:.]-:,::,._,,, ,.: - 14:::::_]: :::::x::.i::;].:.,:.::.-.: I, 11.1.,".,::_:_ ".11,..11 1-...,I-1 I -1-:.I1-1 .-: ::::::::!:,::.,i:::,::.:,:.::,,. 1. -,-, -—,.1 I.I. —, -_.. 11 1.,,,I —I.. II,'-:: 1- i-,-, 1..-I -I.,:-I'"...,, "., - , - (),::::,:,:i::i:.;::::;;:;::i:j.]]:i 1-1 —ol, — l::::_: ".'']:,:-.I.,,.%...:. i:l::::,:.,,:::..:"I,,-I.11-1.11 --:-: —-:l —,:,,;:!,,,,!!".."! IP::]I:]::.1. 11.1 - -.,'',I,., :i]i:!:::j!!-:..:.11 I..,.,:." -i, '. I:i:::;::!::::,::,:,.:!,! I -I.-I:1.,-..., i., i, ,,:,:m..-11-1-:p..". —, -.: I,-I 1:... —I i., I I.111 —l-l- I..1.::.. 11 -- -1. I.." —..' -,,,:,:-:''. I.- I I.:,-.:-,.::,!.",,,]:::l:i:!:i;:!i:;!...-I- I1. I .:i;.:i:...i.:,:;:,:iII.-, I — 1.II.I . ..- , . 1-1- . I.." 11 I a ) II.. I1..11.1.i. ::::::.:,:-:i:]....'., -IIII11:1-"I': I11 - I. -—.,-:,::::.:]::::.i]::::i].::-. -,-1, I-I.-I.,:::l I ..,:: -::-.,!.::.,,, :,:] , I I I-,.- -::-:,-111.1. -.1-1 I ,:.'....:: I''.:::i.l:.,::_: -...-:1,.-....-. -4

ON Figure 20. Interior of Photometer with Lens System and Multiplier Phototube at Focus of Lens System.

PHOTOMETER D. C- AII=IFIER. V2 5186 I 6t RI 5 R2 ~~~~~~~~~~~~~~~II 24AY I! rI I 2~A 1.8 -t 270K Q ~~~~~R3'R Ia I I NULL ADJ., 66~~~~~~~~~~~~4 1.5V. IR5 — L 39 1 0 IES IO- 25 VA R4 D.C.CAL. RS I' * 1w loom.8K K 27KK 300M RS TI R II IK KR 300K RIO 5K 300K C2.5MF C3 RV3 301W 41eFD. D2 4.7K RI1 5814 2 r~EMFD. 4.7M -VA ~ ~ -IC7I RI4ACs 2MFD. V4 TO RECORDER IM 800 VI V2 CK-713 36 PRE-AMP 6201 6201470 RIS R20 R19 I II -' - 1.5 MF. - R2 R23 MFD R24 128~ ~ ~ ~ ~ ~~~_________ IY RI470RAI. 680....... Im 1x ~II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ IECoouEA co 5 IK 300 KS 180 C K10 13 II ICOV ON Soo —- V5 2 15K~~~~~~~~~~~~~~~~~~1 — I~. Iv. / 4.7M(~I)11, ~ o4- 12K I o 2 O~ MPP~L IF. V I~~~~~~~~~~~~~ Figure 21. Schematic Circuit Diagram of Scintillation Measurement System. RE.CORDE ~~~~~~21 RI90 nl -9 RI90 1 5M ~~~~~~~~~~~~~~~~~~~~~~~~~~~R0 I~~~~~O 10I 300 o- VV I ~~ iue2. Sheai ici iga of Scntlato Mesuemn Syste.

z 25 0 co ~20 0 w 15 C.) d% z 10 CT,\~~CL w ix 5 W 0.1.2.3.4.5.6.7.8.9 1.0 1.1 1.2 1.3 1.4 1.5 VOLTS D. C. Figure 22. Calibration Curve for the D. C. Meter Reading (Scale Divisions) vs D. C. Level (Volts).

100 D.C. = 5'~r --- D.C. = 10 90- D.C. =15 D.C. =20 80 co o 70,60 _ - 0 0Q 0 L I I I 20I, 0 20 60 100 140 180 220 260 300 340 380 420 460 MILLIVOLTS (PEAK TO PEAK) Figure 23. Calibration Curve for the A. C. Recorder Reading (Scale Divisions) vs A. C. Level (Millivolts).

C/) H-II 0 >10 D 9 o 0 6~~~~~~~~~~~~~~~~ 4 w5 10 100 1000 FREQUENCY, C.P.S. Figure 24. Frequency Response Curve for the A. C. Amplifier for Various D. C. Levels.

_: Co Figure 25. Frequency Modulation Ampex 601 Tape Recorder and Low-frequency Pre-amplifier.

OFF ~~L. ~ OAC ON B I2V.3A R6 ~ BLUE C 180V -4MA. 39K _ RED D 90V.5-IMA. C4 E III I 4OMFD. F 150V. C8 01MFD. - INWUT R5 R7 T R13 w 820K 820K IMEG. I\ C2 C 7 IMFD. IMFD CIO CHI C I 30K I.I MFD. I5MFD. (OIL) RI C6 (0 R0 WV 800MMF IME 3K MEG IMEG 6 ~201 1 MFD300 RIO R2 GAI M IOOKg 30 o\ I r _2~~~~~~~~~~~~~~~~~~~~~~~~ I~~~~OUTPU R3 R15 R17 O 0 680 ~4.7 K MEG C3 39K 9 50 R12 R4 5M MFD. IIK C9 R14 R16 1K MFD. 6V' 50 39 12 K 6 V. MFD- K 6V. Figure 26. Schematic Circuit Diagram of Low-frequency Pre-amplifier for Ampex 601 Magnetic Tape Recorder.

-O W -2 a. -4 w -5 -6 w -7 -8.5 1 3 10 30 100 300 1000 FREQUENCY (CPS) Figure 27. Frequency Response Curve for the Low-frequency Pre-amplifier.

JI MODULATION PIN 6 TEST 8+ + 255V PIN 5 AMPHENOL EC AN3102A-14S-SP r R 6MD (MALE) 09 1 ~~~~~~~~~~~~~~,,j I RII R12 I I R23 680K 220K ~ 4.7 K R R21 R22 VI VS 7 0K V2b 68K V4 R24 r —I o DC2AX7 PHANTASTRONFLWR. OUTPUT. I R25 62AX OSCILLATOR ~ AMP. PIN P., 50K RIO470 6AS6 I2AU2A7 I,OK2 2011:L 50 470K -I KaC 125 & 150.5 IO IN216.047 1~I2AT7- 6 OUT TO RECORD HEAD RI RI9 YELI R 58K "-0K PIN 2. 5 R14 R15 ~~~~~~~~~~~~~~~~~120MM 47K R7- \ 1.5 MEG. 1200 29K 23K ~~~~~~~~~~~~~R 17 RIB.125 ~~~~~68K 820K -',R29 "'$,' R8RS -R 16R2 3 47K C3 R28 4722K ISAK 2700 I 27K'N211 I _ -" I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~NL CALIBRATION I FREQ. DET. PLUG-IN UNIT R4 7A I 10.6K PIN 4 F-J PLAYBACK HEAD r- CH. I CH -1 2K INIOO It INIOO PIN ORANGE C 1003 low 50MA PN7 P __________________ + 255V. I o ~~~~~~~~~~~~~~~~~~~~~~~~VR 105 3 PINS BRWVS V V V I3 VI IJLFD AUDI F TAPE MONITOR Figure 28. Schematic Circuit Diagram of the F-M Record Module for the Amrpex 6oi Magnetic Tape Recorder.

~... ~....~...z~ i:1::!iii~~i~~!~~!:!iiii?:::~iiiii!~?!:iiiiii ~~~ ~~ i: U:::;iiiiiiii[[~:..... ~:.... -iiiii~i:i: Sj:ij: [?:11;i lilii i7 11,?ii~........ iii i~;[iii ~~[iiiiii ~i i ~1:~!:i::: ~ 7 iii:iii Figure 29. Micrometeorological Profile Mast with Anemometers and Shielded~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ii~-i~~ii-si~i:i.'i~ii~i::Iiiii~ Thermocoupiii~iiiiiles a Fou Levls:::I~~~i-~iii~~~~i::::iiil'~iiil'iii'ii72i~~

T- I. 16 HY S-2 COUNTERS _L ct i I FU-I S- 20 MFD 117V S-IIO C^ 270VAC R5 R6 602,~~~ ~ ~~~~~~~~~~~~~~~~~,: R7 ). ou~ SUPPLYO 4 0 10 125K I 0I \' FU-2 V56SN7 2W W SR1 5Y3 VA R7 5.6 K 1', I5VOC 45V ~ V 1 ~V2 ~V3 V4 JVR COUNTER CAL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I K2 RELAY~~R FILAMENT pe ~~V~~ —~~~ L I I I I I I u (~~~~~~~~~~R9 10O R PI PB2 [POWER ON 0O Uo T EVC -O TO P-106~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0' T3......T4 o C FILAM K3~~~~LMP 5MFiguReI 0 cetcCrutDarmofWn rfl eodn ytm 6.3 V [ / 6.3V 4__ 5.6 K 4 ~~~~_J-x -0 V R ~~~~~~~~~~~~OUNTER ----- 47KSSR-2 SR-3 7I I I8W3VC z 1W ADJ. 100~~~~~~t's 2N242 I c2 W. KIO OO' _ A _ TT' C2 T 1 I I I I I I' I I I I I K3X) I I I I I a~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~R7 1 15V0DC FILAMENT.~ RI' 5v RELAY CURRENT -K MICRO-,AMP I 16 WMILLI-AMP;OK R12 V3 ROK 125K o ---------— 4NT 125K 6SN7 _~.~ W S0Rs-3 S- I~ ~ ~ ~ ~ ~ ~~~~~~~~~~1 sR-4 I I I I J 8-15VDC t IW ~~~~~~~~~~ ~ ~~~ADJ. O' — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —f 2W5. i CI~oMFD C4aC5 20MFD, WIwEG' 1 PB I PS 2 PB 3 PB 4 7~~~~~~~~PB TEST~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2 V ONE _4Ri~7 R[~8 (10K 2W X, R22 50 XL 1 1VS2W z L1. R23 - IIIIIV ONE 50 _jf O' 2W L IG JR IDIId TI FIEIHIS V P CCK_ S-106 I J1 D j FIEIHISI V P CK P-106 TO P- 106 F E 3*1 *2 *3 *4 ANEMOMETERS LAMPS Figure 30. Schematic Circuit Diagram of Wind Profile Recording System.

::Z::: i:: ~i~:::: i::.-:~::;::!:?!i;?! z:;i:::~~~~~~~~~~~~~~~~~~~~:: iii:ii! ii!!!!ii::~ -:::::::i:'.:~i i i i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~::::i::.::ii:i::.:..:.i(:~l:.::::i::;:::::-:::::,:z i i::i::i::i -:::!::::::i: i ll i i M: ~ ii?!!!!~~~~~~~~~~~~~~~~~::i:'::i ili...........:;i~;:::::ii........ Mil iiiiiiiiiiiiiiiiiii_...:::..:::iliiil:i~i~ililii~- l~li:::: i _~ iii~!iiiiiiiiiiiiiiiili;~~~~~~~~~~~~~~~~~~~..:i:?;~::::::::::: iiiii~ii~iiiiii:.:....::...._........... i~~~~~~ii~~~~~~~~iiiiiiiiiiiii:::: I::::ji::::i:l~l'i::,: l'liiii!! ii i! i:i'il'iiii:;:i~~i::::i::i~ ~il:li:i!?:i i:: iiiiiiiiiiii!!!!i:i:i i zi"?:; iiiiiiiii!!i~ ~ ~ ~ ~ ~ ~:i!? i!::::i~:i'. i:: i::::::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i ii~~ iiii~~~~~iiiiii~ij i::::::::l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~lii;;::::li:::li:::li::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i:'::: I 3'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~liiii!i;l~!!;!:::I; 11:I:: ~: i!:11 il..:...:..................................;i~!!!~:~!:~~ ~ ~i-:;~ i~i:i;~:!i:!if':~ iiiii~-:i:: ~i?~i**!?ii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i?::::'~~ ~"~?' ~?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~::i::iii;:::. Figure 31. Anemometer Comparison Technique.

i0-I 10-2 (L o DIGITAL COMPUTER n HARMONIC WAVE ANALYZER 10-41 I I I I Ij 0.1 1.0 10 100 FREQUENCY (C.P.S) Figure 32. Results of Three Methods of Spectral Analysis. 775~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 33. Keweenaw Field Station Experiment Site.

Figure 34. Willow Run Airport Experiment Site.

REFERENCES Batchelor, G. K., 1959: Discussion of Paper, J. Geophys. Res., 64(3), po 2046. Clark, R. D. M., 1953: "An Investigation of Certain Short-period Atmospheric Micro-oscillations," J. Meteor., 10, 179-186. Davidson, B., and M. L. Barad, 1956: "Some Comments on the Deacon Wind Profile," Trans. Am. Geophys. Union, 37, 168-175. Ellison, T. H., 1957~ "Turbulent Transport of Heat and Momentum from an Infinite Rough Plane," J. Fluid Mech., 2(5), 456-466. Fleagle, R. G., 1950: "The Optical Measurement of Lapse Rate,' Bull. Am. Met. Soc., 31, 2, 51-55. Fritz, N. A., 1928-30: "Essai de determination experimentale de la progression a donner a l'echelle d'acuite visuelle' Bul. Soc. Belge. Opthal., 60, 58-66. Gordon, D. A., 1959:' "The Optical Design of Night Binoculars," Unpubl. Rpt., Univ. of Mich. WRL Labs. Gurvich, A. S., V. I. Tatarski, and L. P. Cvang, 1958: "An Experimental Research on the Statistical Characteristics of Scintillation of a Light Source at Ground Level," (Translation by E. R. Hope), Dok. Akad. Nauk, SSSR, 123(4), 655-658. Lettau, H. H., 1957: "Computation of Richardson numbers, Classification of Wind Profiles, and Determination of Roughness Parameters," Exp. the Atmos. First Mile, New York, Pergamon Press, Inc., 1, 157-167. Long, R. R., 1959: "The Motion of Fluids with Density Stratification," J. Geophys. Res., 64(3), 2151-21630 McLaughlin, R. and J. Prout, 1959: "A Portable Seismic Magnetic Tape Recorder," Earthquake Notes, 30, 26-335 Mikesell, A. H., H. A. Hoag, and J. SO Hall, 1951: "The Scintillation of Starlight," J. Opt. Soc. America, 41(10), 689-695. Parks, J. Ko, 1960: "A Comparison of Power Spectra of Ocean Waves Obtained by an Analog and a Digital Method," J. Geophys. Res., 65(5), 1557-1563. Perepelkina, A. V., 1957: "Some Results of the Investigation of Turbulent Fluctuations of Temperature and the Vertical Component of Wind Velocity,' (Translation by A. Nurklik), J. Acad. Sci., Geophys. Ser., 6, 765-778. 78

Portman, D. J., 1957: "Shielded Thermocouples," Exp. the Atmos. First Mile, New York, Pergamon Press,.,nc 1., 157-167o, Some Heat Transfer Characteristics of Two Thermocouple Probes, Univ. of Mich., O. Ro A. Rpt. in prep. Richardson, L. F., 1920O- "The Supply of Energy from and to Atmospheric Eddies," Proc. Rooyo Soc. London, A, 97, 354-3730 Siedentopf, von H., and F. Wisshak, 1948. "Die Szintillation der Strahlung Terrestrischer Lichtquellen und ihr Gang mit der Tageszeit," Optik, 3(5!/61, 430-433o Stewart, R. W, 1959' "The Natural Occurrence of Turbulehce" J. Geophys. Res,, 64(3), 2112-2115o Sutton, O. G., 19535 Micrometeorology, New York, McGraw-Hillo Tatarski, V. i., A. S. Gurvich, Mo A. Kallistratova, and L. Vo Terenteva, 1958~ "The Influence of Meteorological Conditions on the Intensity of Light Scintillation Near the Earth~s Surface," J. Soviet Astron., 2, 578-581. Tatarski, V. Ia, 1961L Wave Propagation in a Turbulent Medium, (Translation by R, A. Silverman), New York, McGraw-Hill. Taylor, G. I., 1936~ "The Mean Value of the Fluctuation of Pressure and Pressure Gradient in a Turbulent Fluid," Proco Cambridge Phil. Soc., 32, 58o-384. Townsend, A. A., 1958& "Turbulent Flow in a Stably Stratified Atmosphere," J. Fluld Mech., 3, 361-372.,0l/

MICROMETEOROLOGICAL AND SC INTILLATION DATA February 3, 1960 Anemometer Wind Dir. 7 Time, EST Revolutions Temperature Difference,0C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2128 MSG MSG MSG MSG.5 1.0 1.8 185 40 2130 252 285 320 ".4 1.0 1.5 " 41 2132 232 262 295 ".6.8 1.7 "t 39 2134 269 298 324 ".5.6 1.2 " 38 2136 235 266 301 ".4 1.0 1.3 " 36 2138 242 270 301 ".4.7 1.3 It 37 2140 223 250 290 ".4.8 1.7 I" 36 2142 220 249 291 ".4.8 1.2 " 36 2144 MSG MSG MSG ".4 1.0 1.4 I" 36 2146 212 239 272 ".7 1.4 195 36 2148 203 230 269 I".4 1.0 1.3 "T 37 2150 229 251 291 ".4.6 1.0 " 35 2152 237 258 300 ".4.7 1.0 " 35 2154 213 233 270 ".4.7 1.2 " 34 2156 186 210 250 ".4.7 1.3 " 34 2158 224 248 291 ".4.7.8 " 35 2200 215 235 274 ".2.6 1.1 " 34 2202 MSG MSG MSG ".4.6 1.2 35 2204 " " " ".2 ~7 1.0 " 36 2206 " "t ".4.8 1.0 " 33 2208 " I" ".4.6 1.0 I" 35 2210 258 286 330 ".4.6 1.1 " 55 2212 263 288 327 ".2.6 1.0 " 34 2214 250 276 313 " o4.7 1.1 " 33 2216 219 241 281." 4 o8.8 " 35 2218 244 261 296 ".2.6 1.0 " 33 2220 227 248 291 ".2.6 1.1 i" 33 2222 260 284 328 ".2.5 1.0 "t 32 2224 257 285 334 ".2.6.8 " 33 2226 243 267 317 ".4.6.8 " 34 2228 260 292 339 ".4.5 1.0 " 33 2230 226 256 300 ".4.6 1.0 " 35 2232 234 265 297 ".2.5 1.0 " 34 2234 226 259 300 ".2.6.8 " 34 2236 218 239 275 ".2.5 1.1 200 34 2238 228 255 298 ".2.6 1,0 it 33 2240 224 254 300 ".2.5.8 "T 33 2242 237 271 311 ".2 5.6 " 30 2244 209 238 272 ".2.5 7 28 2246 204 243 281 ".1.5.6,, 28 2248 218 256 298 " o2.5 7 "i 28 2250 272 312 358 " 2.2 4 6 " 28 2252 237 278 323 ".2.5.6 " 27 hA

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 3, 1960 (Continued) Anemometer Wind Dir. Time, EST Revolutions Temperature Difference,0C Degrees Mod. 2 min.period, ending 0.5m lm 2m 4m lm-O,5m 2m-0.5m 4m-0.5m 2254 263 302 340 MSG o2.4.7 200 27 2256 292 329 376 ".2.5.5 27 2258 249 286 324 ".2.4.5" 27 2300 267 297 338 ".2.4.7 " 27 2302 262 306 353 " 2 5.5 27 2304 270 311 356 ".2.5 26 25306 260 302 344 "1.1.2 25 2308 279 320 3567 ".2.4.6 " 25 2310 279 327 362 ".2.4.6,, 26 2312 262 307 350 ".2.5.6,, 26 2314 281 327 379.1.4 - 5 " 26 2316 280 326 368 ".1ol.4.5 i 25 2318 281 322 379 ".2.5.6 i 25 2320 299 339 384 ".2 5.6 i" 25 2322 274 311 366 ".2.4.6,, 26 2324 292 328 379 ".2.5,7 i 26 2326 MSG MSG MSG ".1.5.6,, 28 February 4, 1960 1546 146 171 208 MSG.4 1.0 1.5 090 43 1548 155 185 230 ".5 1.1 1.3 090 47 1550 1 48 176 216 ".5.0 1.9 090 45 1552 158 183 230 " 5 1.1 1.7 085 45 1554 146 175 218 ".5 1.2 1.9 085 48 1556 131 156 195 " o5 1.1 1.5 090 43 1558 136 163 201 "5 1.1 1.5 090 41 1600 127 151 186 ".6 1.2 1.8 095 38 1602 118 145 181 ".6 1.2 2.0 090 41 1604 124 151 191 " o.6 1.3 2.1 095 41 1606 117 140 173 " o7 1.2 1.8 100 41 1608 105 130 167.6 1.3 2.0 100 38 161o 127 152 187 " o 1.2 2o0 095 44 1612 128 154 185 ".6 1.1 1.5 095 42 1614 131 156 193 ".5 1.0 1o7 100 44 1616 125 149 181 I" 7 1.1 1.7 100 42 1618 125 146 181 ".6 1.0 1.7 095 42 1620 119 142 180 ".6 1.2 1.9 095 42 1622 117 140 180 ".6 1.4 1.9 090 44 1624 131 162 199 ".6 1.0 1.9 090 44 1626 147 175 217 " o5 1.1 1.8 090 45 1628 147 175 215 " 6 1.3 2.0 090 45 1630 121 150 190 " o6 1.3 2.1 090 42 81

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 4, 1960 (Continued) Anemometer Wind Diro Time, EST Revolutions Temperature Difference,C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 1632 106 132 175 MSG.7 1.3 2.2 090 36 1634 107 136 177 ".7 1.4 2.2 o85 38 1636 137 184 ".7 1.4 2.4 085 35 1638 118 145 185 ".7 1.7 2.4 085 35 1640 101 131 171 ".8 1,8 2.6 085 35 1642 89 120 160 " 1.0 1.9 2.7 095 33 1644 91 122 162 ".8 2.1 2.7 095 33 1646 98 134 175 " 1 1 2.1 2.5 090 38 1648 89 122 166 " 1.1 2.5 2.9 090 40 1650 68 101 162 "i 1.3 2.9 3.7 090 38 1652 68 96 148 " 1.1 2.5 35.3 090 45 1654 72 103 147 " 1.1 1.8 3.4 085 45 1656 108 136 174 " 1.0 2.2 2.6 085 31 1658 81 113 157 " 1.1ol 2.4 3.3 o85 35 1700 69 95 130 " 1.1 2.1 2.9 085 33 1702 47 71 110 ".6 1.3 2o8 080 31 1704 38 68 120 T" 1.0 1.9 3.1 090 31 1706 39 58 98 " o.6 1.1 2.8 090 29 1708 40 61 97 ".8 1.8 3.4 095 35 1710 46 65 11 " 1.0 2.5 3.4 090 33 1712 40 65 109 " 1.2 2.4 3.1 090 27 1714 10 40 85 ".1 1.1 2.4 095 25 1716 20 50 98 " 1.1 2.5 35.53 100 24 1718 51 89 126 " 1.7 2.8 3.4 IT 29 1720 51 76 112 " 1.7 3.4 3.6 T" 31 1722 53 73 115 " 1.1 2.8 4.0 " 33 1724 61 87 130 " 1.7 3.3 3.9 " 38 1726 75 102 147 " 1.3 3.6 4.6 " 47 1728 73 108 165 " 1.5 4,2 4.8 55 1730 65 97 155 " 1.4 3.4 5.4 095 51 1732 70 97 140 " 1.2 2.7 4.7 085 49 1734 55 82 117 " 1.0 2.2 3.9 085 40 17356 43 74 126 1.2 2.1 4.3 095 35 1738 71 102 151 " 1.2 2.6 3.6 100 40 1740 88 120 161 " 1.3 2.5 3.4 100 29 1742 75 103 141 " 1,2 2.4 3.4 095 39 1744 75 108 149 " 1.4 2.4 3.1 090 39 1746 84 118 162 " 1.2 2.2 3.1 " 34 1748 95 122 168 " 1.0 2.2 3.1 I 40 1750 82 112 156 " 1.0 2.0 3.35 42 1752 84 110 148 " 1.0 2.0 2.8 I 43 1754 94 122 159 ".7 1.8 2o6 095 47 1756 98 124 167 T".6 1.5 2.6 095 44 1758 106 131 172 " 7 1.7 2.7 095 44 82

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 4, 1960 (Continued) Anemometer Wind Dir. o Time, EST Revolutions Temperature Difference, C Degrees Mod. 2 minoperiod, ending 0.5m lm 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 1800 101 130 170 MSG.7 1.7 2.6 095 43 1802 107 134 178 " o7 1.8 2.9 100 45 1804 115 143 182 I" 7 1.5 2.5 100 45 2132 MSG MSG MSG MSG.1.2.2 090 13 2134 I" " " ".1.2.2 090 14 2136 i" tI it it.1.2.4 095 13 2138 I" "I I.1.2.2 095 14 2140 " " " ".1.2.4 095 14 2142 I" " "It I.1.2.2 090 13 2144 " " " ".1.2.4 085 14 2146 " " " ".1.2.4 " 15 2148 T" " " " ol.4.4 I" 16 2150 TT I I".1.5.4 18 2152 T I t o.2.4 ~ 5 I 18 2154 I" " " ".2.4. 5 " 20 2156 t It IT t.2 5.6 i 20 2158 "I TI IT I".2.4.6 090 20 2200 " " " I t.1.4.7 0 95 21 2202 I I IT IT.1.4.6 " 20 22o4 " " " ".1.4. 5 " 20 2206 " " " ".1.4.7 " MSG 2208 " " " " T1.4.6 " " 2210." " t".2 " 4 5 " " 2212 II 11.o2.2.6 " " 2214 It" " "I t".2 o5.6 090 20 2216 II" " " ".2.4.6 085 20 2218 I" " " o.2.5.7 085 20 2220 I" It It t.1.4.6 085 20 2222 I" " " ".1.4.6 095 19 2224 I" " " " To.1.2.5 095 21 2226 " " " ".I 02.4 095 19 2228 " I TI T.1.2.4 105 18 2230 eII It I L.2.2 110 18 2232 " " " " o.1.2.4 110 16 22 34 " " " " oI 1.2.2 o05 15 2236 it II.1.2.2 105 15 2238 T T T ".1.2.2 100 1 3 2240 I" " " " o. 2.4 0 95 12 2242 " " " " o1 o 2.4 100 13 2244 I" I II " o1. 2.4 105 13 2246 " " " "II.1.2.4 100 14 83

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 4, 1960 (Continued) Anemometer Wind Diro S Time, EST Revolutions Temperature Difference,~C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2248 MSG MSG MSG MSG.2.2.5 100 15 2250 I" " " ".1.5.5 100 16 2252 It" " " "II.1.4.6 105 19 2254 " " " ".1.2.5 105 20 2256 " ".1.2.4 105 17 2258 II" " ".1.2.5 105 16 2300 " " I.1.4.4 105 16 February 5, 1960 1528 MSG MSG MSG MSG 0 0 0 320 3 1530 " " " " " " " 325 " 1532 IT,,, T IT T I 320 " 1534 I" " It TI II t II 320 " 1536 11" " " " " " "T 320 " 1538 II" " " " " " "i 315 " 1540 140 150 164 176 " " " 315 " 1542 127 137 147 155 " " " 310 " 1544 139 152 162 173 II" " " 310 it 1546 126 137 148 154 " " " 305 I 1548 131 145 161 174 I" " " 310 " 1550 131 142 155 169 " " " 315 4 1552 137 153 165 175 I" iT t 310 3 1554 148 164 177 194 -0.1 i" -0.1 310 4 1556 150 164 177 195 0 i" 0 320 " 1558 138 *154 164 MSG -0.1 i" "I 315 1600 133 *148 163 " 0 " " 310 " 1602 126 *139 154 " " " " 315 " 1604 142 *150 165 " " " " 325 " 1606 148 *159 172 " I" " " 325 1608 162 *177 191 " " " " 325 MSG 1610 139 *150 158 " " " " 315 4 1612 124 *135 153 " " " " 320,, 1614 144 *160 174 " " " " 315 I 1616 129 *140 152 " " " " 325 T 1618 149 *169 185 " -0.1 II" " 320 t 1620 146 *162 174 " 0 II" " 320 It 1622 196 *212 231 " " " " 325 " 1624 171 *190 208 " I" " " 320 T 1626 173 *188 202 " " 0.1 " 320 *Interpolated during near adiabatic conditions 84

MICROMETEOROLOGICAL AND SCINT ILLATION DATA February 5, 1960 (Continued) Anemometer Wind Diro Time, EST Revolutions Temperature Difference,~C Degrees Mod. 2 min.period, ending 0.5m lm 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 1628 196 *213 229 MSG 0 0.1 0 310 4 1630 159 *172 184 " 0 It 305 1632 128 *140 152 " " " " 305 i 1634 121 *131 142 " " It tI 310 T 1636 133 *148 156 " " It it 305 1638 125 *136 147 I" " 0.1 0.1 310 tI 1640 149 *162 174 " " 0 310 1642 157 *171 184 " "I 0.1 0 315 *Interpolated during near adiabatic conditions. February 9, 1960 1118 310 341 369 400 -.03 -.05 -.1 015 5 1120 283 311 333 358 -.05 -.03 -.05 360 1122 270 298 318 340 0 0 -.05 005 " 1124 295 324 345 364 0 -.03 -.05 015 1126 571 299 325 345 0 -.03 -.08 005 1128 266 290 308 330 0 0 -.08 010 I130 285 314 340 358 0 -.03 -.05 010 1132 342 376 403 431 -.03 -.05 -.1 025 " 1134 348 385 414 437 -.05 -.05 -.1 020 1136 276 299 315 328 - 05 -.03 -.05 355 " 1138 267 296 318 327 (?0 -.05 015 " 114C 267 307 320 MSG -.03 -.05 -.1 020 MSG 1142 248 272 290 " -.03 -.03 -.15 020 5 1144 280 310 333 " -.05 -.05 -.1 025 4 1146 294 327 3552 " 0 -.03 -.08 015 4 1148 287 314 337 " 0 -.03 -.08 010 5 1150 309 341 362 " 0.03 -.03 360 5 2122 173 192 209 225 0 0.05.05 0'45 5 2124 170 189 207 226 ".05.05 45 5 2126 186 210 230 262.05.05 050 5 2128 192 213 234 261 ".05.05 050 6 2130 155 6 19576 195 21905.05.05 055 6 2132 175 199 223 248 I ".5.05 0 45 7 2134 170 193 213 242 ".03.05 0 50 7 2136 181 202 222 255 "0.03.0 508 2138 209 236 259 284 ".05.05 0558 2140 194 221 246 274 "I.05.05 0558

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 9, 1960 (Continued) Anemometer Wind Diro Time, EST Revolutions Temperature Difference,0C Degrees Mod. 2 min. period, ending 0.5m im 2m 4m lm-O.5m 2m-0.5m 4m-0.5m 2142 173 194 219 241 0.03.03 055 2144 182 203 231 255.05.05 055 7 2146 173 195 220 241 0 o5.05 o60 6 2148 180 205 22 238.05.05 o6 6 2150 162 182 200 212 ".03.05 o65 6 2152 152 173 203 229.03.03 o6 6 2154 193 220 244 264.05.05 0o6 6 2156 268 299 326 354 "05.03 055 5 2158 258 286 317 348 ".05.05 055 5 2200 290 326 361 398 ".05.05 055 6 2202 243 269 294 320 " o05.05 050 5 2204 241 275 310 347 ".05.5 040 5 2206 341 377 409 450 ".05 08 040 5 2208 359 400 440 487 " ~.05.08 040 5 2210 313 348 375 416.05 o05 035 5 2212 314 348 378 417 ".03.08 035 2214 323 361 400 440 ".05.05 035 6 2216 362 403 447 494 ".0.05 040 6 2218 363 404 431 472.05.05 045 6 2220 336 373 408 448 T.05.o05 050 6 2222 302 335 362 398.05.05 055 6 2224 272 305 341 378.05.05 055 7 2226 251 281 311 342.05.05 o65 6 2228 200 230 258 283.05.05 o6 6 2230 209 232 261 283 ".0..05 070 6 February 12, 1960 1916 221 245 264 290.1.2.2 300 MSG 1918 189 206 230 256.1.2.3 295 12 1920 179 200 225 256.1.3.4 295 13 1922 178 198 218 235.1.3.3 295 14 1924 167 182 203 MSG.2.3.5 315 57 1926 205 228 245 ".1.3.4 335 19 1928 191 212 212 235 2.2.6 330 20 1930 171 188 204 ".2.4.6 315 21 1932 103 120 139 ".2.6.7 310 21 1934 99 113 130 144.5.6.8 310 20 1936 77 91 110 119.4.8 1.0 320 19 1938 56 68 81 93.5.6.9 320 18 1940 70 82 92 108.2.8.7 335 19 1942 MSG MSG MSG MSG.5.7.9 335 20 1944 42 54 60 76.7 1.1 1.5 335 18 86

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 12, 1960 (Continued) Anemometer Wind Dir. o Time, EST Revolutions Temperature Difference,0C Degrees Mod. 2 min.period, ending 0O5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 1946 36 49 64 76.8 1.1.9 330 17 1948 47 62 77 88 1.0 1.0 1.4 330 15 1950 48 61 72 85.1 1.2 1.4 340 15 1952 61 75 88 102.7 1.0 1.4 340 21 1954 62 78 96 115.6 1.3 1.0 335 25 1956 88 103 114 128.7 1.1 1.5 330 25 1958 70 88 103 124 1.2 1.1 2.0 315 26 2000 74 90 113 134.8 1.4 2.0 315 26 2002 58 77 99 120.7 1.9 2.4 320 24 2004 56 77 94 114 1.3 1.9 1.9 325 25 2006 73 94 113 135 1.3 1.7 2.3 320 26 2008 77 97 112 132 1.1 1.7 2.1 305 28 2010 73 96 115 135 1.0 2.1 2.6 300 31 2012 69 83 102 123 1.0 1.4 1.7 300 30 2014 67 79 92 104.8 1.3 2.0 270 24 2016 67 79 102 115 1.0 1.5 3.0 245 22 2018 83 90 110 121.8 2.2 3.4 245 25 2020 54 72 92 122.7 1.7 2.9 230 22 2022 61 74 97 145.7 1.5 2.8 225 21 2024 51 64 91 128.6 1.5 2.8 220 20 2026 28 41 61 99.7 1.9 2.8 215 18 2028 37 39 60 103.5 1.9 2.9 220 23 2030 48 52 77 112.8 3.0 4.2 225 23 2032 62 75 89 135 1.1 2.4 4.6 230 19 2034 49 66 98 132 1.1 2.6 5.3 235 22 2036 60 73 103 136 1.1 3.9 4.8 240 24 2038 53 75 99 160 1.2 2.6 5.1 240 20 2040 50 78 125 MSG 1.0 3.6 6.1 245 28 2042 73 103 174 ".7 3.5 6.0 250 36 2044 137 173 232 " 1.0 5.0 5.1 245 35 2046 141 177 237 ".8 4.6 5.2 250 37 2048 148 184 245 " 1.0 3.8 4.6 250 36 2050 149 176 226 ".5 1.9 3.7 245 29 2052 13& 162 206 275.5 1.3 3.3 250 26 2054 116 151 192 243.5 1.8 2.7 260 25 2056 91 111 149 200.7 1.4 2.8 270 25 2058 78 106 139 187 1.0 2.1 3.5 275 22 2100 76 101 135 183 1.4 2.7 3.8 285 24 2102 77 o106 150 200 1.2 2.5 3.6 285 24 2104 83 109 153 201.8 2.1 2.9 285 21 2106 88 114 148 191 1.0 2.8 3 1 290 20O 2108 76 103 139 178 1.2 2.0 2.6 300 20 2110 98 124 162 194 1.5 2.1 2.5 300 21 8y7

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 12, 1960 (Continued) Anemometer Wind Dir. Time, EST Revolutions Temperature Difference,OC Degrees Mod. 2 min.period, ending 0.5m lm 2m 4m lm-0.5 2m-0o5 4m-0o5m 2112 93 116 147 176.8 1 9 2.4 305 22 2114 95 119 152 187 1.0 1.7 2.1 305 MSG 2116 87 113 139 167.8 1.7 2.5 300 l 2118 83 105 132 159 1.0 1.9 2.3 310 " 2120 68 92 121 143 1.2 2.2 2.9 300 i 2122 59 77 101 126 1.1 2.1 3.1 300 T 2124 57 75 106 131 1.1 2.9 3.7 300 " 2126 60 85 107 139 1 6 2.7 3.0 295 t 2128 60 87 113 141 1.8 2.1 3.1 290 " 2130 43 73 100 133 2.5 3.3 4.0 290 2132 49 67 101 134 1.4 3.3 4.3 295 " 2134 51 70 98 133 1.2 2.8 3.4 295 " 2136 53 64 79 110 1.3 1.4 3.6 300 2138 50 70 86 111 1.7 1.8 3.1 295 " 2140 49 71 91 109 2.0 3.0 4.2 290 25 2142 78 98 134 160 1.4 4.0 4.7 275 28 2144 79 106 162 195.8 3.6 5-3 265 36 2146 66 84 128 179 1.2 2.8 4.8 275 34 2148 54 79 125 164 2.0 4.0 6.0 275 MSG 2218 33 83 123 148 3.1 5.5 6.2 320 29 2220 80 95 122 134 1.8 5.1 5.6 295 32 2222 92 108 130 169 1.0 2.1 3.9 275 29 2224 80 92 113 154.6 1.4 2.9 280 23 2226 67 93 102 144 1.4 1.7 4.3 290 26 2228 66 103 133 165 2.2 3.1 4.7 285 26 2230 51 71 104 151 1.8 3.7 4.7 305 24 2232 39 49 80 121 1.2 3.6 5.1 310 25 2234 61 74 104 149 1.9 3.0 4.4 305 29 2236 64 91 119 156 2.8 3.6 5.8 300 29 2238 29 56 103 144 1.1 4.4 7.0 295 32 2240 57 94 132 169 2.1 5.4 6.7 290 32 2242 78 109 152 183 1.8 4.3 5.5 280 MSG 2244 85 111 147 183 1.2 3.6 5.8 285 34 2246 61 88 128 186 1.2 3.6 6.5 290 33 2248 75 106 143 180 2.2 3.9 5.4 310 38 2250 84 118 156 194 1.7 3.8 4.6 320 37 2252 98 128 158 190 1.7 2.7 3.4 315 37 2254 98 130 157 181 1.7 3.1 3.1 315 39 2256 95 124 153 185 1.7 2.2 351 310 43 2258 98 125 152 185 1.3 2.7 3.5 310 41 2300 90 120 148 178 1.9 2.8 3.6 305 39 88

MICROMETEOROLOGICAL AND SC INT ILLATION DATA February 12, 1960 (Continued) Anemometer Wind Dir. % Time, EST Revolutions Temperature Difference, C Degrees Mod. 2 min. period, ending 0.5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2302 87 111 134 168 1.4 3.0 4.4 295 40 2304 86 114 144 168 1.5 4.4 5.8 290 40 2306 86 116 149 177 1.5 4.2 6.0 285 41 2308 101 128 165 192 1.0 3.0 4.8 280 39 2310 74 97 123 178 1.1 2.4 6.2 285 39 2312 55 90 135 169 1.9 4.6 6.7 300 30 2314 57 88 116 147 2.8 3.9 5.9 310 34 2316 50 98 132 157 2.9 6.0 6.3 315 38 2318 49 98 138 165 3.0 5.6 6.7 320 39 2320 76 114 149 176 2.8 4.8 4.8 320 36 2322 81 105 150 182 1.4 3.7 5.6 315 39 2324 60 89 132 165 2.8 5.4 7.1 310 38 2326 57 92 137 166 2.9 5.1 6.3 310 34 2328 72 105 132 164 2.4 4.3 4.5 315 37 2330 88 122 158 192 2.0 3.1 3.7 315 37 2352 88 109 147 180 2.0 3.9 4.7 305 35 23354 84 102 121 138 2.0 4.5 4.5 285 32 2336 95 123 146 187 1.1 2.5 4.4 275 29 2338 42 64 88 137 1.2 2.7 5.5 285 29 2340 26 51 83 116 1.2 2.5 6.0 295 29 2342 29 57 86 115 2.1 3.7 5.1 305 25 2344 19 45 66 84 2.2 4.3 5.3 310 21 2346 24 40 65 95 1.5 4.2 5.5 300 20 2348 13 41 71 111 2.2 5.0 6.o 305 23 2350 27 45 55 72 3.3 5.4 6.3 320 23 2352 10 33 47 56 3.1 5.8 6.8 320 18 2354 17 33 47 57 3 0 5.5 7.3 325 9 2356 27 28 52 64 1.3 5.2 6.1 305 12 2358 31 49 63 74 1.7 4.7 6.6 280 18 0000 13 29 77 125 1.1 3.5 7.0 280 31 0002 25 40 95 129 1.3 6.1 7.6 285 41 0004 39 63 92 113 1.4 4.5 6.2 300 38 0006 34 60 94 108 1.7 5.3 6.5 305 22 0008 84 99 112 116 2.0 4.0 6 o 325 16 0010 74 102 117 122 3.7 4.7 5.5 340 16 0012 36 78 103 119 2.9 5.6 6.2 330 12 0014 32 82 104 121 3.0 6.8 7.8 320 13 0016 MSG MSG MSG MSG 3.9 6.0 6.3 325 15 0018 " " " " 3.0 5 3 6.1 335 24 0020 " t" " " 2.9 5.4 6.5 335 19 0022 T " " 2.0 5.5 7.3 325 16 0024 103 132 141 143 1.0 2.0 5- 6 315 23 0026 87 120 135 140 2.7 5.2 6.5 300 25 0028 78 111 127 140 2 2 5.4 6.1 300 28 89

MICROMETEOROLOGICAL AND SC INTILLATION DATA February 12, 1960 (Continued) Anemometer Wind Dir. fo Time, EST Revolutions Temperature DifferenceC Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-0.5m 2m-Oo5m 4m-0.5m 0030 70 99 121 125 1.2 6.3 7.0 300 29 0032 59 94 120 136 1.8 5.8 7.3 300 22 0034 73 108 125 164 2.9 5.6 6.8 295 29 0036 83 121 131 167 2.7 4.7 6.7 300 29 0038 71 108 132 165 2.1 5.8 7.1 300 36 0040 61 92 124 160 1.9 6.o 7.9 300 39 0042 56 90 131 150 1.3 5.3 7.7 300 34 0044 80 119 138 154 2.6 5-0 7.5 300 33 oo46 82 111 134 MSG.8 5.2 7.9 305 34 oo0048 78 112 136 " 1.3 2.8 6.1 310 34 0050 79 116 147 128 1.9 4.0 6 5 320 24 0052 86 123 146 136 2.6 4.5 6.1 330 23 February 13, 1960 1920 21 36 39 68 1.5 3.7 7.1 360 25 1922 33 36 29 51 1.0 1.8 5.3 360 33 1924 52 40 21 46.8 1.8 4.6 355 37 1926 38 47 15 24 1.2 1.8 3.7 355 29 1928 12 14 2 15 1.2 2.2 3.8 355 26 1930 2 1 3 14 1.3 2.8 3.9 355 23 1932 6 5 1 15.6 2.0 3.0 355 24 1934 31 25 3 12 1.7.8 2.8 360 26 1936 29 25 10 19 1.7 2.2 3.7 005 27 1938?2 18 7 42 1.1 2.5 4.5 015 29 1940 21 22 47 91 1.0 2.9 6.2 015 33 1942 48 56 55 77 1.1 3.5 5.2 290 39 1944 55 64 48 55 2.0 3.1 - 5.0 290 39 1946 62 74 64 65 1.9 2.6 4.8 290 43 1948 83 90 92 80 2.0 2.4 3.5 300 35 1950 65 92 95 75 2.6 2.4 4.3 305 28 1952 63 86 94 96 1.5 3.3 4.2 310 26 1954 74 96 93 91 2.2 2 8 4.7 305 22 1956 46 76 80 72 1.3 3.7 5.3 305 32 1958 42 66 80 58 1.1 2.9 4 6 310 36 2000 50 61 89 69.8 3.3 5.4 315 37 2002 32 49 83 71.8 3.5 6.1 320 28 2004 33 66 81 57 1.5 3 7 6.9 320 21 2006 17 45 78 54 1.1 5.2 7.5 320 19 2008 29 52 85 50 1.2 5.2 7.1 320 27 2010 28 57 82 57 1.1 4.0 6.6 320 26 2012 43 73 73 43.7 3.4 5.3 320 23 2014 70 97 81 31 1.0 4.0 5.8 320 26 90

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 13, 1960 (Continued) Anemometer Wind Dir. Time, EST Revolutions Temperature Difference,0C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2016 53 78 104 40 1.3 3.1 5.8 320 35 2018 35 63 95 54.8 2.1 6.0 330 43 2020 40 59 99 70.4 1.3 5.8 340 39 2022 43 70 119 83.5 1.5 5.9 335 47 2024 80 108 123 74.7 2.9 5.6 335 46 2026 85 112 129 77.8 3.5 5.6 340 34 2028 72 99 127 78.8 3.8 6.3 340 36 2030 72 100 128 85 1.3 3.5 6.8 340 39 2032 52 76 118 92.7 3.0 6.9 345 39 2034 34 57 98 91.5 1.8 6.6 340 39 20356 14 40 93 89.6 2.0 6.7 335 36 2038 45 74 95 90.8 2.1 6.o 335 36 2040 53 61 66 96 1.0 1.7 4.0 335 39 2042 44 50 60 100.5 1.1 3.9 345 45 2044 35 41 57 112.5 1.3 4.7 350 51 2046 18 28 49 99 6 1.2 4.8 350 52 2048 6 22 42 86.6 1.5 4.7 350 43 2050 36 47 68 83.2 6 4.5 350 39 2052 38 51 76 86.4.7 5.3 350 38 2054 38 53 87 100.5 1.0 6.2 350 39 2056 43 60 103 108 4 1.8 6.3 355 43 2058 22 39 94 114.5 2.1 6.6 360 49 2100 c3 41 78 106.6 1.8 6.8 " 41 2102 36 52 95 123.6 1.7 6.7 51 2104 55 76 129 129.5 2.2 6.6 " 59 2106 55 84 136 137.6 1.9 6.8 " MSG 2108 68 97 143 138.6 2.2 6.8 " " 2110 76 106 143 136.6 2.8 6.1 " 79 2112 69 97 136 133,6 2.8 6.0 " 72 2114 56 83 125 128.6 3.3 6.7 " 53 2116 46 80 128 128.8 3.4 7.0 " 45 2118 55 88 138 135.7 3.8 6.9 " 45 2120 56 87 136 135.7 3.3 6.8 " 45 2122 64 92 129 132.6 4.6 7.0 " 48 2124 93 123 144 135.7 4.5 7.1 " 69 2126 97 126 148 142.6 4.3 6.9 " 59 2128 81 104 139 150.4 3.0 6.7 " 59 2130 63 89 134 142.5 2.8 6.7 " 62 2132 6? 93 136 136.6 2.9 7.0 " 63 2134 55 85 136 127.7 1.9 7.4 "60 2136 91 119 150 126.7 2.9 7.6 350 59 2138 117 144 157 134.8 3.7 7.7 345 51 2140 123 153 156 142 1.0 3.5 7.8 340 41 2142 141 168 186 171.5 3.1 7.3 340 43 91

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 13, 1960 (Continued) Anemometer Wind Diro % Time, EST Revolutions Temperature Difference,~C Degrees Mod. 2 min. period, ending 0.5m lm 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2144 133 161 203 197.5 2.0 6.2 335 41 2146 133 160 187 187.5 2.0 5.8 335 38 2148 111 138 152 MSG.5 2.5 4.8 34O 38 2150 105 131 145 ".6 2.9 4.7 340 43 2152 105 132 155.6 2.8 5-9 345 50 2154 101 132 146.7 2.9 6.3 345 51 2156 80 log 137 ".6 3,0 6.2 350 50 2158 45 63 119 "5 1.9 5.9 350 51 2200 59 71 110 130.4 2.5 6.3 350 48 2202 50 58 69 113 o 7 1.5 4.6 355 43 2204 45 52 64 109.4 1.3 3.4 350 38 2206 54 68 96 99.4.6 5.1 350 37 2208 40 52 90 104.4.8 5o4 350 4o February 14, 1960 1930 1 13 53 67 2.5 5.6 7.6 055 23 1932 4 14 49 68 1.4 4.0 7.3 060 26 1934 24 29 48 77 1.2 4.0 7.1 070 32 1936 29 34 34 90 1.2 4.5 8.1 080 27 1938 4 21 20 90 1.4 4.8 7.9 080 30 1940 5 17 35 94 1.4 5.4 7.8 095 40 1942 1 13 36 94 1.4 5. 3 8.5 100 34 1944 0 14 47 93 1.4 5.9 8,7 090 24 1946 2 10 50 94 1.5 5.4 8.4 095 24 1948 1 1 46 86 1.3 5.2 7.9 095 31 1950 2 1 41 72 1.1 5.1 7.7 105 24 1952 14 7 29 60 1.3 4.3 7.0 110 18 1954 17 27 2 48 1.7 3.6 7.4 i" 14 1956 18 31 3 38 1.9 3.3 7.0 T 15 1958 10 25 1 39 1.9 2o 9 7.1 " 12 2000 1 16 0 34 1.9 3.5 7.3 " 13 2002 1 14 1 35 1o 9 2.8 6,03 12 2004 3 22 13 30 2,0 2.9 5.8 1 12 2006 8 26 13 16 1.2 2.8 5.0 170 10 2008 1 16 4 28 1.7 2.7 5.2 155 15 2010 3 0 18 67 1e2 3.3 5.8 150 20 2012 1 1 20 74.8 3.6 5.4 155 1 6 2014 1 2 12 70 1.2 3.3 5.4 160 18 2016 14 17 11 46.7 2.5 5.1 170 12 2018 11 18 3 42 1.4 2.0 4.7 170 12 2020 1 3 1 53.6 2,5 4.6 165 1 6 2022 2 3 12 76 1o1 2.9 5.0 175 16 2024 7 12 35 88 1.1 3.0 5,0 175 10

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 14, 1960 (Continued) Anemometer Wind Dir. % Time, EST Revolutions Temperature Difference,0C Degrees Mod. 2 min.period, ending 0.5m lm 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2026 2 14 55 111 1.1 3.8 5.3 170 16 2028 6 24 75 129 1.0 3.1 5.1 160 23 2030 39 60 100 MSG.7 2.1 3.8 155 22 2032 69 91 120 ".8 1.7 2.4 150 20 2034 73 93 121 ".6 1.3 2.2 150 27 2036 60 78 104 ".5 1.3 2.1 150 28 2038 52 69 95 ".6 1.2 2.4 150 24 2040 49 68 93 " 5 1.2 2.0 155 26 2042 49 68 97 ".5 1.4 2.0 155 20 2044 55 74 103 " 7 1.4 2.1 155 19 2046 53 72 97 ".7 1.2 1.9 165 19 2048 66 78 101 ".5 1.4 1.7 155 16 2050 67 86 108 " ~7 1.3 1.9 145 18 2052 51 70 94 " o 4 1.1 1.3 150 20 2054 45 61 83 ".4 1.0 1.2 155 19 2056 44 ~64 93 ".6 1.4 2.0 160 17 2058 42 60 86 ".7 1.4 2.0 165 18 2100 42 51 66 ".2.6 1.3 170 16 2102 37 49 70 105.4 1.1 1.5 175 13 2104 56 79 103 141.4 1.2 1.8 180 13 2106 76 93 116 150.5.8 1.5 170 16 2108 67 83 108 143.4.8 1.5 160 19 2110 95 115 140 169.4 1.0 1.4 165 25 2112 121 138 159 187.2.6.8 170 28 2114 88 105 126 158.4.7 1.2 170 21 2116 72 84 99 121.5.6 1.2 180 17 2118 76 91 1 13 2.5 1.0 1.4 170 25 2120 80 93 113 133.2.8 1.1 160 22 2122 95 115 136 156.4 1.0 1.5 160 21 2124 71 88 111 123.6.8 1.3 165 16 2126 75 86 100 109.4.6 1.0 170 16 2128 52 63 80 89.6 1.1 1.3 165 15 2130 44 61 83 99.5 1.3 1.7 170 12 2132 51 67 87 109 7 1.2 1.7 170 10 2134 45 61 83 101.6 1.3 1.7 165 8 2136 27 42 59 78.8 1.4 1.8 160 MSG 2138 10 12 28 48.8 1.5 2.0 160 6 2140 24 5 2 22.7 1.1 2.2 160 10 2142 23 29 26 9 1.1 1.7 2.1 160 9 2144 21 22 19 10 1.2 1.3 2.0 170 6 2146 29 24 14 13.7 1.1 1.7 170 10 2148 38 51 49 29.7 1.5 1.5 360 7 2150 36 48 50 33.7.8 1.8 560 6 2152 36 39 31 19.5 1.1 1.1 360 7 93

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 14, 1960 (Continued) Anemometer Wind Dir, % Time, EST Revolutions Temperature Difference,~C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-0.5m 2m-0O5m 4m-0.5m 2154 15 15 17 9.6 1.0 1.4 360 7 2156 18 22 32 22.4 1.0 1.3 " 10 2158 26 35 31 16.5 1.2 1.4 it 9 2200 13 24 24 4.5 1.2 1.4 " 8 2202 12 18 14 9.6 1.3 1.5 " 9 2204 9 9 18 13.7 1.3 1.7 005 6 2206 15 25 33 25.6 1.3 1.4 015 5 2208 21 25 16 23.6 1.4 1.5 040 4 2210 17 16 15 27.2.8 1.5 065 6 2212 13 11 13 5 5 1.3 1.7 065 10 2214 13 20 20 32.7 1.4 2.1 120 11 2216 15 14 17 26.5 1.4 1.4 165 8 2218 10 15 21 22.7 1.4 1.7 165 8 2220 31 29 26 15.5 1.1 1.4 020 4 2222 43 49 41 23.7 1.4 1.3 i" 4 2224 31 34 32 25.7 1.7 1.7 "t 4 2226 23 30 27 24 1.1 1.9 2.0 " 5 2228 23 28 25 21 1.1 1.5 1.9,, 8 2230 44 58 60 38.8 1.2 1.9 330 7 2232 64 84 97 80.5 1.1 1.7 320 12 2234 59 68 71 64 1.0 1.2 1.5 300 9 2236 55 66 75 79.6.8 1.8 300 13 2238 35 45 58 63 5 1.0 1.7 260 22 2240 26 39 54 84.4 1.0 1.3 250 20 2242 69 90 109 144.4 1.1 1.5" 19 2244 132 152 178 208.4.8 1.2 "T 22 2246 115 135 164 192.4 1.0 1.7 " 22 2248 171 188 209 237.4.6.7 22 2250 148 166 194 223.4.7 1.1 " 21 2252 146 163 187 216.4.7 1.2 TI 21 2254 142 159 186 218.4.7 1.2 T 21 2256 144 162 187 211.4.7 1.0 " 20 2258 123 143 169 197.4.8 1.3 245 20 2300 125 145 172 200.4 1.0 1.2 T 20 2302 121 138 168 200.4.7 1.1 " 21 2304 133 149 169 191.2.7 1.0 " 21 2306 132 152 176 204.2.6.8 250 20 2308 112 130 156 182 MSG MSG MSG 250 20 94

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 18, 1960 Anemometer Wind Dir. * Time, EST Revolutions Temperature Difference,0C Degrees Mod. 2 min.period, ending 0.5m lm 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 1408 MSG MSG MSG MSG -.05 -.1 -.1 MSG 10 1410 T IT IT.05 -o05 -.1 " 1412 1 I t -.05 -.1 -.2 310 " 1414 383 422 455 479 -.05 -.1 -.1 315 1416 297 319 343 361 -.05 -.1 -.1 310 1418 301 331 362 390 -.05 -.1 -.2 320 1420 358 388 411 439 -.05 -.1 -.1 350 1422 348 375 414 439 -.05 -.05 -.1 340 1444 275 303 317 334 -.05 -.05 -.1 330 1426 353 381 408 428 -.05 -.05 -.1 340 1428 366 402 430 456 0 -.05 -.1 345 1430 330 358 380 402 -.05 0 -.1 1432 327 356 389 410 -.05 -.05 -.1 1434 371 393 430 453 -.05 -.2 1436 341 366 395 418 -.05 -.05 -.1 340 1438 309 329 356 379 -.05 -.05 -.1 335 1440 327 350 376 395 0 -.05 -.2 350 1442 313 339 362 382.05.05...05 325 1444 321 351 367 374 -.05 -.05 -.1 325 MSG 1446 275 296 314 331 0 0 -.1 330 10 1448 316 340 357 375 0 -.05 -.1 325 10 1450 370 402 433 463 0 -.05 -.1 3350 11 i452 330 367 390 418 -.05 -.05 -.1 320 10 1454 361 398 431 462 -.05 -.05 -.1 320 1456 376 409 440 471 -.05 -.05 -.1 320 1458 383 417 447 460 0 -.05 -.1 315 1500 345 378 403 431 -.05 -.05 -.1 320 11 1502 374 416 442 470 0 -.1 -.1 315 1504 375 409 444 472 -.05 -.1 320 1506 286 310 329 358 -.05 -.05 -.1 325 1508 377 410 443 470 -.05 -.05 -.1 330 12 1510 324 357 387 419 0 -.05 -.1 335 1512 360 388 415 446 0 0 -.1 340 1514 383 417 448 474 0 0 -.1 350 1516 367 400 431 461 0 0 -.1 345 13 1518 329 354 380 407 0 -.05 -.1 340 12 1520 347 3578 402 432 0 -.1 -.1 345 13 1522 294 322 354 370 0 -.05 -.1 350 19 1524 337 361 390 412 0 -.05 -.1 345 22 1526 331 363 383 597 -.05 0 -.05 555 22 1528 359 393 422 447 0 0 -.05 345 21 1530 340 373 409 444 0 -.05 -.05 350 22 1532 292 317 343 373 0 -.05 -.05 340 22 1534 312 355 360 383 -.05 -.05 0 335 23 95

MICROMETEOROLOGICAL AND SC ITILLATION DATA February 18, 1960, (Continued) Anemometer Wind Diro Time, EST Revolutions Temperature Difference, C Degrees Mod. 2 min.period, ending 0. 5m lm 2m 4m lm-O 5m 2m-0. 5m 4m-0.5m 1536 290 318 340 363 0 -.1 0 330 23 1538 314 340 360 381 -.05 -.1 0 340 22 1540 243 269 290 310 0 -.05 -.05 325 20 1542 262 289 316 340 0 0 -.1 340 21 1544 291 320 345 361 0 0 -.05 335 20 1546 240 263 288 301 0 -.05 -.05 325 17 1548 326 359 390 409 0 0 -.05 330 17 1550 291 319 344 360 0 0 -.05 325 20 1552 296 328 355 382 0 0 -.1 330 20 1554 273 299 323 347 0 0 -.1 325 19 1556 239 262 286 307 0 0 -.1 330 19 1558 250 273 291 312 0 -.05 -.05 320 20 1600 301 337 365 384 0 0 -.1 320 19 1602 304 332 356 379 0 0 0 335 17 1604 260 282 302 321 0 0 0 330 17 1606 231 259 277 291 0 0 -.05 325 18 1608 259 281 303 323 0 0 -.05 320 19 1610 290 318 342 359 0 -.05 -.05 320 17 February 19, 1960 2136 302 342 384 426.1.2.3 350 13 2138 341 395 432 462.1.2.2 350 12 2140 312 349 387 415.1.2.2 345 13 2142 338 379 416 447.1.2.3 350 14 2144 323 363 404 441.1.3.4 345 14 2146 311 359 399 433.1.2.3 345 14 2148 330 369 413 444.1.2.3 350 13 2150 307 346 382 408.1.2.2 345 12 2152 294 335 371 402.05.1.2 350 12 2154 305 339 373 404.05.2.3 350 12 2156 380 420 463 493.05.2.2 355 11 2158 361 403 436 468.1.2.2 350 13 2200 352 397 441 481.05.2.2 355 13 2202 328 369 410 444.05.1.1 355 13 2204 281 315 349 377.05.1.2 355 12 2206 303 340 374 408.05.1.2 350 12 2208 277 311 346 370.05.1.1 355 11 2210 285 319 353 389.05.1.1 350 2212 273 306 336 360.05. 2 2 355 2214 240 269 300 328.05.1.1 55 2216 323 361 402 441.05.1.2 355 2218 298 329 359 392.05.1.2 55 96

MICRONETEOROLOGICAL AND SC INTILLATION DATA February 19, 1960 (Continued) Anemometer Wind Dir. l TlmeEST Revolutions Temperature Difference, C Degrees Mod. 2 min.period, ending 0O5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2220 310 348 378 408.1.1.1 350 11 2222 329 363 401 423.05.1.1 555 t" 2224 295 333 371 398 0.1.05 350 " 2226 316 3557 384 414.05.1.1 345 2228 309 344 380 412.05.05.05 345 t 2230 301 337 374 397.1.1.1 350 " 2232 341 382 423 458.05.1.2 350 t 2234 312 350 389 425.05.1.1 35 350 22356 287 328 359 387.1.1.1 345 12 2238 308 345 381 413.05.2.2 350 12 2240 321 65403 435.05.2.2 345 12 2242 336 385 424 4553.05.1.2 350 11 2244 280 318 346 382.05.1.2 350 11 2246 308 346 384 410.05.1.2 350 11 February 20, 1960 2004 92 107 119 108 MSG MSG MSG 050 38 2006 82 103 120 125 1.7 3.6 4.3 090 22 2008 76 88 111 126 2.3 3.0 4.0 110 19 2010 114 132 164 174.9 2.9 3.9 170 MSG 2012 107 119 145 161.3 1.2 2.4 185 " 2014 70 82 102 110 1.2 1.4 2.1 195 40 2016 44 61 74 68 2.5 2.7 4.8 200 28 2018 25 60 59 26 4.1 4.9 5.6,, 28 2020 19 45 39 24 4.8 5.2 4.7 " 29 2022 3 22 18 19 5-.2 5.3 5.6 " 22 2024 16 24 28 26 1.9 4.4 6.4 240 16 2026 20 25 34 46 1.5 3.0 4.5 300 23 2028 45 45 55 48 2.1 4.2 5.7 300 22 2030 60 65 67 56 3.0 5.7 5.9 325 16 2032 34 54 69 46 2.2 6.3 7.2 " 12 2034 1 14 62 37 2.0 5.8 8.6 " 18 2036 2 3 42 55 1.8 4.4 8.9 " 21 2038 21 16 43 68 1.5 4.0 8.6 335 23 2040 28 14 47 64 1.5 3.5 7.6 340 27 2042 27 26 45 57 2.1 4.3 8.8 360 23 2044 32 355 70 67 2.4 4.6 9.6 010 24 2046 27 47 97 76 2.1 6.4 9.5 010 23 2048 11 34 85 89 2,6 7.0 9.1 010 24 2050 14 29 63 90 2.6 5.4 8.8 015 32 2052 5 17 53 81 3s7 6.6 9.6 " 27 2054 2 11 55 90 3.3 8.7 9.7 23 97

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 20, 1960 (Continued) Anemometer Wind Dir. Time, EST Revolutions Temperature Difference, C Degrees Mod. 2 min. period, ending 0.5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2056 2 28 77 99 4.9 7.8 10.0 015 26 2058 8 37 87 106 4.7 8.1 9.8 015 19 2100 33 47 75 98 2.9 5.7 7.9 010 19 2102 27 38 85 116 2.3 6.4 7.7 040 13 2104 35 44 87 115 1.0 4.9 7.4 045 15 2106 59 66 97 131.6 3.2 6.5 045 18 2108 60 68 102 138.5 3.1 7.0 040 MSG 2110 41 57 124 150 1.0 5.2 8.0 040 " 2112 41 69 129 134 2.9 6.6 8.0 025 t 2114 24 41 73 124 2.1 5.2 8.1 020 2116 36 41 71 134 1.2 2.8 5.7 020 " 2118 27 48 79 143 1.7 3 8 6.4 015 33 2120 33 50 103 147 2.7 4.8 7.9 015 33 2122 30 48 98 136 3.2 6.7 9.5 020 20 2124 19 33 88 130 2.8 6.1 9.3 020 19 2126 5 17 62 114 2.3 5.8 8.8 020 22 2128 18 26 46 101 2.1 4.4 7.1 015 24 2130 28 30 46 100 1.3 3.8 6.2 015 29 2132 33 37 59 96 1.8 3.1 6.4 015 25 2134 29 44 68 86 2.1 4.7 6.3 010 35 2136 38 54 67 86 2.9 5.4 6.1 005 41 2138 54 62 73 95 2.7 4.4 5.4 015 42 2140 66 63 76 86 1.4 3.9 4.8 015 33 2142 60 59 70 84.8 4.2 4.9 020 24 2144 60 62 74 82.3 3.5 4.4 020 16 2146 62 65 85 79 1.0 3.3 5.0 020 19 2148 55 57 86 75 1.6 4.1 5.4 015 17 2150 17 39 66 78 1.7 4.8 6.7 010 22 2152 20 32 60 60 2.1 4.7 6.5 " 16 2154 11 28 48 57 2.0 5.4 6.4 " 12 2156 6 23 50 68 1.2 5.2 7.3 " 20 2158 14 23 57 72 1.2 6.1 8.2 IT 20 2200 27 37 54 66 1.7 4.6 7.1 350 36 2202 37 55 68 78 2.2 3 8 7.3 325 40 2204 42 57 78 95 1.2 3.4 7.5 330 46 2206 38 50 88 104.8 2.3 6.4 340 48 2208 66 77 110 99.4 2.5 5.4 345 55 2210 34 45 78 105.4 2.1 5.6 360 49 2212 49 54 70 99.6 1.8 4.2 010 56 2214 30 45 57 81 1.1 2.5 3.6 005 53 2216 64 75 82 87.3 1.7 2.8 350 50 2218 77 87 91 101.5 2.2 3.2 350 36 2220 71 81 85 95.7 2.2 3 4 360 33 2222 78 87 93 99.4 2.6 3.7 360 31 98

MICROMETEOROLOGICAL AND SC INTILLATION DATA February 20, 1960 (Continued) Anemometer Wind Dir. o Time,EST Revolutions Temperature Difference,0C Degrees Mod, 2 min.period, ending 0.5m lm 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2224 91 95 102 99.3 2.4 4.4 360 33 2226 71 78 83 81.3 3.1 5.0 360 32 2228 42 50 60 47.1 2.3 4.4 360 24 2230 26 33 46 45.1.7 3.0 345 20 2232 24 28 36 51.1.5 2.9 330 28 2234 30 36 41 51.2.6 3.4 340 MSG 2236 18 30 46 59.5 1.4 3.7 350 22 2238 7 22 45 51.7 1.9 3.6 005 20 2240 4 9 28 37.9 1.9 3.3 17 2242 5 12 33 41.3 1.6 3.1,, 16 2244 26 29 49 60.4 1.3 3.1 T, 16 2246 41 44 57 65.6 1.9 3.0 010 20 2248 40 42 553 64.8 2.1 2.9 010 19 2250 30 34 44 51.8 2.3 2.8 010 15 2252 36 33 44 50.3 1.3 1.9 020 11 2254 32 34 52 43.4 1.1 2.2 030 12 2256 20 23 39 57.6 1.6 3.3 025 14 2258 1L7 30 39 55 ~ 7 2.1 3.3 010 16 February 23, 1960 2048 65 66 92 127 MSG MSG MSG 330 27 2050 59 71 111 128 " It 330 18 2052 53 81 107 126 5" I5 335 16 2054 43 81 101 113 " " " 335 27 2056 62 97 102 123 " T 335 18 2058 77 118 120 135 " " " 300 16 2100 70 117 123 154 6.1 8.3 9.7 335 16 2102 89 127 142 157 6.2 7.9 8.6 335 20 2104 96 123 136 150 5.3 6.0 6.4 345 29 2106 85 116 131 150 3.7 5.7 7.2,, 22 2108 72 111 1356 153 5.6 7.5 7.8 " 15 2110 73 100 136 155 3.6 7.4 8.6 " 13 2112 93 125 166 201 35.7 5.9 9.1 360 34 2114 97 145 186 201 3.8 8.0 9.0 360 36 2116 80 130 166 191 3.4 6.9 7.3 360 42 2118 60 101 169 201 3.6 7.1 6.6 355 49 2120 107 155 197 228 2o8 4.3 5.0 360 45 2122 124 166 206 237 2.2 3.8 4.5 355 44 2124 141 181 229 262 1.9 3.1 4.1 005 43 2126 164 204 250 281 1o3 2.8 3.1, 41 2128 187 224 268 309 1.0 1.9 2.9 " 39 2130 182 220 257 298 1.1 2.1 3.2 " 39 99

MICROMETEOROLOGICAL AND SC INTILLATION DATA February 23, 1960 (Continued) Anemometer Wind Dir. Time, EST Revolutions Temperature Difference,~C Degrees Mod, 2 min.period, ending 0.5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2132 159 197 244 286 1ol 2.8 3.5 360 39 2134 157 195 242 289 1.2 2.5 3.7 005 39 2136 147 188 234 271 1.4 3.0 3.3 t 39 2138 154 188 230 264 1.3 2.3 2.9 " 37 2140 154 190 229 268 1.0 2.0 2.9 " 36 2142 181 214 253 286 1.0 1.8 2.2 35 2144 185 216 253 297.8 1o6 2.2 " 34 2146 211 244 278 316.5 1.6 2.1 " 33. 2148 169 201 240 282 1.0 1.8 2.5 " 34 2150 149 180 221 266 1.1 2.5 2.8 360 35 2152 170 201 234 274 1.1 1.9 2.5 005 36 2154 186 220 255 290.7 1.7 2.6 005 35 2156 163 197 238 270 1.1 2.3 2.8 360 33 2158 158 193 232 271 1.2 2.2 2.5 355 37 2200 179 210 244 272.9 2.0 1.6 355 37 2202 178 213 248 280.9 1.5 2.5 355 35 2204 182 215 259 295.9 1.9 2.4 360 33 2206 186 218 250 274 1.0 1.6 2.0 355 35 2208 160 191 226 261 1.2 1.6 2.7 355 34 2210 147 183 225 258 1.0 2.1 2.9 355 33 2212 171 205 243 277 1.0 2.1 2.1 360 35 2214 136 170 212 250 1.0 2.1 3.0 " 32 2216 134 166 201 232 1.1 2.2 3.0 " 31 2218 144 172 208 244.9 1.9 2.6 " 32 2220 184 212 238 258.8 1.8 1.7 " 31 2222 183 211 237 261 1.0 1.6 1.8 5 32 2224 168 200 231 260.9 1o6 1.9 355 33 2226 144 175 205 228 1.0 2.0 2.3 355 32 2228 145 171 197 216.8 1.8 2.3 360 33 2230 162 192 225 249 1.0 1.8 2.7 355 33 2232 149 184 218 256 1.3 2.3 3.1 350 33 2234 189 226 260 294.8 2.0 2.2 350 34 2236 258 294 332 364.7 1.1 1.7 005 31 2238 285 327 365 405.5.8 1.5 " 30 2240 207 238 284 317.7 1.4 2o4 " 32 2242 259 294 333 373.8 1.3 1.8 " 32 2244 206 239 274 306.7 1.5 1.9 32 2246 183 211 249 284.7 1.4 2.2 360 31 2248 222 258 295 328.5 1.2 1.6 005 28 2250 214 246 282 318.7 1.3 1.7 005 28 2252 183 213 243 277.5 1.1 1.7 005 26 2254 176 203 241 276.7 1.4 1.8 360 30 2256 201 230 264 300.7 1.2 1.7 005 28 2258 187 220 253 285.7 1.0 1.7 005 26 2300 184 211 242 280.5.9 1.7 010 26 100

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 24, 1960 Anemometer Wind Dir. * Time, EST Revolutions Temperature Difference,~C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-O.5m 2m-0.5m 4m-0.5m 2010 71 92 99 100 1.1 2.1 2.8 MSG 19 2012 70 95 105 110 1.4 2.7 3.3 330 22 2014 81 109 128 132.9 2.3 3.3 330 23 2016 83 107 131 144.5 1.6 2.7 335 25 2018 78 104 126 156.5 1.6 2.6 345 25 2020 83 105 135 166.5 1.3 2.4 345 23 2022 85 108 134 164.7 1.3 2.1 340 19 2024 95 113 141 165.4.8 1.6 345 20 2026 99 115 133 152.2.5.9 350 16 2028 105 124 145 157.2.5.8 355 14 2030 114 132 152 166.2.5.8 350 14 2032 97 113 127 140.3.7.7 345 13 2034 73 93 114 129.4 1.1 1.2 34o 13 2036 86 101 121 143.3.7 1.1 335 14 2038 85 103 121 135.3.5.9 335 13 2040 75 94 113 124.3.8 1.1 330 14 2042 77 97 113 130.3.9 1.1 335 13 2044 72 91 108 129.4.8 1.0 I" 13 2046 81 100 123 144.3.7.9 I" 13 2048 90 111 131 146.3.7.9 " 13 2050 72 88 103 122.4.7 1.0 " 14 2052 67 86 105 123.3.9 1.0 34o 13 2054 69 91 111 130.3.5 1.0 335 13 2056 79 94 109 127.3.7.8 335 14 2058 69 85 104 120.3.7.8 345 13 2100 79 96 113 126.3.7.7 350 12 2102 73 90 104 115.2.3.5 11 2104 67 82 101 116.2.4.7 " 13 2106 65 83 97 109.2.5.9 13 2108 62 82 100 119.3.7.9 " 14 2110 59 76 96 116.2.5.8,, 12 2112 69 85 96 109.2.3.5 " 14 February 27, 1960 1824 MSG MSG MSG MSG 2.7 2.6 3.5 MSG 28 1826 II" " " "II 2.5 3.3 3.9 315 26 1828 63 96 110 126 2.5 3.7 4.2 315 26 1830 60 91 104 119 3.4 3.5 3.7 310 23 1832 57 88 109 126 3.3 3.7 4.4 310 22 1834 50 87 112 129 3.0 4.4 4.2 310 22 1836 51 87 113 129 3.4 4.2 5.0 305 26 1838 45 83 111 128 3.2 5.8 5.6 305 22 1840 43 87 105 118 5.2 5.8 6.4 305 24 101

MICROMETEOROLOGICAL AND SC INTILLATION DATA February 27, 1960 (Continued) Anemometer Wind Diro Time, EST Revolutions Temperature Difference,~C Degrees Mod, 2 min.period, ending 0.5m im 2m 4m lm-O.5m 2m-0.5m 4m-0.5m 1842 39 82 99 119 5.5 7.4 7.2 310 28 1844 38 90 108 125 7.3 7.0 7.9 310 24 1846 34 80 107 129 5.1 6.9 8.1 310 20 1848 27 84 111 131 6.2 8.1 8.9 315 20 1850 21 75 i0o 116 5.2 8.9 9.4 320 17 1852 5 45 79 106 5.7 8.6 9.5 325 18 1854 24 46 80 103 4.9 8.8 8.9 310 21 1856 62 75 87 106 3.8 5.4 4 7 295 36 1858 68 79 91 102 3.2 5.8 6.6 285 38 1900 63 72 104 135 2.8 6.0 8.5 275 41 1902 33 56 103 135 2.2 7.6 9.8 275 45 1904 45 90 115 137 3.5 8.3 9.8 280 43 1906 31 77 101 125 3.8 6.7 8.4 285 29 1908 9 30 95 12~0 2.3 6.2 8.8 290 25 1910 25 49 86 133 2.4 5.3 8.2 290 27 1912 10 36 84 112 2.6 6.5 8.3 295 32 1914 5 10 40 81 2.5 5.9 8.8 295 28 1916 18 26 42 67 2.3 6.8 9.4 300 19 1918 14 17 53 64 3.2 7.7 10.2 305 16 1920 33 27 43 66 3.0 5.3 9 2 310 15 1922 26 27 61 74 2.4 5.0 9.0 320 18 1924 35 33 65 84 3.2 5.7 9.2 330 19 1926 11 14 57 79 3.6 6.5 10.2 330 20 1928 1 3 55 76 3.5 8.2 11.1 325 20 1930 15 16 49 82 4.0 6.3 10.2 320 22 1932 12 8 40 77 2.4 5.5 10.1 335 22 1934 13 2 18 54 2 3 5.6 10.4 335 16 1936 38 17 30 51 1o 5 4.3 8.8 335 14 1938 35 45 36 72 2.2 4.0 9.2 345 12 1940 14 34 46 65 4o9 6.8 11.4 345 17 1942 15 46 91 85 4.4 6.2 11.5 325 58 1944 33 50 93 102.9 3.4 9.6 320 51 1946 20 41 119 107 1.0 4.1 9.8 320 52 1948 7 31 120 111.9 4.2 10.5 320 50 1950 32 75 121 105 1.5 7.4 10.5 315 60 1952 20 58 126 107.9 5.6 11,1 310 67 1954 64 105 134 112 1.3 6.6 9.8 315 37 1956 66 116 123 123 2.4 8.1 10.2 305 48 1958 35 73 125 124 1.9 7.7 10.7 " 45 2000 46 83 106 113 1.7 8.2 9.6 " 43 2002 19 61 108 97 1.9 7.6 9.7 " 38 2004 18 51 101 92 1.4 5.7 9.1 315 28 2006 34 80 100 97 2.8 6.4 8.8 320 26 2008 18 62 111 109 2.1 6.8 9.5 315 23 102

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 27, 1960 (Continued) Anemometer Wind Dir. Time, EST Revolutions Temperature Difference,7C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-O 5m 2m-0.5m 4m-0.5m 2010 30 75 133 118 1.7 6.7 9.7 310 30 2012 70 112 149 127 2.1 6.2 8.5 310 32 2014 78 121 139 127 2.0 6.5 8.9 305 33 2016 88 134 137 129 2.3 7.0 9.3 " 33 2018 82 128 132 129 2.5 7.4 9.4 " 33 2020 78 124 133 127 2.4 7.5 9.4 " 35 2022 69 112 131 124 2.0 7.6 9.8 " 35 2024 73 117 131 120 2.1 8.0 9.9 " 33 2026 69 110 130 118 1.7 7.7 9.7 " 35 2028 67 108 130 117 1.7 7.6 9.9 " 33 2030 61 103 131 117 1.8 7.2 10.2 " 33 2032 66 108 128 118 1.3 7.8 9.8 " 39 2034 84 124 127 117 2.4 7.8 9.6 " 39 2036 85 124 135 120 2.5 7.2 9.6 310 38 2038 74 113 134 122 1.5 7.7 9.9 305 44 2040 79 119 127 119 2.1 7.9 9.8 305 44 2042 75 117 134 122 2.2 7.4 9.7 310 49 2044 58 100 135 122 1.9 7.1 9.3 " 49 2046 48 81 126 124 1.4 5.5 9.4 " 43 2048 71 110 143 129 1.4 6.2 9.4 " 42 2050 84 125 147 126 1.5 6.2 8.8 " 44 2052 85 120 145 126 1o4 6.2 8.8 " 42 2054 MSG MSG MSG MSG 1.3 7.1 9.3 " 40 February 29, 1960 2012 MSG MSG MSG MSG 5.6 8.8 10.1 280 26 2014 61 96 138 175 5.0 9.0 10.2 275 22 2016 57 98 142 185 5.5 9.6 11.5 270 22 2018 57 109 135 184 6.0 9.7 11.1 275 23 2020 66 118 143 180 6.0 9.6 11.1 " 23 2022 74 117 146 181 6.6 9.2 10.7 " 24 2024 68 119 146 186 6.1 9.6 10.9 " 27 2026 69 121 147 189 5.7 9.1 10.9 I" 26 2028 74 124 153 189 5.5 9.3 10.3 5 27 2030 71 118 152 194 5.1 9.2 10.5 " 29 2032 72 115 155 187 4.4 8.9 9.9." 28 2034 73 119 167 182 4.1 8.1 9.6 280 27 2036 60 109 156 170 5.5 8.9 9.4 285 26 2038 62 108 145 174 5.5 8.2 8.6 290 27 2040 62 101 139 163 5.3 8.4 8.8 " 29 2042 61 102 130 155 6.5 8.2 9.9 " 28 2044 67 104 129 152 5.2 7.2 8.6 " 33 103

MICROMETEOROLOGICAL AND SCINTILLATION DATA February 29, 1960 (Continued) Anemometer Wind Diro % Time, EST Revolutions Temperature Difference,0C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2046 61 95 131 154 4.9 8.0 9.1 290 33 2048 56 98 132 155 6.6 7.9 8.8 " 35 2050 53 98 134 162 5.3 8.6 8.5 "t 37 2052 57 98 140 170 4.5 7.1 8.6 " 37 2054 64 98 141 175 4.2 6.4 7.4 " 40 2056 56 56 101 147 183 3.8 7.6 8.3 " 39 2058 58 108 163 206 3.4 7.8 8.3 295 40 2100 65 114 169 216 3.6 6.6 7.9 290 39 2102 62 111 166 207 3.3 6.6 8.2 285 37 2104 58 102 157 196 3.3 6.4 8.4 290 36 2106 59 99 157 195 3.9 7.2 7.8 290 39 2108 63 106 153 188 3.8 6.5 8.o 285 37 2110 56 93 146 194 4.7 8.0 8.0 o 34 2112 53 95 149 199 4.6 8.8 8.8 " 34 2114 60 102 158 199 4.4 9.2 9.2 " 34 2116 65 107 149 199 MSG MSG MSG 280 34 2118 49 94 133 189 " " " 275 32 2120 71 108 137 173 " " t 280 30 2122 61 99 141 176 " "T 280 28 2124 62 107 140 189 i" " " 275 30 2126 57 100 142 186 " T " 280 30 2128 49 92 125 172 " " " 280 27 2130 68 93 123 166 iTt tt 275 26 2132 60 103 131 160 5.5 6.4 8.0 270 24 2134 64 107 145 170 4.9 7.3 9.1 265 24.2136 54 95 140 168 5.3 7.6 9.4 265 22 2138 56 91 135 174 5.0 7.5 9.3 265 20 2140 61 111 136 177 5.1 7.1 9.0 265 21 March 1, 1960 1942 7 15 28 23 1.6 4.5 4.7 240 MSG 1944 6 4 21 20 3.2 5.8 6.9 it "T 1946 20 28 22 27 3.0 5.5 7.6 ti Ti 1948 10 23 17 26 3.4 5.5 8.1 tt t 1950 3 20 12 21 3 8 5.2 8.8 1952 18 16 14 21 3.4 5.4 9.5 " t tl 1954 18 31 28 18 4.4 7.7 10.7 " tt 1956 32 54 42 35 4.9 7.7 8.8 It 1958 34 59 43 30 6.4 7.8 9.5 080 2000 7 49 33 30 3.3 8.3 9.8 " T 2002 13 49 40 31 3.4 9.2 9.3 " " 2004 10 41 27 19 4.8 10.1 9.3 " " 104

MICROMETEOROLOGICAL AND SCINTILLATION DATA March 1, 1960 (Continued) Anemometer Wind Dir. Time, EST Revolutions Temperature Difference,~C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-O.5m 2m-O.5m 4m-0.5m 2006 11 26 30 17 4.5 9.3 10.7 080 MSG 2008 20 36 42 32 4 7 9.1 9.5 065 t 2010 2 12 23 23 4.2 8.6 10.7 045 t 2012 2 3 25 28 2.6 8.7 10.5 045 2014 5 11 30 34 2.9 9.1 11.2 045 2016 47 62 62 53 2.3 8.0 10.0 070 32 2018 23 38 53 53 4.1 9.1 7.2 045 34 2020 17 29 44 55 3.6 7.8 8.0 010 48 2022 45 71 76 72 3.0 5.1 8.2 315 MSG 2024 19 52 59 69 3.2 6.6 7.9 310 43 2026 34 62 70 60 5.3 5.0 7.0 330 39 2028 32 56 82 75 1.6 7.1 8.1 335 41 2030 17 33 62 72 1.0 4.6 8.5 330 42 2032 31 44 70 54 1.0 4.1 7.9 330 51 2034 5 17 47 56 1.5 3.2 8.1 330 51 2036 15 23 36 68 1.5 3.7 8.1 320 45 2038 9 12 20 51 1.4 4.4 10.1 310 34 2040 15 26 45 67 2.2 5.0 9.8 " 32 2042 2 26 48 63 2.9 5.6 10.6 " 39 2044 16 42 62 75 2.1 3.4 9.6 " 54 2046 3 10 46 63 1.7 5.9 11.1 300 63 2048 19 28 37 76 1.4 2.1 9.1 310 76 2050 14 21 34 81 1.7 3.3 9.6 310 53 2052 9 20 42 87 2.1 4.6 10.0 310 51 2054 3 28 59 80 2.0 4.5 9.7 295 57 2056 4 15 48 72 1.9 3.7 9.6 295 80 2058 7 20 54 72 1.0 3.0 9.1 300 80 2100 11 24 54 66 1.0 3.2 9.7 305 72 2102 23 34 70 71.7 3.6 9.8 300 67 2104 25 36 50 85 1.0 1.7 6.4 305 37 2106 11 23 57 102 1.4 2.6 7.8 335 37 2108 23 47 90 88.8 4 1 9.0 300 35 2110 38 51 78 92.7 3.1 8.9 295 69 2112 10 28 75 84 1.2 5.3 10.0 295 80 2114 12 28 75 92.9 3 7 10.3 300 77 2116 10 33 94 99.9 6.6 10.3 300 72 2118 7 35 97 102 1.0 7.4 9.9 295 72 2120 4 34 101 96 1.3 6.4 10.3 300 70 2122 5 17 80 99 1.2 4.2 10.6 305 48 2124 30 52 102 103 1.1 4.2 8.2 315 48 2126 17 50 103 99 1.0 5.2 9.3 315 41 2128 15 52 116 95.9 5.9 11.1 305 65 2130 2 38 107 94 1.1 6.1 11.8 300 50 2132 MSG MSG MSG MSG 1.2 4.0 11.2 300 59 105

MICROMETEOROLOGICAL AND SCINTILLATION DATA March 1, 1960 (Continued) Anemometer Wind Dir. Time, EST Revolutions Temperature Difference, C Degrees Mod. 2 min. period, ending 0O5m lm 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 2134 MSG MSG MSG MSG 1.2 3.4 11.0 300 50 2136 5 13 75 88 1.0 3.3 10.8 305 40 2138 1 15 89 103 1.5 3.9 10.4 315 41 2140 1 16 98 99 1.6 5.5 11.2 315 62 2142 5 27 107 108 1.6 5.7 10.8 315 63 2144 11 13 82 106 1.1 4.1 10.4 325 60 2146 6 22 97 109 1.4 5.4 10.5 325 82 2148 19 25 82 111 1.0 3.8 10.7 325 59 2150 25 25 89 101.8 3.8 10.4 330 62 2152 27 32 92 103.2 2.5 10.3 335 69 2154 24 36 78 114.3 2.2 10.3 335 59 2156 37 41 98 108.3 2.9 9.8 335 67 2158 39 50 1 10 104.2 4.6 10.5 340 62 2200 47 66 108 101.7 6.5 10.5 " 65 2202 27 41 99 97.3 5.6 11.3 " 62 2204 25 36 82 100.4 3.7 11.0 " 72 2206 30 49 98 107.9 6.1 11.2 " 79 2208 14 33 93 103.7 4.6 11.4 " 69 2210 31 48 98 102.7 6.3 11.0 74 March 2, 1960 1840 MSG MSG MSG MSG 1.3 2.1 2.3 MSG 20 1842 81 114 158 184 1,4 2.6 3.2 " I 18 1844 79 116 162 184 1.4 2.9 3.2 it 19 1846 92 124 166 189 1.5 2.6 3.4 " 19 1848 111 *141 184 MSG 1.2 2.6 3.2 T" 20 1850 125 *151 189 ".9 1.9 2.7 " 19 1852 144 *174 216 ".8 1.7 2.1 " 19 1854 143 *170 212 ",9 1.8 2.2 i" 18 1856 143 *167 205 ".8 1.7 2.1 i" 18 1858 115 *139 176 " 1.1 1.8 2.3 " 21 1900 123 *144 179 ".8 1.9 2.5 " 21 1902 120 *141 176 " 1.0 1.4 2.4 " 23 1904 132 *167 193 ".8 2.0 2.1 " 22 1906 133 *168 195 ".8 1.8 2.4 " 24 1908 131 *168 196 " 1.1 1.6 2.4 " 24 1910 134 *170 201 ".9 1.9 2.4 "t 24 1912 122 *150 189 " 1.2 2.1 2.4 " 25 1914 125 *155 196 " 1.1 2.1 2.6 " 24 1916 145 *169 208 ".8 1.8 2.2 "I 24 *Interpolated. o106

MICROMETEOROLOGICAL AND SC INT ILLATION DATA March 2, 1960 (Continued) Anemometer Wind Dir. Time, EST Revolutions Temperature Difference,~C Degrees Modo 2 min.period, ending 0.5m lm 2m 4m lm-O.5m 2m-0.5m 4m-0,5m 1918 MSG MSG MSG MSG 1.1 2.0 2.4 MSG 25 1920 " " ".9 1. 5 2.3 24 1922 t " " "i.9 1.8 2,4 " 24 1924 167 *200 236 " lo0 1.9 2,0 " 24 1926 143 *171 210 ".7 1.o7 22 " 23 1928 148 *178 220.9 1.7 2.!1 r 23 1930 160 *192 226 " o8 1.6 2.1 " 24 1932 147 *176 217 ".9 1.8 2.3 " 23 1934 182 *213 249 ".8 1.6 1.9 r 22 1936 172 *200 234 ".8 1,4 1.7 r 22 1938 170 *200 230 ".7 1.4 1,8 " 24 1940 183 *211 245 ".5 1.3 2.0 " 25 1942 162 *195 231 ".8 1.4 1 o7 T 27 1944 187 *215 251 "..7 1.8 " 28 1946 188 *217 253 ".8 1.6 1.6 " 26 1948 185 *213 247 " 1.2 1.27 " 23 1950 187 *215 250 ".5 1.2 1.6': 21 1952 190 *217 256 ".8 1.2 1.5 " 21 1954 181 *209 249 " 5 1.2 1-5 " 22 1956 192 *216 252 " - 5 1.3 1o5 " 22 1958 183 *212 248 ".7 1.1 1.6 " 21 2000 205 *234 261 ".4.9 1o3 " 20 2002 197 *227 259 "5.9 1.5 " 20 2004 201 *230 253 ".4.8 1,2 " 20 2006 194 *225 257 ".4 1.0 1o3 " 19 2008 178 *206 242.5" ~ 1O 1,4 " 18 2010 194 *220 249 " o4.8 1.1 I" 18 2012 196 *227 258 ".4.9 1.0 015 18 2014 196 *222 248 ".4.8 1.0 I" 18 2016 203 *233 263 ".4 o8 1o1 " 17 2018 201 *228 258 ".3.7 1.0 " 17 2020 213 *241 266 ".3.7.9 020 16 2022 213 *241 265 ".3.7 o9 " 16 2024 209 *239 268 ".2.5 1,o O 15 2026 216 *246 2'75 ".3.7.8 16 2028 199 *227 257 o 3.7.8 "I 15 2030 2o4 *232 255 ".3.7.8 "I 15 2032 205 *234 261 ".3 5.8 " I 14 2034 218 *241 264 " 2.5.8 015 14 2036 230 *251 273 ".2 o5 7 14 2038 213 *241 269 " o3 o 4 s5 14 2040 211 239 265 ".2.4.8 rr 13 *Interpolated. 10 107~

MICROMETEOROLOGICAL AND SCINT ILLATION DATA March 7, 1960 Anemometer Wind Diro Time, EST Revolutions Temperature Difference,~C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m lm-0.5m 2m-0.5m 4m-0.5m 1824 88 119 144 166 2.2 2.8 3.1 305 35 1826 85 118 143 163 2.2 2.5 3.2 305 32 1828 74 110 135 155 2.3 3.0 3.6 305 32 1830 70 100 119 141 2.2 3.4 4.2 300 29 1832 57 96 120 141 3.5 4.4 4.9 " 37 1834 55 87 115 135 3.0 4.6 4.9 i" 31 1836 50 80 107 126 3.5 4.7 4.8 "25 1838 50 75 91 121 2.9 4.2 5.6,, 21 1840 42 68 81 98 2.9 3.8 5.53 " 16 1842 38 60 82 102 3.0 5.5 6.1 " 26 1844 55 72 76 86 2.0 2.4 35.6, 24 1846 49 68 78 80 2.2 35.9 4.0 295 20 1848 29 63 75 MSG 5.0 6.2 6.9 295 20 1850 13 *45 77 " 6.1 7.2 7.4 290 18 1852 7 *35 85 " 5.7 7.7 8.3 285 15 i854 13 *35 86 " 6.2 8.2 8.5 285 17 1856 14 *40 83 " 5.0 8.2 8.5 280 21 1858 2 *30 75 " 3.9 8.9 9.1 270 18 1900 3 *38 81 " 4.1 9.5 10.0 275 18 L902 17 *45 77 " 3.0 8.9 9.7 285 24 1904 10 *30 66 " 3.7 8.3 9.0 295 26 1906 8 *28 65 " 4.0 8.5 9.6 3505 32 1908 11 *20 62 " 1.9 6.1 7.6 305 33 1910 10 *20 65 " 2.4 6.2 8.2 310 355 1912 6 *18 55 " 2.3 6.4 8.7 300 30 1914 2 *10 51 " 2.2 7.3 8.8 320 29 1916 9 *17 61 " 2.0 5-8 7.7 " 33 1918 16 *36 58 " 2.9 4.8 7.7 " 32 1920 11 *21 66 " 2.1 5.4 7.5 T 28 *Interpolated March 8, 1960 0550 MSG MSG MSG MSG 0 1.9 7.9 MSG 34 0552 i I t It.4 1.6 7.6 " 43 0554 11" " " "I.3 1.9 8.6 I" 41 0556 " " " ".8 5.3 9.8 " 99 0558 i" IT,, "I 1.2 5.0o 10.1 " I 119 0600 I" " " " ~ 7 3.3 8.5 80 0602 20 38 49 65 1.3 3.0 8.3 340 47 0604 0 29 46 48 1.6 3.2 9.3 340 48 108

MICROMETEOROLOGiCAL AND SC INTILLATION DATA March 8, 1960 (Continued) Anemometer Wind Diro, Time, EST Revolutions Temperature Difference,~C Degrees Mod, 2 min.period, ending 0. 5m lm 2m 4m lm-O. m 2m-0.5m 4m-0,Sm o606 0 21 39 41 1.4 3.3 10.3 335 45 o608 " 24 37 43 1.1 2.2 8.7 325 48 0610 " 27 40 52.8 2.2 8.4 t" 4 0612 " 13 22 45.8 1.9 9o0 T 89 0614 25 37 42 43.4 1.7 9.3 " 82 0616 9 24 44 38.3 2.0 9.2 " 72 0618 0 11 31 43.1 2.2 8.8 69 0620 4 34 42 68.5 1.6 8.8 315 79 0622 43 49 72 59.1 1.3 9.1 310 82 0624 27 35 67 57.2 2.5 9.7 305 69 0626 0 23 46 59.2 2.3 9.3 " 69 05628 0 26 54 47 -.2 2.2 9O0 " 76 0630 20 36 61 50 -.3 2.5 8.5 I" 70 0632 7 27 54 64.1 2o2 9.2 310 63 0634 0 23 51 56.1 2.2 9.6 305 62 0636 " 26 47 44.2 2.1 9.6 T" 63 o638 " 26 44 36.2 1.8 9.2 " 48 0640 " 37 44 28.1 2.1 8.1 315 40 0642 4 43 43 38 1.8 4.1 9.8 330 40 o644 " 39 37 30 3.2 4.8 10.7 " 25 0646 " 30 27 30 3.4 4.4 11.0 IT 31 o648 " 23 37 33 2.8 3.7 10.4 T 44 0650 " 31 48 49 1.9 2.6 9.6 " 56 0652 " 27 47 52 1.1 2,4 9.5 1 72 o654 " 21 39 50 -.1 1.8 9.6 335 80 0656 " 32 54 57.2 2.0 9.2 " 74 0658 10 44 56 54 -.3 1,o4 8.2 " 67 0700 1 20 43 58.8 2.1 8.7 " 50 0702 0 17 36 51.1 2.2 8.9 I 40 0704 I" 12 31 44 5 2.5 9.3 330 45 0706 " 17 32 49 ~7 2.8 9.9 340 57 o708 I" 23 29 45.9 2.6 9.5 MSG 53 0710 7 24 33 31.7 2.6 9.6 " 45 0712 25 35 32 33 1.9 317 10.5 " 47 0714 26 30 29 37 2.7 4,0 10o 6 t 50 0716 25 14 30 36 1,o 7 3.1 10.o 4 T 57 0718 10 13 32 37 2.0 31,5 l0.5 " 47 0720 5 17 33 33 o9 2.9 9.7 I' 40 0722 0 18 32 37 1.0 3.4 10.2 51 0724 0 14 31 44 1.8 3.8 10o 5 " 51 0726 0 17 38 49 1.4 3. 8 9.6 " 51 0728 11 31 50 62.5 2.3 8.3,, 63 0730 12 24 61 52.8 3.8 9.5 " I 69 0732 26 33 49 50 -.3 3.1 7.3 " 55 109

MICROMETEOROLOGICAL AND SCINTILLATION DATA March 8, 1960 (Continued) Anemometer Wind Dir. Time, EST Revolutions Temperature Difference,_C Degrees Mod, 2 min.period, ending 0.5m im 2m 4m lm-0.5m 2m-0.5m 4m-0o5m 0734 25 38 58 48.7 2.9 8.3 MSG 553 0736 51 65 74 61 1.2 3.3 6.6 " 34 0738 78 84 74 72 3.0 4.4 7.7 t" 32 0740 55 58 71 51 3.2 5.0 9.1 " 37 0742 20 43 63 55 2.6 4.5 9.1 " 35 0744 18 44 70 57 1.8 5.2 8.6 " 37 March 14, 1960 0948 17 20 24 32 -.3 -1.5 -4.1 100 10 0950 13 16 20 28.9 -1.9 -35.7 " I 11 0952 15 16 18 28.7 -3.3 -5.0 " 10 0954 17 18 19 29.5 -4.0 -4.6 "T 10 o956 13 13 12 20 -.7 -2.8 -2.5 " 11 0958 11 9 11 17 2.2 -.3.2. 12 1000 15 17 19 20 1.5 -.4.7 12 1002 11 11 15 19.9 -.1 3.0 " 12 1004 1 1 8 12.9 0 1.6 " 11 1006 4 1 14 19 1.1 -2.3.2 " 11 1008 11 13 20 22 1.9 -1.8 -.1 " 11 1010 6 5 15 15.9 -2.8 -1.0,, 12 1012 5 2 2 3.7 -1.0 1.5 " 12 1014 4 3 2 1 1.8 1.2 6.2 " 12 1016 8 4 3 0 2.2 2.8 5^7 " 10 1018 1 1 1 2 MSG MSG MSG " 10 1020 9 8 15 10.7 -3.7.3 " 10 1022 24 23 24 23 1.3 -1.6 3.4 " 12 10o4 29 32 34 35 1.0 -.3 3.1 I" 14 1026 14 12 15 17.3 -.3 1.0 I" 17 1028 11 7 11 11.9 -.2 1e7 " 15 1030 16 19 25 31.7 -1.4 -.5 " I 16 110

MICROMETEOROLOGICAL AND SC INTILLAT ION DATA (Willow Run Field Station) J'anuary 25, 1961 Anemometer Air Temperature Wind Dir, Time, EST Revolutions Temp. ~ Difference,0C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m C.5m 2m-0,5m 4m-0.5m 1956 22 35 44 43 -135 o 8 1o 5 020 14 1958 20 27 34 35 -13.5.9.9 045 11 2000 10 14 22 30 -13.9 1.2 1.9 " 10 2002 16 16 22 25 -14o 7 1.2 2.8 8 $ 2004 2 6 5 16 -15.4.9 2.8 8 2006 10 26 14 8 -15.8.8 2.3 6 2008 5 29 28 26 -16.3 1.1 2.9'8 2010 20 37 33 30 -16.6 1.7 3, 0 010 14 2012 14 31 36 38 -16, 7 2.1 3 6 355 1 2014 21 35 39 43 -16 6 2,3 33 36)0 10 2016 17 33 4 47 -15.9 1.9 9 28 0I" 12 2018 o 30 3-' 43 -14.9 1o 8 2.1 01 18 2020 14 10 18 32 -15 1 5 2.8 2022 33 23 18 23 -15O 6 1.5 2, 2024 22 28 25 23 -15 5 1.2 2.8 2026 13 19 19 23 -15 8.9 2,6 020 3 2028 20 24 29 31 -15o8 1.5 2.8 020 5 2030 4 13 29 4o -16,o) 1.1 2,8 020 9 2032 8 19 23 32 -16.1 2.2 2.6 030 6 2034 14 25 26 40 -15,9 1 1.9 045 10 2036 11 14 26 40 -158 1,o 2 201 o60 o 2038 11 15 31 42 -15. 7 1.1 1.9 6 2040 14 20 30 40 -15.4.8 8 7 817 2042 12 21 41 52 -15.5 o 7 ~ 14 2044 12 29 47 54 -156.8 1.9 1 2046 26 35 51 58 -15,4 5 1.9 210 2o 2048 23 33 51 59 -1 4 o6 1o 9 1 4l 2050 7 20 46 56 -15.4.6 1o 8 " 6 2052 3 8 29 52 -15o7.5 2,2 4 2054 5 i1 36 52 -15.9.4 2,0 5 16 6 2056 7 10 33 50 -15.2 -0.1 2. 6 I i0 8 2058 6 23 43 47 -15..8 2, 5 90 6 2100 38 54 62 57 -14.2 1.1 1.2;90 8 2102 40 50 58 67 -13.4.6 o 8 0 2104 30 37 48 54 -1350 o 3. 5 10 10 2106 16 26 33 37 -13.0 5.o 8 210 17 2108 33 29 25 27 -14.4.7 1.9,' 27 2110 44 56 68 58 -15o 2 o2. 2 22 2112 23 36 55 53 -15o3 o6 2,0 19 2114 16 28 52 67 -5o 2 o 4 1o 8 2116 1 7 33 53 -15 5 o 4 2, 0 I 11

MICROMETEOROLOGICAL AND SCINTILLATION DATA (Willow Run Field Station) February 6, 1961 Anemometer Air Temperature Wind Dir. Time, EST Revolutions Temp.~C Difference,~C Degrees Mod. 2 min.period ending 0.5m lm 2m 4m l.Om 2m-lm 4m-lm 1946 7 25 73 107 -10.1 3.6 6.9 255 35 1948 11 27 80 110 -9.9 3.7 6.9 250 27 1950 35 47 85 100 -8.2 2.9 5.2 250 28 1952 44 58 83 101 -7.7 2.8 4.3 255 27 1954 58 79 98 102 -7.1 2.7 354 255 32 1956 48 66 83 101 -7o6 2.6 35.53 260 32 1958 25 -41 75 92 -8.1 2.8 3 4 260 27 2000 20 35 67 109 -8.3 1.6 3.7 260 24 2002 6 22 59 108 -8.8 1.6 4.8 265 21 2208 67 98 130 142 -10o6 2.5 4.3 035 29 2210 64 102 140 155 -10.2 2.9 4.0 025 30 2212 74 89 118 149 -8.7 1.4 2.0 025 35 2214 71 91 124 150 -9.3 1.3 2.7 025 30 February 8, 1961 1406 102 MSG 131 148 MSG MSG MSG 005 18 1408 53 " 61 65 " " " 350 12 141]0 86'" 100 110 " " " 010 12 1412 67 " 84 95 " " " 010 14 1414 81 " 101 108 5.9 -.1.2 360 12 1416 118 " 151 169 6.6 -.1.1 325 13 1418 164 189 216 243 5.5 0.2 320 14 1420 MSG MSG MSG MSG 5.2 0.1 015 14 1422 141 163 178 197 5,2.1.1 015 12 1424 166 189 212 239 5.3.1.1 035 13 1426 176 199 232 264 5.1 -.1.1 015 14 1428 160 184 211 258 5,4 -.1 -.1 335 12 1430 178 203 230 258 5.2 0 -.1 340 1 1432 145 165 191 214 5.4 -.1 -.1 355 12 1434 163 186 213 232 5.4 -.1.1 340 17 1436 132 148 165 194 5.6 -.1.1 360 20 1438 149 168 187 212 5.5 -.1 -.1 355 18 1440 139 155 178 197 MSG MSG MSG 360 14 1442 108 127 142 163 II" " t 3560 14 1444 164 191 215 239 " " " 320 14 1446 173 196 224 248 I" " " 330 14 1448 117 1355 151 166 5.4 -.1 0 315 12 1450 107 121 138 148 5.8 -.1 0 320 14 1452 147 169 194 213 5.7 -.1 -.2 335 12 112

MICROMETEOROLOGICAL AND SCINTILLATION DATA (Willow Run Field Station) February 8, 1961 (Continued) Anemometer Air Temperature Wind Dir. Time, EST Revolutions Temp.0C Difference, C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m 1.Om 2m-lm 4m-lm 1454 143 161 179 202 5.7 -.1 0 345 14 1456 118 137 158 174 5.8 -.1 0 350 16 1458 130 146 163 181 5.7 -.1 0 350 14 1500 146 167 188 202 5.8 0 -.1 360 12 1502 139 161 178 197 5.9 0 0 350 14 1504 175 197 220 240 5.8.1.2 350 16 1506 183 210 230 250 5.7.1.3 330 14 1508 157 184 207 231 5.6 0.1 310 14 1510 142 162 182 193 5.7 -.1 0 300 12 1512 178 205 240 274 5.8 -.1 0 310 14 1514 181 211 237 262 5.7 0.1 300 14 1516 150 170 195 219 5.8 -.1.1 325 14 1518 151 176 198 219 5.9 0.2 360 14 1520 150 171 195 219 5.9.1.2 360 14 1522 162 185 205 219 5.9.2.2 360 14 1524 162 190 210 225 5.9 0.2 350 14 1526 175 201 232 263 5.8 -.1.1 360 14 1528 138 159 181 207 5.9 0.1 340 14 1530 173 198 226 250 5.8 0.1 330 18 1532 119 136 149 154 5.9 -.1.1 330 21 1534 85 99 109 122 6.1 0 -.1 320 12 1536 132 151 184 208 6.2 -.1.1 320 13 1538 117 133 149 166 5. 9 -.1 -.1 330 12 1540 141 166 190 210 6.2 -.1 0 330 13 February 14, 1961 1958 31 47 69 107 -.5 1.2 1,2 285 32 2000 20 36 61 101 -.6 1.2 1.4 285 28 2002 29 45 70 108 -.5 1.2 1.3 290 26 2004 33 48 69 107 -.6 1.3 1.3 280 25 2006 43 57 76 108 -.5 1o4 1.4 280 20 2008 35 47 62 85 -.5 1.3 1.6 275 26 2010 37 44 60 88 -.8 1.5 o 4 28 2012 32 36 44 69 -.5 1.5 17o 7 24 2014 28 33 43 69 -1.1 1.6 1.8 " 22 2016 13 20 37 64 -1.0 1.9 1 8 265 25 2018 7 21 36 60 -.9 1.4 1.7 270 25 2020 12 20 32 56 -.9 1.4 1.6 265 22 2022 15 19 35 61 -.9 1.7 1,.7 270 20 2024 11 16 31 7 8 -1.1 1.7 1.6 270 24 2026 27 39 55 84 -.7 1.0.9 280 32 113

MICROMETEOROLOGICAL AND SCINTILLATION DATA (Willow Run Field Station) February 14, 1961 (Continued) Anemometer Air Temperature Wind Dir, % Time, EST Revolutions Temp.'C Difference,C Degrees Mod. 2 min.period, ending 0.5m im 2m 4m 1.Om 2m-lm 4m-lm 2028 26 36 56 92 -.5 1.2.9 280 33 2030 16 30 54 84 -.8 1.4 1.0 280 33 2032 12 31 59 95 -.9 1.5.9 280 31 2034 33 45 67 101 -.6 1.2.9 270 29 2036 38 52 78 115 -.8 1.4.9 270 MSG 2038 51 68 90 119 -.6 1.3.9 270 " 2040 50 71 98 124 -.7 1.5.9 275 " 2042 32 54 87 116 -.9 1.8 1.3 275 40 2044 38 59 88 125 -1.1 1.6 1.1 275 39 2046 49 70 96 127 -.8 1.4 1.1 280 42 2048 36 55 82 120 -.8 1.6 1.4 285 35 2050 34 45 66 102 -1.1 2.4 2.1 305 26 2052 31 41 54 79 -1.4 2.9 2.8 305 20 2054 34 38 50 78 -1.3 2.6 2.4 320 21 2056 44 48 57 81 -.4 1.9 1.9 320 9 2058 62 79 94 102 -.2 1.3 1.9 325 17 2100 57 87 101 109 -1.1 1.0 1 5 345 24 2102 45 72 93 106 -.7 1.0 1.8 335 16 2104 38 67 90 101 -1.8 1.6 2.2 335 13 2106 38 72 92 97 -1,o4 1.4 1 7 350 1 2108 34 66 88 94 -1.1 1.0 1.7 350 16 2110 32 59 88 95 -1.2 1.6 2.2 355 24 2112 45 74 99 110 -1.3 1o9 2.1 010 22 2114 61 86 104 116 -1.0 1.6 2.0 010 24 2116 58 86 105 123 -1.6 1.9 2,2 015 25 2118 67 96 115 140 -.9 1.4 21l 020 36 2120 6- 90 114 137 -.8 1.7 2.3 020 31 2122 52 76 103 122 -.9 2.1 2.5 020 30 2124 54 69 111 134 -1.3 2.1 2.3 020 28 2126 58 89 130 158 -1.4 2,3 2.6 020 33 2128 59 83 116 150 -.9 1.8 2o6 CO 30 2130 49 73 102 126 -1.0 1.9 2.6 005 22 2132 26 34 55 90 -1.4 2.6 3.4 015 16 2134 38 30 14 48 -.9 2.2 3.4 005 19 2136 32 23 5 28 -.1 1.2 3.2 010 13 2138 22 15 3 27.5.9 3.3 010 12 2140 9 3 6 38 -.2 2.5 3 9 010 10 2142 15 18 25 39 -.3 2.4 4.3 005 28 2144 32 33 30 42 -.4.6 2.6 350 34 2146 39 46 45 45 -~4.8 2.7 325 33 2148 18 34 44 51 -.8 1.7 2,9 315 35 2150 29 41 49 58 -.9 1.3 2.6 505 32 2152 8 19 41 58 -.9 1 6 2.9 350 25 114

MICROMETEOROLOGICAL AND SCINTITLLAT ION DATA (Ford Lake) February 20, 1961 Anemometer Air Temperature Wind Diro, Time, EST Revolutions Temp. C Difference, C Degrees Mod. 2 min.period, ending 0.5m lm 2m 4m 1.Om 2m-lm 4m-lm 2000 29 27 23 19 -3.6 -.2 -.3 3 2002 41 4o 4o 37 -3.8 -.1 -. 3 4 2004 45 42 4 443 -3.9 0.2 4 2006 35 34 32 29 -4.0.2.4 4 2008 31 26 18 14 -3.9 -.1 -.2 5 2010 44 35 31 20 -3.6 -.4 -.9 5 2012 49 48 41 32 -3.6.2 -. 3 5 2014 37 37 33 23 -3.6 -.1 -.5 3 2016 21 20 20 12 -3.9 -.1 -.5 3 2018 33 35 29 21 -4.3.1.1 * 3 2020 3o 31 34 29 -4.2.1.2 2022 45 44 41 37 -359.1 -,2 2024 44 45 44 38 -4.1 -o1 -~5 3 2026 23 21 20 18 -4.5 -.1 -.2 3 2028 15 15 14 6 -4 5.1 -.3 3 2030 8 7 8-5.2.2 1 *3 2032 14 15 18 9 -5.4.1 -.2 2 2034 3 2 5 8 -5 3.1.1 2 2036 22 20 18 13 -5.2 0.5 2 2038 23 19 14 17 -5.3.4.9 4 2 2040 27 24 23 16 -4.8 -.1 -.3 3 2042 53 52 45 32 -4 4 -.2 -.5 4 2044 46 45 39 25 -4.1 -.1 -.8 6 2046 50 50 48 31 -4.3 -.1 -.5 6 2048 47 51 52 41 -4.6..1 6 2050 60 61 58 55 -4.3.3 ~ 3 8 2052 53 52 55 52 -4.3.3.2 8 2054 54 52 52 49 -4.5.2.5 8 2056 62 62 65 58 -4.7.9.9 8 2058 64 61 6G 6o -4.6.8.8 * 8 2100 50 50 51 62 -4. 4 5' 11 2102 51 51 54 59 -4.3.2.5 d 2104 47 47 50 54 -4.6. 3 o.7 72106 52 52 54 5' -4.4.6 7 6 2108 68 68 70 65 -3.9.2.3 8 21103 71 7O 75 78 -41,.2.4 9 2112 67 69 73 76 -4.2.2.4 8 2114 66 65 6 67 -3.9 o 2.5 2116 95 101 107 110 -3.8.3.4 8 2118 93 97 102 108 -3.9 o.3.6 8 212C0 65 71 79 91 -39. 2.4 * *Average wind direction northeast for entire period. 115

MICROMETE OROLOGICAL AND SCINTILLATION DATA (Ford Lake) February 20, 1961 (Continued) Anemometer Air Temperature Wind Diro Time, EST Revolutions Tempo~C Difference,0C Degrees Mod. 2 min. period, ending 0.5m im 2m 4m 1.0m 2m-lm 4m-lm 2122 65 70 76 90 -4 2. 3 4 * 2124 71 74 79 87 -4 3.2.4 8 2126 52 53 58 67 -4.3.2. 5 2128 61 64 72 78 -4,1 o1.3 5 2130 60 64 72 83 -4.2.3. 55 2132 69 69 73 76 -309.2.3 6 2134 65 68 70 81 -4.2.1.2 6 2136 65 71 84 103 -4.5.3.6 6 2138 57 65 80 108 -4.8.4 o9 5 2140 60 63 74 99 -5.0.4.8 5 2142 52 56 63 82 -5.5.4.9 4 2144 41 43 49 65 -5.3.4.7 4 2146 45 49 56 74 -4.9.2.4 3 2148 40 42 50 72 -4.7.2.4 3 2150 45 49 59 71 -4.8.3.6 4 2152 46 50 61 71 -5.1.3.6 4 2154 43 48 58 74 -5.1.5.8 * 2156 44 48 58 71 -4.9.3.6 4 February 21, 1961 1504 5.8.3 3 9 1506 6.o** 0 -.1 **13 1508 ** ** 4.3 * 3 13 1510 * * ** MSG.2.6 ** 14 1512 ** ** **.6.9.* 12 1514 * ** ** 7.6 11 1516 * ** ** **.7.8 ** 9 1518 *7 1.5 ** 9 1520 ** ** ** * 1.1 19 9 1522 ** **9 2,2 M**10 1524 ** * **.9 2,0 8 1526 ** ** ** **.5.6 ~ 9 1528 ** ** * *.9 6 *Average wind direction northeast for entire period. **Wind speed and direction system malfunction, 115

MICROMETEOROLOGICAL, AND SCINTILLATION DATA (Willow Run Field Station) March 15, 1961 Anemometer Air Temperature Wind Dir. Time, EST Revolutlons Temp. ~C Diffierence, Degrees Mod 2 min.period, ending 0 5m lm 2m 4m 1.Om 2m-lm 4m-lm 1934 349 409 468 530 1.1.2 o3'MSG 22 1936 334 389 439 491 1.0.2 o3 It 22 1938 285 533 383 438.8.2.3 24 1940 294 347 392 435.7.2 73 24 1942 7522 382 436 491 o8.2.3 25 1944 354 353 411 463 72.3 24 1946 542 405 465 524 o8.2.3 25 1948 295 345 01 459.8.2.3 305 26 1950 251 300 347 396.2.4 27 1952 214 255 299 349.2 0 5.4. 3510 2 7 1954 248 295 340 375.3 2 4 7r1 27 1956 218 260 296 339.2.2 4 310 27 1958 215 255 299 341 -.1.2.6 305 27 2000 236 279 326 377 -.1.2.4 305 28 2002 201 243 285 528 0.3.5 351 20 2004 237 284 330 380 -.2.3.6 305 28 2006 249 296 336 374 -.2.2.4 305 29 2008 198 239 275 319 -.5.3.5 300 30 2010 228 275 325 361 -.5.2.4 3705 30 2012 254 295 337 391 -.4.3.4 5305 29 2014 293 345 399 455.3.2.4 7500 29 2016 256 302 348 400.1.3.4 310 29 2018 282 329 368 415 -.1.2.4 3705 27 2020 274 326 379 433 -.2.3.4 075 27 2022 261 311 350 392 -.1.2.4 505 25 2024 301 351 397 445 -.2.2.3 300 28 2026 260 305 343 380 -.3.2.3 310 27 2028 216 256 293 339 -.5.2.5 310 26 2030 269 321 368 409 -.6.2 04 375 27 2032 256 302 343 391 -.5.2.5 315 27 2034 218 255 305 360 - o8.3.4 305 27 2036 194 234 271 314 -i.0.3.5 l10 28 2038 244 298 7336 3'578 -1.1.5 305 28 204o4 272 314 350 392 -.9.3.4 310 27 2042 249 291 334 371 -39.3.4 505 27 2044 250 299 333 375 -1.2.3.4 310 2 7 2046 267 316 764 416 -1.2.2.5 3i1 27 2048 259 306 362 424 -1.1.3 o.5 315 28 2050 275 329 374 435 -1.2.2.5 310n 27 2052 250 306 356 400 -1.2.3.4 310 27 2054 240 281 320 365 -1.6.3.4 375 26 2056 255 301 346 391 -1.4.2.4 305 26 2058 282 326 377 426 -1.5.2.4 210 25 g1r7

MICROMETEOROLOGICAL AND SCINTILLATION DATA (Willow Run Field Station) March 15, 1961 (Continued) Anemometer Air Temperature Wind Diro, Time, EST Revolutions Temp.~C Difference,C Degrees Mod 2 min.period, ending 0.5m lm 2m 4m l.Om 2m-lm 4m-lm 2100 251 306 354 409 -1.6.2.4 310 26 2102 258 300 351 399 -1.7.3.4 315 26 2104 258 306 347 396 -1.9.2.4 310 26 2106 273 317 360 409 -1.9.2.4 310 24 2108 251 294 335 381 -2.1.2.4 310 23 2110 240 282 318 357 -2.1.2.3 315 22 2112 260 306 346 387 -2.0 2.3 310 20 2114 226 266 300 335 -1.9.2.3 315 21 2116 222 266 305 351 -2.2.2.4 305 22 2118 206 243 281 322 -2.2.2.4 315 23 2120 247 289 336 387 -2.4.2.4 310 25 2122 205 247 290 326 -2.5.2.4 t" 26 2124 182 217 258 306 -2.9.3.6 " 27 2126 184 217 251 292 -3.1.3.5 " 26 2128 192 226 264 301 -3.1.3.4 t" 26 2130 222 265 300 349 -2.9.3.3 " 24 2132 207 247 286 337 -2.7.2.3 315 22 2134 182 217 252 276 -2.9.2.3 310 21 2136 194 230 268 305 -3.2.2.4 It 23 2138 232 275 324 370 -3.2.2.4 it 26 2140 194 233 266 312 -3.4.2.5 "T 27 2142 177 213 248 289 -3.6.3.5 It 27 2144 167 201 232 273 -3.9.3.6 " f 28 March 16, 1961 1436 MSG MSG MSG MSG -o 9 -.4 -1.0 320 MSG 1438 t I I I" -.9 -5 -.9 34o 85 1440 272 317 346 378 -.4 -.5 -.9 315 94 1442 321 377 428 491 -1.5 -.3 -.8 320 95 1444 307 361 412 464 -2.5 -.3 -.2 330 78 1446 377 444 520 580 -.9 -.7 -.9 335 53 1448 350 405 460 511 -1.5 -.4 -1.0 340 83 1450 340 387 445 5011 1 -.5 -1.0 350 83 1452 367 418 476 514.2 -.6 -.7 350 83 1454 339 392 440 485 -.6 -.4 -.7 345 83 1456 327 377 426 466 -.9 -.3 -1.2 345 90 1458 345 402 454 510 -.8 -.3 -.9 345 85 1500 402 463 519 555 -.8 -.3 -.7 350 77 1502 420 493 560 616 -.7 -.3 -.9 340 78 L504 375 433 487 541 -.7 -e5 -.8 320 90 1506 377 437 489 543 -.9 -.2 -.5 325 90 118

MICROMETEOROLOGICAL AND SC INTILLATION DATA (Willow Run Field Station) March 16, 1961 (Continued) Anemometer Air Temperature Wind Dir. * Time, EST Revolutions Temp.~C Difference,0C Degrees Mod. 2 min.period, ending 0.5m lm 2m 4m O. lm 2m-lm 4m-lm 1508 357 411 465 510 -1.3 -.1 -.8 320 88 1510 358 420 479 521 -.7 -.2 -.6 320 88 1512 325 380 430 480 -o7 -.2 -.9 325 92 1514 333 390 438 483 -.6 -.3 -.6 305 87 1516 322 375 410 441 -.7 -.2 -.3 315 95 1518 357 415 458 506 -1.7 -.1 -.4 325 92 1520 334 388 438 491 -.8 -.2 -1.0 330 85 1522 414 488 570 644 -.5 -.4 -1,0 350 80 1524 335 392 440 492 -1.4 -.2 -.6 330 87 1526 283 327 374 422 -.8 -.4 -.5 330 92 1528 374 443 505 562 -1,2 -.3 -.6 340 88 1530 406 475 535 602 -1,8 -.3 -.6 330 72 1532 394 469 538 589 -1.0 -,3 -.5 340 66 1534 359 422 476 529 -2.1.2 -.3 335 47 1536 332 386 457 494 -1.9 -.3 -.3 330 75 1538 347 405 458 508 -1.7.1 -.3 340 63 1540 311 367 420 475 -2.62.1 340 52 1542 371 435 492 538 -1.2 -.1 -.1 330 63 1544 380 438 498 547 -1.5 -.3 -o8 335 87 1546 348 405 463 520 -1.0 -.3 -.6 350 85 1548 326 368 426 472 -1o6,1 -.3 345 61 1550 358 418 482 545 -2.3.2 -.2 345 42 1552 321 374 427 473 -2.0.2 -.2 345 39 1554 411 470 536 605 -1.4 -.4 -.7 350 73 1556 333 379 427 482 -1.5 -.1 -.5 355 85 1558 315 363 417 467 -.9 -l1 -.6 345 85 1600 349 406 471 541 -1.2.1 -.6 340 68 1602 427 499 567 638 -1.3 -.1 -.3 355 49 1604 370 426 477 517 -1.4 0 -.2 340 72 1606 339 395 456 503 -1.7.2.4 350 66 1608 330 378 416 461 -1.3.1 -.6 350 70 March 30, 1961 1346 78 86 93 101 6.1 -.7 -.4 285 71 1348 129 137 146 154 5.6 -.3 -.5 015 70 1350 148 169 188 200 6.8 -.5 -.9 325 87 1352 165 188 198 201 6.2 -.6 -.9 295 81 1354 107 115 126 128 5.6 -.5.2 300 84 1356 129 143 155 172 5.4 -5 -.8 320 84 1358 111 118 129 139 5 7 -.1 -.8 o05 84 1400 168 188 208 219 5.4 -.6 -1.5 320 81 119

MICROMETEOROLOGICAL AND SCINTILLATION DATA (Willow Run Field Stat ion) March 30, 1961 (Continued) Anemometer Air Temperature Wind Diro % Time, EST Revolutions Temp ~C Difference, C Degrees Mod, 2 min.period, ending 0.5m lm 2m 4m O.lm 2m-lm 4m-lm 1402 149 167 183 208 6.4.2 -1.2 360 70 1404 239 277 313 342 6.3 -1.2 -1,7 350 73 1406 216 237 263 286 6.1 -09 -1.3 355 65 1408 178 197 218 237 5.9 -09 -1.5 360 68 1410 215 244 268 293 6.7 -.8 -1.3 010 71 1412 149 164 185 205 5.7 -1.0 -1.2 015 74 1414 102 109 119 121 5.4 -.7 -.3 005 71 1416 106 117 1 147 6.6.1 -.6 030 70 1418 128 146 161 179 6.2 -.7 -.5 025 68 1420 113 125 144 152 6.3 -.6 -1.2 005 78 1422 134 148 164 178 6.4 -.6 -.2 360 84 1424 170 193 222 238 7.6 -.6 -.6 315 78 1426 209 235 259 272 5.8 -.7 -1.0 320 85 1428 69 74 82 83 6.4 -.3 -.8 240 73 1430 123 130 137 139 5.8 -.8 -1.1 255 73 1432 85 93 102 116 7.1 -.9 -1.4 290 81 1434 75 81 89 96 6.7 -.4 -.5 240 76 1436 65 69 71 72 5.7 -.5 -.2 200 64 1438 75 81 89 96 6.1.2.1 150 71 1440 59 67 71 76 6.8 -.2.9 140 81 1442 34 40 45 48 7.3 -.7 -.4 150 74 1444 99 106 116 109 7.3 -.2 -.6 030 68 1446 140 157 168 182 6.7 -.4 -1.3 340 76 1448 124 139 152 166 6.3 -.2 -.6 330 76 1450 265 299 328 351 6.7 -.5 -1.0 310 85 1452 153 180 202 222 6.7 -.9 -1.3 290 85 1538 125 142 162 177 6.1 -.5 -.8 305 85 1540 194 223 242 266 6.6 -.8 -1.2 320 77 1542 125 140 153 162 5.9 -.8 -.9 285 82 1544 97 109 117 130 6.7 -.6 -o4 290 80 1546 157 174 191 205 6.1 -.4 -.3 335 72 1548 108 118 130 139 6.2 -.3 -.3 350 66 1550 123 133 141 150 6.1 -.4 0 005 68 1552 172 189 207 218 5.6 -.5 -1.1 360 59 1554 112 122 128 139 5.9 -.5 -.6 010 70 1556 88 100 106 108 6.0 -.1 -.4 340 653 1558 75 90 96 105 6.3 -.1 0 300 61 1600 161 179 195 202 6.4 -.6 -.5 015 72 1602 182 206 228 251 6.9 -.5 -.9 360 MSG 120

MICROMETEOROLOGICAL AND SC INTILLAT ION DATA (Willow Run Field Station) March 30, 1961 (Continued) Anemometer Air Temperature Wind Dir. _Time, EST Revolutions Temp.~C Difference,0C Degrees Mod. 2 min.period, ending 0.5m lm 2m 4m 1.Om 2m-lm 4m-lm 1702 137 160 177 191 5.8 -.2 MSG 215 40 1704 158 183 204 215 5.9 -.4 1f 215 37 1706 165 193 221 241 6.8 -.2 " 245 40 1708 178 203 232 254 6.1 -.3 " 260 40 1710 148 177 202 217 6.1 -.1 T" 270 39 1712 MSG MSG MSG MSG 5.5 -.3 " 250 37 1714 I" "t i t 5.7 -.2 " 240 37 1716 " " " "T 5T8 -.1 " 260 38 1718 176 207 235 255 5.5 -.1 " 240 35 1720 129 147 165 184 5.3 -.2 I" 240 33 1722 168 199 220 233 5.3 -.1 f" 225 33 1724 105 117 132 148 5.3 -.3 " 235 30 1726 91 100 108 114 5.2 -.3 it 185 25 1728 34 36 37 44 5.6 -.2 "t 205 24 1730 41 45 52 58 5.7 -.1 " 170 25 1732 107 118 124 132 6.5 -.2 " 240 28 1734 98 112 123 134 6.8 -.2 " 215 24 1736 70 84 98 103 6.8 -.1 " 235 23 1738 72 80 89 98 6.8 -.1 "T 235 24 1740 78 88 98 105 6.8 -.1 " 230 23 1742 113 127 143 151 6,9 -.1 " 250 23 1744 111 127 142 152 6.8 -.1 -.1 260 19 1746 86 98 113 120 6.8 -.1 - 3 255 17 1748 100 115 126 129 6.6 0 -.1 245 17 1750 75 89 99 107 6.6 -o1 -.1 220 16 1752 65 77 90 103 6.6 -.1 -o2 220 12 1754 150 175 205 225 6.5 0 -.1 210 11 1756 133 159 191 210 6.6 0 -.1 250 10 1758 127 147 168 181 6.4 0 -.2 225 9 1800 104 128 148 165 6.4.1 -.1 235 7 1802 111 131 150 164 6.4.1 0 235 7 1804 87 103 113 128 6.4.1 0 270 6 1806 70 86 99 109 6.4 0 -.1 275 4 1808 53 65 80 98 6.3 o 1.1 235 4 1810 64 78 99 120 6.2.1.1 215 4 1812 83 96 109 121 6.2.2.1 195 5 1814 58 70 82 94 6.2.2.1 185 5 1816 91 108 121 130 6.2.2.2 190 10 1818 75 91 106 120 6.0.3.3 250 14 1820 88 110 5 33152 5.8.3 3.5 250 18 1822 81 98 115 132 5.6.3.5 250 20 1824 76 95 117 141 5-4.4.5 235 21 1826 109 133 163 190 5.5..3. 22 25 121

MICROMETEOROLOGICAL AND SCINTILLATION DATA (Willow Run Field Station) March 30, 1961 (Continued) Anemometer Air Temperature Wind Dir. Time, EST Revolutions Temp.~C Difference,~C Degrees Mod'. 2 min.period, ending 0.5m im 2m 4m 1.Om 2m-lm 4m-lm 1828 125 154 185 219 5.2.3.5 215 26 1830 130 157 181 202 5.7.4.5 220 28 1832 77 95 121 155 5.1.3.8 215 31 1834 58 79 102 132 4.5.4 1.0 215 31 1836 58 81 109 140 4.4.7 1.2 220 32 1838 64 94 134 171 4.2.9 1.8 215 34 1840 60 88 125 163 3.7.9 1.7 205 51 1842 65 89 126 171 3.1 1.2 2.6 200 39 1844 66 96 138 179 3.4 1.3 2.2 200 39 1846 59 85 124 172 3.1 1.0 2.3 200 37 1848 62 84 118 155 2.9 1.2 2.2 200 29 1850 51 72 103 137 2.2 1.4 2.4 200 30 1852 43 61 90 132 2.2 1.5 2.7 205 MSG 1854 38 57 88 132 1.9 1.6 2.9 205 1856 42 62 98 133 2.3 1.7 2.6 205 16 1858 51 75 103 139 2.7 1.2 1.9 200 14 1900 55 80 103 136 2.1 1.4 2.2 195 15 1902 55 80 102 129 2.5 1.5 2.0 190 19 1904 52 77 104 118 2.4 1.6 2.6 190 16 1906 40 64 90 115 1.8 1.7 2.8 190 11 lg08 42 65 87 114 2.1 1.5 2.6 190 14 1910 38 54 75 93 1.4 1.2 3.4 190 15 1912 48 67 79 83 3.6.9.8 230 38 1914 45 61 75 83 3.5.7.8 215 23 1916 42 63 78 88 3.2.9 1.2 210 15 1918 35 54 83 106 2.2 1.6 2.5 215 17 1920 43 67 86 125 2.7.9 1.8 220 32 1922 36 51 92 119 1.5 1.7 3.4 210 20 1924 34 51 80 105.9 2.0 4.0 200 8 1926 54 78 99 111 1.6 2.8 3.0 195 4 1928 64 93 105 121 2.5 1.7 2.0 195 14 1930 51 79 115 133.7 2.6 3.6 195 23 1932 36 65 101 125.9 3.2 4.2 195 1'7 1934 38 67 99 107 1.7 2.1 3.2 190 7 1936 44 68 93 96 1.8 1.8 2.8 180 15 1938 77 117 140 146 3.0 1.6 1.3 130 35 1940 116 153 175 195 2.5.6.9 110 26 1942 120 120 144 170 183 2.3.3.6 125 27 1944 119 144 178 209 2.0.4.9 125 26 1946 132 158 186 201 2.0.6.8 135 24 1948 121 144 183 205 1.9.5 1.0 130 25 1950 110 138 172 198 2.1.7.8 140 26 122

MICROMETEOROLOGICAL AND SCINTILLATION DATA (Willow Run Field Station) March 30, 1961 (Continued) Anemometer Air Temperature Wind Dir, Time, EST Revolutions Tempo C Difference, 0C Degrees Mod 2 min.period, ending 0.5m lm 2m 4m loom 2m-lm 4m-lm 1952 102 126 157 188 2.0 o6.7 140 24 1954 125 151 183 207 2.1.7.8 155 25 1956 136 169 198 228 2,4.6 o7 150 26 1958 122 156 192 226 Lo9.6 o8 160 26 2000 111 141 172 196 1.5.6 1.3 170 29 2002 112 141 177 213 1.7.6 1.1 170 27 2004 121 153 190 229 1.3.6.9 170 26 2006 104 136 173 225 o7.5 1.4 180 26 2008 105 131 165 220.4 o7 1.4 180 25 2010 92 120 157 212.2.7 1o6 180 26 2012 92 121 157 216.3.7 1.7 180 26 2014 84 109 148 210 0.8 2.0 180 27 2016 80 109 143 200 -o1.6 2.0 180 29 2018 89 116 154 214 -.2.8 1.8 180 27 2020 88 117 157 201.2.8 1.7 175 30 2022 94 124 163 196.6.9 1.6 170 34 2024 88 121 157 194 1.0.9 1.3 175 31 2026 89 118 151 173 1.5.8.9 160 30 2028 91 122 150 170 1.7.7.8 150 28 2030 93 116 143 165 1.4.6.7 160 29 2032 86 114 149 188 1.1.6 1.2 160 30 2034 102 129 167 196 1.3.8 1.2 L70 30 2036 86 115 152 191 -7.8 1.5 170 32 2038 91 119 156 195.7.7 1.4 170 30 2212 MSG MSG MSG MSG -1.0 2.1 1.8 185 MSG 2214 36 54 80 114 -.9 1.8 1.3 180 " 2216 23 39 80 115 -1.5 2.3 1,8 175 2218 35 55 89 120 -1.3 1,9 1.2 18 " 2220 26 42 80 111 -1.3 1,9 1.6 180 2222 28 46 75 106 -.9 1.8 1.4 185 19 2224 28 47 79 107 -1.0 1,8 1.3 185 18 2226 29 42 73 104 -1.5 1.9 1.7 190 1 123

UNIVERSITY OF MICHIGAN I lfEHmUmWEEllllatli 3 9015 03695 2284