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Protease-activated receptors (PARs) are seven-transmem-
brane G-protein coupled receptors activated by serine
proteases (Fig. 1). Proteases cleave the extracellular N-
terminus of the molecule to expose a new tethered ligand,
which in turn binds and activates the cleaved receptor.
Four PARs have been cloned and each has a unique
cleavage site amino acid sequence. Tryspin activates
PAR2 and PAR4. Thrombin activates PAR1 and PAR3.
Of particular interest for allergic disease, mast cell tryp-
tase activates PAR2.

Much that is known about PARs and their function in
the respiratory system comes from studies in the lower
airways. All four PARs are expressed in airway epithelium
and smooth muscle. PAR2 expression is increased in the
asthmatic epithelium [1]. In isolated mouse airways,
activation of epithelial PAR1, PAR2 and PAR4 by the
proteases trypsin and thrombin, as well as by specific
activating peptides corresponding to each receptor’s teth-
ered ligand amino acid sequence, cause airway relaxation
via release of a cyclooxygenase product, probably pros-
taglandin E, (PGE,) [2, 3]. PAR2 activation also causes
relaxation of isolated rat, guinea pig and human bronchi,
and induces bronchodilation in mice in vivo [2]. On the
other hand, thrombin stimulates airway smooth muscle
contraction, likely by activation of airway smooth muscle
PAR1 [4]. Activation of PAR1, PAR2 and PAR4 stimulates
IL-6, IL-8/CXCL8 and PGE, release from airway epithelial
cells [5, 6]. Activation of PAR2 also induces airway
epithelial cell release of granulocyte-macrophage-colony
stimulating factor (GM-CSF), eotaxin/CCL11 and matrix
metalloproteinase (MMP)-9 [7-9]. Basolateral stimulation
of PAR2 receptors in mouse and human airways results
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in phospholipase C and Ca?*-dependent inhibition of
amiloride-sensitive Na* conductance and stimulation of
both luminal Cl~ channels and basolateral K™ channels,
leading to a secretory response [10]. PAR2 activation
interrupts E-cadherin adhesion and compromises the air-
way epithelial barrier [11].

PARs are also present on mast cells, eosinophils, neu-
trophils, alveolar macrophages, monocytes and lympho-
cytes [12]. Thrombin and the PAR1 activating peptide
induce B-hexosaminidase, IL-6 and MMP-9 release from
mouse bone marrow mast cells, as well as mast cell
adhesion to fibronectin [13]. Trypsin induces activation
and superoxide release from human eosinophils through
PAR2 [14]. PAR2 stimulation of peripheral blood mono-
cytes induces Ca”* flux and production of IL-1p, IL-6, and
IL-8/CXCL8 [15]. Stimulation of human peripheral mono-
cytes and monocyte-derived macrophages with thrombin
or PAR1 activating peptide triggers expression of mono-
cyte chemoattractant protein (MCP)-1/CCL2 [16]. Throm-
bin, trypsin and the PAR2 activating peptide induce
calcium flux in human T cell lines [17].

The abundant effects of PAR2 activation on airway
cell and leucocyte function are consistent with the notion
that PAR2 plays a critical role in the pathogenesis of
allergic airways disease. To test this, Schmidlin et al. [18]
examined the response to ovalbumin (OVA) sensitization
and challenge in PAR2 knockout mice, as well as mice
undergoing intranasal administration of the PAR2 acti-
vating peptide SLIGRL-NH,. Compared with wild-type
animals, eosinophil infiltration was inhibited by 73% in
mice lacking PAR2 and increased by 88% in mice over-
expressing PAR2. Similarly, compared with wild-type
animals, airway cholinergic responsiveness was dimin-
ished 38% in mice lacking PAR2 and increased by 52% in
mice overexpressing PAR2. PAR2 deletion also reduced
IgE levels to OVA sensitization by fourfold compared with
those of wild-type animals. Thus, PAR2 significantly
contributes to the development of acquired immunity
and allergic inflammation in the airways.
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Fig. 1. Proteases, including those from aeroallergens and bacteria,
induce respiratory epithelial cell cytokine expression by protease-acti-
vated receptors (PAR)-dependent and independent mechanisms. Pro-
tease-induced expression of C-X-C chemokines and granulocyte-
macrophage-colony stimulating factor (GM-CSF) is sufficient to initiate
neutrophilic inflammation. In addition, proteases directly stimulate
leucocyte activation, thereby enhancing allergic responses. Finally,
protease stimulation induces the epithelium to produce C-C chemokines
capable of attracting eosinophils, monocytes and T cells to the airway.
Thus, proteases and PAR receptors may hold a central role in both the
innate and acquired immune responses. MCP, monocyte chemoattractant
protein; PGE, prostaglandin; MMP, matrix metalloproteinase; GRO,
growth related oncogene; RANTES, regulated on activation normal T cell
expressed and secreated; MIP, macrophage inflammatory protein; IP,
inducible protein 10.

It is well-known that aeroallergens carry intrinsic
protease activity capable of disrupting tight junctions
and increasing transepithelial allergen delivery [19-21].
More recently, it has been established that airborne aller-
gens activate airway epithelial cell PARs. Two major dust
mite antigens with serine protease activity, Der p 3 and
Der p 9, activate PAR2 and induce PAR2-mediated release
of GM-CSF and eotaxin [8]. The cysteine protease Der p 1
induces airway epithelial cell Ca®" flux and IL-6 expres-
sion via activation of PAR2 [22]. Cockroach serine pro-
teases increase IL-8/CXCL8 expression in human
bronchial epithelial cells via activation of a PAR2/extra-
cellular-signal-regulated kinase/nuclear factor for IL-6
pathway [6, 23, 24]. Thus, aeroallergens with protease
activity may induce a non-allergic, innate inflammatory
response via the activation of PAR2 and release of pro-
inflammatory cytokines.

In mouse models of asthma, type I allergens such as
OVA require priming with adjuvants remote from the lung
to overcome airway tolerogenic mechanisms that ordina-
rily preclude allergic responses to inhaled allergens. How-

ever, type II allergens such as Aspergillus fumigatus,
Aspergillus oryzae and ragweed pollen require neither
remote priming nor additional adjuvants to overcome
airway tolerance and elicit robust allergic lung disease.
Kheradmand et al. [25] showed that proteolytic activity is
both necessary and sufficient for overcoming airway
tolerance and induction of pulmonary allergic disease,
suggesting that PAR-dependent and independent stimula-
tion of the airway epithelium by serine proteases may be
critical for the allergic airway response. However, as
aerosolized OVA is sufficient for IgG2a responses and IgE
tolerance [26], proteases probably do not permit allergic
responses simply by enhancing antigen presentation via
the degradation of tight junction proteins. Instead, pro-
tease activation of epithelial cell PARs may facilitate
allergic responses to OVA by inducing the expression of
chemokines required for maximal leucocytic activation
and infiltration. Like proteases, airway GM-CSF transgene
expression allows aerosolized OVA to induce allergic
sensitization in mice [27]. In addition to airway eosino-
philia, mice expressing GM-CSF show greater numbers of
antigen-presenting dendritic cells and macrophages, as
well as an expansion of both CD4 and CD8 cells. As noted
above, activation of PAR2 stimulates epithelial cell pro-
duction of GM-CSF [7], an activator of granulocytes and
macrophages. Finally, it has recently been shown that Der
p 1 induces chemotaxis of monocyte-derived dendritic
cells via the bronchial epithelial cell production of IL-8/
CXCL8, CXCL10, MCP-1/CCL2, CCL5 and CCL20 [28].

Comparatively little is known about the expression of
PARs in the nasal epithelium or their potential role in
seasonal allergic rhinitis (SAR), chronic rhinosinusitis,
bilateral nasal polyposis or other conditions. Nasal muco-
sal biopsies of patients with SAR show increased epithelial
cell expression of PAR2, as well as increased numbers of
mast cells and eosinophils in the nasal mucosa [29].
Stimulation of nasal epithelial cells with fungi induces
PAR2 and PAR3 mRNA expression [30]. Immunoreactive
PAR2 colocalizes with tachykinins in trigeminal neurons
innervating the nasal mucosa, suggesting that trypsin and
mast cell tryptase stimulation of PAR2 in tachykinergic
neurons could trigger neurogenic inflammation [31].

In this issue of Clinical and Experimental Allergy,
Rudack et al. [32] show that PAR2 expression is increased
in nasal biopsies from patients with chronic rhinosinusitis
without nasal polyps, a disease caused by impaired
sinus drainage and characterized by tissue infiltration
with lymphocytes and neutrophils [33]. Based on this
neutrophil predominance, chronic rhinosinusitis resem-
bles non-eosinophilic asthma, a disease characterized by
neutrophilic airway inflammation [34-36]. PAR2 expres-
sion was increased to a lesser extent in patients with
bilateral nasal polyposis, an entity characterized primarily
by eosinophilic inflammation. Consistent with this, sti-
mulation of cultured nasal epithelial cells with either
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PAR?2 activating peptide, trypsin or Staphylococcal serine
proteases induced G; protein- and NF-xB-dependent ex-
pression of the neutrophil chemoattractants IL-8/CXCL8
and growth-related oncogene-oCXCL1, but not the eosi-
nophil and T cell chemoattractants eotaxin/CCL11, CCL5
or CCL17. Together, these data are consistent with the
notion that, in patients with chronic rhinosinusitis, bac-
terial proteases induce neutrophilic inflammation via an
innate immune response including activation of PAR2 and
subsequent expression of CXC chemokines. In other
words, the specific signalling outcomes of PAR2 activa-
tion determine the character of nasal inflammation in
chronic rhinosinusitis. Accordingly, therapeutic interven-
tions directed against the PAR2/G;/NF-kB pathway may
be beneficial in the treatment of this sinus disease.
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