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A B S T R A C T
We examine the likelihoods of different cosmological models and cluster evolutionary
histories by comparing semi-analytical predictions of X-ray cluster number counts with
observational data from the ROSAT satellite. We model cluster abundance as a function of
mass and redshift using a Press–Schechter distribution, and assume that the temperature
TðM; zÞ and bolometric luminosity LXðM; zÞ scale as power laws in mass and epoch, in order to
construct expected counts as a function of X-ray flux. The LX ¹ M scaling is fixed using the
local luminosity function, while the degree of evolution in the X-ray luminosity with redshift
LX ~ ð1 þ zÞs is left open, with s an interesting free parameter which we investigate. We
examine open and flat cosmologies with initial, scale-free fluctuation spectra having indices
n ¼ 0, ¹1 and ¹2. An independent constraint arising from the slope of the luminosity–
temperature relation strongly favours the n ¼ ¹2 spectrum.

The expected counts demonstrate a strong dependence on Q0 and s, with lesser dependence
on l0 and n. Comparison with the observed counts reveals a ‘ridge’ of acceptable models in the
Q0 ¹ s plane, roughly following the relation s , 6Q0 and spanning low-density models with a
small degree of evolution to Q ¼ 1 models with strong evolution. Models with moderate
evolution are revealed to have a strong lower limit of Q0 * 0:3, and low-evolution models
imply that Q0 < 1 at a very high confidence level. We suggest observational tests for breaking
the degeneracy along this ridge, and discuss implications for evolutionary histories of the
intracluster medium.

Key words: galaxies: clusters: general – cosmology: observations – cosmology: theory –
dark matter – X-rays: general.

1 I N T RO D U C T I O N

Rich galaxy clusters are the youngest virialized objects extant, and
as such they provide a unique source of information about our
Universe. Observations of clusters in the X-ray band provide useful
information about large-scale structure and galaxy formation.
Detailed X-ray images provide information about the structure of
individual clusters, and surveys such as the ROSAT All-Sky Survey
(RASS) provide data on the general cluster population. In particu-
lar, counts of clusters as a function of their X-ray flux – the log N–
log S relation – provide an avenue for exploring cosmic evolution of
clusters. Recently, several groups have pushed the log N–log S
relation to fluxes nearly an order of magnitude fainter than previous
determinations (Rosati et al. 1995; Rosati & Della Ceca, in
preparation; Jones et al., in preparation). In this paper, we
compare these data with predictions of viable cosmological and

evolutionary models for clusters, with the goal of defining the
range of combined cosmology and X-ray evolution consistent
with the current data. Because the data underconstrain the
theory, a range of degenerate models emerge, but these can be
distinguished by upcoming observational tests of the high-redshift
cluster population.

In order to proceed, we assume that the distribution of clusters as
a function of mass and redshift is accurately described by the Press–
Schechter (1974) abundance function. This formalism is not with-
out its problems: excursion set approaches have been shown to be
sensitive to the choice of window function (Bond et al. 1991), which
casts doubt on the appropriateness of using sharp k-space filtering.
The assumption of purely Gaussian initial perturbations is clearly
wrong because of the constraint dr=r̄ > ¹1, and may have other
defects unknown to us as yet. At least one attempt to examine
the effect of this semi-positivity on the mass function has been
made (Porciani et al. 1996), but this area of study is still poorly
understood.
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Although the original Press–Schechter function rests on unsteady
theoretical foundations, it displays a remarkable convergence in the
limit of rare, massive objects. It has certainly performed well on rich
cluster mass scales, producing abundances in good agreement with
a variety of N-body simulations (Bond et al. 1991; Eke, Cole &
Frenk 1996). It has also been successfully used to fit the cluster
X-ray luminosity function (XLF) out to z < 0:3 with modest
assumptions about the relationship between mass and luminosity
(Evrard & Henry 1991). Since both theoretical and numerical
studies indicate that the Press–Schechter function can reproduce
abundances in the mass regime probed by the log N–log S relation,
we adopt it as a simple and reasonable analytic description.

In order to investigate the behaviour of a wide class of structure
formation models, we employ scale-free initial Gaussian perturba-
tions with spectral indices n equal to 0, ¹1 and ¹2 in the cluster
mass regime. Huss, Jain & Steinmetz (1997) present a list of
effective spectral indices for a number of popular cosmological
models: a cold dark matter model with Q0 ¼ 0:3, L ¼ 0 and
H0 ¼ 70 km s¹1 Mpc¹1 has neff ¼ ¹1:74, for example. We also
allow Q0 to vary and investigate both open models without a
cosmological constant [l0 ; L=ð3H2

0 Þ ¼ 0] and flat models where
Q0 þ l0 ¼ 1. We assume a value of H0 ¼ 50 km s¹1 Mpc¹1

throughout this work, in accordance with the traditional treatment
of X-ray data, but most of our analysis is independent of this choice.

The Press–Schechter formalism predicts the number density of
collapsed dark matter haloes as a function of their mass and redshift.
Since what we observe is the band-limited X-ray luminosity
[LXðEÞ], we need to find a way to relate these quantities to one
another. Rather than adopt a specific ‘microphysical’ model to
describe the relationship between mass and bolometric luminosity,
we assume that it can be adequately described by a power law in the
mass regime of interest, and then fit the free parameters of the power
law using the local XLF. The emissivity of the gas is modelled as a
thermal bremsstrahlung spectrum, which is integrated to determine
the fraction of the bolometric luminosity falling in the appropriate
energy band. We use the ROSAT Brightest Cluster Sample (BCS)
compiled by Ebeling et al. (1997) to constrain the parameters of the
fit.

Since X-ray luminosity is proportional to the squared density
of ions in the intracluster medium (ICM), and since the early
Universe was denser than it is today, it is reasonable to expect
that distant clusters may be stronger X-ray emitters despite having
lower overall masses. Arguments based on self-similarity
predict evolution in the bolometric X-ray luminosity of the form
LX ~ M4=3ð1 þ zÞ7=2 (Kaiser 1986), implying strong positive evolu-
tion in the luminosity of objects at a fixed mass. However, self-
similarity is not particularly well justified either observationally or
theoretically; models that invoke a minimum central entropy in the
cluster gas fare better in many respects (Evrard & Henry 1991;
Kaiser 1991).

The issue of evolution in the XLF has been hotly pursued among
observers; whether or not any evolution exists, however, still seems
an open question. Early work on the Extended Medium Sensitivity
Survey (EMSS) cluster sample by Henry et al. (1992) and Gioia et
al. (1990a,b) found intriguing evidence for evolution in the cluster
population. These results sparked interest but were preliminary
analyses that suffered from occasional misclassifications and the
vagaries of small-number statistics. These same clusters were
recently reanalysed with new X-ray observations by Nichol et al.
(1997), who found that the data were consistent with no evolution in
the cluster population out to redshifts of about 0.3. The BCS set of
199 clusters mentioned above also shows no evidence of evolution

in the XLF at low redshifts. More distant observations include those
of Castander et al. (1995), Luppino & Gioia (1995), and Collins et
al. (1997). Luppino & Gioia have been collecting high-redshift
clusters from the EMSS sample and finding number densities higher
than the standard Q ¼ 1 cold dark matter (CDM) model predicts,
which could indicate either a low-density universe or the existence
of a strong degree of evolution. Castander et al. have found a dearth
of high-redshift clusters relative to a simple no-evolution prediction
based on integration of the local XLF. Collins et al., however,
compiled a sample of high-reshift clusters from the SHARC
(Serendipitous High-redshift Archival ROSAT Cluster) survey,
and found significantly higher numbers at z > 0:3.

Given the lack of consensus in this debate, we allow for freedom
in how luminosity scales with redshift at a fixed mass by writing
LX ~ ð1 þ zÞs. The cosmological models described above are then
examined under varying degrees of evolution in the X-ray lumin-
osity, yielding four interesting free parameters for the models
considered in this paper: Q0, l0, n and s. Armed with the above
assumptions, we extrapolate the local cluster abundances to high
redshifts and predict the surface densities of clusters at low fluxes.
Comparing predictions with recent observational determinations of
the cluster log N–log S relation (Rosati & Della Ceca, in prepara-
tion; Jones et al. in preparation) allows us to make statements about
the relative probabilities of the models.

In Section 2, we describe the mathematical model used and the
process of fixing a subset of parameters with local observations. In
Section 3, we describe our method of predicting the log N–log S
relation and the status of current measurements of this quantity. We
also discuss the likelihoods of individual models and the cosmo-
logical constraints which can be obtained from analysis of the log
N–log S relation alone. In Section 4, we go on to explore further
ways of discriminating among cosmologies, by making use of
the luminosity–temperature relation and redshift distributions of
flux-limited samples. Finally, in Section 5, we sum up our results
and suggest future directions for theory and observation in this rich
field.

2 F I X I N G T H E M O D E L

2.1 Theoretical framework

The method described here is similar to that put forward by Evrard
& Henry (1991, hereafter referred to as EH91). The first step in
predicting the number of observable X-ray clusters at a given flux
limit is to model the distribution of these objects. Given that X-ray
clusters correspond to virialized dark matter (DM) haloes, we
assume that the population of these objects is well-described by a
Press–Schechter distribution (e.g. Lacey & Cole 1993):

dnðM; zÞ
dM

¼ ¹

����
2
p

r
r̄ðzÞ

M2

d ln j

d ln M
nðM; zÞ exp

¹n2ðM; zÞ
2

� �
; ð1Þ

where dnðM; zÞ is the number density of collapsed haloes in the
mass range ½M;M þ dMÿ and r̄ðzÞ is the mean background density
at redshift z. The normalized fluctuation amplitude nðM; zÞ is
defined as dc0ðzÞ=jðMÞ, where jðMÞ is the variance of the fluctuation
spectrum filtered on mass scale M and dc0ðzÞ is the linearly evolved
overdensity of a perturbation that has collapsed and virialized at a
redshift z (see Appendix A). We assume a scale-free power
spectrum PðkÞ ~ kn, so the variance can be written

jðMÞ ¼ j15M¹a
; ð2Þ

where the subscript indicates that the normalization is to a
mass of 1015 h¹1

50 M( (with h50 ¼ H0=50 km s¹1 Mpc¹1) and
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a ¼ ðn þ 3Þ=6. Connection to the conventional normalization j8

within 8h¹1 Mpc spheres is straightforward:

j15 ¼
4p

3
ð16 h¹1

50 Þ3rcQ0=1015h¹1
50

� �a

j8 ¼ ð1:19Q0Þ
aj8; ð3Þ

where rc ¼ 3H2
0 =8pG is the critical density. The power spectrum

normalization deduced from cluster abundances follows the empiri-
cal fitting function

j8 ¼ c1Q
¹c2
0 ð4Þ

where there is good, but not exact, agreement in the literature on the
values of c1 and c2 (White, Efstathiou & Frenk 1993; Viana &
Liddle 1996; Eke et al. 1996). For our calculations, we use
c1 ¼ 0:60,

c2ðQ0Þ ¼ 0:36 þ 0:31Q0 ¹ 0:28Q2
0 ð5Þ

for open models with l0 ¼ 0, and

c2ðQ0Þ ¼ 0:59 ¹ 0:16Q0 þ 0:06Q2
0 ð6Þ

for models with Q0 þ l0 ¼ 1. These fitting functions were taken
from Viana & Liddle (1996). There is a random uncertainty on j8 of
approximately 637

27 per cent, the main component of which results
from the cosmic variance in the local cluster population. Since this
is taken into account in a different manner later in the paper (Section
3.3), we treat the above value as exact.

We assume that the bolometric X-ray luminosity of clusters
follows a power law in mass and redshift:

LX ¼ L15 Mp ð1 þ zÞs ð7Þ

over a range of 1013 to 1016 M( in mass and z & 2 in redshift. Here,
and throughout the paper unless specified otherwise, the mass M is
in units of 1015 h¹1

50 M(. Although assuming that this simple mass
dependence holds over three orders of magnitude may seem
unreasonable, the abundance of objects drops quite sharply outside
a central range of about 1.5 decades for the flux limits that we are
considering. High-mass objects are rare at any epoch, and low-mass
objects quickly become invisible at larger redshifts; thus any
deviations from a power law outside this range will have little
effect on our predictions. The intrinsic luminosity at fixed mass
increases with redshift for s > 0. For reasons which will be made
apparent, we focus attention on such ‘positive luminosity evolution’
models, although it is straightforward to extrapolate our results to
models with negative luminosity evolution.

What values of the parameters p and s are expected? On
dimensional grounds, we can write a scaling relation for the
bolometric luminosity as

LX ~

�
dVr2T1=2 ~ M4=3ð1 þ zÞ7=2IðM; zÞ; ð8Þ

where the virial theorem T ~ M2=3ð1 þ zÞ and the assumption of
clusters as regions of fixed overdensity

�
dVr2 , Mr̄ðzÞ,

Mð1 þ zÞ3 with constant gas fraction are used to produce the scalings
on the right-hand side. Here IðM; zÞ is a form factor which retains
the information on the mean internal density and temperature
profiles of the clusters. Kaiser (1986) derived the above scaling
under the assumption of self-similarity of the cluster population
across both mass and epoch, so that IðM; zÞ ¼ constant. Although
self-similarity may apply to the cluster population, it requires rather
restrictive conditions – gravitational shock heating should be the
dominant heating mechanism, cooling should be unimportant,
variations in gas fraction must be small, clusters must have similar
internal structure, and so on. EH91 presented empirical evidence
against self-similar scaling in mass for Q ¼ 1 models from the

shape of the luminosity function. (We return to this point below.)
Kaiser (1991) and EH91 presented alternative models which
invoked constant entropy either throughout the cluster gas or in
the central core, respectively. The constant core entropy models of
EH91 yield p ¼ 11=6 and s ¼ 11=4.

The approach taken here is to let the observations dictate
appropriate values of p and s. The value of p then reflects a
composite mean description summarizing the mass sensitivity of
cluster internal structure, gas fraction, cooling flows, efficiency of
star formation and other microphysics. Variance in this relation is
discussed below. The evolution parameter s encompasses time-
dependent phenomena such as the changing overall density of the
universe, the efficiency of radiative cooling, and heating of the ICM
via gravitational collapse or supernova injection. Bower (1997)
discusses the connection between cluster entropy and the evolution
parameter. The value s ¼ 11=4 indicates that these processes are
balanced; higher values indicate that heating mechanisms are
dominant, while lower values indicate that cooling mechanisms
are dominant.

The above discussion pertains to the bolometric cluster lumin-
osity. In practice, the X-ray luminosity within some range of photon
energies, denoted by energy band E, is required to connect with the
observational data. The observed luminosity LXðEÞ is a fraction of
the bolometric luminosity

LXðEÞ ¼ LX fE½TðM; zÞ; zÿ; ð9Þ

where the factor fE½TðM; zÞ; zÿ is found by numerically integrating
the bremsstrahlung emissivity over the proper energy range. As in
EH91, we use an approximation to the Gaunt factor of
gðE; kTÞ ¼ 0:9ðE=kTÞ¹0:3 in this calculation. The temperature of
the cluster is related to the mass according to the equation kT(keV)
= 3:96M2=3ð1 þ zÞ, a scaling law that is well supported by three-
dimensional hydrodynamic simulations (Evrard 1990a,b; Evrard,
Metzler & Navarro 1996).1 Since the cluster temperature and
emitted photon energy both scale as ð1 þ zÞ, the redshift depen-
dence for a fixed received energy band drops out and the X-ray
luminosity fraction can be easily tabulated as a function of M or T
alone. We use an energy range of 0:1 ¹ 2:4 keV when comparing
our model with the local luminosity function, and 0:5 ¹ 2:0 keV
when predicting cluster number counts.

2.2 Constraints from the local luminosity

The free parameters of our mass–luminosity model are L15, p and s.
Since the extent of redshift evolution is still in question, we allow s
to vary in the range 0:0 # s # 6:0. L15 and p can then be determined
by inverting equation (7) and expressing the Press–Schechter
abundance as nðLX; zÞdLX. The resulting function is then fitted to
the BCS XLF of Ebeling et al. (1997) at a redshift of 0.1, the average
of the entire sample. By treating the whole BCS as if it were at a
single redshift, we accept the loss of a small amount of evolution
information in trade for greatly improved precision on L15 and p.
Fig. 1 shows the results of fitting a standard CDM-like model
(Q ¼ 1, n ¼ ¹1, l0 ¼ 0 and s ¼ 3:5) to these data; the parameters
that produce the smallest chi-squared are p ¼ 3:38 6 0:17 and
L15 ¼ 2:50 6 0:16 × 1044 h¹2

50 erg s¹1. The BCS sample was
chosen for its high statistical significance; other samples such as
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the EMSS (Henry et al. 1992) and ESOKP redshift survey (de
Grandi 1996) give consistent results but with larger error bars.

Values of L15 and p for any given cosmological model can be
similarly determined to roughly 10 and 5 per cent accuracy,
respectively. Fig. 2 displays the variation in L15 and p with Q0 and
n at a constant value of s ¼ 3:5. The level of accuracy displayed is
representative of all models. We analyse each model individually
and employ its best-fitting values for these parameters in subse-
quent calculations. All models provide good fits to the BCS XLF,
with reduced chi-squared parameters of hx2i < 1:2 over seven
degrees of freedom.

The behaviour of L15 and p in Fig. 2 can be understood by
examining the Press–Schechter abundance function in detail. The
observed XLF has two clear features which can be easily related to
these parameters: the overall normalization of the function, and the
difference in slope between the low- and high-luminosity regions. The
latter feature is a function of n and p only, so we will examine it first.

For a given set of cosmological parameters the form of
the underlying mass function is completely fixed. For masses
smaller than M, ; ð

���
2

p
j15=dc0Þ

1=a, equation (1) behaves like a
power law: nðMÞ , M¹2þa. If M > M,, however, we have
nðMÞ , exp½¹ðM=M,Þ

2aÿ. As n increases, the exponential decay
gets stronger and the power law gets shallower, which strength-
ens the bend in the mass function over the transition region. In
making the transformation from nðM; zÞ to nðLX; zÞ we assume
that M , L1=p

X , which means that increasing p reduces the
apparent slope in each regime by a common factor, resulting
in a weaker bend at LXðM,Þ. In order for the predicted XLF to fit
the BCS sample, we thus expect that larger values of n will
require larger values of p. Similarly, p increases with Q0 to
compensate for the general decrease of M,, which again tends to
strengthen the exponential decay.

The above argument is very general, and would hold whether the
BCS XLF lay mostly above or below M,. The requirement that the
observed normalization remain consistent with the BCS XLF has a
much more complicated effect on the derived parameters. For
n ¼ ¹2, M, drops rapidly in the range 0 < Q0 < 0:2, and levels
off somewhat but keeps dropping as Q0 increases. We thus expect
that a fixed abundance will correspond to a smaller mass scale.
The X-ray luminosity at that abundance is fixed by the BCS XLF, so
we have LXðdn=dLXÞ ¼ L15Mðdn=dLXÞpð1 þ zÞs ¼ constant. This
makes the interplay between the parameters clearer: as Q0

increases, M drops and p rises. Although this way of thinking
about the problem oversimplifies the interdependence of the vari-
ables, we should not be surprised to see a local minimum as these
effects vary in strength. The case of n ¼ 0 is simpler because M,

varies very little with Q0, so the steady fall of L15 and increase of p
are driven almost entirely by this relationship.

There are dependences on s and l0 as well, but these are slight
compared with those described above. Increasing s decreases L15

according to the factor ð1 þ zÞs folded into the BCS fit, and does not
affect p at all. Introducing a cosmological constant decreases L15

and p for low-density models, mainly because these universes
require a larger dc0 and therefore have a smaller M,.

The ‘1j variations’ shown in Fig. 1 are the curves obtained
by using the vertices of the covariance matrix error ellipse to
modify L15 and p. The uncertainties depicted in Fig. 2 are the
formal 1j error bars given by the diagonal elements of the
covariance matrix. Since the functional form of the XLF is non-
linear, these limits should be taken as reasonable estimates of
the variance rather than precise measurements of a confidence
level.
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Figure 1. The BCS XLF of Ebeling et al. (1997). A change in the slope of the
abundance function is evident around an X-ray luminosity of
3 × 1044 erg s¹1. The solid line is the least-squares fit to a Press–Schechter
form as described in the text. The dotted lines are the curves that correspond
to L15 and p values at the vertices of the 1j error ellipse derived from the
covariance matrix of the fit. The BCS XLF extends over a larger luminosity
range than is shown here, but the additional data points do not help to
constrain the parameters further.

Figure 2. The best-fitting values of L15 and p for open cosmological models,
assuming an evolution parameter s ¼ 3:5. The error bars correspond to the
formal 1j uncertainty given by the diagonal elements of the covariance
matrix. The overall shape of the curves and the level of uncertainty are
similar in models that have different s or include a cosmological constant.
The dotted lines are the limits on p that result if the observed luminosity–
temperature relation is adopted as an additional constraint; this topic will be
discussed in detail in Section 4.1. The numerical value of L15, defined as the
luminosity at mass 1015h¹1

50 M(, scales as h¹2
50 .



At this point we have six parameters that describe our models:
Q0, l0, n, s, L15 and p. The first four are arbitrary, and the last two are
determined from local observations. This is all the information we
need to construct flux-limited statistics of the underlying Press–
Schechter abundance for a given cosmology. We can make an
additional test of the method by comparing our BCS-fitted distribu-
tion to the EMSS cluster sample (Henry et al. 1992), recently
reanalysed by Nichol et al. (1997), which has the advantage of being
binned in redshift. The results of this comparison are presented in
Fig. 3, along with the same variations on the theoretical XLF that
were displayed in Fig. 1. The theory with s ¼ 3:5 and data are in
good agreement, but the depth of sample is too small to provide
significant leverage on s; models with s ¼ 0:0 or s ¼ 6:0 provide
equally good fits. Putting good constraints on cluster evolution
requires either a very large sample or a very deep sample, as we will
see in the next section.

3 P R E D I C T I O N S A N D O B S E RVAT I O N S

3.1 The log N–log S relation

The model as stated above is sufficient to describe the underlying
abundances with clusters for a variety of universes. We wish to
compare these abundances with recent observations of the log
N–log S statistic. Calculating number counts as a function of
observed flux is done by integrating the number density of
clusters over mass and redshift, with a lower limit on the mass
integral coming from the minimum mass required to meet the flux
limit at each redshift.

The band-limited flux SXðEÞ is related to the observed, band-
limited X-ray luminosity by the usual relation

SXðEÞ ¼
LXðEÞ

4pr2ð1 þ zÞ2 ; ð10Þ

where r is the physical distance from the observer to the
cluster determined by the cosmological parameters within the

Robertson–Walker metric. For a universe with l0 ¼ 0, this gives

SXðEÞ ¼
L15H2

0q4
0ð1 þ zÞsMpfEðMÞ

4pc2½q0z þ ðq0 ¹ 1Þð
�����������������
2q0z þ 1

p
¹ 1Þÿ2

: ð11Þ

This equation allows the minimum mass satisfying a given flux limit
to be calculated at each redshift.

Depending on the form of the observations that we are trying to
imitate, we have the option of adding in at this point a correction for
the finite cluster size and the point response function of the
telescope, or some other factor that represents the efficiency of
the flux recovery. This factor can be either a pure number or, if you
are willing to invoke a model for the surface brightness, a function
of the cluster’s angular diameter (e.g. EH91). As the observers have
already made this correction in constructing the log N–log S
relation, we calculate the total flux as given above.

The number of clusters per unit mass on the sky is calculated
from the basic relation

dN ¼ dnðM; zÞdV ¼ dnðM; zÞ
r2dr���������������
1 ¹ kr2

p dQ ð12Þ

which can, with the appropriate function rðzÞ (Kolb & Turner 1990),
be transformed into a function of redshift:

dN
dzdQ

¼
c3dnðM; zÞ

H3
0 ð1 þ zÞ3q4

0

½q0z þ ðq0 ¹ 1Þð
�����������������
2q0z þ 1

p
¹ 1Þÿ2�����������������������������������������

1 ¹ 2q0 þ 2q0ð1 þ zÞ
p ; ð13Þ

which again holds for l0 ¼ 0. Integrating this function over redshift
with the lower mass limit given by equation (11) gives the number
of visible clusters in the sky per steradian as a function of limiting
flux SXðEÞ. Similarly, we can construct a differential log N–log S
relation or keep track of the total number in each redshift bin to
predict redshift distributions.

The situation for Q0 þ l0 ¼ 1 universes is slightly more com-
plicated in that the function rðzÞ cannot be expressed in simple
analytic form. It can, however, be tabulated and used to calculate the
volume element and observed flux to arbitrary accuracy. Appendix
B contains the details of this derivation.

3.2 ROSAT data and comparisons

We use log N–log S data from two independent, serendipitous
samples of X-ray clusters derived from deep, pointed ROSAT
observations. The work of Rosati & Della Ceca (in preparation)
includes 125 clusters over a total sky area of about 35 square
degrees, and goes down to a flux limit of 2 × 10¹14 erg s¹1 cm¹2.
The work of Jones et al. (in preparation) includes 34 clusters and
goes from 4 × 10¹14 to 2 × 10¹13 erg s¹1 cm¹2. Both groups employ
different methods and assumptions which we now discuss.

Rosati & Della Ceca (in preparation) use a wavelet decomposi-
tion algorithm to identify extended sources in ROSAT PSPC fields,
and employ the wavelet coefficients to reconstruct the total flux of
each source. This technique is subject to large random errors on
clusters of low signal-to-noise ratio, but is no worse off in these
terms than fitting the cluster profile to a standard (e.g. King) model.
There is also a bias inherent in reconstructing the area under a non-
Gaussian profile with a Gaussian wavelet, but this is small com-
pared with the sources of random error in the problem. In his
doctoral thesis, Rosati (1995) presents details of the reconstruction
process. He also implements a sophisticated correction for the sky
coverage, which takes into account distortion in PSPC images at
large off-axis angles and varies with the angular diameter and flux
of the source. Uncertainties in the integral counts include Poisson
noise, uncertainties in the sky coverage fraction, and the random
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Figure 3. The EMSS X-ray cluster distribution as reconstructed by Nichol et
al. (1997). The solid line represents the same best-fitting ‘standard CDM’
model as was shown in Fig. 1, and the dotted lines represent 1j variations.



errors inherent in reconstructing the flux of an image with low
signal-to-noise ratio. The full error treatment was not available for
the differential counts, which have simple Poisson error bars.

The work of Jones et al. is derived from the WARPS (Wide-Angle
ROSAT Pointed Survey) cluster survey of Scharf et al. (1997),
which uses the VTP (Voronoi Tessellation and Percolation) analysis
method (Ebeling & Wiedenmann 1993; Ebeling 1993) to detect
sources. To account for any flux that might be hidden under the
background level, they assume a standard b-model form with
b ¼ 2=3, derive a normalization and core radius from the source
profile, and integrate in the region of low signal-to-noise ratio to
find an appropriate correction factor. The model is not used to
determine the overall flux, just to make a second-order correction to
the VTP count rates. Details of their flux correction procedure can
be found in Ebeling et al. (1996b). The error bars of this data set are
strictly Poisson and are claimed to dominate all other sources of
error. Numbers used in this analysis were kindly made available by
L. Jones prior to publication.

Both groups attempt to construct the log N–log S relation in a
largely model-independent fashion. The advantage of this approach
is that it avoids building in biases based on questionable assump-
tions. The disadvantage is that it makes it difficult to assess sample
completeness in a systematic fashion; it is unclear how large a
population may be missing from the detected counts because of low
surface brightness and/or large angular extent. Of course, compar-
ing results of the independent groups is a simple gauge of systema-
tic effects. The data, shown in Fig. 4, indicate consistency within
modest statistical errors. Given that it is easier to err in the direction
of missing extended, low surface brightness sources, it is reasonable
to interpret the current data as providing firm lower limits to the true
cluster counts, and accurate estimates if no such population exists.
Thus a model that underpredicts the number of clusters can be
excluded with somewhat greater confidence than one that over-
predicts the observed counts.

Fig. 4 gives an example of the integrated log N–log S relation for
a universe with Q0 ¼ 1, l0 ¼ 0, s ¼ 3:5 and n ¼ ¹2. Superimposed
are the observational data from Rosati & Della Ceca (in prepara-
tion) and the WARPS sample. The data are shown in the traditional
cumulative form here so that readers can easily compare them with
familiar results. The points of each sample are not statistically
independent, and the uncertainties shown on Rosati’s points are
larger than the Poisson uncertainties used in evaluating these
models. A crude judgement of goodness of fit can be made by
comparing the model with the faintest point of each sample. This
particular model underpredicts the number of clusters, to a moder-
ate but still significant degree. This is true even for the log N–log S
curves that arise from modifying L15 and p through the vertices of
their 1j error ellipse, shown as the dashed lines in the figure.

Figs 5 through 7 demonstrate the sensitivity of the counts to
variations in Q0 and s. Fig. 5 displays the changes that occur as Q0

decreases from 1.0 to 0.2 while s is held constant at a value of 3:5.
Clearly, low-Q0 universes produce higher counts, a reflection of the
earlier formation of the cluster population in such models (Richstone,
Loeb & Turner 1992) as well as the larger volume element per
redshift interval. Fig. 7 displays the log N–log S relation for the same
five universes but with a mild evolution parameter s ¼ 1:0. Reducing
s has the effect of reducing the differences between universes with
different density parameters as well as lowering the overall number
of clusters, since a lack of positive luminosity evolution quickly dims
the high-redshift population expected in open models. This extinc-
tion has a proportionally larger effect on the low-Q0 models, for
which a given flux limit represents a deeper probe.

The effect of changing s while holding Q0 fixed is shown in Fig. 6.
The variation in counts seen here is a combination of two factors:
first, a model with less positive evolution in the cluster luminosity
will contribute fewer objects to the log N–log S relation at a given
flux limit; secondly, the overall normalization of the mass–lumin-
osity relation will be larger if s is smaller. [The second effect arises
from the approximation that the entire BCS sample lies at an
average redshift of 0.1, which introduces a dependence of L15 and
p on s – see equation (7).] The two effects change in strength and
work in opposite directions, so the variation shown in Fig. 6 cannot
be taken as universal. In particular, low-density models display a
much stronger dependence on s than models in which Q0 ¼ 1; this
can be understood as an increase in the importance of the high-
redshift population relative to the local sample.

3.3 Examination of the Q0 –s plane

Changing the cosmological parameters over the proposed range can
produce massive overabundances or moderate underabundances.
To assess the likelihood of each model we compare the predicted
differential log N–log S relation (the number of clusters in a
specified flux bin) with the data points and calculate the reduced
chi-squared factor for that model. The full set of data used to
constrain our parameter space includes the faintest six data points
from the WARPS sample and 10 points from Rosati’s, for 16
degrees of freedom altogether. The use of differential data means
that statistical errors are formally independent. We employ a chi-
squared statistic because it provides a measure of the absolute
goodness of fit for the models, assuming the error bars are Gaussian.
Our results would be similar were we to employ a maximum
likelihood approach. The main disadvantage of this approach is
the difficulty in including the uncertainty in L15 and p for a
particular model. We adopt an approximate procedure to solve
this problem, which will be described shortly.
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Figure 4. The integrated cluster surface density above an X-ray flux limit S.
The solid line represents the best-fitting values of L15 ¼ 3:556 and
p ¼ 2:174, while the dashed lines represent 1j variations around these
values as described in the text and displayed in Figs 1 and 3.



Figs 8(a)–(c) present the ‘likelihood’ plots of all models having
n ¼ 0, ¹1 and ¹2, respectively. The value displayed in the upper
row for each model is the square root of the reduced chi-squared
parameter hx2i1=2, where the average is over all data points in the log
N–log S relation. The dotted contours in the upper row mark models
that deviate from the data at 1j, 2j and 3j confidence levels. The
main limitation in the ability of theory to predict abundances
accurately at this level of analysis is the determination of L15 and

p. Although an accuracy of 5 to 10 per cent is quite good (and quite
possibly as good as we are going to get, since this method is limited
by the number of nearby clusters), varying these numbers within
their confidence limits can still produce considerable changes in the
predicted log N–log S relation (see Fig. 4).

To account for this, we calculated the likelihood parameter,
hx2i1=2, for the four vertices of the standard error ellipse in L15 –p
space as well as for the best-fitting model. The uncertainty shown is
the difference in hx2i1=2 between the best-fitting case and the
perturbed case that gave the smallest value of the likelihood
parameter. The results are presented in the lower rows of
Figs 8(a)–(c) and can be interpreted as a ‘1j’ uncertainty in the
contours of the top row. Keep in mind that this variance is not
symmetric; we present only the difference in the direction of greater
likelihood. Since our aim here is to provide a reasonable indication
of the uncertainty in the modelling, this heuristic error estimate
seems sufficient. The data were presented in this manner to make it
possible for the reader to estimate constraints at other confidence
levels.

It is clear from Figs 8(a)–(c) that the results are not strongly
affected by the value of l0. Introducing a cosmological constant
increases the volume element per redshift bin throughout most of
the integration range, which reduces the observed flux of each
cluster, but it also increases the total surface density of clusters. As
can be seen from a close examination of the figures, in most regions
of the parameter space introducing a cosmological constant slightly
raises the value of Q0 required for a good fit. Since raising Q0 lowers
the number of clusters, we conclude that increased integration
volume is the dominant effect for most models. In other words,
setting l0 Þ 0 tends to increase the surface density of clusters, and a
higher value of Q0 is needed to compensate.

Changing the spectral index n has a quite strong effect on the
derived mass–luminosity relationship (Fig. 2), which as we will see
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Figure 7. The integrated cluster surface densities for models with l0 ¼ 0,
n ¼ ¹2 and s ¼ 1:0, while Q0 takes on the values 1.0, 0.8, 0.6, 0.4 and 0.2.
Note that a lower value of s greatly suppresses the differences between low-
density and high-density models, because high-redshift clusters become
harder to observe.

Figure 6. The integrated cluster surface densities for models with l0 ¼ 0,
Q0 ¼ 1:0 and n ¼ ¹2, while s takes on the values 0.5, 1.5, 2.5, 3.5, 4.5 and
5.5.

Figure 5. The integrated cluster surface densities for models with l0 ¼ 0,
n ¼ ¹2 and s ¼ 3:5, while Q0 takes on the values 0.2, 0.4, 0.6, 0.8 and 1.0.



can have important consequences. Because all of the models are
constrained to agree with local abundances, however, n has limited
leverage on the distant cluster population. The main effect on the
log N–log S relation is that models with larger n have sharper
exponential cut-offs in their mass distribution, resulting in a lower
cluster surface density. The best-fitting models for n ¼ 0 thus have
lower Q0 and greater luminosity evolution to compensate.

The clearest relationship visible in Figs 8(a)–(c) is, of course,

that between the density and evolution parameters, Q0 and s. It
seems from these results that if we wish to believe in the degree of
evolution indicated by self-similar or constant entropy arguments
(s ¼ 3:5 and 11=4, respectively) then we obtain a useful lower
bound of Q0 * 0:3. The lower end of this range is consistent with
limits from the mean intracluster gas fraction of clusters, which give
Q0h2=3 ¼ 0:30 6 0:07 (Evrard 1997) in the most straightforward
interpretation.
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Figure 8. The square root of the reduced chi-squared parameter for all models is displayed, as well as the ‘uncertainty’ in this parameter, the derivation of which
is described in the text. In the upper row, dotted line contours have been drawn corresponding to hx2i1=2 ¼ 1:07, 1.28 and 1.51, which represent formal
probabilities of about 30, 5, and 0.3 per cent that the data come from the same underlying distribution as the model and differ only through Gaussian random
variations. Solid line contours have been drawn at hx2i1=2 ¼ 2:0, 3.0 and 4.0, which correspond to very small probabilities but may be useful in combination with
the uncertainties. The dashed lines are drawn every time the likelihood parameter doubles thereafter, i.e. at levels of 8.0, 16.0, etc. In the lower row, the dotted line
contours are drawn at uncertainty levels of 0.1, 0.2 and 0.3; the solid lines at levels of 0.4, 0.6, 0.8 and 1.0, and the dashed lines at each doubling over 1.0. Note
that, although the uncertainties get very high in the region of low Q0 and high s, the likelihood parameter is larger still by about a factor of 4. Panel (a) displays
models with n ¼ 0, panel (b) with n ¼ ¹1 and panel (c) with n ¼ ¹2.



Conversely, if the degree of luminosity evolution is instead very
small (s & 1) then the analysis strongly rules out a critical density
universe. Recall that all the off-ridge models that have Q0 ¼ 1
underpredict the number of observed clusters (see Figs 5–7), and
these should be treated more harshly given the possibility of survey
incompleteness. It seems that if the universe does indeed have a
critical density, we need at least a moderate degree of evolution in
the cluster luminosity to fit the data well. The assumption of
constant cluster entropy (s ¼ 11=4) put forward in EH91 would
be sufficient to allow such models. The preferred region, however,
indicates an even larger degree of evolution. This could come about
if radiative cooling occurs on a much longer time-scale than
gravitational collapse (Bower 1997), or if a significant amount of
energy is injected into the ICM by galaxies (e.g. Metzler & Evrard
1994).

The results of this analysis are summed up in Table 1. The limits
put down are at the 95 per cent (about 2j) confidence level (i.e. there
is only a 5 per cent chance of the model randomly producing the
observed data), after reducing the hx2i1=2 parameter by the uncer-
tainty indicated in Figs 8(a)–(c). The models are examined in
intervals of 0.05 in Q0 and 0.5 in s, so a $ or # sign just means that
the limiting model was at or very near the required confidence level
of 95 per cent. In addition, all of the disallowed models indicated
here underpredicted the number of clusters, except for those that
assumed s ¼ 3:5. The constraints thus allow for a 1j variation in L15

and p tailored to bring the model closer to the data, and can be
treated as conservative conclusions.

4 A D D I T I O N A L C O N S T R A I N T S F RO M T H E
C L U S T E R P O P U L AT I O N

4.1 The luminosity–temperature relation

Because of the degeneracy between intrinsic luminosity evolution
and cosmological evolution, the log N–log S relation alone limits
models to the ridge seen in Fig. 8. It is worthwhile to see what
additional constraints can be placed on the parameter space by
including additional observational information. One interesting
question is what each model predicts for the X-ray luminosity–
temperature correlation. So far, we have made use of the virial
relationship T ~ M2=3 only to tabulate the band fraction. Because
the fraction fEðTÞ for the ROSAT bands is a weakly dependent
function of temperature, our results up to this point would change
very little if we were to adopt a different TðMÞ behaviour. If we are
willing to promote virial equilibrium to a strong assumption,
however, we can use it as an independent test of the parameter p.
There is good theoretical support from numerical simulations for
virial equilibrium within the non-linear portions of clusters (Evrard
et al. 1996) and modest empirical support for this assumption from
analysis of the mean intracluster gas fraction (Evrard 1997).

Comparison with the values derived from the BCS XLF fit then
provides an added, non-trivial constraint on the models.

The virial scaling assumption T ~ M2=3ð1 þ zÞ translates directly
into a bolometric LX –T relation of the form

LX ~ T3p=2ð1 þ zÞs¹3p=2
: ð14Þ

The observed relationship is, roughly, LX ~ T2:860:3 (Edge &
Stewart 1991; Arnaud 1994). The quoted error in the slope is
more generous than those reported in individual works, in order
to allow for possible systematic uncertainties between different data
sets. Consistency with the observed slope requires p ¼ 1:9 6 0:2.
This range, drawn in Fig. 2 as dotted horizontal lines, incorporates
the value 11=6 appropriate for the constant central entropy model of
EH91 (see also Bower 1997). A quick glance at the figure reveals
that including this result puts a strong constraint on Q0 and n. If
n ¼ ¹1, this range of values is found only in very low-density
universes (Q0 <0:1). For models with n ¼ ¹2, on the other hand, we
find acceptable values of p in the range 0:25 # Q0 # 1:0. If a
cosmological constant is included, the allowed range in Q0 shifts
to slightly higher values.

The real perturbation spectrum is not likely to be a pure power
law, but this analysis indicates that models with effective spectral
index n & ¹1:5 are favoured in universes with reasonable values of
the density parameter. Such ‘red’ spectral values are also favoured
by the shape of the temperature abundance function (Henry &
Arnaud 1991; Oukbir, Bartlett & Blanchard 1997). A list of
effective spectral indices [neff ; d ln PðkÞ=d ln k] for common cos-
mological models can be found in Huss et al. (1997).

This estimate of the allowed range in n and Q0 is not set in stone.
Some room to manoeuvre around this conclusion can be gained by
invoking a degree of scatter in the relationship between bolometric
X-ray luminosity and binding mass. This will tend to flatten the
slope and increase abundance at the bright end of the predicted
luminosity function, implying a bias toward overestimating p and
L15 compared to the case with no scatter. The amount of scatter is
not known a priori, but a likely lower bound can be obtained from
gas dynamic simulations.

Two sets of 18 cluster simulations by Metzler (1995) revealed a
scatter of magnitude hdðlog LXÞ2i ¼ 0:047 for simulations invol-
ving dark matter and baryon fluids, and hdðlog LXÞ2i ¼ 0:026 for
simulations that also included a model for the ejection of gas from
galaxies into the ICM. Both of these simulations used the P3MSPH

code developed by Evrard. An earlier set of 22 simulations by
Evrard (1990b) displays a similar level of scatter. We have checked
that including scatter at the larger of the above values causes a
fractional change in the best-fitting p of at most 10 per cent,
comparable to the uncertainty from the BCS XLF fit. We
conclude that these modest levels of scatter would not strongly
affect our results. Larger amounts of scatter would lead to
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Table 1. A summary of the constraints that can be placed on Q0 and s using the information in Figs 8. All of these
constraints are at the 95 per cent confidence level, after accounting for the displayed uncertainty in the chi-squared
parameter.

l0 ¼ 0 Q0 þ l0 ¼ 1
Constraint n ¼ 0 n ¼ ¹1 n ¼ ¹2 n ¼ 0 n ¼ ¹1 n ¼ ¹2

Q0 ¼ 1:0 s $ 3:5 s > 3:0 s > 2:5 s $ 3:5 s > 3:0 s > 2:5
s ¼ 3:5 Q0 > 0:20 Q0 > 0:25 Q0 > 0:35 Q0 > 0:20 Q0 > 0:25 Q0 > 0:35
s ¼ 1:0 Q0 # 0:45 Q0 < 0:60 Q0 # 0:75 Q0 # 0:45 Q0 < 0:65 Q0 < 0:80
s ¼ 0:0 Q0 < 0:30 Q0 # 0:40 Q0 # 0:60 Q0 < 0:35 Q0 # 0:45 Q0 # 0:65



downward revisions in our best-fitting values of p in Fig. 2,
which would somewhat relax constraints on the effective spectral
index on cluster scales.

Another important prediction from equation (14) is that we
expect redshift evolution in the bolometric luminosity at a fixed
temperature proportional to ð1 þ zÞs¹3p=2. Since fitting the local
relation requires 3p=2 ¼ 2:8 6 0:3, the expectation is of an offset in
the intercept of the LX ¹ T relation of amplitude

D½log LXðzÞÿ jT ¼ ½s ¹ ð2:8 6 0:3ÞÿD½logð1 þ zÞÿ ð15Þ

independent of spectral index or cosmology. Both the original
self-similar value s ¼ 7=2 and the constant central entropy value
s ¼ 11=4 predict very little change in the intercept of the LX –T
relation back to z . 0:5. The full range that we investigate,
s [ ½0; 6ÿ, translates into shifts of factors ranging from about
one-third to three at z ¼ 0:5.

Comparing a recent compilation of 15 distant clusters
(hzi . 0:33) by Henry (1997) with a similar sample of the nearby
population (hzi . 0:07) by David et al. (1993) provides us with an
early estimate of this shift. Comparing the intercepts of the two
samples, we find Dðlog LXÞ=D½logð1 þ zÞÿ ¼ 1:1 6 1:1 at the 1j

level, which corresponds to a plausible range of 2:5 # s # 5:3. The
observations rule out very low values of the evolutionary parameter
s, and therefore eliminate the low-Q0 end of the allowed ridge in
Fig. 8.

4.2 Redshift distributions

Additional constraints can be found by examining the redshift
distribution of the clusters, which can be expected to vary strongly
with our choice of cosmology. Indeed, Oukbir & Blanchard (1997),
employing methods similar to ours, found the redshift distribution
in the EMSS sample (Gioia & Luppino 1994) to be well fitted by

either a low-density model with mild evolution (Q0 ¼ 0:2, s ¼ 0:5
in our terminology) or an Einstein–de Sitter model with more rapid
evolution (Q0 ¼ 1, s ¼ 3:8). These models lie along the ridge
allowed by the ROSAT counts in our analysis.

As discussed in Section 3.1, the redshift distribution is straight-
forward to calculate for a given model and flux limit. Although
obtaining accurate redshifts for clusters is a time-consuming
process, the shape of this statistic is not strongly dependent on
small differences in the efficiency of flux reconstruction or the
choice of model for cluster surface brightness. A confident flux
limit and a well-understood sky coverage function, are, however,
necessary to predict the normalization of these curves.

Fig. 9 displays the differential and cumulative distributions at a
flux limit of 5:5 × 10¹14 erg s¹1 cm¹2 in the band 0.5–2.0 keV, the
parameters of the WARPS survey. Each category of models is
represented by four specific choices within the region of plausible
likelihood, all of which assume n ¼ ¹2:

(i) Q0 ¼ 0:3, s ¼ 1:0;
(ii) Q0 ¼ 0:3, s ¼ 2:75;
(iii) Q0 ¼ 1:0, s ¼ 2:75;
(iv) Q0 ¼ 1:0, s ¼ 6:0.

Models (i) and (iv) fit all of the log N–log S data quite well, lying
near the centre of the ridge described by Fig. 8(c), but model (i)
predicts a decrease in the zero-point of the LX –T relation that is
larger than observed. Models (ii) and (iii) are given as reference
points, and to display the effects of moving perpendicular to the
ridge in the Q0 –s plane. These models are ruled out at about the 95
per cent confidence level after subtracting the uncertainty in their
likelihood parameters, but make the effect of changing the para-
meters clearer.

As one can see, the redshift distribution does not discriminate
well between models that lie on the ridge in Fig. 8(c), but displays
significant differences when the parameters are changed in other
directions. Samples of size approaching 100 clusters will soon be
arriving (Rosati, private communication) and these will provide
stringent tests of the models by constraining the area under the high-
redshift tail of the distribution. In particular, if Q0 . 0:3 as indicated
by the mean intracluster gas fraction and s is close to the 11=4 fixed
core entropy value (model ii), then we predict that 10 per cent of
clusters above the WARPS survey flux limit should lie at z $ 0:75.

5 C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

We assume that the underlying number density of clusters as a
function of mass is well described by the Press–Schechter function,
and model the scaling of cluster bolometric luminosity and tem-
perature as power laws in binding mass and epoch. For a given
cosmological model, we determine the free parameters of the
current mass–luminosity relation by fitting the predicted X-ray
luminosity function to the BCS XLF (Ebeling et al. 1997), and
integrate the abundance function out to high redshifts to compute
counts.

A direct comparison by means of chi-squared analysis made to
differential log N–log S data from two ROSAT surveys produces a
ridge of acceptable models following roughly s . 6Q0. If s is in fact
about equal to 3 as expected from simple theoretical arguments
(Kaiser 1986; EH91) then the universe seems to require at least a
moderate density parameter Q0 * 0:3 in order to bring the cluster
number counts down to observed levels. Conversely, a universe with
critical density is inconsistent with a low evolution parameter
s & 2:5; such models are strongly ruled out because they
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Figure 9. The cumulative and differential redshift distributions for the
n ¼ ¹2 models described in the text. The effect of changing Q0 and s can be
clearly seen here: increasing Q0 sharply reduces the number of high-redshift
clusters, while increasing s brings the lower-mass objects above the flux
limit.



underpredict the number of clusters and are harder to save by
invoking systematic errors in the surveys. Although changing the
slope of the power spectrum and incorporating a cosmological
constant also affect these results, these parameters contribute only
slightly to the overall behaviour. An independent constraint from
the local, observed LX –T relation limits singles out the n ¼ ¹2
plane, further reducing the space of allowed models.

The log N–log S relation alone is a useful, but limited, discrimi-
nator of cosmological models. Because the local XLF is used to
determine the mass–luminosity relationship, the predicted counts
will always be limited in accuracy by the level of shot noise in the
local cluster population. Assuming that the local XLF will not
increase much in accuracy, this method has the potential to pin
down a region in the Q0 –s plane with a width of about 60:1 in Q0

and 61:0 in s. This estimate was made under the assumption that the
uncertainties arising from the XLF are the only significant ones; in
practice this level of discriminating power could be achieved when
the overall uncertainties on the log N–log S data have decreased to
about one-third their current size.

One could try to improve the accuracy of this method by
pushing observations down to a lower flux limit, but the returns
are limited by the local XLF uncertainty. In order for a new data
point at a fainter flux limit to be useful, it needs to have error bars
significantly smaller than the uncertainty in the log N–log S relation
from the local XLF. For example, the uncertainty on the integrated
log N–log S relation at a flux limit of 10¹15 erg s¹1 cm¹2 is about 30
per cent. We estimate that a data point with 10 per cent error bars
would make a useful contribution to the discriminating power of
this method. Assuming simple Poisson errors, this level of precision
could be achieved with a sample of about 100 clusters, over 1–
2 square degrees of sky. Toy models show that such a point would
strengthen the lower limit on s for critical density universes,
and greatly increase the lower limits on Q0 for models with
moderate s.

Independent observations can be used to narrow the allowed
range in parameter space. Assuming that clusters are in virial
equilibrium, the shift in the zero-point of the LX –T relation limits
the evolutionary parameter s. Current observations at hzi , 0:3
(Henry 1997; Mushotzky & Scharf 1997) indicate that s lies in
the range 2:5 to 5. Similar data at higher redshifts, with a subse-
quently longer lever arm in equation (15), would be very useful in
reducing the allowed range. Redshift distributions of X-ray flux-
limited samples provide additional independent constraints (Oukbir
& Blanchard 1997; Bower 1997). The extent of the high-redshift tail
of the distribution is a sensitive indicator of on which side of the Q0 –
s ridge the Universe lies. If Q0 . 0:3 as indicated by the mean
intracluster gas fraction (Evrard 1997) and s $ 11=4, then we
predict that at least 10 per cent of clusters above the WARPS
survey flux limit should lie at redshifts z $ 0:75.
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A P P E N D I X A : C A L C U L AT I N G dcðzÞ

The critical overdensity dcðzÞ is defined as the linearly extrapolated
overdensity of a perturbation that has just collapsed at redshift z. For
universes with Q0 ¼ 1, this number is the canonical dc ¼ 1:686; for
open universes or flat universes with l0 Þ 0 this overdensity will be
somewhat smaller. Since the CDM power spectrum used in our
analysis is normalized to the COBE microwave background mea-
surements and therefore the power spectrum at the present day, the
critical overdensity of a perturbation collapsing at redshift z is
further extrapolated to a redshift of zero using the linear growth
factor appropriate to the cosmology. This quantity is labelled dc0ðzÞ.
All the following relations are derived using the spherical collapse
model.

For a flat universe with Q0 ¼ 1, we use the following relations:

dcðzÞ ¼
3
20

ð12pÞ2=3
; ðA1Þ

dc0ðzÞ ¼ ð1 þ zÞdcðzÞ: ðA2Þ

For an open universe with Q0 < 1 and l0 ¼ 0 we use the
relationships derived by Lacey & Cole (1993):

dcðzÞ ¼
3
2

DðzÞ 1 þ
2p

sinhðhÞ ¹ h

� �2=3

; ðA3Þ

dc0ðzÞ ¼
Dð0Þ

DðzÞ
dcðzÞ; ðA4Þ

Dð0Þ ¼ 1 þ
3
x0

þ
3
�������������
1 þ x0

p
x3=2

0

lnð
�������������
1 þ x0

p
¹

�����
x0

p
Þ; ðA5Þ

where x0 ; Q¹1
0 ¹ 1, h ; cosh¹1½2=QðzÞ ¹ 1ÿ, and D represents the

linear growth factor.
Finally, for a flat universe with Q0 þ l0 ¼ 1 we use an approx-

imate parametrization to the Eke et al. (1996) results for dcðzÞ:

dcðzÞ ¼ 1:686 60½1 þ 0:012 56 log QðzÞÿ: ðA6Þ

The form of the parametrization was inspired by Kitayama & Suto
(1996). This reference also contains the functional form of the exact
solution, which is a hypergeometric function of type (2,1). To get
dc0ðzÞ for this type of universe we use the solution for the linear
growth factor found in Peebles (1980), Section 13:

D1ðxÞ ¼

����������������
ðx3 þ 2Þ

p
x3=2

�x

0
x3=2

1 ðx3
1 þ 2Þ¹3=2dx1; ðA7Þ

where x ¼ a=ae, and ae ¼ ½ð1 ¹ l0Þ=ð2l0Þÿ
1=3, the inflection point in

the scale factor. In our analysis this function is integrated numeri-
cally to find the growth factor at redshifts z and 0, and then dc0ðzÞ
again equals dcðzÞDð0Þ=DðzÞ.

A P P E N D I X B : T H E VO L U M E E L E M E N T F O R
l0 Þ 0

The number of clusters in a given volume element dV centred at
redshift z and mass range dM is given by the Press–Schechter
abundance times the differential volume:

dNðMÞ ¼ nðM; zÞdVdM ¼ nðM; zÞ
r2drdQ���������������
1 ¹ kr2

p dM: ðB1Þ

To integrate this function over a range in redshift rather than in
physical distance, we need to find rðzÞ for a particular cosmology
and make the transformation to the form

dNðMÞ ¼ nðM; zÞf ðzÞdz dQ dM: ðB2Þ

For a universe with Q0 þ l0 ¼ 1, k ¼ 0 and f ðzÞ ¼ r2dr=dz.
The function rðzÞ can be tabulated by integrating along the
null geodesic:

r ¼

�r

0
dr0 ¼

�a0

a

da
ȧa

: ðB3Þ

We can then express the Friedmann equation in terms of today’s
values of the cosmological parameters:

ȧ ¼ aH0

����������������
Q0

a3 þ l0

r
; ðB4Þ

and insert this into the geodesic integral to get rðzÞ in a straightfor-
ward manner. The integral obtained has an exact solution in terms of
elliptic integrals of the first kind, but expressing it in this manner
requires the integral to be performed from a ¼ 0. In addition, for l0

greater than about 0.7, the elliptic integral must be evaluated outside
its defined domain. It is computationally more reliable to evaluate
the integral numerically. For those who are interested, the ‘exact’
solution is

rðzÞ
r0

¼ F cos¹1 1 þ ð1 ¹
���
3

p
Þu0

1 þ ð1 þ
���
3

p
Þu0

" #
; k

 !

¹ F cos¹1 1 þ ð1 ¹
���
3

p
Þuz

1 þ ð1 þ
���
3

p
Þuz

" #
; k

 !
;

where u0 ¼ ðl0=Q0Þ
1=3, uz ¼ u0=ð1 þ zÞ, k ¼

����������������
2 þ

���
3

pq
=2, and

r0 ¼ c=ðH0Q
1=3
0 l1=6

0
4
���
3

p
Þ.
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