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ABSTRACT

The purpose of this research was to investigate the vapor-
liquid equilibrium behavior of methane-pentane binary systems and
methane-pentane ternary systems throughout the two-phase region.

Phase equilibrium was obtained in a constant-volume cell
equipped with an internal stirrer. Phase compositions were determined
by withdrawing small samples of each phase and analyzing them using
gas chromatography. Vapor-ligquid equilibrium data were obtained for
the methane-isopentane binary system at pressures from about 500 psia
up to the critical region at temperatuies of 160° F, 220° F, and 280° F.
Data were obtained for the methane-neopentane binary system for
pressures from about 300 psia up to the critical region at tempera-
tures of 160° F, 220° F, and 280° F. Data were obtained for the
methane-normal pentane binary system at a temperature of 220° F. The
phase behavior of the methane-isopentane-normal pentane ternary system
was investigated. Vapor and liquid phase compositions were determined
at pressures from about 500 psia up to the critical region at tempera-
tures of 160° F, 220° F, and 280° F. Fiually data were obtained for
the methane-neopentane-normal pentane ternary system at pressures from
500 psia up to the critical region at a témperature of 160° F.

The experimental data obtained are discussed. Diagrams of
pressure versus composition are presented for the binary systems.

Diagrams of equilibrium vaporization ratio as a:function of pressure

Xiv



are also presented, For the ternary systems, diagrams of equilibrium
vaporization ratios versus pressure are presented, In addition, pres-
sure versus composition and triangular compositions diagrams are in-
cluded.

An analytical correlation which predicts equilibrium vapori-
zation ratios is presented. Calculated equilibrium vaporization ratios
are compared with observed equilibrium vaporization ratios. iFor the
total number of points investigatéd in this research the absolute
average deviation of the predicted equilibrium ratios from the observed
ratios is within eight percent., The analytical expression, a modified
form of the Chao~Seader correlation,(lo) incorporates an empirical cor-
rection factor. This factor which is based on the phase behavior of
methane in isopentane effectively decreases the predicted methane equi-
librium ratios by approximately 20 percent in the critical region,. The
correlation represents the methane-neopentane binary system with an
average absolute deviation of approximately 12 percent,

Finally, a review is presénted on methods employed in predict-

ing phase equilibrium behavior,

XV



I. INTRODUCTION

In the absence of experimental data, reliable and accurate
methods for predicting phase equilibrium behavior of multicomponent mix-
tures are of prime importance to the engineer concerned with the design
of separation equipment, Two methods for predicting equilibrium ratios
which have been widely used by the design engineer in the petroleum in-
dustry are the NGAA K-Value Charts<36) and the Kellogg Charts,(27)
Both methods have been used with a varying degree of success; however,
each method is restricted to mixtures of paraffins, olefins, or com-
binations thereof,

Since the development of the NGAA Charts and the Kellogg
Polyco Charts, much effort has been directed toward the formulation of
generalized correlations., A primary approach has been to relate the
phase behavior of mixtures to experimentally determined properties of
pure components and binary systems which comprise the multicomponent
mixture, It would be ideal if such correlations could be related to
a small number of well-behaved mathematical functions, No matter how
complex, these functions could then be solved with the aid of modern,
high speed digital computers. The validity of the assumptions made
in deriving these functions, however, can only be ascertained by sub-
Jecting them to the test of comparison with experimental results,

A number of experimental investigations have been reported

(2k)

on methane and heavier hydrocarbon mixtures. . Katz et al, pre-
sent an excellent bibliography on such systems, FEquilibrium ratio

data on the methane-pentane systems are incomplete, Methane, normal



pentane, and isopentane are important, naturally occurring compounds in
hydrocarbon mixtures. Neopentane, because of its molecular symmetry, is
of theoretical interest to the scientist whose ultimate goal is to cor-
relate macroscopic thermodynamic functions to microscopic properties or
intermolecular forces,

5)

Boomer, Johnson, and Piercey( have determined compositions
and densities of the two-phase region at 25°C and pressures ranging from
35 to 135 atmospheres for a system containing impure methane and a mix-
ture of isopentane and normal pentane,

Sage, Reamer, (0lds, and Lacey(5o) have experimentally deter-
mined the specific volumes of six mixtures of methane and normal pen-
tane for seven different temperatures between 100°F and 460°F at pres-
sures up to 5,000 psia, They have, in addition, determined the com-
positions of the vapor and liquid phases throughout the two-phase
region for several temperatures between 100°F and 3LO°F and pressures
from the vapor pressure of normal pentane to the critical pressure of
the mixture,

Experimental work on the methane-isopentane binary system has
been reported by Amick, Johnson, and Dodge,(l) They report coexisting
phase compositions for temperatures ranging from 160°F to 3L40°F and
pressures from 400 psia to 1,000 psia. Their data, however, show con-
siderable scatter,

No experimental information has been found on the methane-neo-
pentane system, Experimental work related to the pure compound neopen-
tane (2,2 dimethyl propane) has been reported by Beattie, Douslin, and

Levine<5) and more recently by Heichelheim, Kobe, Silberberg, and



-3-
McKetta.(18> Beattie et al, have measured the vapor pressure of neopen-
tane from 50°C to the critical temperature, 160,60°C, and have studied
the compressibility of several isotherms around the critical region in
order to locate the critical point, Heichelheim et al, have investigated
the compressibilities of neopentane using a standard Burnett apparatus,
They have determined compressibility factors between one atmosphere and
the vapor pressure at 30°C to 150°C and between one atmosphere and 70
atmospheres at 161,5°C, 175°C, and 200°C,

It is the purpose of this research to improve and extend exist-
ing equilibrium vaporization ratio data into the critical region on the
methane~isopentane binary system and to determine the compositions of
both the vapor and liquid phases throughout the two-phase region for
the methane-neopentane binary system, Equilibrium ratio data for each
component in the methane-isopentane-norﬁal pentane ternary system and
the methane-neopentane-normal pentane ternary system are investigated in
order to extend our knowledge on more complex systems of methane in mix-
tures of pentane isomers,

Finally, these experimental data are used to determine the re-
liability of a generalized correlation for predicting vapor-liquid

equilibrium behavior at pressures up to the critical region,



IT. THEORETICAL CONSIDERATIONS

There are essentially two methods of evaluating equilibrium ra-
tios or XK values, Equilibrium ratios can be determined experimentally
and theoretically. Some of the more basic experimental methods of obtain-
ing equilibrium ratios have been reviewed by Katz et éi.(zh) and Sage and
Reamer(u9) and will not be discussed in further detail here, Recently
Stalkup and Kobayashi(5ua) have utilized gas liquid partition chromoto-
graphy as a means of obtaining phase equlibirium data, The theoretical
aspects of phase equilibria will be reviewed in this_secﬁion. The dif-
ficulties encountered in attempting to obtain analytical solutions to the
problem of predicting phasebequilibrium behavior at high pressures will
also be discussed,

At the outset we give the Gibbs Phase Rule, The relationship,

first stated by Gibbs,(l5) is written symbolically as
F+ P = Cd+2 (1)

where T = degrees of freedom, C = number of components, and P = number
of phases,

The derivation of Equation (1) is given by L. O. case(9) ana
will not be repeated here, In the present research, the number of
phases is always equal to two, namely the liquid and vapor phases. Ac-

cordingly, Equation (1) reduces to:

F C (2)

In other words, Equation (2) states that the number of intensive varia-
bles needed to completely define the two-phase equilibrium system is

equal to the number of components in that system,

-



-5-
For a closed system at equilibrium, Gibbs has shown that the
change in free energy at constant temperature and pressure is equal to

zero, Expressed in equation form,
d G. = O at constant T, P, (3)

We can write the free energy relation for each phase as

de"= -5dT + deP+;udeZ (ke)

de"= -SdT + VAP + T fdmt (o)

At constant temperature and pressure, Equations (4) reduce to

d¢Y = ;M: d i (52)

L _ - ~ (5b)
A6 = Z ,[ll;d/mﬁu
A
where superscripts V and L refer to the vapor and liquid phases,
respectively, Since free energy is an extensive property, the total
free energy (denoted by () of the entire system is given by the sum of
the free energies of the two constituent phases under consideration,

We write this mathematically as:
v L
G=G+6G | (6)

Differentiation of Equation (6) and the condition imposed by Equation (3)

yields

dg=d6"+d6*=0 (7)



-6-
Adding Equation (5a) and (5b) and equating the sum to zero, as in Equations
(3) and (7), gives
v v v "4 \4 14
L Cl/vn,| + -+ [id;c}Anlu;-F ot L, cizvvln,
(8)
L L L L L L
+ l’l‘ld/ml+"'+u,{;d%,&+"'+#~dm’7”=0

Since the system under consideration is a closed system, the total mass

of any constituent in the system remains constant, which permits writing

L
CJ/Wﬂ.jE + 4 M = @ (9)

Equations (8) and (9) imply the necessary and sufficient condition that

-vY_ Tt (10)

where the superscript bar refers to the fact that component 1 1is in a
mixture. The verbal formulation of Equation (10) is that the chemical
potentials of each constituent are the same in all phases,
The fugacity of a component 1 1in a mixture is defined as:
A, = RT ddn % -
o
Integration of Equation (11) and substitution of the result into Equa-
tion (10) give the general equation
I (12)
A L
Equation (12) states the fugacity of component 1 in a multicomponent
mixture in the wvapor phase eguals the fugacity of that same component

in the liquid phase at constant temperature and pressure, Equation (12)



i g
is then the basic equation of phase equilibrium thermodynamics, However,
this equation cannot be successfully applied unless one knows the fol-

lowing functional relationships:

-V

QSV{RTJ’- -?AV) ?'?V'] (132)
§r = ¢L[ PT - 4(,;)' 44;] (13Db)

“
-
|

That is, for each phase one must express the functional form of the
fugacity of component 1 in a multicomponent mixture in terms of temper-
ature, pressure, and composition.

The ultimate goal of phase equilibrium thermodynamics then is
to establish relationships befwgen thermodynamic functions, such as
fugacity, and microscopic particle behavior for which the intermolecular
forces are unknown quantities, This necessarily suggests the evaluation

of the partition function Q , defined as:

Q- T e EaléT

where E; equals the energy of each‘of the possiblé states of the system,
Hirschfelder, Curtiss, and Bird(gg) show how the virial equation of state
may be developed from the statistical thermodynamical relation between
the pressure and the partition function. The range of validity of the
virial equation of state is limited, however, by the convergence of the
series expansion., The series expansion diverges in the liquid region,
The primary value of the virial equation of state lies in the regions of
low density gases and gases under moderate pressures.

The problems involved in establishing a model relating macro-

scopic thermodynamical functions, such as fugacity, that are valid up



to the critical point of a multicomponent mixture to the molecular prop-
erties of a system are formidable, In fact, it is unlikely that statis-
tical thermodynamics alone will be used to predict phase behavior for
a long time,

In the next section a review is given of the techniques, based
on classical thermodynamics, utilized in calculating the fugacities of

components in both vapor and liquid phases in equilibrium,



III. METHODS OF PREDICTING PHASE EQUILIBRIA

As stated in Chapter II, the ultimate goal of phase equilibrium
thermodynamics is to relate the fugacity of each componeht in each phase
of a multicomponent mixture to the microscopic particle behavior of
molecules comprising the system, In view of the level of sophistication
required in the treatment of such a problem , engineers have sought solu-
tions to this problem which require a lesser degree of sophistication and,
as a natural consequence, have produced solutions which are fruitful but
only approximate in light of the necessary and simplifying assumptions.

A realistic goal, however, would be to relate experimental re-
sults to some mathematical functions, preferably simple ones, with a
small number of constants to allow for the smoothing and interpolation
of experimental data, Naturally, these mathematical functions would
be based on as much of a theoretical foundation as possible to insure
generality, With the aid of modern digital computers, such relations
would be desirable from an engineering standpoint because attempts
could be made to generalize the experimental results to such a degree
that behavior of previously investigated systems, or even new systems
which were not previously investigated at all, could be predicted.

The content of subsequent subsections in this chapter is in-
tended to familiarize the reader with some of the methods of predicting
vapor-liquid equilibrium behavior. The advantages and limitations of
the various methods presented are discussed, The pertinent equations
and parameters in conjunction with the correlation used in this work are
considered in Chapter IX, Some equations used in Chapter IX are first

developed in this chapter,
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Early attempts to predict phase behavior were dictated by the
immediate needs of the petroleum industry. In the early part of the
Twentieth Century, when the petroleum industry.first sought methods of
predicting equilibrium ratios, the logical solution to the immediate
problem was a combination of Raoult's Law and Dalton's Law, which in

mathematical formulation is given simply by Equation (15).

KL= ﬁ = .B:‘ (15)
ML P
In other words, the equilibrium ratio of component 1 1s a function of
the system temperature, pressure, and component identity, but not a func-
tion of concentration, Also, Equation (15) neglects the effects of pres-
sure on the behavior of the component in the liquid and vapor phases.

It can readily be shown from classical thermodynamics for a
puré compohent that fugacity is related to pressure, volume, and temper-
ature 5y the following relationship:

v 78

InFe_ | 2-2 4P (16)
P L R |

Graphical integration of the right hand side of Equation (16) at constant
temperature yields ratios of fugacity to pressure. . Indeed, generalized
plots of fugacity-pressure ratios as a function of reduced temperature
aﬁd'preséure have been made. Naturally these plots are as valid as the
7 charts on which they are based, For mixtures, the generalized fugac-
‘ities are combined with the famous ILewis and Randall Rule.(52) For an

equilibrium mixture then,

o ok __7_[_L (17)
=7 7

A-
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Note that Equations (15) and (17) are quite similar, The significant dif-
ference is that the fugacities partially correct for the deviations of
the vapor phase from the ideal-gas law, The most important methods using
the generalized fugacity concept were those of Lewis and Luke(51) and
Souders, Selheimer, and Brown,<5u) These methods are basically the same
and differ primarily by the extrapolation methods used in défining the
hypothetical standard states. Both methods are an improvement over the
Dalton-Raoult Law method in that they partially correct for the pressure
effect on the equilibrium ratio; however, the effect of composition is
still largely neglected,

In general, the equilibrium vaporization ratio K; of component
i 1s dependent upon pressure, temperature, and composition of both phases,
The dependencies can bé calculated if the pressure-volume-temperature
(hereafter referred to as P-V-T) behavior is known over the entire con-
centration range. Because of the great shortage of P-V-T data for mix-
tures of interest, a great amount of effort has been expended in express-
ing phase behavior of mixtures in terms of pure component properties,

There have been essentially two approaches to this problem.
The first approach has been a purely empirical one based on available
experimental results, The second approach is semi-empirical in nature,
the main ingredient of which is an equation of state, The primary ad-
vantage of empirical methods is the relative simplicity and the mitiga-
tion of trial-and-error requirements, The convergence pressure technique

is perhaps the most famous example of the empirical approach,



A, Convergence Pressure

The concept of convergence pressure was perhaps first suggested
by Brown et g£.(5u) Katz and Kurata(26) suggested the possiblity of pre-
dicting the convergence pressure of a multicomponent mixture from an
equivalent binary mixture, and much of the experimental work which led
to the NGAA convergence pressure charts has been done by Katz and
Hachmuth.<25) The pressure at which the equilibrium ratios of each com-
ponent in a multicomponent mixture appears to approach unity has come to
be known as the convergence pressure, For a binary mixture, the conver-
gence pressure is identical with the critical pressure at that temper-
ature, Correlations using the convergence pressure concept have been
published by Hadden;(l7> the Natural Gasoline Association of America,
now called the Natural Gas Processors Association; Rzasa EE §£,3(48)

Winn;(56> Lenoir and White,(BO) and Organick.(57a)

B, Method Using an Equation of State

The substitution of fugacity coefficient for fugacity has been
found to be convenient in calculations pertaining to gaseous mixtures,

The fugacity coefficient, ¢i , of component 1 is defined by

:;,'V
= L 18
o; b= (18)
For gaseous mixtures the fugacity coefficient is given by the relation-
shi
b fi._

4 — s (19)

o A

where Zi is the partial molal compressibility factor, For equations
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of state explicit in volume, one can calculate the fugacity coefficient

from the following relationship:

A
t [0 _ RT
bnb=g2) [w—F 4R )

For equations of state explicit in pressure

V=020
_ 1[[(eP _ RT _ (21)

is convenient in form to calculate the fugacity coefficient ¢i .

Since no satisfactory equation of state exists for liquid mix-
tures, the relationship between fugacity and composition is generally ex-~
pressed in terms of the activity coefficient, Hence, for a multicomponent
liquid mixture, the fugacity of component 1 is related to pressure,

temperature, and composition as:

AL °

£ =7. % f (22)
Thus, Equations (12), (18), and (22) present a theoretical basis for pre-
dicting phase equilibria, The determination and generalization of the
activity and fugacity coefficients require mathematical representation

in terms of parameters based on pure component properties and inter-

action parameters,

C, Equations of State

The requirement of a good equation of state 1s essential in
this second approach to predicting phase behavior of multicomponent

mixtures at high pressure,

Perhaps the most famous equation of state is that of Van der

Waals, Van der Waals' two-constant equation is simply given as
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RT a
f>- —L 0z (23)

where the constant a is a measure of the cohesion between molecules

and b 1is proportional to the volumes of the molecules,

2)

The BeattieuBridgeman( five-constant equation is given as

follows:

pP= BT, RIB.=Ao=Re/T?, M&b_am+ RBobe (2W)
1’4

v TEY ¥

and represents experimental data with good reliability up to two-thirds
the critical density, At very high pressures, above 200 atmospheres,
the Beattie-Bridgeman equation fails,

In the early 1940's the first real attempt was made to predict
phase behavior from an equation of state, At that time, Benedict, Webb,
and Rubin(u) published their equation of state, Their equation of state
is a modified form of the Beattie-Bridgeman equation, The primary goal
in their development was an equation to describe the phase behavior of
hydrocarbon mixtures of relatively low molecular weight up to two times
the critical density, The equation explicit in pressure is written in

the following form:

7

p=£L+ &BT_—Zé)a—a/TZJr A/lTs—a.ﬂL%%ﬁL '_‘_5“3(/7‘;4_2 e V2 (2)

The eight constants By, Ay, Cy, b, @, c, O, and y are functions of the

mixture composition and have been empirically evaluated by the following

mixing rules:

Y e Bos | (a6)
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A =L (%A ! 2)} (26)

Co = Z< Ac'o,,”e) (26¢)

b - Z(%. ") F (260)
-4 I 23

o = Z(/)LA' e Oy 3) (26e)
‘3

o = Z(/moz’/g) (26¢)
/ -3

e = (Z(% ") ] (26g)

D:(’)L'T,/e) I (26h)
L N -

In Equations (26), the symbols with the subscript i , i,e, B,; and
Aoi , refer to numberical constants for pure components, Benedict and
his coworkers evaluated these constants for twelve hydrocarbons,
Martin(has recently modified the original Martin-HOI;(55) equa-
.tion. The new sixteen-constant equation describes volumetric behavior

of compounds up to two and one-half times the critical density, The

equation explicit in pressure is given as:

- RT fot By T+Coe™ ™ A +B.T+0 e K™
P=v=t7* (!—-b}aa My avey sy & -
27
A«.+BJ A +,85T+C’-C’.”KTQ’ 2, +B, 7T
(L-6)¢ (1-2)5 ST

Equation (27) has not as yet been applied to mixtures, However, it has
represented experimental data up to twice the critical density for pure

components with an average deviation of 0.1 percent for Freon compounds,
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Redlich and Kwong published their first equation of state in

l9h9°(h5) The equation is of the form

2 = 1 (R¥B)S

(1-5) (1+4) (282)

/7= é_L_zE_= _bl_/_ (28b)
vhere 2= LXK

RT (28¢)

7% %‘?& (284)

B = 7%-— (28e)

This equation of state contains only two constants and the authors claim
satisfactory results above the critical temperature, The Jjustification
of such an equation is the degree of approximation obtained by relative-
ly simple methods,

Having acquired some degree of success, Redlich and Dunlop(””)
improved upon the original equation of state by introducing a superposi-
tion function which they call the deviation function and a third para-

meter called the acentric factor., The equation
4
_ Vi
Z=2Z2—2Z (29)

is simply the old equation of state where Z' is 7 in Equation (28a)
and the superimposed deviation function is 2" , The form of the devia-

tion function is

i?,v==A21:Q_C]e(7k_11)1L(2r_<3£2-—d’22€)/3_1“68+d94€,)

(T2~-1)-107%g R /%2(71—/)}/[772-“7‘
(h—77 )% R
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The numerical values of a, b, ¢, d, e, f, g, h, and j are given by
Redlich and Dunlop in their article and will not be repeated here, The

acentric factor is the same as Pitzer et g&.,(59) and is defined as

co=«&7—[/3/13°}—/,000 (51)

The acentric factor is determined by the vapor pressure P at the re-

duced temperature T, = 0,700 and the critical pressure P

r Although

o e
Equation (29) represents experimental data better than the original
equation, no attempt has been made to extend the applicability of Equa-
tion (29) to the critical state or liquid region,

Recently Redlich, Ackerman, Gunn, Jacobson, and Lau(u5) have
improved upon the Redlich-Dunlop equation and have extended its appli-

cation to the liquid state and vapor pressures, The equation represents

the compressibility factor as the sum of a number of terms,

Z=Z +Z+w2, + L(23 +w Zy) (32)

where

Root of Equation (28)

N
I

the acentric factor

£
1

L =1 for liquids; L = O for gases
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Equation (32) has been compared to available phase equilibrium
data for mixtures and pure components, The results show that hydrogen,
helium, and water are not satisfactorily represented, Also the critical
locus of mixtures is not well described.

The virial equation of state is given by the following series

expansion:

PY_ B(VT)+ UJ(ZC)+,..

RT ~ v

where the second and third virial coefficients are given by:

B = ;; A #j B&y (T) (3ka)
e

Several potential functions are available to evaluate the second and

third virial coefficients theoretically, In general, the core model of

(28)

does a much better job of representing experi-

(29)

the Kihara potential
mental data than the Lennard-Jones potential, in particular where
the molecules differ from spheres in geometry,

In summary, empirical equations of state have been developed
to represent experimental data to a high degree of accuracy over a limited
range; that is, about twice the critical density, The virial equation
of state is limited to moderate pressures well below the critical pres-
sure gimply because one cannot readily solve for terms higher than the
third virial coefficient and the expansion series diverges on approaching

the critical region, At moderate pressures, the virial equation of state

can be very useful because it does give exact composition dependence,
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The empirical equations of state are more flexible than the virial equa-
tion of state and readily lend themselves to computer programming; how-
ever, no theory exists for mixing rules. That is, all mixing rules are
empirical, It appears unlikely that an empirical equation of state will
be developed to predict pressure-volume-temperature and composition ef-
fects to greater than three times the critical density that can be used
with any degree of facility pertaining to the evaluation of the para-

meters,

D, Activity Coefficients--Non-Ideal Solutions

To account for the non-ideal behavior of liquid mixtures, it
is convenilent to introduce a thermodynamic function, activity, The con-~
cept of activity has the advantage of relating non-ideal behavior from
ideal behavior in one factor called the activity coefficient. The ac-
tivity and activity coefficient are defined as
jft.

: 35
o= = _?i (35)
where f? is the reference fugacity, Many integrated forms of the

Gibbs-Duhem equation at constant temperature and pressure exist, This

equation at constant temperature and pressure is given as

— (36)
E:C%;_cJ v£A¢, 2;," 0
A
The most famous of these are, perhaps, the van Laar and Margules equa-

tions, The Carlson and Co;burn<8) form of the van ILaar two-constant

equations for a binary mixture is given as:



-20-

\/QYL 7:(/ = a (37a)

[|+F?%/B(l—%¢)]2

.= & 2 (570)
Jéﬂ’zf' | [)+B(/—%cyﬁ4¢4‘]

The two-constant Margules equation for a binary mixture (given in the

Carlson-Colburn modification) are of polynomial form in concentration,

J%Q =(24-B)xf+2(B-7)xf (388)

M1, = (2B-A) x4 + 2(A-8)%; (360)

Wohl(57) expressed the molar Gibbs excess free energy as a

polynomial in liquid concentration by the expansion

E
AC/nr =) 22jocp ) 2B R0 <4
4?&

7 CL
RTL 3% +¢ (592)
w7 R
where gy , 4y 5 ... 8Te defined as the effective molar volumes of con-
stituents 1, jJ, ... and 2., z., ... are defined as the effective

1 J

volume fractions of these constituents. The term nT denotes the total

number of moles in the solution., The effective volume fraction of any

component i is defined as

i (390)
2; 32174L

The constants aij ’ aijk > 84 4k1 are a measure of the interactions of

<

the various components 1ij, ijk, i1jkl comprising the liquid mixture,
Expressions for activity coefficient can be obtained from the

thermodynamically rigorous expression:
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%‘%,% = RT U7, (10)
T, P,

The activity coefficients for a binary mixture using the three-

suffix form of the Wohl equation are:

%@7%222 [/4-/-2(‘—3%3&-' —/4)2,] (41a)

Ant, = ZIQ[B-/‘Z(% —5)22] (410)

Direct comparisons can be made with Wohl's equations and the
previously mentioned expressions for activity coefficients, If ql/q2: 1,
then it follows from the definition of 2z; and 2z, that 21 =x] and

zp = xp and

In T = (28-7)nEt+2(A-8)% (12a)
D = (2A-B)xft +2(B-A)%° (h2v)

W

Equations (L42a) and (42b) are then the two-constant Margules equation,
Alternately, by taking ql/qg = a/b , then wWohl's equation reduces to
the well known van Laar equations,

The assumption that ql/q2 = 1 1is useful in treating liquid
mixtures whose constituent molecules are similar, The mathematical state-~
ment that ql/q2 = A/B may perhaps be useful in liquid mixtures with
highly dissimilar molecules,

Scatchard and Hamer(55) derived equations for activity co-
efficients. If the effective molar volumes are replaced by the molar
volumes of the pure components vi and vp , Equations (4la) and (L41b)

reduce to those developed by Scatchard and Hamer, Obviously the Wohl
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equation would represent experimental data better than the three previous-
1y mentioned equations, This would be at the expense, however, of eval-
uating the additional constant ql/q2 .

The term excess free energy was originally introduced by
Scatchard(Sl) and is denoted symbolically as AGE . The excess Gibbs
energy consists of two excess quantities--that is, an excess enthalpy

and an excess entropy:
E E E
AG = AH — TAS (43)

The assumption that the excess free energy is equal to zero, that is
AGE =0 , leads to the concept of an ideal solution, Other less trivial
assumptions would be to set either AEE or ASE =0 . Most equations
for activity coefficient were derived from Equation (43) using the as-
sumption that ASE =0 and AHE could be written as a polynomial ex-
pansion in mdle fraction or volume fraction, The condition that ASE = 0
leads to the concept of regular solutions.(l9) The van Laar, Hildebrand
and WOod,(gl) and Scatchard(Sl’Sg) equations are based on this approach,

The regular solution theory of Hildebrand has been used by
Chao and Seader in the development of their correlationv(lo) The theory
is very good for both qualitative and semi-quantitative predictions for
non-polar systems such as mixtures of hydrocarbons. Scatchard made the
following basic assumptions in his quantitative development of regular
solutions:

1) The mutual energy of two molecules depends only on the

distance between them and their relative orientation,

and not at all on the nature of the other molecules be-
tween or around them or on the temperature,
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2) The distribution of the molecules in position and in orien-
tation is random; that is, it is independent of the temper-

ature and of the nature of the other molecules present,

3) The change of volume on mixing at constant pressure is zero,

These assumptions allowed Scatchard to formulate a mathematical expression
for the "cohesive energy' of a mole of liquid mixture, The "cohesive en-

ergy" of a binary mixture is given as:

2 2 2 _,2
—E, = SV +2Ce Vi r ot 400l % ()
LR ol PRV
where Cqq 1is —El/Vl and can be defined as the '"cohesive energy density"

for pure components. For multicomponent systems, Hildebrand and Scott(go>

express activity coefficients in regular solutions by the following relation:

RT A 7, - V(6.5 (150

where the solubility parameter, & , is defined as the square root of an

energy density
AE.: 172
6 = [ v J = Solubility Parameter (45b)
Yo

21) derived Equation (45a) by integrating the inter-

Hildebrand and Wood(
molecular potential energies between pairs throughout the liquid by use
of continuous radial distribution functions. Equation (45a) will be dis-
cussed further in Chapter IX,

The alternate approach to Equation (13) is to assume AHE = 0;
this leads to the concept of athermal solutions, This approach is per-

(1%) (23)

haps best exemplified by Flory and Huggins, The Flory-Huggins

equation for athermal mixtures is given by

. .
AG" _ z (oo /Zm—é;r (46a)

RT
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where Xy = mole fraction and gi = volume fraction of component i , The

relation between mole fraction and volume fraction is given simply as

g = 2 Vi (46b)
A Z‘/}é" _‘_/A,

where V; 1is thg‘molar liquid volume of pure component 1 in the mix-
ture.

Recently Wilson(55) has developed a new equation to describe
the variation of activity coefficient with composition. Wilson's equa-

tion is a semi-empirical extension of the Flory-Huggins equation, Wilson

expresses the excess free energy at constant temperature as

8 — ) %"“["—%z Ay (1)

where Aij and Aji are adjustable'parameters. Orye and Prausnitz(58)
express the Wilson equation in a slightly different form, They present

the Wilson equation for excess free energy as

—A——&——=—'%,/&a,[ZA 4] (182)

[ —auyRT] o

(48¢c)

where

t:>

=~

N

l
<< s

N = % W"‘[(/K#'Z“ lﬂ-)/RTJ
The activity coefficients can be found by differentiating Equation (48a)

and using the rigorous expression (Equation (40))

F%‘T /zgi_](; p— iﬁlgﬁg‘?

omi 6,y
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The resulting activity coefficient for component k is:

| YA
jm']z — —%,[;”)44,]&44;]7"1_; Z%?A:; (149)

For binary systems the activity coefficients are:

L L v e

j\”z -[&21
o= (et )= 1, [ Pt Nt oéz] .

The Wilson equation has several advantages, First, Equations (48)

present only binary constants such as Akj and Ajk . Thus, Wilson's
model for multicomponent solutions requires only parameters which can

be obtained from binary data which comprise the solution, Orye and
Prausnitz(58) have shown the Wilson equation to give good representation
of a large variety of mixtures of alcohols in non-polar solvents at

low pressures, Second, the parameters Akj and Ajk have a "built-
in" temperature dependence, such that one may consider (xij - %jj)

and (A, = A,

1j 11> to be independent of temperature over moderate tem-

perature intervals,

E. Recent Developments

A generalized correlation for the prediction of equilibrium

vaporization ratios has been reported by Chao and Seaderaklo) The

authors claim their correlation is useful for mixtures of paraffins,
olefins, naphthenes, and aromatics., Chao and Seader express the
equilibrium vaporization ratio K; in terms of rigorously defined

thermodynamic functions, The expression is conveniently given as:
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. ° .
K, = o — Wyl (51)
Hoa .
The method for evaluating the liquid phase fugacity coefficient v;

(13)

is based on the Curl and Pitzer modified form of the principle of
corresponding states, The vapor phase fugacity coefficient is deter-
mined from the Redlich-Kwong equation of state, Finally, the liquid
acitivity coefficient is based on Hildebrand's solubility parameters,
Chao and Seader state the correlation has been tested with literature
data on mixtures including paraffins, olefins, aromatics, and naphthenes
They state the overall deviation from 2,696 data points is 8,7 percent,

The correlation has several restrictions on pressure and temperature,

These are:

1) For hydrocarbons except methane --

reduced temperature: 0,5 to 1.3 based on the pure com-
ponent critical temperature.

pressure: up to about 2,000 psia, but not to

exceed about 0.8 of the critical
pressure of the system,

2) For the light components (hydrogen and methane) --

temperature: from -100°F to about 0,93 in pseudo-
reduced temperature of the equili-
brium liquid mixture, but not to ex-
ceed 500°F, The pseudo-reduced tem-
perature is based on the molal aver-
age of the critical temperatures of
the components,

pressure: up to about 8,000 psia.

Grayson and Streed(l6) have extended the temperature range of
the Chao-Seader generalized correlation, From new experimental vapor-

liquid equilibria data for high temperature (up to 800°F), high pressure
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(3,000 psia) hydrocarbon systems, Grayson and Streed have calculated new
constants for the liquid phase fugacity coefficient equation., The authors
claim the new equation is useful up to 800°F for hydrogen, methane, and
heavy hydrocarbons,

(41)

More recently, Prausnitz, Eckert, Orye, and O'Connell have
presented a monograph on calculations of multicomponent vapor-ligquid
equilibria using computers, The vapor phase non-idealities are treated
in terms of the virial equation of state truncated after the second
virial coefficient., The fugacity for the vapor phase is given by Equa-
tion (19) where éi , the vapor phase fugacity coefficient, is solved in
terms of the virial equation of state, Prausnitz et al. relate the

liquid phase fugacity in terms of pressure, temperature, and composi-

tion with the following equation

- Lo} \/-
Lr 244‘7';'%/ PVe , (52)
L L T4 RT

where 75 igs the pressure independent activity coefficient, Prausnitz(uo>

defines the reference fugacity for the light component in a multicomponent

mixture by the Henry's Law constant,

o i
£ =Ly o= H (5”

For the heavy component, Prausnitz adopts the usual convention of defin-
ing the reference fugacity to be the fugacity of the pure liquid at the
temperature of the solution at some specified pressure, The convention
of defining the reference fugacity of the light component by Henry's Law
constant offers the advantage of using a reference fugacity which can

be derived from real as opposed to imaginary physical data and which is
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not ambiguous, The disadvantage of such a convention is that it depends
not‘only on the properties of the light component but also depends on
the properties of the heavy component,

In order to satisfy the Gibbs-Duhem equation at constant tem-
perature and pressure, Prausnitz adjusts the activity coefficient

O] - Ve (54)
I P RT

such that it is a function only of composition,

Using these conventions, Prausnitz defines the activity coeffi-

cient for the heavy component as

\4 (552a)
7 4(,36“”)’%/ f dP 55

And the pressure independent activity coefficient for the light component

(P°)

is defined as

(P°)
7= H —LE «% ——f (55b)

(P°)
7| — ] as /K, —> [ (55¢)

where

( P°)
]’2 ___’1 as 2, ____)_Z (4(2__)_0) (554)

Prausnitz states the above definitions facilitate the correlation of
equilibrium data,

Chueh, Muirbrook, and Prausnitz(ll) have expressed the molar
excess Gibbs energy by a power series in the effective volume fraction
of the solute

AG®
RT(%q+%292) Xee O,
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where

¢, = L (560)
2 %17‘/"'?2 %2

They then determine the activity coefficients from the relations

[ E s
(P
070G =RT%¢7, X (572)
- C)/)’I-I T,P, Mz
,D’S
| dAGE _ RTV@,J;*{ / (57b)
B d/ﬂg T, P, 7"

In contrast with van Laar's assumption that q and q2 are independent
of composition, Chueh et al, assume that ql and qg are given by a

quadratic function of the effective volume fraction:

G = v,© :1 +7?,2CI>§] (58a)
%Z= \_/ZC' T_Z s 7?;’2 @;} (58b)

where the dilation constant i3 is a measure of how the light component

swells in the liquid solution, Combining Equations (56), (57), and (58),
Chueh et al, express the adjusted activity coefficients for a binary

system as

j”—T:(P'S):“ A Q): + BO (59)
ﬂds(as}: Al %}[@2—2 ®Z}+ B[—%—:;][@:— %@f} (590)

where ,Q = aaa _\_/’a and B = 37(,2_&22 y’d



-30-

Chueh et al, extend their dilated van Laar model to a ternary system con-
taining two noncondensible and one condensible components, They define

the adjusted pressure independent activity coefficient for the third com-

ponent as
— vV P

*(pos.) ; \—/EL 60

7; = "—,:“?P.ﬂ N/aden RT d P (o)
’)63 3, Pls

Using the molar excess Gibbs energy written as an expansion in terms of

effective volume fractions @2 and @5 :

E
A =y &} ~ Oy o~ 205 B, O, =+ (622)

RT (’)‘\%l “:)‘-z%a"' %% ):

where
(I) _ ¥eBe (61D)
T OMF %G+ Fs
and
d. = %3 %3 (61c)
3 MY % + 2P

The parameter a; is related to the liquid compositions by the relation

?’4_'= yg-' [I +72:a®: + 27],)23 Cpa@s + 7,3 @;] (62)

The mixing rules used by Chueh et al. to obtain the interaction coef-

and Oéi

if2 (632)
7( 1,23 TIIZ 71'3

I/2
K3 = [aéaaas} (65%)

Ticients are gilven as

M ,23
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Using these equations, Chueh et al, report very good agreement between
calculated experimental activity coefficients for the nitrogen-oxygen-
carbon dioxide ternary system at 0°C and predicted activity coefficients
using the above mixing rules,

0'Connell and Prausnitz(57) consider the system composed of one
noncondensible constituent and two condensible constituents, In an anal-
ogous manner as above, the reference fugacities for the solvents are that
of the pure components, and the reference fugacity of the solute is the
Henry's Law constant in one of the solvents, By employing the unsymmetric
convention for activity coefficients, they transform Wohl's method to
predict the properties of a ternary system from information of the binary
pairs, They describe the properties of each binary pair by a one-term
Margules equation, No comparisons are made to test the validity of their
derived equations,

To account for the effect of pressure on the liquid phase activ-

ity coefficients, Chueh and Prausnitz(lg)

have Jjust recently developed
a method for predicting partial molar volumes. They first calculate
molar volumes of saturated liquid mixtures from a correlation developed
by Lyckman, Eckert, and PTausnitz(BB) and which is based on the tables

presented by Pitzer, Chueh and Prausnitz give their correlation in terms

of the reduced saturated volume as

(

o ) 2 (2)
Vo= Vim wVi— W3V. (64)

o
where o 1is the acentric factor and zi ) s Kg;) , and Ki?)

are
functions of reduced temperature and are tabulated, Chueh and Prausnitz

have fitted the tabulated values with an equation, They then calculate
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the partial molar volumes from the relation

V. = [9P/5 mi)r, mi (65)
4 [a POV ] )
T, M, N§

and the Redlich-Kwong equation of state, The mixing rules, however,
are different than those proposed by Redlich and Kwong,

Comparisons between the predicted values of specific volumes
of liquid mixtures and partial molar volumes and those based on ex-

perimental work are very good.



IV. MATERIALS

The materials used for this study are listed in Table I, The
supplier and grade of purity of each component are given, Purity ana-

lyses obtained from gas chromatograph scans are also listed,

TABLE I

PURITY OF MATERIALS

Analysis Manufacturer's

Compound of Purity Supplier Stated Purity
methane 99.3% The Matheson Co, 99.1%
normal pentane 99.9% Phillips Petroleum Co, 99, 9%
isopentane 99,9% Phillips Petroleum Co, 99, 9%
neopentane 99,8% Phillips Petroleum Co, 99.2%
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V. DESCRIPTION OF EQUIPMENT

The design of the equipment used in this study has been des-
cribed by Brainarda(6> The equipment and modifications are described
in this section, TFigure 1 presents a simplified flow diagram of the
apparatus used for this research, Figures 2 and 3 give a more detailed
version of the equipment. The entire experimeﬁtal equipment can be
described conveniently in terms of subsystems, These subsystems are:
the light and heavy hydrocarbon loading system, the equilibrium system,
the sampling system, Also included is a discussion pertinent to the
analytical technique for compocsition determination of the two phases,

Finally, some of the safety aspects of the equipment are discussed.

A, Hydrocarbon Loading System

The loading system consists of a high pressure cylinder of
methane (3,500 psi) and a stainless steel micro-reaction vessel with
a volume of about 140 cubic centimeters, The cylinder of methane has
a high pressure regulator manufactured by the Matheson Company (Model
o, 6-670), The regulator is provided with 10,000 psi gauges for the
inlet and discharge sides, respectively. The lines are all l/h inch
0,D., by 0,083 inch I,D., 316 stainless steel high pressure tubing.
The valves .(numbers 2,3,4 in Figure 1) are 30,000 psi items made by
Autoclave Engiﬁeers, Inc, . These valves will be discussed in more

detail in the following section.

B. Equilibrium System

Figure 2 presents a longitudinal section of the equilibrium

cell, The cell is a standard Aminco micro-reaction vessel (Catalogue

3l
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No, 41-230). The cell body is made of A,I.S.I., 316 stainless steel, de-
signed for a maximum working pressure of 11,000 psi at 100°F, The wall
thickness of the cell is 5/8 inch, The cell has an approximate volume
of 200 cubic centimeters and an approximate weight of 20 pounds. The
cell was modified in two ways, First, the seating head, at the head
gasket, was machined in such a manner that the cell would accommodate the
stirring mechanism, Second, a l/h inch hole was drilled at the base of
the cell and fitted with a l/h inch high pressure fitting, This fitting
serves as the exit point for the ligquid sample,

The rate of attainment of equilibrium in the cell is increased
by means of an Autoclave Magne-Dash stirrer., More specifically, agita-
tion of the cell contents is produced by the reciprocating motion of the
dasher assembly (see Figure 2), The motion of the dasher is produced by
the thrust induced on a magnetic core when the coil surrounding this core
is energized electrically. By using two coils, it is possible to give
the dasher a positive thrust in both up and down directions, A timer
which controls the flow of current to both coils (that is, energizing
them alternately) controls the speed of the dasher, The duration of
each stroke is then controlled by rheostats in the timer, The frequency
of motion can be regulated from about one cycle per L4 seconds to 4 cycles
per second., The longitudinal traverse of the dasher is approximately
1-1/2 inches, The upper and lower springs, as shown in Figure 2, act as
stops for the core, Finally, the centering spring positions the dasher
and supports the weight of the core, The Magne-Dash stirrer is rated for
5,000 psi operation at 650°F, The Magne-Dash stirrer is protected by a

rupture disk fabricated from 316 stainless steel and rated at 3,800 psi
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at 72°F and 3,078 psi at LOO°F,

The equilibrium system, that is the equilibrium cell, is im-
mersed in a constant-temperature bath which is equipped to maintain tem-
peratures ranging from 100°F to LOO°F, Heating is provided by six hair-
Pin resistance heaters. Four of the heaters are rated at 1,000 watts
each, One of these heaters is electrically in series with a powerstat.
The fifth heater is rated at 500 watts. Constant temperaﬁures in the
bath are maintained by the sixth heater, This heater, which is rated
at 300 watts, is electrically connected to a Fenwal electronic temperature
indicating controller (Catalogue No. 56006), A thermistor is used as the
temperature sensing probe, The probe is tied into a simple null balance
bridge circuit to alternately turn the 300 watt heater off and on. The
controller is provided with two modes of operation, namely on-off control
operation with completely adjustable differential and proportional -con-
 trol with variable proportional limits. The bath fluid is silicone oil.
The oil is produced by the Dow-Corning Corporation and is listed as
~ F-1-0113 type fluid, The fluid has a viscosity of 100 centistokes at
77°F.‘ The fluid (a dimethylpolysiloxane) is usable to 500°F in open air
baths,

The bath is a double-walled stainless steel box with a volume
of approximately 30 gallons. The oil in the bath is agitated by a mixer
which is driven by an electric motor rated at l/h horsepower,

The temperature of the constant-temperature bath surrounding
the equilibrium cell and both pressure locks is determiﬁed with a cali-
brated mercury-in-glass thermometer (gas-filled type made by the Taylor
Instrument Company, Catalogue No. 1704431), Calibration for the thermo-

meter is given in Table XXIX of Appendix C.
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The equilibrium pressure is measured with a Heise pressure gauge
(Catalogue No. H-42564), The gauge is temperature compensated between
-25°F to +125°F and accurate to 0,1 percent of full scale, Calibration

of this gauge is given in Table XXVIII of Appendix C,

C., Sampling System

Vapor and liquid samples are removed from the equilibrium cell
and contained by means.of pressure locks, Each lock is made up of two
valves (valves 5,6,7,8 in Figure 1) and a 6 inch nipple, 1/4 inch 0,D.
by 0,083 inch I,D., type 316 stainless steel, Sixteen gauge chromel A
wire was inserted in the 6 inch nipple in order to minimize the dead
volume, The valves comprising the pressure lock were a constant source
of trpuble due to the erosion of the stems. Originally, high temperature
Autoclave valves (Catalogue No, 30VM-LOT1l HT) were used, However, it
soon became apparent that these valves leaked after a short periocd of
use, A new set of valves, also manufactured by Autoclave Engineers,
'_tnc° (Catalogue No. 30VM-40T71), were tried and found to be ineffectual
after several openings and closings. It was finally decided that the

erosion of the stems was due to '"wire-drawing." A partial solution to
the problem was found by using the same type valves but specifying a
stellite stem as opposed to 316 stainless steel, The valve packing

is glass-impregnated teflon and has proven to be satisfactory, The

pressure locks are totally immersed in the constant-temperature bath

fluid,
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The vapor and liquid phase pressure locks are connected to the
vapor and liquid phase expansion cylinders by high pressure 1/4 inch
stainless steel tubing, The expansion cylinders used to expand the
sample prior to its collection in the glass sample collecting section
are gas sampling cylinders manufactured by the Hoke Corporation, The
gas sampling cylinders are accommodated with l/h inch inlet fittings
and 9/16 inch outlet fittings, The catalogue numbers of the vapor phase
and liquid phase gas sampling cylinders are 6LD500 and 9ID1000, respec-
tively, Intermediate between the expansion cylinders and the glass
sample collecting section are two rupture disks rated at 107 psi at
T2°F and two vacuum ball valves (see Figure 1), The ball valves are
manufactured by the Jamesbury Corporation (Catalogue No., 1/2" HPV-22-GT)
and rated at pressures from 0,01 microns to 4,500 psi. With the ball
valves closed, the rupture disks provide a safety feature prior to ad-
mitting the sample into the glass section of the equipment if any of
the high pressure valves (namely valves 6 and 7) fail,

The vapor and liquid sample lines are coupled together at
this point, By means of a Kovar glass seal, the all-metal system
previously mentioned is connected to the glass sample collecting system,
All stopcocks in the glass section are of the hollow-plug, oblique=-bore
vacuum type and either 4 millimeters or 8 millimeters in diameter,

"Non Aq" stopcock grease distributed by the Fisher Scientific Company
is used as the stopcock lubricant, Although "Non Aq" does not possess
the best vacuum lubricant properties, it is used in this research to

prevent selective adsorption of the samples,
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A Toepler pump (see Figure 3) is used to transfer the samples
from the sampling lines to the collecting section, The pump is made by
the Eck and Krebs Company and has a volume of about 500 cubic centimeters
The glass collection section consists of expansion flasks, a groumd glass
Joint thermometer, and a closed-end mercury manometer, A cathetometer
manufactured by the Central Scientific Company is used to measure mer-
cury levels in the closed-end mercury manometer, The cathetometer is

capable of discerning distances as small as 50 microns,

D, Composition Determination

A Perkin-Elmer Vapor Fractometer (Model No., 154-D) equipped
with a thermal conductivity cell as the sensing device is used’ for
the separation and analysis of the vapor and liquid samples, Essen-
tially, a carrier gas, in this case helium, and the sample pass through
a column where the sample components are separated, The column used
in all aspects of this research is 14 feet of 1/L inch tubing packed
with squalane (20 percent) on a Chemisorb support., The sample-.com-
ponents are swept one by one into the sensing side of the detector,
Both sides of the thermal conductivity cell are incorporated into a
balanced bridge circuit, When a thermal conductivity change occurs
between the reference gas and the sample plus reference gas, .a re-
sulting bridge imbalance provides a voltage which drives the pen
on a recording potentiometer,

The recorder is a Leeds and Northrup Model G recerding
potentiometer, The recorder has a one second, full scale balance

time and a 5 millivolt nominal span,
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The gas sample is introduced into the Fractometer by means of
a Perkin-Elmer precision gas sampling valve (Catalogue No, 008-0659),
The valve is made of stainless steel and teflon with a sample volume of
about 2 cubic centimeters.

A Perkin-Elmer printing integrator (Model No. 194-B) is used
to integrate the area under the resultant chromatographic curves, The
integrator is a standard velocity, servo-computing arrangement with the
input signal produced by a potentiometer installed on the recorder shaft,
Within the integrator, an amplifier drives a servo-motor coupled to a
tachometer generator and to a printing counter which registers the total
number of shaft turns accumulated, The tachometer generator produces an
output voltage which is linearly proportional to the speed at which it
is driven by the servo-motor. The amplifier compares the tachometer-
produced signal to that of the potentiometer in the recorder and con-
tinuously regulates the speed of the servo-motor, Each value of the
potentiometer input signal corresponds to a definite servo-motor and
tachometer speed, Since the rate of rotation of the printing counter
is proportional to the recorder pen position, the total number of turns
registered in a.given time interval is proportional to the integral of
the recorder pen position during the same time interval, Hence, it is
proportional to the area under the curve produced by the pen, The
Perkin-Elmer integrator has a maximum integrating rate of 6,000 counts

per minute,

E. Safety

A conscientious attempt was made to incorporate safety fea=-

tures into the design of the experimental equipment, First, the



.

equilibrium cell and pressure locks were hydrostatically tested to 3,000
psi prior to any experimental runs, A safety shield fabricated of l/h
inch steel plate surrounds the constant-temperature bath and the equilib=-
rium cell contained therein, A panel was cut out on one of the sides of
the barricade such that the valves can be manipulated with a minimum ex-
posure of the operator to the high pressure equipment, As previously
mentioned, the Magne-Dash stirrer and sampling lines are provided with
rupture disks, Finally, a hood was placed over the equilibrium constant-
temperature bath, such that in the case of a rupture disk failure the
contents of the cell would be transported out of the room to the exterior

of the building.



VI, EXPERIMENTAL PROCEDURES

In the description of the experimental procedure, references
to all component equipment identity are made to Figure 1, The initial
startup procedure will be discussed in detail,

The entire experimental equipment is evacuated to a pressure
of 10 microns or less for a period of not less than 24 hours., With re-
ference to Figure 1, at the outset all stopcocks and valves are open
with the exception of valves 2,3,9, and 10, Valve 1 denotes the valve
on the high pressure cylinder of methane, The high pressure line be-
tween valves 1 and 2 has been flushed several times previously with
methane from the cylinder,

Heavy hydrocarbon (pentanes) loading is accomplished by pi-
petting a prescribed amount, about 90 cubic centimeters, of pentane
(normal or iso-) into the charging cylinder, Since neopentane boils
at a temperature considerably below room temperature, it is charged
into the equilibrium cell directly from the containing cylinder, which
is placed on a pan balance, In addition, the equilibrium cell is
cooled down by direct contact with solid carbon dioxide, About 50
grams of neopentane are normally administered to the cell, In charg-
ing, valves 6 and T are closed and valve 3 is then opened to permit
the pentane to enter the equilibrium cell by gravity and pressure-
induced flow, Valves 3 and 4 are then closed, Valve 6 is opened and
closed several times, thereby evacuating any air that is dissolved in
the pentanea' Closing valve 6, methane is then transferred into the
equilibrium cell by setting the pressure regulator at 3,500 psi, opening

valve 2, and cracking valve L,

-h5-
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Upon reaching a pressure (as indicated by the Heise pressure
gauge) somewhat less than the desired operating pressure, valve L is
closed, The Magne-Dash stirrer is then initiated and operated at about
5 cycles per second, The electrical heaters, including the Fenwal
temperature controller, are energized and the oil bath agitator is turned
on, Having reached the desired operating temperature, the desired oper-
ating pressure is obtained by venting some vapor from the cell or pres-
surizing the cell with methane from the high pressure cylinder, Once
the oil bath has reached the desired operating temperature, the heat in-
put into the cell is adjusted by means of a variac and the temperature
controller, At this point, the cell and its contents are allowed to
physically equilibrate for no less than eight hours., It was found dur-~
ing préliminary runs that a minimum of about four hours was required to
attain physical equilibrium, and about eight hours was required to attain
equilibrium near the critical region for the cell geometry., During this
equilibration time, the stirrer is operated at a frequency of about one
cycle per second, The bath thermometer is checked many times to deter-
mine the constancy of the temperature indication,

The first step in the vapor sampling procedure is to turn off
the stirrer and record the temperature and pressure readings, Valves 5,
13, and 1b4; both vacuum ball valves; and stopcock "e" are then closed,
Valve 6 is opened and closed. In so doing, a vapor sample is transferred
from the cell to the previously evacuated pressure lock, Valve 5 is’then
opened and the vapor sample’is allowed to expand into the vapor expansion
cylinder, Ball valve 1 is opened and the vapor sample is further expand-
ed into the sample collecting section, At this point, stopcock "d" is

closed and the Toepler pump initiated,
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The Toepler pump (see Figure 3) operates in such a manner that
the sample is transferred from the sampling lines to the sample collect-
ing section, - In actual operation, the mercury is in the lower chamber
at the outset, With stopcock "d'" closed, air is admitted to the lower
chamber of the Toepler pump by way of a bleed valve, The air forces
the mercury contained therein through a standpipe into the upper chamber,
The mercury rises in the upper chamber, forcing the gas sample through the
mercury float valve "t" , When the mercury makes contact with electrical
contact "Z" , a relay is closed which automatically starts a vacuum pump,
thereby evacuating the lower chamber and draining the mercury back into
it, The sample, which has been transferred to the sample collection
chamber, is now contained by the one-way mercury float valve "t" , As
the mercury fills the lower chamber, the gas standpipe is again con-
nected to the upper chamber of the pump. Mercury makes contact at point
"Y'" and the relay is opened, thereby shutting off the vacuum pump, The
cycle starts over again by introducing air by way of the bleed valve in-
to the lower chamber,

Seven to ten cycles of the Toepler pump are found to be suf-
ficient to move the gas sample from the expansion cylinder and the
sampling lines into the sample collection chamber., The temperature of
the sample is measured with a thermometer, and pressure measurements
are performed with the closed-end mercury manometer and the aid of a
cathetometer, Normally, the pressure of the sample is maintained at
pressure between 10 and 15 centimeters of mercury by using an appropri-
ately sized sample bulb "b" ., During all preliminary runs the appropri-
ate volume of sample bulb 'b" was determined using the criterion of a
maximum pressure of 20 centimeters of mercury. No problems of partial

condensation of the samples were encountered in this research,
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Analyses of both liquid and vapor samples are carried out in
the vapor phase, The analytical procedures involve the introduction of
the sample into the gas chromatograph by means of a gas sampling valve,
About one hour before the vapor sample is withdrawn from the cell, the
gas chromatograph, recorder, and integrator are turned on, The helium
carrier-gas flow rate is adjusted to a flow rate of 72 milliliters per
minute (at 25°C, T4O millimeters of mercury), as determined by a soap
film gas meter, The chromatograph oven temperature was maintained at
80°C, The sample loop is evacuated by means of a vacuum pump, Stopcock
"g" is closed and stopcock '"f" opened, Once the sample pressure remains
constant, the gas sample is introduced into the chromatograph by turning
the gas sampling valve, which switches one of the two sample valve tub-
ing loops into the flowing carrier-gas stream, The resulting chromato-
graphic areas are then determined by using the Perkin-Elmer printing
integrator,

A minimum of two analyses are made for each sample, In all
cases, duplicate samples differed less than ,75 percent., The sample
loop is evacuated and anew sample is introduced in the same manner as
previously described,

During the time that the vapor sample is being transferred
from the sample lines to the sample collection chamber by means of the
Toepler pump, the liquid sampling line is flushed, This is done to
acquire a representative liquid sample from the cell, since preliminary
runs showed that the liquid'in the liquid drawoff tube was not of the
same composition as that in the equilibrium cell, The flushing proce-~

dure is accomplished in the following manner, Valves 8, 12, and 1k
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are closed and valve 10 is opened, A liquid sample is introduced into
the liquid pressure lock by opening and closing valve 7, Valve 8 is
opened and the liquid sample vented, This procedure of opening and
closing valves 7 and 8 is repeated four times, Preliminary runs re-
vealed that the fifth sample was representative of the liquid equilib-
rium composition in the cell, Geometrically, four flushings are equiv-
alent to about 1.5 times the volume of the liquid drawoff line, Valve
10 is closed and valves 8 and 1L are then opened,

Having analyzed the vapor phase composition, the system is
prepared for analysis of the liquid phase composition, A larger sample
bulb "" is inserted into the system after closing stopcocks "c'" and "a".
For vapor samples, the sample bulb volume ranges from about 25 to 250
cubic centimeters. For liquid samples, the sample bulb volume ranges
from approximately 250 to 1000 cubic centimeters, The entire system
is then evacuated to a pressure of about 10 microns for a period of
about one-half hour,

Liquid samples are withdrawn in the same manner as vapor samples,
The valve manipulations in withdrawing and collecting the liquid sample
are analogous to those of the vapor sample, In fact, they are symmetrical
from the vapor sampling line up to the point where the vapor and liquid
sample lines merge, The stopcocks in the glass section are opened and
closed in the manner used when analyzing the vapor sample, In collecting
the liquid sample, about twice the number of cycles are required to
transfer the liquid sample from the sampling lines to the sample collec-
tion chamber as compared to the pumping time for the vapor sample, In
addition, the liquid sample is allowed to expand, and it is collected

again to insure mixing. This mixing process is accomplished in the
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folowing manner, After the sample is collected, stopcock "a" is closed
and stopcock "d'" opened., The sample then expands into the upper chamber
of the Toepler pump, Stopcock "d" is closed and the pumping procedure
repeated until all of the sample is once again contained in the sample
collection chamber,

Analysis of the liquid sample is accomplished in an analogous
manner to that for the vapor sample, As with the vapor phase samples,
duplicate analyses are run as standard procedure,

The equipment is then prepared for the next run by evacuating
the entire system, Methane is administered into the equilibrium cell,
thereby increasing the pressure, The Magne-Dash stirrer is reactivated
and the equilibrium cell is allowed to re-equilibrate for at least eight
hours, For runs near the critical region the cell is allowed to equilib-
rate for about twelve hours. In the course of this research, experimen-
tal data were obtained at three isotherms, namely 160°F, 220°F, and

280°F,



VII., EXPERIMENTAL RESULTS

The experimental data obtained in this research are presented
in Tables II through XII and Figures 4 through 22 in the same order as
the data were taken chronologically,

The experimental phase equilibrium data for the methane-
normal pentane system are given in Table II, Experimental data were
taken at one temperature (220°F), and several points were taken at es-
sentially the same pressures to establish the reproducibility of the
entire system, The experimental data on this system are compared with
those of Sage, Reamer, 0lds, and Lacey(5o) in Figure 4, As can be seen,
agreement between Sage et al, and this work is quite good.

Tables III through V present the experimental phase equilib-
rium data for the methane-isopentane binary system, Figures 5 through 7
show the pressure composition data at temperatures of 160°F, 220°F, and
280°F, respectively, Included in Figures 5 through 7 are the experimen-
tal data reported by Amick, Johnson, and Dodgeo(l) Figure 8 is a log-
log plot of the equilibrium vaporization ratios, K , of methane and
isopentane as a function of pressure, All three isotherms (160°F, 220°F
and 280°F) are included in Figure 8, The loci in Figure 8 represent
smoothed equilibrium vaporization ratios for methane and isopentane.
Smoothed K values were obtained from Figures 5 through 7 and are pre-
sented in Tables XIII through XV, The uncertainty of the smoothed values
of methane composition is believed to be + 0.002 mole fraction, Experi-
mentally determined K values for methane and isopentane are also pre-

sented in Figure 8,

-51-
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Tables VI through VIII present the experimental phase equilib-
rium data for the methane-isopentane-normal pentane ternary system, The
Gibbs Phase Rule states that the number of intensive variables required
to specify the system is three for a two-phase system containing three
components, The intensive properties selected to determine the ternary
system are pressure, temperature, and isopentane concentration to iso-
pentane plus normal pentane concentration in the liquid phase. Figures 9
through 15 graphically present the experimentally determined ﬁhase equi-
librium behavior of the methane-isopentane-normal pentane ternary system,
Figure 9 illustrates the equilibrium ratios for methane, isopentane, and
normal pentane as a function of pressure for the three isothermal condi -
tions investigated in this research., Figures 10 through 12 present the
pressure-composition diagrams for the methane-isopentane-normal pentane
ternary system at the three tempertatures of 160°F, 220°F, and 280°F,
respectively, The loci of Figures 9 through 12 are described by a para-
meter of isopentane concentration to isopentane plus normal pentane con-
centration, Figures 13 through 15 give the ternary composition diagrams
for three pressures, They show the decrease of the two-phase region with
increased pressure, vThey also illustrate the small change of the liquid
phase mole fraction parameter with pressure for different isotherms,

The data for the methane-normal pentane binary system in Figures 13
through 15 are those of Sage et gi.(BO)

Tables IX through XI give +the experimental phase equilibrium
data for the methane-neopentane binary system . Also tabulated are the
experimentally determined K values of methane and neopentane, Figures

16 through 18 are the pressure-composition curves for the three isotherms
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at which experimental data were obtained, Figure 19 compares smoothed
values of the equilibrium vaporization ratios of methane and neopentane
with the experimental values as a function of pressure, The loci of the
three isotherms presented in Figure 19 represent smoothed data as deter-
mined from Figures 16 through 18, These smoothed data are presented in
Tables XVI through XVIII, No data have been found in the literature for
the methane-neopentane binary system, Hence, no comparisons are made
with this work,

Table XII presents the experimental phase equilibrium data for
the ternary system of methane-neopentane-normal pentane. Experimental
data were obtained for one isotherm, namely 160°F, Figure 20 is a plot
of the equilibrium vaporization ratios of methane, neopentane, and normal
pentane at 160°F as a function of pressure on logarithmic coordinates,
Figure 21 shows the pressure-composition diagram for the methane-neo-
pentane-normal pentane ternary system at 160°F., The locus in Figure 21
is described by a parameter of neopentane concentration to neopentane
plus normal pentane concentration in the liquid phase, Finally, Figure
22 presents a ternary composition diagram of this system, It demonstrates
the shrinkage of the two-phase region with increased pressure and the re-
lative independence of the heavy components with pressure on a methane-
free basis for the liquid phase, Methane-normal pentane data illustrated

in Figure 22 are those of Sage et al,(SO)
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Figure 5. Pressure-Composition Diagram for Methane-Tsopentane Binary System at 160°F,



PRESSURE (PSIA)

-T72=

2200

2000

1800

|

T

1600

1400

1200}

1000

T

800

600

400+~ o}

200+

O THIS WORK
O AMICK ET AL (1)

T=220°F

| i | { | | i i

FPigure 6,

10 20 30 40 50 60 70 80 90
COMPOSITION (MOLE % METHANE)

Pressure~Composition Diagram for Methane-Isopentane Binary System at 220°F,



PRESSURE (PSIA)

2000

1800

1600

1400

1200

1000

800

600

400

200

-3~

L @ THIS WORK

0 AMICK ET AL (1)

T:=280°F
L
Q

- o a

1 | | 1 | 1 |
0 10 20 30 40 50 60 70 80

COMPOSITION (MOLE % METHANE)
Figure 7., Pressure-Composition Diagram for Methane-Isopentane Binary System
at 280°F,



EQUILIBRIUM RATIO, K

10.0

8.0

6.0
50

4.0

30

2.0

08

0.6
0.5

04

0.3

0.2

0.1

~Th-

- o 160°F
wl
=z
o g
I
-
11}
r 2
- wl
=
[
~ Z
Ll
Q
O
@
! ! [ S R R N | ! ! |
100 200 300 500 700 1000 2000 3000 5000
PRESSURE (PSIA)
Figure 8, Equilibrium Ratio-Pressure Diagram for Methane-Isopentane Binary

System,



K

EQUILIBRIUM RATIO,

10.0

8.0

6.0
50

4.0

3.0

2.0

0.8

0.6
0.5

0.4

0.3

0.2

0.1
|

_75 -

B © T=160°F, C = 0.259
B 8 T1:=220°F, C =0.252
- A T=280°F,C=0.257
L METHANE
L
-
|
i ISOPENTANE
n- PENTANE
ISOPENTANE
i n- PENTANE
ISOPENTANE
n- PENTANE
1 L ! ! Lo ] 1 | 1
00 200 400 600 800 1000 2000 5000
PRESSURE (PSIA)
Figure 9, Equilibrium Ratio-Pressure Diagram for Methane-Isopentane-Normal

Pentane Ternary System,



PRESSURE (PSIA)

2400

2200

2000

1800

1600 |

1400

1200

1000

800

600

400

200

=76-

B T=160°F
c
- G
}_
] | { ] | L 1 !
0 10 20 30 40 50 60 70 80 90
COMPOSITION (MOLE % METHANE)
Figure 10, Pressure-Composition Diagram for Methane-Isopentane-Normal Pentane Ternary

System at 160°F.



PRESSURE (PSiA)

2200

2000 |-

1800

1600

1400

1200

1000

800

600

400

200

_77_

r__
] ] ] ] 1 ] | |
0 10 20 30 40 50 60 70 80 90
COMPOSITION (MOLE % METHANE)
Figure 11. Pressure-Composition Diagram for Methane-Isopentane-Normal Pentane Ternary

System at 220°F,



PRESSURE (PSiA)

2000

1800 -

1600~

1400 -

1200

i000

800 |-

600

400

200

-78-

T=280°F
— Xi-
oLk = 0257 (0)
Xic gt Xn-cg
] | ] ] | | | |
(o] 10 20 30 40 50 60 70 80 90
COMPOSITION (MOLE %METHANE)
Figure 12, Pressure-Composition Diagram for Methane-Isopentane-Normal Pentane Ternary

System at 280°F,



=79~

METHANE
1000

T=160°F

o 1003 psia
g 1493 psia
a 1995 psia

70
80
90
. V2 V3 V2 V2 \V N 100
100 90 80 70 60 50 40 30 20 10
ISOPENTANE MOLE % i- C5 n-PENTANE

Figure 13, Triangular Composition Diagram for Methane-Isopentane-Normal Pentane System at 160°F.



-80=

METHANE
100, 0

T = 220°F
o 995 psia
70 @ 1519 psia

A& 1765 psia

20, 80
10 90
0 A4 AV4 AY2 V. AVA M 100
100 90 80 70 60 50 40 30 20 10 [o]
ISOPENTANE MOLE % i-Cg n- PENTANE
Figure 1k,

Triangular Composition Diagram for Methane-Isopentane-Normal Pentane System at 220°F.



-81-

METHANE
100,0

T=280 °F
O 1031 PSIA
40 o 1255

%
@

20,

o VARV VA V A VA V A VAN VA V AU V AR V S V A V A VAR V A VAN V SN V AR 100
100 90 80 70 60 50 . 40 30 20 10 o}
ISOPENTANE MOLE % i-Cs n-PENTANE

Figure 15, Triangular Composition Diagram for Methane-Isopentane-Normal Pentane System at 280°F,



PRESSURE (PSIA)

8D -

2000

1800

1600

1400

1200 |-

1000

800

600

400

200

| L | | L 1. A

Figure 16,

20 30 40 50 60 70 80 90
COMPOSITION (MOLE % METHANE)

Pressure-Composition Diagram for Methane-Neopentane Binary System at 160°F.



PRESSURE (PSIA)

-83 -

2000

1800

]

T=220°F

I

1600

1400

T

l

1200

]

1000

800

600

400

200

0 L | | 1 | ! L
0 i0 20 30 40 50 60 70 80

COMPOSITION (MOLE % METHANE)

Figure 17, Pressure-Composition Diagram for Methane-Neopentane Binary System
at 220°F,



PRESSURE (PSIA)

1600

1400

1200

1000

800

600

400

200

-8

T=280°F
| | ] ]
0 10 20 30 40 50 60
COMPOSITION (MOLE % METHANE)
Figure 18, Pressure-Composition Diagram for Methane-Neo-

pentane Binary System at 280°F,



EQUILIBRIUM RATIO, K

-85-

6.0

T

T

5.0

4.0

30

20

0.8

0.6
0.5+

0.3

0.2

METHANE

NEOPENTANE

| | | | 1 I I | | |

0.l
100

Figure 19,

200 300 500 700 1000 2000 3000 5000
PRESSURE (PSIA)

Equilibrium Ratio-Pressure Diagram for Methane-Neopentane Binary
System,



EQUILIBRIUM RATIO , K

10.0

8.0

6.0
5.0

4.0

3.0

2.0

0.8

0.6
0.5

04

0.3

0.2

0.1

-86-

-
- METHANE
-

NEOPENTANE

n- PENTANE

L ! R B I R ! !
[o]0] 200 300 400 600 800 1000 2000

PRESSURE (PSIA)

Figure 20, Equilibrium Ratio-Pressure Diagram for Methane-Neopentane-

Normal Pentane Ternary System,

4000



PRESSURE (PSlA)

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

-87-

-

T=160°F

. Xneo Cy
B C:= = 0.247

XneocgtXn-c,
-
o

] | 1 ] ] 1 ] |

(o] 10 20 30 40 50 60 70 80 90
COMPOSITION (MOLE % METHANE)

Figure 21. Pressure-Composition Diagram for Methane-Neopentane-Normal Pentane Ternary

System at 160°F.



-88-

METHANE
1000

T=160°F

© 1006 psia
0 1505 psia
% A 2013 psia
<
‘(\
K

0 Vi V2 AV \ AV AVA AV Vi 100
100 90 80 70 60 50 40 30 20 10 (o]
NEOPENTANE MOLE % NEO-Cg n- PENTANE

Figure 22, Triangular Composition Diagram for Methane-Neopentane-Normal Pentane Ternary System at 160°F.



VIII. ANALYSIS AND DISCUSSION OF RESULTS

The certainty of the experimental results in this research is
dependent upon accuracy of measurements, experimental technique, and
purity of the materials used,

The measurements made can be divided into three areas: pressure
measurement, temperature measurement, and composition determination, The
equilibrium pressures were measured with a Heise pressure gauge, This
instrument has a pressure range of‘O to 3,000 psi and its scale is sub-
divided at 2 pounds per square inch intervals, The model used in this
research was accurate to 0,1 percent over its entire range, The gauge
was calibrated against a dead-weight tester and found to be accurate
over its entire range of full scale, Accordingly, it is believed that the
equilibrium pressures were known to within +3 pounds per square inch,
Calibration of the Heise pressure gauge is given in Appendix C, Table
XXVIII,

The temperature of the constant-temperature bath which con-
tained the equilibrium cell was determined with a mercury-in-glass ther-
mometer which was calibrated against standard thermometers., The un-
certainty in the measurement of temperature is within +,2°F. However,
temperature variations in the bath were caused by the temperature con-
troller, At temperatures below about 220°F, fluctuations of the bath
temperature were below O0.L4°F, At a bath temperature of 280°F, the
temperature fluctuation was within 0,5°F, Inasmuch as the equilibrium
cell has a relatively large heat capacity, the cell contents would incur
smaller temperature variations., It is believed that the overall uncer-
tainty in temperature is + ,5°F, Calibration of the mercury-in-glass

thermometer is given in Table XXIX of Appendix C,
-89-
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The compositions of the dew-point gas and the bubble-point liquid
were investigated by withdrawal of a small portion of the wvapor and liquid
phases under isothermal and essentially isobaric conditions. Normally, at
pressures below 0,7 of the critical, about a two to three psi pressure drop
occurred after the vapor sample was withdrawn from the cell, At pressures
near the critical region, a higher (about 8 psi) drop in pressure occurred
upon vapor sample withdrawal, The compositions of the vapor and liquid
samples were ascertained by gas chromatography. Duplicate analyses of the
same sample were run as standard procedure, The data are tabulated in
Appendix B, Tables XXVI and XXVII. The duplicate analyses agreed to with-
in about 0.5 percent of methane for the majority of samples, It is be-
lieved that the analytical method is accurate to within 1,0 percent of
the main constituent in the mixture, The gas chromatograph was calibrated
with binary mixtures of known concentration, Details of the calibration
procedure are given in Appendix C,

Although the reproducibility of the measurements, in particular
the determination of composition, indicates adequate technique in analy-
sis of the vapor phase and liquid phase samples, consideration must also
be given to the uncertainty of the experimental technique--that is, cer-
tainty of equilibration and the withdrawal of representative samples from
the cell., By making several runs at the same temperature and essential-
ly the same pressure for the methane-normal pentane binary system, the
reproducibility of the system can be determined. The results presented

in Table II and Figure 4 indicate a reproducibility of about 1.0 percent.
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Tisted in Table I are the purities of the materials used in this
research, Only the methane contains a significant impurity, about 0.7
percent nitrogen. Since the column used in the chromatograph cannot sep-
arate nitrogen and methane, the methane compositions determined in this
work are slightly biased by the nitrogen impurity. To determine the ef-
fect of nitrogen on the experimental results, a material balance was made,
Specific volume data reported by Sage et g&,(5o) on the methane-normal
pentane binary system and X values of nitrogen reported by Roberts and
McKetta<47> were used to make a nitrogen material balance, The results
of these calculations showed that the maximum nitrogen concentration in
the vapor phase was about 1,0 percent, with no significant accumulation
of nitrogen in the system due to the sampling technique, This fact 1is
further substantiated when one compares the result of this work on the
methane-normal pentane binary syétem with that of Sage et al, Figure i
shows the dew-point gas compositions to be slightly greater than those
reported by Sage et al, by about 1.0 percent., The liquid phase compo-~
sitions determined by them, however, are in very good agreement with
those of this work,

Comparison of runs 66 through 69 and runs 66A through 69A fur-
ther show no significant accumulation of nitrogen due to the sampling
technique, PRuns 66 through 69 were the last four runs of a series of
eighteén runs made with an initial charge of isopentane-normal pentane
mixture, Runs 66A through 69A were the first four runs of a new charge
of isopentane-normal pentane mixture. Comparison of the methane con-
centration in the vapor phase of both sets of runs (see Figure 12) in-

dicates no nitrogen accumulation within the accuracy of the analytical
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technique., The isopentane to isopentane plus normal pentane concentration
in the liquid phase is different, however, for the two sets of runs., This
is a result of the relative volatility of isopentane to normal pentane,.
That i1s, the concentration on a methane-free basis of isopentane to normal
pentane in the liquid phase is somewhat lower for runs 66 through 69 com=-
pared to runs 66A through 69A,

Figures 5 through 7 present and compare the phase composition

(1)

data of this work and that reported by Amick, Johnson, and Dodge for
the methane-isopentane binary system, The data reported by Amick et al,
are not in good agreement ﬁith this work, Their data do show considerable
scatter, however, as can be seen in Figures 5 through 7, Amick et al,
employed a bubble~-and-dew-point device to obtain their data., In contrast
to their conclusion, the results of this work show the solubility of meth-
ane in isopentane not to be very different from the solubility of methane
in normal pentane.

For the methane-isopentane binary system, critical pressures
for the three isotherms were determined graphically by extrapolating to
zero, plots of system pressure versus the quantity (y-x)2 . The cor-
responding critical compositions of the binary systems investigated were
determined by using the law of rectilinear diameters, where plots of
equilibrium pressure versus the quantity (y+x)/2 were extrapolated to
the previously determined critical pressures, It is believed that the
graphically determined critical pressures have an uncertainty of + 20
pounds pér square inch, and the corresponding critical compositions have
an uncertainty of less than + 1 mole percent methane, Included in Table

XIX are the critical pressures and corresponding critical compositions

for temperatures 160°F, 220°F, and 280°F.
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No data have been found in the literature for the methane-neo-
pentane binary system, Therefore, no comparisons are made with data of
this work, Critical pressures and critical compositions are indicated
in Figures 16 through 18, They were determined in the same manner as
described in the discussion of the methane-isopentane binary system.

It is of interest to compare the methane-neopentane system with the meth-
ane-isopentane binary system, Figures 16 through 18,in contrast with
Figures 5 through 7, reveal a significant difference in solubility of
methane in these two pentane binary systems, The solubility difference
of methane, expressed in terms of the equilibrium vaporization ratio,

K , in the neopentane solution and the isopentane solution is also borne
out by comparing Figures 8 and 10, respectively, One would expect this
solubility difference in view of the difference of molecular structure of
neopentane and isopentane, Because of its symmetrical structure, if is
reasonable to assume that liquid neopentane would contain a larger void
fraction than liquid isopentane, On this assumption, one can then visu-
alize an increased solubility of a relatively spherical molecule such as

methane,

TABLE XIX

GRAPHICALLY DETERMINED CRITICAL PROPERTIES FOR BINARY SYSTEMS

Temperature Critical Pressure Critical Composition
System (°F) (psia) (mole fraction methane)
methane-isopentane 160 2213 0,688
methane-isopentane 220 1917 0,638
methane-isopentane 280 1534 0,539
methane -neopentane 160 1755 0,644
methane-rieopentane 220 1460 0,528

methane-neopentane 280 1035 0.354
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Illustrated in Figures 9 through 15 is the effect of adding the
intermediate constituent isopentane to the methane-normal pentane binary
system, Figure 9 reveals that the effect of isopentane does not change
the equilibrium vaporization ratio for methane significantly for any of
the three isotherms, As can be seen in Figure 9, the K curves have
similar characteristic shapes as those for binary systems. Figures 9
through 12 are characterized by an additional intensive property. The
chosen property (designated as c ) is the average concentration of iso-
pentane to isopentane plus normal pentane in the liquid phase, An average
value was used since this mole fraction did change slightly during an
isotherm determination., This is a result of the relative volatility of
isopentane to normal pentane, For the methane-isopentane-normal pentane
ternary system, the change in the mole fraction parameter for the 160°F
and 220°F isotherms was less than 2 percent, For the 280°F isotherm, the
change in mole fraction of isopentane to isopentane plus normal pentane
was less than 2,5 percent, The triangular compostion diagrams, Figures 13
through 15, show reasonable consistency with the binary data of this work
and Sage et al,

Figure 20 through 22 present the effect of adding a different
intermediate constituent to the methane-normal pentane binary system,

For this case, the third constituent is neopentane. Experimental data

were obtained at one isotherm, 160°F, The solid lines in Figure 22 are

the combining lines connecting the coexisting vapor and liquid phases,

Mole fraction of the heavy components on a methane-free basis in the liquid
phase is used as the third intensive property in Figures 20 and 21, For

the reasons discussed in the preceding paragraph, an average value of
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this property is presented in Figures 20 and 21. For this ternary system,
the methane- free mole fraction of neopentane to neopentane plus normal
pentane incurred about a 3 percent change for the isotherm (160°F) deter-
mination,

The general behavior portrayed in Figure 20 is similar to that
found for binary systems; however, it does illustrate the influence of
neopentane upon the equilibrium behavior of the individual components,
Comparison of Figures 9 and 20 indicate a significant influence of the
nature of the intermediate component, although a different isomer, upon
the phase behavior of the light component, methane. That is, for es-
sentially the same liquid phase parameter, neopentane in contrast with
isopentane produces a decrease of the equilibrium ratio of methane for

the same temperature and pressure of the system,



IX, ANALYTICAL CORREIATION PROCEDURE

The ultimate goal of phase equilibrium thermodynamics is to
develop accurate and reliable methods to predict vapor-liquid phase be-
havior of complex mixtures, However, such methods can only be deemed re-
liable when subJjected to direct comparison with experimental data, The
correlation procedure adopted for the calculation of the equilibrium va-
porization ratio K for the components investigated in this research is
a modified form of the Chao-Seader correlation.(lo)

Chao and Seader express the equilibrium vaporization ratio in

terms of rigorously defined thermodynemic quantities (Equation (51))

K = 2t - v 7
A {yng ¢L}

where v? is the liquid phase fugacity coefficient, and is defined as
i

fg/P s 7. 1s the liquid phase activity coefficient, and ¢i is the
i
vapor phase fugacity coefficient., Equation (51) is obtained by substitu-

tion of Equations (18) and (22) into Equation (12), That is,

Yo QP = s L f: (66)

Rearranging Equation (66) in terms of the definition of the equilibrium
ratio, Ki yields Equation (51), In this section a detailed discussion

is given on the method employed to calculate the thermodynamic functions

in Equation (51).

A, Eguation of State

A good equation of state is necessary in deriving thermodynamic

functions to represent experimental vapor-liquid equilibrium data. For

-96-
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this work the equation presented by Benedict, Webb, and Rubin(u) was chosen
to evaluate the specific volume of the vapor phase, the compressiblity
factor Z , and the vapor phase fugacity coefficient ¢ . The reasons
for selecting this equation as opposed to other equations of state were
twofold, First, the B-W-R eéuation can be used to predict thermodynamic
properties in the critical region. Second, constants used to describe the
behavior of the vapor phase region have been determined for all the pure
components studied in this research,

The relationship between the fugacity coefficient and pressure,
temperature, and volume is given by Equation (25). Substitution of the
B-W-R equation into Equation (21) yields an expression for the fugacity

coefficient @; :

RT b §.= RT b L +|( B+ B )RT = 2(AA,) "

—2(Casl) T + BRT (67520 — (2 as)”|

/ .
4 —%—[a—(aaou L a(a%u)'a] s+ @
i,
4 sh ()| 1w (b)) e (V1)
72 L. 2

1 o’ 7 1 (yt
xz 24-/ 1— e (_f z.) X'J_(Z 4 (XPZ)]
TE(F) | R e CTh) J

In the case of this research, the constants used for the computations

were obtained from the literature and are given in Table XX.
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TABLE XX

CONSTANTS FOR BWR EQUATION OF STATE FOR INDIVIDUAL MATERIALS USED
IN THIS RESEARCH

Substance Methane(h) Neopentane(7) Isopentane(h) Normal Pentane(&)

Bo 0.0426000 0.170530 0.160053 0.156751
Ao 1.855500 12,9635 12,7959 12,1794
Co x 1070 0.0225700 1.275 1.74632 2.12121
b 0.00338004  0.0668120 © 0.0668120 0.0668120
a 0.0494000 3, 4905 3.75620 4, 07480
¢ x 107 0,00254500  0.546 0. 695000 0.824170
ax 100  0.124359 2,000 1.70000 1. 81000
y x 10°  0,600000 5,000 I, 63000 1,75000
Units:
P = DNormal atmosphere
d = gnm-moles/liter
T = %K = °C+ 273.16
R = 0,08207 (liter)(atm)/(gm-mole)(°K)

B. Activity Coefficient

The various forms of representing activity coefficients have

been previously discussed. Prausnitz, Edmister, and Chao(42> have re-

commended that the Hildebrand-gcott(20)

regular solution theory correla-
tion for activity coefficient be used in non-polar mixtures, Chao-and

Seader claim good representation of experimental data using this equation,
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Equation (45a) is given as
L 2
RT A T, = Ve [éL; —6 ]

The solubility parameter designated by the symbol i 1is defined as

Equation (45Db)

i

AE"
0 Vi
where ZXEV- at ordinary temperatures can be identified with the energy
of vaporation or the energy required to vaporize the liquid to infinite
volume, and V4 1is the molal volume of constituent i . The symbol
) designates the volume average value of the solubility parameter

for the solution and is given in mathematical form as:

- ;’J"LYL 6,{, (68)

= LV

A
Equations (45a), (45b), and (68) are given by Chao and Seader,

At temperatures well below the critical, the energy of vapori-
zation is essentially the enthalpy of vaporization minus the quantity
RT , so that Equation (L45b) may be rewritten as

If2.
5, = A"—"L\;RT (69)

LA

The approximate variation of the solubility parameter with temperature

(20)

is given by Hildebrand and Scott as

b0 > ) 250 (70

where « denotes the coefficlent of thermal expansion,
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Prausnitz, Edmister, and Chao have prepared a plot of log B
as a function of temperature for several hydrocarbons. Chao and Seader
give values of the solubility parameter for one temperature only, since
they assume the solubility parameter 1s independent of temperature, At
the outset, values for the solubility parameter used in this correlation
were taken from the plot of Praunitz et al. Later constant values for the
solubility parameter as given by Chao and Seader were used, Direct com-
parisons of the predicted equilibrium vaporization ratios, using both sets
of values of the solubility parameter, indicated that better agreement
between the observed equilibrium vaporization ratios determined from this
work and those predicted by the correlation could be obtained when solu-
bility parameter values presented by Chao and Seader were used,

The values of solubility parameter used in this work are pre-

sented in Table XXI.

TABLE XXI

SOLUBILITY PARAMETERS

o)
Component (cal/ml)l/2 Source
Methane 5.68 (10)
Neopentane 6.25 (20)
Isopentane 6.75 (20)
Normal Pentane 7.02 (10)

Table XXII presents the critical constants used in this correla-
tion, Also included in Table XXII are the values for liquid molal volume

and the acentric factor as presented by Chao and Seader,
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TABLE XXII

CONSTANTS FOR PURE COMPONENTS

L
Tc Pc z
Component (°F) (PSIA) ® (ml/gm-mole)
Methane -115,8 673,1 0.0 52
Neopentane 221,11  L46k,0 0,195 123.3
Isopentane 370.1  483,0 0.210k 117. 4
Normal Pentane 385,9  489,5 0,2387 116.1

C., Tugacity Coefficient of the Pure Liquid Component

The fugacity coefficient for a pure liquid is defined as the
reference fugacity fg divided by the total pressure P ., The refer-
ence fugacity of a pure liquid is usually, but not always, taken to be
the fugacity of the pure component at a system temperature and under
its own vapor pressure, In equation form, we write the reference fuga-

city as

o}
)Cj. = p J;;“'; (71)

where the term in parenthesis is the liquid phase fugacity coefficient
based on the vapor pressure, The fugacity coefficient at the vapor pres-
sure can be corrected to the system pressure by the Poynting effect.

Then dividing Equation (71) by the total pressure P gives

L — P° - _ Vi -
é B /; {DW £dP e
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If integration is carried out assuming an average value for the

specific volume for the liquid, the following results

,én_f = ,Zn-gf -+ ,ﬁ,,, _iP,E 4 Véweh(_f”_-/’ ) (13)

Generalized fugacity coefficients as functions of reduced tem-

perature, reduced pressure, and critical compressibility factor, 2z, ,
have been presented by Lydersen, Greenkorn, and Hougen,(Bh), Curl and
Pitzer(lB) present generalized fugacity coefficients as a function of
reduced temperature, reduced pressure, and a third parameter which they
call the acentric factor, A correlation does exist between the critical
compressiblity factor and the acentric factor, Riedel(u6) demonstrates

this relationship,

The acentric factor which Curl and Pitzer define as (Equation

(31))

w=|1000 + Log R
]

4‘=O.7

indicates the deviation of the behavior of substances from that of
simple fluids, Chao and Seader extend the Curl and Pitzer correlation
of the liquid phase fugacity coefficient to conditions where a liquid
mixture component does not exist as a pure liquid. The extension is
achieved through calculation from experimental vapor-liquid equilibrium
data, The analytical expression given by Chao and Seader for the

liquid phase fugacity coefficient is

/Zag, Ve = %’3» ye —+ CO%—? v® (Tha)



-103-

The term V(o) is the fugacity coefficient of simple fluids which are

(1)

characterized by a zero acentric factor, The term v is a correction

term, and accounts for the departure of the properties of real fluids

from those of simple fluids.,

1)

Chao and Seader have expressed the quanti-
ties v(o) and v( as functions of reduced temperature and pressure,

These' terms have been fitted with the following functional forms.

/0% = A + i/ + AT, +,4?37;2+4,‘7Z3 (7k)

[’%"“/44

and

7%?—}@ +[/478+497Z_]aa—%3/9_

Y/
9V =—4.23893+8.65808T.

—[.22060 —3.15224T;° —0.025A

Ta

(The)

—0.6]

The coefficients in Equation (T4b) as given by Chao and Seader

are presented in Table XXIII.

TABLE XXIII

CONSTANTS FCOR LIQUID PHASE FUGACITY COEFFICIENT EXPRESSION

Simple Fluid Methane

Aq 5.75748 2, 43840
Ay -3,01761 -2,24550
As -k, 98500 -0,34084
Az 2,02299 0.,00212
A), 0 -0,00223
As 0,08427 0.10486
Ag 0,26667 -0,03691
A-{ -0,31138 0

Ag -0,02655 0

A9 0,02883 0




=104~

The acentric factors listed in Table XXII are not derived from
the original definition, The values are those presented by Chao and
Seader and were determined as a parameter for the best fitting of the
vapor pressure data for pure components according to the Chao-~Seader

correlation given by

o = Llep (o 6.~ g 1) (75)
[ o T

A
A computer program was written to calculate equilibrium vapor-

ization ratios from Equation (51). At the outset Equations (45), (67),
and (T4) were used in conjunction with Equation (57) to calculate the
equilibrium vaporization ratios of the compounds studied in this work,
After several trial runs, it became apparent that the calculated equi-
librium ratios for methane were always greater than observed values, and
that this discrepancy increased with increasing pressure, In view of
the fact that the formulation of activity coefficients (Equation (45a))
is independent of pressure and that the Benedict, Webb, and Rubin equa-
tion(4> is believed to be reliable in representing the P-V=-T behavior

of gaseous mixtures, the expression for liquid phase fugacity coefficient
was modified,

Since the acentric factor equals zero for methane, Equation (7ka)

reduces to

/0? %3 o (76)

The expression for log V (Equatlon (7TW)) was then divided by the
quantity (l+leO'4) where P is the total pressure of the system, Tt
should be remembered that this quantity has no theoretical implications
and that 1t is only a first order approximation to better fit the ex-

perimental data.
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Table XXV in Appendix A presents comparisons of the calculated
equilibrium vaporization ratios with the observed equilibrium vaporiza-
tion ratios. The percent deviation is defined by

K - K
Koms

Percent Deviation =

Also included in this table are the numerical values for the vapor and
liquid phase fugacity coefficients, liquid activity coefficients, vapor
specific volume, and the compressiblity of the vapor,

At the end of each system investigated in this research is the
numerical value for the average absolute percent deviation, As can be
seen, calculated K values and observed K values are in reasonably
good agreement, except near the critical region, The average absolute
deviation for the methane-normal pentane binary system is about 4 per-
cent, For the methane-isopentane binary system, the average absolute
| deviation is within 8 percent. The average absolute percent deviation
for the methane-neopentane-normal pentane ternary and methane—isopéntane-
normal pentane ternary systems are 6,3 percent and 6.0 percent, respec-
tively. Inspection of Table XXV for the methane-neopentane binary system
reveals the predicted methane K values to be in greater error than
the predicted neopentane K values, especially at higher temperatures.
This observation concurs with the temperature restriction for methane
imposed on the Chao-Seader correlation, In other words, the Hildebrand
equation cannot predict accurately methane behavior at temperatures
above 0,95 of the pseudocritical temperature of the equilibrium liquid

mixture. It appears unlikely that the complex behavior of liquid
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mixtures composed of constituents with such different physical properties
as methane and pentanes can be represented in the critical region by such

relatively simplified expressions as Equations (45) and (T7L4).



X, SUMMARY AND CONCLUSIONS

The methane-normal pentane binary system was investigated at
a temperature of 220°F, Comparison of this work with previous investiga-
tions is good,

Phase equilibrium data were obtained for the methane-isopentane
binary system at temperatures df 160°F, 220°F, and 280°F and pressures
from about 500 pounds per square inch up to the critical region, The
data are presented in both graphical and tabular form,

Vapor-liquid equilibrium data have been obtained throughout
the coexisting-phase region for the methane-neopentane binary system
at pressures from about 300 pounds per square inch to the critical region
for temperatures of 160°F, 220°F, and 280°F, Pressure versus composition
curves and equilibrium vaporization ratio versus pressure diagrams are
included, Experimental equilibrium vaporization ratios of methane are
significantly lower in a methane-neopentane binary system than in a
methane-isopentane binary system, The critical pressures are lower for
the methane-neopentane binary system compared to the methane-isopentane
binary system for temperatures of 160°F, 220°F and 280°F,

Equilibrium vaporization ratios have been experimentally de-
termined for the methane-isopentane-normal pentane ternary system at
temperatures of 160°F, 220°F, and 280°F and pressures from about
500 pounds per sguare inch up to the critical region, Data are presented
graphically .and are also tabulated,

The two-phase equilibrium behavior for the methane-neopentane-~

normal pentane ternary system has been experimentally determined for a

-107-
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temperature of 160°F and pressures from about 500 pounds per square inch
up to the critical region, The experimental results are tabulated and
presented graphically,

A computer program has been written to calculate equilibrium
vaporization ratios, The correlation employs the Benedict, Webb, and
Rubin(h) equation of state to predict vapor phase fugacity coefficients,
Hildebrand's regular solution theory is applied to the liquid phase,

(lO) is used to calculate

And the expression given by Chao and Seader
the liquid phase fugacity coefficient, Comparison of the K-value cor-
relation with all the experimental points determined in this work in-

dicate an average absolute percent deviation within 10 percent.
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APPENDIX A
CORRELATION OF VAPOR-LIQUID EQUILIBRIUM DATA

Table XXIV presents the computer program written in the MAD
(Michigan Algorittm Decoder) language to calculate equilibrium vaporiza-
tion ratios of the compounds studied in this research, The program is
divided into four sections, 1In the first section, the vapor phase fuga-
city coefficient is calculated using the BWR equation of state. In the
second section use is made of Hildebrand's regular solution theory to
calculate the liquid activity coefficient. In the third section of the
program, the expression given by Chao and Seader is used to calculate the
liquid phase fugacity coefficient, Finally, in the fourth section, com-
parisons are made between the observed and calculated equilibrium vapori=-
zation ratios,

Table XXV presents the results of the analytical model used to

predict the phase behavior of the components studied in this research,

=115~
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TABLE XXIV

MAD COMPUTER PROGRAM FOR EQUILIBRIUM VAPORIZATION RATIO CALCULATION
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$ COMPILE MAD,EXECUTF,PRINT OBJECT,DUMP

MAD (06 JAN 1967 VERSIGN)

START

BEGIN

LPO

LPl

Lp2

LP3

U N

PROGRAM LISTING eee ooe oo

BOODLEAN BOGL
DIMENSIUN PC(4), TC(4), OMEGLl4),
LNU1(4), SP(4), YI4), YCALC(4),
BO(4), CO(4), B(4)y A(4)y Cl4)y ALF(4), GAMI&), PRI(4),
TR({4)y RTLNPH(4), LNPH(4), PHI{4), KEXP(4)KCALCU4) TR (4),
PR{4)Y,LNSPL4),AC{4) 1PCCL4),TCC{4),KDEV(4)

INTEGER 14JsNyCOUNT,NSU3,NSUBT,RUNUM,IND

y» SWITCH
VBAR(4), LNU{4),
X{4)y XCALC(4), AQ(4),

NU{4),

CALCULATIONM OF CONSTANTS FUGR THE BWR EQUATION

READ DATA NyPC,HTC,OMEG 4 VBAR,AD,BO.COyAyRyGAMyALFyNSUB
WHENEVER N JE. 2

WHENEVER NSUB .F. 1

PINT CUMMENTSIMETHANE NORMAL PENTANE RINARY SYSTEMS$

OR WHENFVER NSUB + Fa 2

PRINT COMMENT $1IMETHANE ISOPFNTANE BINARY SYSTEMS$

OTHERKWISE

PRINT COMMENTS1IMETHANE NFOPENTANE BINARY SYSTEMS

END OF CONDITIONAL

OTHERWISE

WHENEVER NSUBT .E. 1

PRINT COMMENTSIMETHANE TSOPENTANE NORMAL PENTANE TERNARY SYST
EM$

OTHERWISE

PRINT CUOMMENT $1METHANE NEOPENTANE NORMAL PENTANE TFRNARY SYS
TEMS

END UF CONDITIONAL

FND OF CONDITIONAL

ADEV = (.0
IND = 0

COUNT = 0O
BOOL = 1R

READ DATA PRESSyTF Y4 X,SP,B00L
READ FORMAT QQ000,RUNUM

VECTOR VALUES 0QQO00 = $Co%*$
IND = IND + 1
THROUGH LPC 4 FOR T = 141y I «Gs N

KEXP({T) = Y(I)/X(1)

AOMIX = 0,0

THROUGH LPl,y FOR I = 141,
SUM = Y{T)*SQRT.(AO(I))
AOMIX ACMIX + SuM
AUMIX AOMIX.Po2
BOMIX 0.0

THROUGH LP2y FOR I =
SUM = Y(I) *BO(T)
BOCMIX = ROMIX + SUM
CUMIX = 0.0

THROUGH LP3y, FOR I = 1,1,
SUM = Y{(I)}* SQRT.(CO(T1))
COMIX = SUM + COUMIX

COMIX = COMIX.P.2

BMIX = 0.0

1.GeN

141y leG.N

1.6.N

LNUD(4),



-116-

K = 1l./3.
THROUGH LP4 , FOR I=1ly1y [+GeN
SUM = Y{I)*B{I).P.K

LP4 BMIX = BMIX + SUM
BMIX = BMIX .P.3
AMIX = 0.0

THROUGH LPS 4 FOR 1 =141y I <GeN
SUM = Y(I) * A(I).P.K

LP5 AMIX = AMIX + SUM
AMIX = AMIX .P.3
CMIX = 0.0

THROUGH LP6 4 FOR I=1,1, [.GuN"
SUM = Y(I) *C(I).P.K
LP6 CMIX = CMIX + SUM
CMIX = CMIX .P.3
ALFMIX = 0.0
THROUGH LP7 4 FOR I=1l,1, I1.G.N

SUM = Y({I) * ALF(1).P.K

LP7 ALFMIX = ALFMIX + SUM
ALFMIX = ALFMIX .P.3
GAMMIX = 0.0

THROUGH LP8 4, FDOR I= 141y leGe N
SUM = Y(I) * SQRT.(GAM(I))

LpP8 GAMMIX. = GAMMIX + SUM
GAMMIX = GAMMIX .P.2-

CALCULATION 0OF SPECIFIC VOLUME BY BWR FQUATION 0OF STATE

PRESS PRESS/ 14.696
PRESA PRESS*14.6956
R 0.0820544%
ITER T (TF + 459,67}/ 1.8
RT = R*T
PGIVEN = PRESS
V1=R T/PGIVEN
DELV = 0.1%V1
K1=BOMIX%R T-AOMIX-=COMIX/{(T%*T)
K2=BMIX%R T—AMIX+AMIX®ALFMIX/{VI®V1*V1)
K3={CMIX/(TXT)I% (1 0+GAMMIX/(VLI%RVL))*(EXP.{GAMMIX/~
1 (V1I%V1)))
P1=R T/V1+K1/(V1%V]1}+(K2+K3)/(V1*V]i*V1l)
QSIN = P1 - PRESS
S1 V1l = V1 - DELV
KI1=BOMIX*R T—AQMIX=COMIX/{T*%T)
K2=BMIX*¥R T—AMIX+AMIX*ALFMIX/(V1%V1*V])
K3=(CMIX/(TRT) )% (1, 0+GAMMIX/(V1%V]1) )} *(EXP.(GAMMIX/~-
1 (V1*V1)))
P1=R T/VI+K1/(V1%V1)+{K2+K3)/{VI*V1*V1l)
PSIN = Pl - PRESS
WHENEVER PSIN%QSIN .G. 0.0
TRANSFER TO S1
DR WHENEVER PSIN*QSIN ole 0.0
vl = v1 + DELV
DELV = DELV/2.
WHENEVER .ABS. PSIN L. 10 o TRANSFER TO ROOT
TRANSFER TO S1
OTHERWISE
TRANSFER TO ROOT
END OF CONDITIONAL
ROOT CONT INUE



LP9

LP10O

LP11

LP12

LP13

WO ~NNPH W -

—

b
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CALCULATION OF. THE VAPOR FUGACITY COEFFICIENT

D3 = 1./V1

Z = PRESS*V1/RT

THROUGH LP9 » FOR I = 1lyly [eGe N

RTLNPH(I)= RT#*ELOG.(1./72) + ((BOMIX + BO(I)}*RT — 2,%SQRT,
(AOMIXRAD(T)) = 2.%SQRTL{COMIX*CO(I))/T/T)I*D3 + 3./2.%(RT*{
BMIXaPo2%B{I))aPoeK = (AMIXaP2%A( 1))aPoK}%RD3.P.2 + 3./5.%
(AMIX*(ALFMIXePuo2 *ALF(I))ePoK + ALFMIX¥{AMIXaPo2 *A(])).P.K)
*D3.Pe5 4+ B.XD3P.2K{CMIX P2%C{T)) oPoK/ T/T *{{1ls — EXP.I
—GAMMIX%D3.Pe2) )}/ {GAMMIX*¥D3 P 2)—EXP, (-GAMMIX*D3.P,2)1/2.)
—2+%¥D34Pa2 ¥CMIX/T/THSQRT. (GAM(I)/GAMMIX) *{ (1le—EXPo (=GAMMIX
%¥D3.Pe2))/(GAMMIX*D3 4P o2) —EXPo (-GAMMIX * D3.P.2) —GAMMI XX
D3 P2 % EXP(=GAMMIX%D3 .P.2)/2.)

LNPHII)Y = RT LNPH(I)/RT

PHI(I) = EXP.(LNPH{I))

CALCULATINN OF LIQUID PHASE FUGACITY COEFFICIENT

THROUGH LP10,y FOR I=1ly1y T4GeN

TCAI)=(TCC(I1)+459.69)/1.8

PC(I) =PCC(1)/L4.696

TRII) = T/7C(1)

PR(I) = PRESS/PC({I)

LNUL(I)= -4.23893 + 8.65808%TR{I) —-1.2206/TR{I} —-3.15224%

TR(I)aPe3 —0.025%(PR(I) = 0.5)

WHENEVER I.E.1

LNUDC(T) =(2.4384 ~2.2455/TR(1) -0.34084%TR(I) +0.00212%
TRII)eP o2 ~0.00223%TR(I)ePe3 +{0.10486-0.03691%TR(I)
YXPRITI) — ELOG.(PR{I})/2.303)/(1.+PRESA*1.E-4)

OTHERWISE

LNUD(CTY = 575748 —3.01761/TR{I) —4.985%TR{1) +2.02299%TR(I)
P2 +(0.08427 + 0.2666T*TR(I) —0.31138%TR(I).P.2)%PR(I) +
(-0.02655 + 0.02883% TR{I) }1#PR(I).Pe2 — ELUG.(PR(I)}/2.303

END CF CONDITIONAL

LNUCTY=LNUC(T) +0MEG(I)* LNUL(T)

LNUCT)Y = 2.303%LNU(CT)

NUCT) = EXPo(LNU{T))

CALCULATION OF ACTIVITY COEFFICIENT

RAC=1.987

RTAC=RAC*T
NUM = 0.0
DEN = 0.0
THRUUGH LP11l, FOR I=1l,1y I.G.N
SNUM = XI{T) * VBAR(I) = SP{I)
NUM=NUM + SNUM
SDEN = X{I) * VBAR(I)
DEN = DEN + SDEN
SP3 = NUM/DEN
THROUGH LP12 4, FOR I= 141y 1.G.N
LNSP(I) = VBAR(I) * {SP{I)-SPBY.P.2/RTAC
AC(I) = EXP.(LNSP{I))
THROUGH LP13 4, FOR I = 1,1y I +Gs N
KCALC (I} = AC(I) % NU (1) / PHI(I)
KOEVII)= (KEXP(I)-KCALC(I))*100./KEXP{I)
COUNT = COUNT +'1
ADEV = ADEV + JABS.(KDEV(I))
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WHENEVER IND .E. 4
PRINT FURMAT QQl,RUNUM

VECTOR VALUESQQI=$1H1 ¢H*RUN NUMBER *,C6%$

IND = 1

OTHERWISE

PRINT FORMAT QQLA, RUNUM

VECTOR VALUES QQ1A=$1H-,H*RUN NUMBER #*,Cé6%%

END OF CONDITIONAL

PRINT FURMAT QQ2,PRESA,TF

VECTOR VALUESQQ2=$1HO,HXPRESSURE = #,F5.0,H* PSIA%*,S5,H*TEMPERATURE = %
1F4.04H% DEG Fixs '

PRINT FORMATQQ2A,4V1,2

VECTOR VALUESQQ2A=$1H ,H*¥VAP. SPEC. VOL. = %,F6.4,H& LIT/GMOLE*,SS,
H%COMPRESSIBILITY = *,F4.3%$

WHENEVER N .E.?2

WHENEVER NSUB JF.1

PRINT FOURMAT QQ3

VECTOR VALUES QQ3=$1H0 525 H*METHANE NOR~PENTANE**$

OR WHENEVER NSUB +E. 2

PRINT FORMAT QQ4

VECTOR VALUESQQ4=$1H0,S25,H*METHANE ISOPENTANE*%$
OTHERWISE

PRINT FURMAT QQ5

VECTOR VALUESQQS5=$1H0,S25, H&*METHANE NEOPENTANE**$

END OF CONDITIONAL

PRINT FORMAT QQ8,Y{1),Y(2)

VECTOR VALUES QQ8=$%1H HXVAPOR PHASE COMP¥,S10,F5.4,S12,F5.4%$
PRINT FORMAT QQ9 ,PHI(1),PHI(2)

VECTCOR VALUESQQO =$1H yH®XVAPOR PHASE FUG CDEF%,S54F644,S11yFb.4%s
PRINT FUORMATQQLOZX(1)yX(2)

VECTOR VALUESQQOLO=%1H ,H*LIQUID PHASE COMP%,59,F5.4,S12,F5,.4%%
PRINT FURMATQQLI1,NULL1),NU(2)

VECTOK VALUESQQLl=%1H ,H*¥LIQUID PHASE FUG CNEF#%,S3,F6.3,S511,F6.3%$
PRINT. FORMATQQ12,AC{(1),AC(2)

VECTOR VALUESQQ12=%$1H HH¥LIQUID ACT COEF*%,S10,F5.3,512,F5,3%%
PRINT FURMATQQI3,KEXP(1),KEXP(2)

VECTOR VALUFSQQL3=$1H (H%*K OBS*,S194F6.3,S11,F6.3%%

PRINT FUKMATQQ14,KCALC(1),KCALC(2)

VECTOR VALUESNQL4=$1H sH¥K CALC*,S18,F6.3,S11,F6.3%$

PRINT FURMATQUL5yKDEV(L) KDEV(2)

VECTOR VALUESQQ15=8$1H ,H*PERCENT DEV%*,S11,F7.2,5S10,F7.2%$%
OTHERWISE

WHENEVER NSURT . F.l

PRINT FORMAT QQ6

_ VECTOR VALUES QN6=$%$1H0D,525,H&METHANE ISOPENTANE NOR~-PENTA
NE**$
OTHERWISE
PRINT FORMAT QQ7
VECTOR VALUESQQ7=$1H0,S25,H*METHANE NEOPENTANE NOR—-PENTAN
Exxg

END OF CONDITIONAL
PRINT FORMATQQL6,Y(1),Y(2),Y(3)

VECTOR VALUFESQQR16=8$1H JH*VAPOR PHASE COMP*,510,F5.44512¢F5.4,513,F5.4%%
PRINT FORMAT QQl7,PHI(1),PHI(2),PHT(3)

VECTOR VALUESQQL17=$1H oH¥VAPOR PHASE FUG COEF¥,S5,F6.49S5S114F6.4,512,
F6Oob4%s

PRINT FORMATQQL8,X(1)yX{2),X(3)

-VECTOR VALUESQQ18=%$1H ,H*LIQUID PHASE COMP*,S9,F5.4,5124F5.4,513,F5,4%$
PRINT FORMATQQL19,NU(1),NU(2),NU(3)

VECTOR VALUESQQ19=$1H ,H*LIQUID PHASE FUG COEF%*453,F6.3,511,F6.3,S12,
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RUN NUMBER 27

PRESSURE = 1777 PSIA TEMPERATURE = 220 DEG F

VAP. SPEC. VOL. = L1984 LIT/GMOLE COMPRESSIBILITY = 774
METHANE NOR~-PENTANE

VAPOR PHASE COMP - 7880 « 2120

VAPOR PHASE FUG COEF 1.0310 .2314

LIQUID PHASE COMP <4560 « 5440

LIQUID PHASE FUG COEF 1.737 «085

Lt IQUID ACT COEF 1.068 1.021

K OBS 1.728 «390

K cALC 1.799 376

PERCENT DEV —4.12 3.47

RUN NUMBER 28

PRESSURE = 1501 PSIA TEMPERATURE = 220 DEG F
VAP. SPEC. VOL. = 42455 LIT/GMOLE COMPRESSIBILITY = .809
METHANE NOR-PENTANE
VAPGOR PHASF COMP 8080 <1916
VAPOR PHASE FUG COEF 1.0094 2993
LIQUID PHASE COMP <3820 «h180
LIQUID PHASE FUG CUEF 1.686 <092
LIQUID ACT COEF 1.079 1.013
K 0BS 2.115 »310
K CALC 2122 «313
PERCENT DEV =37 -.81

RUN NUMBER 29

PRESSURE = 1260 PSIA TEMPERATURE = 220 DEG F
VAP. SPEC. VOL. = 3015 LIT/GMOLE CUMPRESSTIHILITY = .834
METHANE NOR=PENTANE
VAPOR PHASE COMP . 8160 « 1845
VAPOR PHASE FUG COEF 1.00725 e 3640
LIQUID PHASE COMP L3100 . £900
LIQUID PHASE FUG COEF 2.299 L1001
LIQUID ACT CUEF 1.060 1.008
K 0OBS 2.632 e 267
K CALC 2.500 « 280
PERCENT DEV 5.01 -4490

RUN NUMBER 30

PRESSURE = 1005 PSIA TEMPERATURE = 220 DEG F
VAP. SPEC. VOL. = .3894 LIT/GMOLE COMPRESSIBILITY = 859
METHANE NOR-PENTANE
VAPOR PHASE COMP <8140 .1863
VAPOR PHASE FUG COEF 1.0006 «44l1l
LIQUID PHASE COMP « 2480 « 71520
LIQUID PHASE FUG COEF 2.807 «116
LIQUID ACT COEF 1.099 1.005
K 08S 3.282 « 248
K CALC 3.083 «264
PERCENT DEV 6.06 -6.63

AVE. ABS. PERCENT DEV. FOR SYSTEM = 3,963
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APPENDIX B

EXPERIMENTAL DATA

Table XXVI presents the experimental data for all three
binary systems considered in this research. Data are arranged such that
the values presented with an "A" suffix are the averaged values of dupli-
cate or triplicate analyses, Beneath the averaged values are listed the
individual analyses of each run., Also included in this table are the
equilibrium pressure and temperature for each run.

Table XXVII presents the experimental data for the two ter-
nary systems investigated., As described in the previous paragraph,
averaged compositions values are denoted with an "A" suffix, Pressures

and temperatures are included for each run,
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TABLE XXVI

EXPERIMENTAL DATA FOR BINARY SYSTEMS
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METHANE NEO-PENTANE BINARY SYSTEM

RUN PRESS TEMP VAPOR COMPUSITION LIQUID COMPOSITION

NUMBER PSIA (F) Cl NEGCH Ci NEOCS

85 748 220 «6389 A .3611 A »1970 A .B030 A
«6374 «3626 «1967 «8033
«6403 3597 «1976 «8024

«1966 « 8034

86 1008 220 «6703 A ,3297 A «2819 A .7181 A
6711 « 3289 «2822 «T178
« 6696 «3304 2816 . 7184

87A 1251 220 «6535 A L3465 A «3766 A .6234 A
« 6535 « 3465 «3767 «6233
« 6535 « 3465 « 3765 «6235

88A 1434 220 «9852 A 4148 A <4712 A 5288 A
«5847 <4153 «4700 «5300
«5857 <4143 <4724 «5276

91 5006 280 «2803 A L7197 A «0683 A 49317 A
«2801 « 7199 0688 «9312
«2605 « 71195 . 0678 «9322
«0b84 «9316

92 755 280 «4068 A .5932 A <1632 A .8368 A
«4082 +5913 «1635 8365
« 4054 « 5946 «1659 «8341
«1604 «8396

938 1004 280 «4159 A 5841 A «2813 A 7187 A
«4155 «5845 «2817 <7183
«4158 «5842 <2814 «7186

«4l64 «5836 «2807 «7193
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TABLE XXVIT

EXPERIMENTAL DATA FOR TERNARY SYSTEMS
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APPENDIX C

CALIBRATIONS

A. Calibration of Pressure Gauge

The Heise pressure gauge (Model No, HP456L) was calibrated
using a dead weight tester, The tester (No. 1315) was supplied by the

American Gauge Company. The calibration results are given in Table XXVIIIT.

TABLE XXVITI

CALIBRATION OF PRESSURE GAUGE

Heise Pressure

Actual Pressure Gauge Reading
(psi) UP  DOWN
300 299 300
500 500 500
750 748 750
999 998 999
1249 1248 1249
1499 1499 1499
1749 1748 1749
1999 1997 1998
2249 2246 2247
2498 2406 2496

-147-
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B, Calibration of Thermometer

The gas-filled mercury in glass thermometer (Model No. 1704431),
supplied by the Taylor Thermometer Company and used to measure equili-
brium temperatures, was calibrated by comparison with previously cali-

brated Princo thermometers. The calibrations are given in Table XXIX.

TABLE XXIX

CALTBRATION OF THERMOMETER

OO

Princo Thermometer

No, 253197

71.2°C

Princo Thermometer

Taylor Thermometer

Reading

160°F = T71.1°C

Taylor Thermometer

No; 503944 Reading
10L,6°C 220°F = 104, 4°¢
138.1°C 280°F = 137,8°C

Calibration of Gas Chromatograph

Several synthetic mixtures of methane-normal pentane, meth-

ane-isopentane, and methane-neopentane were prepared for calibration

of the Perkin-Elmer gas chromatograph,

These mixtures were made up in

a mixture-blending system which is described in the "Installation and

Training Recommendations' of the Mass Spectrometer Model No., 21-103B,

Consolidated Engineering Corporation, Pasadena, California, The mix-

tures of the three binary systems covered the range of interest for
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this work., A computer program was written to calculate the number of
moles of gas from the P-V-T measurements, The equation used was of the

form:

P=RT|L + =28

The second virial coefficient, B, was determined from the equation pres-
ented by Pitzer and Curl.*

Calibrations were performed by introducing a sample of the mix-
ture into the chromatograph in the same manner as described in Chapter VI,
Areas under the resulting chromatographic curves were measured, and the
area of ratio of methane to the pentane isomer was computed, This result-
ant area ratio was then plotted as a function of the corresponding known
mole ratio,

Figure 25 is a plot of the area ratio as a function of mole
ratio of methane to n-pentane, Figure 24 presents the inverse ratios as
coordinates to better illustrate some of the data, Figures 25 and 26
are exactly analogous to Figures 23 and 24, except that the former are for
the methane-isopentane binary mixtures, Figures 27 and 28 are the cali-
bratidn curves for the methane-neopentane binary system,

A best '"least squares" fit line was drawn through the points
in Figures 235, 25, and 27, These calibration curves showed peak area to
be linear with molar concentration of the sample, Mole fractions were

then obtained from a normalized equation of the following form for

* Pitzer, K.S., and R.F, Curl, Jr., "Empirical Equation for the
Second Virial Coefficient", J., Am, Chem, Soc., 79, 2369 (1957).
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0 1.0 2.0

MOLE RATIO (CH,/n-C,)

Figure 23, (as Chromatograph Calibration for Methane-Normal Pentane System on a

Normal Pentane Basis,

40

45



*STseg SUBYILOW
B U0 waqsAg  suBiuUS] TBUWION-SUBULSH JOJ UOTFBIGTTEY YdeISOoqewoly) sl "2 °anITd

(*HO/%0 -u) oIV 3IOW

T ] T T T T T T T T T T T On T T T n&

-151-
| I
o o
< N

|
©
©

|
o
©

2l

(*Ho/%0-u)ollvy  vady



AREA RATIO (CH4/1SO Cs)
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1.7
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0 ! ! | 1 i ! 1 | ! [ 1 1 | 1 |
0 1.0 2.0 3.0 40
MOLE RATIO (CH4/ 1SO Cs)
Figure 25, Gas Chromatograph Calibration for Methane-Isopentane System on an

Isopentane Basis,



AREA RATIO (ISO Cs/CHg)
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Figure 26,

1.0 20 3.0 4.0
MOLE RATIO(ISO CS/CHq)

Gas Chromatograph Calibration for Methane-Isopentane System on a
Methane Basis.,
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MOLE RATIO(CH,/NEO C,)
Figure 27, Gas Chromatograph Calibration for Methane-Neopentane System on a

Neopentane Basis,
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binary mixtures: /4?
/

¢ = A +Ch,

An equation of the following form was used for composition determina-

tion of ternary mixtures:

— A
% - A, +/C'/42 +C'/43
where Al is the peak area for methane, and A2 and A.5 are the peak
areas for the pentane isomers, The symbols ¢ and c¢' are the re-
lative response factors established from the slope of the calibration
curves, These response factors correct for the difference of thermal
conductivity of the components,

Table XXX compares the methane composition as determined
from the analytical technique with the known mole fraction for the three
prepared mixtures of methane-n-pentane, Several analyses were made for
each mixture,

Table XXXI compares the sample composition determined by
chromotography with the known composition for four prepared methane-
isopentane mixtures,

Table XXXII c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>