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Summary. TheWorldFederationofHemophilia estimates that

of the 400 000 individuals worldwide with hemophilia, 300 000

receive either no, or very sporadic, treatment. Thus, consider-

able innovation will be required to provide cost-effective

therapies/cures for all affected individuals. The high cost of

prophylactic regimens hampers their widespread use, which

further justifies the search for novel cost-effective therapies and

ultimately a cure. Five gene transfer phase I clinical trials have

been conducted using either direct in vivo gene delivery with

viral vectors or ex vivoplasmid transfections and reimplantation

of gene-engineered cells. Although there was evidence of gene

transfer and therapeutic effects in some of these trials, stable

expression of therapeutic factor VIII or FIX levels has not yet

been obtained. Further improvements of the vectors and a

better understanding of the immune consequences of gene

transfer is warranted, as new trials are being initiated.

Bioengineered clotting factors with increased stability and/or

activity are being validated further in preclinical studies. Novel

clotting factor formulations based on PEGylated liposomes

with prolonged activities are being tested in the clinic, and are

yielding encouraging results.

Keywords: coagulation, factor VIII, factor IX, gene therapy,

hemophilia, vector.

Introduction

Incremental advances in our understanding of the biology of

coagulation and in preclinical and clinical research suggest

several strategies that may facilitate both the prevention and

improved management of factor VIII and IX (FIX) deficien-

cies. Moreover, the research is not occurring in a vacuum:

advances in gene and protein engineering in other diseases,

coupled with thrombosis research, offer insights into more

effective intervention in the clotting factor disorders.Moreover,

the technologies may be synergistic: gene delivery of bioengi-

neered clotting factors may overcome some of the inherent

delivery and dosing issues that have confronted gene delivery of

native molecules. This review summarizes some of the notable

recent advances in the field. The common objective of these

studies is to develop novel therapies for hemophilia that would

either obviate the need for repeated clotting factor infusions by

gene therapy or potentially reduce the frequency of treatment

using potentially longer-acting ormore active biologics, such as

novel bioengineered clotting factors, mimetic antibodies or

small oral drugs that suppress nonsense mutations.

Gene therapy: advances in vectorology

Lentiviral and retroviral vectors: benefits and limitations

Most of the current strategies for hemophilia gene therapy rely

on viral vectors derived from retro/lentivirus or adeno-associ-

ated virus (AAV), which have significantly reduced inflamma-

tory properties in comparison with adenoviral vectors [1].

Lentiviral and retroviral vectors integrate stably into the target

cell genome, allowing for long-term transgene expression, and

thus are well suited for gene transfer into dividing stem/

progenitor cells.

Using either transgenics or lentiviral transduction of hema-

topoietic stem/progenitor cells (HSCs), FVIII expression can

be obtained in platelets [2]. As FVIII is stabilized by platelet

von Willebrand factor, only small amounts of FVIII were

needed to achieve phenotypic correction. Remarkably, FVIII

functioned even in the presence of high-titer inhibitory

antibodies, and the bleeding diathesis in FVIII knockout mice

could be corrected in the absence of detectable circulating

FVIII levels. This may represent a unique advantage over

protein replacement therapy. Alternatively, lentiviral vectors

can be used to express therapeutic FIX levels in the erythroid

lineage [3]. Additional safety is conferred as the red cells

become terminally differentiated and enucleated. However,

ectopic expression of FIX in the erythroid lineage did not yield
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fully active proteins, due to limiting post-translational

modifications. One possible limitation of using HSC-based

approaches for hemophilia gene therapy is that myeloablative

conditioning is required to facilitate engraftment in the bone

marrow niches [4]. To obviate the need for myeloablative

conditioning, an alternative strategy was developed based on

the use of muscle stem-cell-derived retrievable implants com-

posed of non-dividing muscle fibers. This technology could be

adapted for FIX delivery as a potential �reversible� gene therapy
for hemophilia B [5].

As retroviral vectors only transduce dividing cells, their use

for in vivo gene therapy is limited to neonatal or juvenile

recipients. Neonatal retroviral FVIII gene transfer yielded

stable therapeutic FVIII levels in hemophilia A dogs [6],

consistent with earlier successful studies in neonatal FVIII-

deficient mice [7]. In contrast, lentiviral vectors could transduce

non-dividing adult hepatocytes. Intravenous injection of len-

tiviral–FVIII vectors derived from feline immune deficiency

virus resulted in therapeutic FVIII levels in FVIII-deficient

mice [8]. Ectopic FIX expression in antigen-presenting cells

(APCs) following lentiviral transduction increases the risk of

developing inhibitory antibodies (to FIX) and cellular immune

responses that eliminate the gene-engineered cells [9]. Even the

use of a hepatocyte-specific promoter does not guarantee long-

term expression, possibly due to leaky transgene expression in

APCs. However, this could be overcome using micro-RNA-

mediated gene silencing in APCs, with consequently prolonged

transgene expression [10]. Although gene therapy trials for

human immunodeficiency virus and b-thalassemia have been

initiated using lentiviral vectors, their potential use for hemo-

philia gene therapy requires confirmation of their safety and

efficacy in large animal models.

Risks of insertional oncogenesis

The development of T-cell leukemia in three boys treated by

ex vivo retroviral gene transfer for X-linked severe combined

immunodeficiency (SCID) [11], along with the emergence of

tumors following fetal gene transfer with lentiviral vectors [12],

raised concerns about the risk of insertional oncogenesis.

Insertion of the therapeutic transgene adjacent to the LMO2

transcriptional coactivator locus in the leukemic cells was

thought to play an important pathogenetic role, linking gene

transfer to the development of the malignancy, along with a

selective advantage for newly expressing interleukin-2 Rcc-
positive T cells. Hence, the risk of insertional oncogenesis in the

context of gene therapy for hemophilia is significantly lower, as

there is no selective advantage for the gene-corrected cells, and

the gene product itself does not influence cellular proliferation.

Benefits of site-specific genomic integration

To obviate concerns associated with random integration,

targeted integration may be preferred. This could be accom-

plished using a two-plasmid system, one plasmid delivering the

therapeutic gene and one delivering a phage integrase that

catalyzes site-specific integration of the therapeutic gene into

specific integration hot spots in themammalian genome [13,14].

Although studies in transgenic animals showed no develop-

mental or other abnormalities, the safety of this system would

need to be carefully addressed, particularly as integrations were

accompanied by deletions or chromosomal rearrangements.

Moreover, although this phage technology has been explored

for ex vivo gene delivery, direct in vivo administration of the

plasmids will require the development of a clinically acceptable,

efficient non-viral gene delivery approach.

Adeno-associated viral vectors: new insights

Adeno-associated virus remains one of the favorites for long-

term cures of genetic diseases, by virtue of its potential for long-

term gene expression and reduced inflammatory properties.

Moreover, the majority of the AAV genomes do not integrate,

which minimizes the risk of insertional oncogenesis. There are

currently several AAV trials ongoing worldwide for different

genetic and acquired diseases, and two gene therapy trials for

hemophilia B have been completed [15,16]. In the muscle trial,

FIX expression levels were subtherapeutic but stable, whereas

in the liver trial, expression levels were in the therapeutic range

but transient (see below).

Multiyear expression of a B-domain-deleted FVIII (BDD-

FVIII) has recently been described in hemophilia A dogs to

circulating levels of 2.5–5% of normal with AAV2, AAV6 and

AAV8 vectors [17]. The use of alternative AAV serotypes has

generally been proposed as a means to achieve higher clotting

factor levels in patients, based on their superior hepatic

transduction efficiencies in mice [18,19]. Indeed, the highest

clotting factor levels and hepatic gene transfer efficiencies could

be obtained using AAV8 andAAV9, which were more efficient

and exhibited reduced proinflammatory properties in compar-

ison to lentiviral vectors [20]. However, no transduction

advantage of using AAV8 over AAV2 or AAV5 vectors was

apparent in non-human primates or dogs [17,21–23]. Thus,

some caution is warranted in translating results from rodent

species to larger animals, which justifies some preclinical

development in non-human primates.

Intravenous injection of a self-complementary (sc) AAV8-

FIX, encoding a codon-optimized FIX inmacaques, resulted in

therapeutic FIX levels (20% of normal) [22]. This �sc� cassette is
more efficient because it obviates the need for second-strand

synthesis or reannealing of positive and negative strands

delivered in AAV. This scAAV vector appeared to show a

relatively modest improvement (threefold) in mice compared to

the AAV vector design that had been used previously in a

clinical trial [15], when packaged into AAV8 particles [22]. This

scAAV8 vector will be used in a planned phase I clinical trial in

severe hemophilia B patients.

Immune consequences of gene transfer

Therapeutic FIX levels could be obtained following liver-

directed gene therapy with AAV2 vectors in patients [15].
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However, FIX expression eventually declined, and this was

accompanied by transiently elevated transaminases. This was

probably due to the elimination of FIX-expressing hepatocytes

by an AAV2-specific cytotoxic CD8+ T-cell (CTL) response.

This hypothesis will be tested in a new trial, repeating the

AAV2-FIX liver delivery but in conjunction with transient

immunosuppression to prevent CTL generation. In addition,

as the transaminitis was vector dose-dependent, the use of

lower vector doses may minimize these side-effects and

therefore warrants the development of more potent FIX

expression cassettes.

AAV2 capsid peptides were identified as being capable of

tight binding to the subject’s HLA-B haplotype. However, as

these epitopes will vary between different patients, due to the

inherent polymorphic nature of HLA class I between individ-

uals, it is unlikely that one could engineer around these binding

sites [15]. Moreover, as these sequences are highly conserved in

all primate AAVs, serotype switching may not suffice to

overcome this immune rejection [15]. Although the more rapid

turnover of AAV8 capsids vs. AAV2 may perhaps diminish

this risk [19], this may not necessarily be the case in human

subjects, as AAV8 capsids persisted for at least several weeks in

non-human primates [23]. AAV capsid processing and presen-

tation in human hepatocytes andAPCswould need to be better

understood. Nevertheless, one potential advantage of using

AAV8 capsids over AAV2 capsids is their reduced uptake by

APCs, which may perhaps reduce the risk of CTL induction

[24]. Whether AAV8 will eventually prove beneficial over

AAV2 awaits confirmation in clinical trials.

A second significant problem when one contemplates

treating patients with hemophilia [15] is the presence of pre-

existing antibodies to AAV, which can abrogate AAV trans-

duction, even at low titer [25]. As these antibodies variably

cross-react with AAVs acquired during natural infection,

accurate vector dosing in patients will be problematic, unless

compartmentalized delivery is used, such as in isolated limb

perfusion, which yielded robust FIX expression (4–14% FIX)

in hemophilic dogs [26]. Interestingly, AAV2 variants obtained

by either exon-shuffling or by introducing specific mutations

into the capsid exhibit reduced cross-reactivity with AAV2-

specific antibodies [27,28]. The use of AAV variants isolated

from non-human or non-primate species with reduced cross-

reactivity to AAV2 may obviate pre-existing immunity, pro-

vided that transduction of human cells is not compromised,

which is not necessarily the case [29].

It is not known whether gene therapy would increase or

decrease the likelihood of inhibitor formation in hemophilic

patients compared to protein replacement therapy. One

possible concern is that the use of viral vector preparations

may provide immunologic �danger signals� that may facilitate

inhibitor formation [30,31]. It is encouraging, however, that

hepatic gene delivery of FIX using AAV vectors resulted in

FIX-specific immune tolerance, possibly involving

CD4+CD25+ regulatory T cells (Treg), and actually prevented

anti-FIX antibody and CTL formation [32]. Protocols for

tolerance induction to the transgene product that selectively

expandTregmay therefore hold the key to sustained therapeutic

expression. However, these results are at odds with the loss of

transgene expression due to the emergence of a memory CTL

response against the AAV capsid in the AAV2-based liver trial.

Therefore, one has to note that the activity of Treg may be less

effective in the context of memory T cells to viral antigens that

were originally generated by natural infection.

Bioengineered clotting factors to increase protein
expression and bioactivity

Both recombinant protein replacement therapy and gene

therapy could be facilitated by either the development of

factors that demonstrate improved biosynthesis or through the

generation of coagulation proteins with enhanced biological

properties. FVIII variants have been generated that either

stabilize the molecule, increase the specific activity, or enhance

production [33]. BDD–FVIII yields higher mRNA levels, and

targeted point mutations within the A1 domain reduce

interactions with the endoplasmic reticulum (ER) chaperone

immunoglobulin-binding protein. In order to increase ER-to-

Golgi transport, several asparagine-linked oligosaccharides

within a short B-domain spacer have been engineered within

BDD–FVIII. A bioengineered FVIII incorporating a combi-

nation of these elements was secreted 15- to 25-fold more

efficiently than full-length FVIII, both in vitro and in vivo [34].

In addition, FVIIIa could be stabilized via the incorporation of

a disulfide bond that prevents the spontaneous dissociation of

the A2 domain from the activated FVIII heterotrimer follow-

ing thrombin activation [35]. This disulfide bond-stabilized

FVIII showed prolonged FVIIIa activity and improved

potency in whole blood clotting assays [36]. Gain-of-function

FVIII mutants have also been created by engineering out

calcium-binding sites in the FVIII heavy chain, resulting in 2-

fold increased activity [37]. Although these different FVIII

mutants may confer advantages over the native molecule when

delivered either as proteins or as genes, their efficacy and safety

would still need to be confirmed in hemophilic models.

The specific activity of FIX could also be increased by

protein engineering. In particular, replacing the first epidermal

growth factor (EGF)-like domain of FIX with that of factor

VII (designatedFIX–EGFFVII) resulted in a bioengineeredFIX

molecule with improved bioactivity in hemophilia B dogs [38].

Engineering out the collagen IV-binding sites of FIX improved

the bioavailability of FIX, resulting in higher circulating FIX

levels when it was delivered via gene therapy [39]. Alternatively,

the half-life of FIX could be improved further by generating a

fusion protein comprising FIX and the immunoglobulin (Ig)

constant (Fc) region in a unique monomeric configuration.

This FIX–Ig fusion protein exhibited improved pharmacoki-

netic properties and clotting activities in hemophilia Bmice and

dogs (R. Peters, personal communication).

Whether the use of bioengineered clotting factors alters the

risk of inhibitors remains to be addressed. Some gain-of-

function mutations are buried, or conservative, and thus would

not be expected to result in new epitopes recognizable by B
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cells. In fact, somemutations may decrease the risk of inhibitor

formation, permitting a longer-term strategy to develop more

active, less immunogenic, molecules [40].

Novel technologies that can affect the coagulation
cascade

Mimetic antibodies as substitutes for FVIII cofactor activity

One of the cofactor functions of FVIIIa to promote activation

of FX is to support the appropriate interaction between FIXa

and FX. Bispecific antibodies have been developed that mimic

FVIII (�mimetic antibodies�) and facilitate such an interaction

(H. Saito, personal communication). Some of these bispecific

antibodies accelerated FX activation in the absence of FVIIIa

in vitro and shortened the modified activated partial thrombo-

plastin time (aPTT) in FVIII-deficient plasma. These results

demonstrate that the cofactor function of FVIII can be

mimicked by bispecific antibodies to FIX and FX, and suggest

that these mimetic antibodies could potentially act as long-

acting therapeutics for hemophilia A, even in patients with

inhibitors.

Translational repair of mutant transcripts

Small molecules have been developed (PTC124) that can read

through premature �stop� codons so that the full protein will

be produced (L. Miller, personal communication). Approxi-

mately 10% of hemophilia A and B mutations are nonsense

changes. The work with PTC124 was based upon early

observations with aminoglycoside antibiotics, which enabled

the testing of PTC124 in phase II clinical trials for Duchenne

muscular dystrophy and cystic fibrosis. A pilot study of

short-term intravenous aminoglycoside treatment in severe

hemophiliacs with nonsense mutations has also shown some

promise [41], as increased FVIII levels and decreased aPTTs

were noted in some patients. Preliminary results with

PTC124 indicate that this oral drug is better tolerated than

antibiotics such as gentamicin, and could lead to clinical

improvements. Thus, PTC124 may also be useful in a

minority of patients with hemophilia with these types of

mutations.

PEGylated FVIII to extend the circulating half-life

When mixed with PEGylated liposomes (PEGLip), FVIII

binds non-covalently but with high affinity to the external

liposome surface. The biological half-life of PEGLip–FVIII is

prolonged in mice, resulting in extended hemostatic efficacy of

FVIII in hemophilic mice [42]. A recent clinical study showed

that, although the plasma pharmacokinetics were identical, the

mean number of days without bleeds was significantly

prolonged with the PEGLip–FVIII vs. non-PEGylated FVIII

[43]. This suggests that PEGLip–FVIII may reduce the

frequency of treatment during prophylaxis by extending the

period between bleeding episodes.

Conclusions

The rapidpaceof this emergingmultidisciplinaryfield continues

to fuel the debate on the clinical and ethical issues of developing

new therapeutics for hemophilia [44–46]. Despite legitimate

differences of opinion, there exists significant consensus on

moving both gene- and protein-based research forward using

multiple technologies, to develop improved therapeutics, which

will hopefully bring a cure for bleeding disorders one step closer

to reality. Although the development of a cure by gene therapy

may be the ideal solution, there are still some hurdles ahead;

however, these are not insurmountable. Moreover, if reduced

clotting factor usage can safely be accomplished by using novel

bioengineered or PEGylated clotting factors, mimetic anti-

bodies, or even small drugs, this will represent a significant

advance over current treatment. It is important to recognize the

marked disparities in treatment worldwide, and the need for the

development of cost-effective solutions, based upon emerging

technologies, to provide for the majority of individuals with

hemophilia who have either no, or limited, access to treatment.
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