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Abstract

In the newly emerging field of statistical phylogeography, consideration of the

stochastic nature of genetic processes and explicit reference to theoretical

expectations under various models has dramatically transformed how histor-

ical processes are studied. Rather than being restricted to ad hoc explanations

for observed patterns of genetic variation, assessments about the underlying

evolutionary processes are now based on statistical tests of various hypotheses,

as well as estimates of the parameters specified by the models. A wide range of

demographical and biogeographical processes can be accommodated by these

new analytical approaches, providing biologically more realistic models.

Because of these advances, statistical phylogeography can provide unprece-

dented insights about a species’ history, including decisive information about

the factors that shape patterns of genetic variation, species distributions, and

speciation. However, to improve our understanding of such processes, a critical

examination and appreciation of the inherent difficulties of historical infer-

ence and challenges specific to testing phylogeographical hypotheses are

essential. As the field of statistical phylogeography continues to take shape

many difficulties have been resolved. Nonetheless, careful attention to the

complexities of testing historical hypotheses and further theoretical develop-

ments are essential to improving the accuracy of our conclusions about a

species’ history.

Introduction

Phylogeography is undergoing a fundamental conceptual

and methodological shift. Inferences about a species’

history are now based on statistical tests of historical

hypotheses and estimates of demographical parameters.

This contrasts with the phylogeographical tradition of

gathering data and then inferring something about the

causes of an association (or lack thereof) between the

observed patterns of genetic variation and the geograph-

ical distribution of populations (reviewed in Avise, 1998).

The most pervasive and general difficulty with making

inferences about such processes by interpreting a gene-

tree unerringly is the potential for pronounced over

interpretation of the data that can be extremely mislead-

ing (Edwards & Beerli, 2000; Knowles & Maddison, 2002;

Wakeley, 2002; Hudson & Turelli, 2003). Consequently,

despite the appeal and increasing popularity of methods

that make detailed historical inferences, such as nested-

cladistic analysis (Templeton et al., 1995), such approa-

ches nonetheless belie the fundamental and well

established principles that caution against inferring

causation based on resolute interpretation of a gene tree

(Table 1) (e.g. Pamilo & Nei, 1988; Takahata, 1989;

Hudson, 1990; Maddison, 1997; Avise, 2000; Ray et al.,

2003). In fact, the transition from describing to testing

hypotheses about the processes underlying patterns of

genetic variation has actually necessitated a concomitant

shift in how such historical inferences are made –

namely, the explicit consideration of stochastic variance

and reference to predictions based on models that are

defined a priori. Consequently, not only do the proce-

dures of statistical phylogeography differ from earlier

traditions, so too do the challenges (Table 2).

The topics discussed in this review highlight the

many complex, and often interrelated, issues involved

in statistical phylogeography. Rather than providing an
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in-depth review of specific methods, the goal is to address

the various conceptual difficulties of testing historical

hypotheses. What emerges are some specific challenges

that revolve around three key steps in statistical phylo-

geography: how to define a set of hypotheses, decide on

the model’s complexity, and integrate information from

external data (e.g. bioclimatic and biogeographical data).

An awareness of these difficulties associated with these

procedures identifies those aspects of statistical phyloge-

ographical study that require careful attention, thereby

providing an invaluable guide to testing historical hypo-

theses, which is especially critical as the gap between the

relative novice and what can be incredibly sophisticated

computational methods grows. These challenges also

illustrate the current limitations in this nascent field.

Nevertheless, methodological advances will no doubt

continue to propel the field of statistical phylogeography

to its central and integrative position within the evolu-

tionary and ecological sciences (Table 3) (e.g. O’Ryan

et al., 1998; Wakeley & Hey, 1998; Kliman et al., 2000;

Wall, 2000; Beaumont et al., 2001; Knowles, 2001a,b;

Clegg et al., 2002; Gaggiotti et al., 2002).

Inherent difficulties of statistical phylo-
geography

Phylogeographical studies are confronted with two major

difficulties: the stochasticity of genetic processes (Hudson,

1990), and the potentially complex and varied history of

different species (Knowles & Maddison, 2002). Both

issues pose specific challenges to testing phylogeographi-

cal hypotheses and can have a substantial impact on the

accuracy of our interpretations about a species’ history.

High stochastic variance

The stochasticity inherent to the coalescence of gene

lineages and to the mutational process among unlinked

genes has significant consequences for testing historical

hypotheses as well as determining the domain of appli-

cation for different methodological approaches. This high

stochastic variance underscores the potential for uncer-

tainty of historical estimates given the broad confidence

limits on historical inferences (Hudson, 1990; Kuhner

et al., 1998; Arbogast et al., 2002), but also translates into

significant difficulties for distinguishing among alternat-

ive hypotheses (Edwards & Beerli, 2000; Pritchard et al.,

2000; Beaumont et al., 2002; Knowles & Maddison,

2002).

The extent to which this stochastic variance will

complicate phylogeographical interpretations depends

on both the underlying population processes and the

parameter values of such processes (Fig. 1). Conse-

quently, the historical context itself also determines

whether a single gene (vs. multiple loci) or the structure

of the gene tree (as opposed to integrating over all

possible gene trees) would be more or less likely to

provide an accurate statistical estimate of a species’

history (Wakeley, in press). For example, consider

attempts to estimate the timing of species or population

Table 1 Some reasons why historical inferences derived directly

from a gene genealogy may be inaccurate or misleading.

Potential problems with historical inferences based on the structure of a

gene tree

• The stochastic process of lineage sorting produces a discord between the

population’s and gene’s history

• The actual history is obscured by deep coalescence of gene lineages

• The resolution of the genetic marker is insufficient for recovering the

population history from a gene tree estimate

• The gene genealogy reflects the action of selection rather than the

population’s history

• Alternative hypotheses are indistinguishable because of high stochastic

variance of trees of independent genes

Table 2 The transition to testing hypotheses caused a fundamental

shift in how statistical phylogeographical inferences are made

compared with the traditional descriptive approaches, as well as a

new set of challenges.

Key components of statistical-phylogeographical tests

Specifying alternative historical scenarios

Challenge: to define hypotheses simple enough that they can be

discriminated with the data available, yet still capture the

essence of the biologically interesting problem

Deciding on the model’s complexity

Challenge: to determine how complex a model can be fit without

making overly simplified assumptions that might potentially

affect the accuracy of the conclusions

Integrating external information

Challenge: to develop more testable and biologically relevant hypo-

theses by incorporating external data, including information

from other disciplines

Table 3 Examples of various hypotheses about the evolutionary and

ecological factors shaping patterns of genetic variation and species

divergence that can now be tested in a statistical phylogeographical

framework.

Potential insights of statistical phylogeography

• Founder events are involved in speciation

• Reproductive isolation is a by product of the gradual accumulation of

species differences by genetic drift

• Biogeographical barriers contribute to regional patterns of endemism

• Population differentiation reflects differing selective pressures rather than

extrinsic impediments to gene flow

• Regional areas identified by phylogeographical congruence across

species reflect areas of historical persistence indicating their importance

for conservation

• Historical biogeographical factors are relatively more important than

species-specific ecological and behavioral characteristics in structuring

genetic variation
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divergence, s, from estimates of gene divergence, T (e.g.

Edwards & Beerli, 2000). Population divergence times

can be significantly overestimated (Fig. 2) when ancestral

polymorphism is ignored in a model, especially when

coalescence times are lengthened in the ancestral

population by factors such as population substructure

or asymmetric migration (Wakeley, 2000, 2001; Beerli &

Felsenstein, 2001). The degree of overestimation is much

greater for recent divergences compared with older ones

(Fig. 2) because the discrepancy between the gene (T)

and population (s) divergences because of the inherent

stochasticity of genetic processes represents a greater

proportion of the estimated divergence time. With data

from a single gene, it is not possible to measure the

degree of over estimation, whereas with multiple loci,

the stochasticity of the coalescent can be accounted for,

thus improving the accuracy of any estimate of diver-

gence times (Arbogast et al., 2002).

Potentially complex species’ histories

Species histories can be as varied as they are complex.

Not only might they involve a large variety of processes,

such as migration, admixture, isolation by distance,
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Fig. 1 The eight gene trees were generated

using the same model of population diver-

gence for six gene copies sampled from each

population (i.e. population A and population

B) with 1N gene copies. Coalescent simula-

tions were done at two divergence times:

(a) a recent divergence of 0.5N generations

ago, and (b) an older divergence of 1.5N

generations ago. For a specific time of

divergence, the variation among the trees

reflects chance alone. These differences

illustrate the inherent problems of interpre-

ting gene trees unerringly or using methods

that do not take into account the stochastic

variance. Comparison between the two sets

of trees (a) and (b) also illustrates how spe-

cific details of the history (in this case, the

parameter s, the time of population diver-

gence) influence the degree to which this

stochasticity complicates historical inference,

including estimates of the time of divergence

as well as the process of allopatric diver-

gence without gene flow.
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Fig. 2 Overestimates of recent population divergence times because of variance in coalescence times in the ancestral population (see hatched

bar). The degree of overestimation is disproportionately larger for recent divergences (a) compared with older divergences (b) because the

discrepancy between the gene (T ) and population divergence (s) represents a greater proportion of the estimated population divergence time

(i.e. the estimate of the gene divergence is nearly two times greater than the actual population divergence time for the recent divergence, but

the degree of the overestimate is substantially less for the older divergence).
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divergence in isolation or with gene flow, bottlenecks,

and population growth, but these various processes may

only occur during specific time periods. This diversity

and potentially complex configuration of processes

operating at the population level presents a major

challenge to testing historical hypotheses (Wakeley &

Hey, 1998; Arbogast et al., 2002; Knowles & Maddison,

2002).

Statistical phylogeographical methods that encompass

the wide array of potential processes have not yet been

developed (Stephens, 2001; Knowles & Maddison,

2002), unlike the heuristic explanations that are applied

with approaches that take a gene tree more or less at

face value (that is, they do not explicitly consider the

stochasticity of genetic processes) (e.g. Avise, 1989;

Templeton et al., 1995). Tests of phylogeographical

hypotheses therefore can be sensitive to which and

how many parameters are included in the model

depending on the extent that (a) the models accurately

represent the history and (b) the alternative hypotheses

can be distinguished statistically with the available data

(Nielsen & Slatkin, 2000; Rosenberg & Nordborg, 2002;

Stephens, 2001; Beaumont et al., 2002). For example,

mitochondrial (mtDNA) sequence data was collected to

address the question of whether or not anatomically

modern humans and Neanderthals interbred (Kringes

et al., 1997). To actually distinguish between these

alternative hypotheses, the data would have to be able

to distinguish between a model in which there was

ancient gene flow vs. one in which there was none.

Reconstruction of the mtDNA genealogy showed that

the modern-human mtDNAs were monophyletic and

quite distinct from the Neanderthal sequence (Fig. 3).

However, the mtDNA gene tree is not a phylogenetic

tree of Neanderthals and humans – the question is

whether such a tree would exist under a history with

interbreeding or one of isolation. Nordborg (1998)

demonstrated that the mtDNA data were also consistent

with a history with substantial interbreeding (e.g.

exchanges of 25%). Thus, it was not until the question

was modelled with well-constructed hypotheses and

tested using coalescent simulations that it became

apparent that the issue of interbreeding was beyond

the scope of the available data.

Complex histories in particular are also difficult to test.

Specific events may not leave a genealogical signature

(Hudson, 1990; Avise, 2000). Even assuming the predic-

ted patterns of genetic variation differ substantially such

that the alternative scenarios could be discerned, because

of the number of parameters involved, tests of complex

histories require large amounts of data and can be difficult

to implement (Rannala & Mountain, 1997; Wakeley &

Hey, 1998; Edwards & Beerli, 2000; Nielsen & Slatkin,

2000; Pritchard et al., 2000; Beerli & Felsenstein, 2001;

Stephens, 2001; Rosenberg & Nordborg, 2002; Takahata &

Satta, 2002; Brumfield et al., 2003).

Contending with the complexities
of statistical phylogeography

While a statistical framework may permit hypothesis

testing and parameter estimation, it nonetheless does not

exclude the possibility that the method used to make the

inference significantly affected the reliability and useful-

ness of a study’s conclusions (Penny et al., 1995; Rousset

& Raymond, 1997; Huelsenbeck & Imennov, 2002).

However, the negative consequences that can arise from

the methodological procedure itself can be avoided, or at

least minimized. This requires recognizing not only the

key steps involved in testing phylogeographical hypoth-

eses, but also the challenges associated with each

component of the procedure (Table 2). As discussed in

detail below, these include: (a) specifying alternative

historical scenarios, (b) deciding on the model’s com-

plexity and (c) integrating external information into the

statistical phylogeographical test.

Specifying alternative historical hypotheses

Decisions regarding the hypotheses to be tested are as

pivotal as methodological decisions about how to con-

duct the statistical phylogeographical test (e.g. whether

to use summary statistics or actually evaluate the

likelihood of observing a model given the data). Hypo-

theses need to be statistically tractable, generating

distinct predictions such that the historical scenarios

can be distinguished (Knowles & Maddison, 2002;

Wakeley, in press). However, the possibility of rejecting

a hypothesis must also be tempered by the potential

Humans Neanderthal

TMRCA

Th

t

Fig. 3 Schematic genealogy of modern-human mtDNAs and a single

Neanderthal mtDNA. The inferred most recent common ancestor

(MRCA) of the entire sample (TMRCA) was inferred to be more than

four times greater than the MRCA of the human sample (Th) (see

Nordborg, 1998). Because of the amount of genetic drift taking place

during the time interval t, the available data could not be used to

distinguish between the alternative hypotheses of some vs. no

interbreeding.
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biological insights afforded by the test. A study’s conclu-

sions can be profoundly affected by how and which

hypotheses are formulated (Nielsen & Slatkin, 2000;

Nielsen & Wakeley, 2001; Ray et al., 2003) and only a

small subset of potential histories can typically be

considered. At this time, it is not generally feasible to

consider the full array of possible histories, or even

necessarily the most probable one (Knowles, 2001b;

Huelsenbeck & Imennov, 2002).

The challenge is to define hypotheses simple enough

that they can be discriminated with the data available,

yet still capture the essence of the biologically interest-

ing problem. An overemphasis on statistical formaliza-

tion without consideration of the biological plausibility

of specific models or the consequences of severe

oversimplifications can lead to misleading interpreta-

tions or those of little substantive value (e.g. Penny

et al., 1995; Rousset & Raymond, 1997). Moreover,

because both the sampling scheme and types of data

collected influence the power of statistical–phylogeo-

graphical tests, the hypotheses need to be defined a

priori. How many individuals per population and the

number of loci per individual, as well as the use of

DNA sequences vs. polymorphism frequencies, can

affect the ability to distinguish among hypotheses

and the precision of parameter estimates (Takahata,

1989; Pluzhnikov & Donnelly, 1996; Kuhner et al.,

1998; Nielsen & Slatkin, 2000; Arbogast et al., 2002;

Wakeley, in press). For example, to test for population

admixture, a large number of unlinked loci and

representative sampling of the purported parental and

admixed populations are necessary (Pritchard et al.,

2000; Wall, 2000; Chikhi et al., 2001; Wang, 2003).

Consequently, the actual design of a study follows

from the specific questions being addressed. This con-

trasts with the tradition of first collecting data, and

then asking what the data mean (e.g. Avise, 1989;

Templeton et al., 1995).

Deciding the model’s complexity

While the high stochastic variance of genetic processes

and typically broad confidence limits on parameter

estimates place a premium on seeking powerful approa-

ches to distinguish among hypotheses (Hudson, 1990), it

is neither the only, nor is it necessarily, the primary

consideration. Species’ histories can be complex and

involve varying combinations of different processes.

Although a method may be computationally eloquent,

any test or parameter estimate can only be accurate if the

model is a reasonable representation of a species’ history

(Edwards & Beerli, 2000; Nielsen & Wakeley, 2001;

Knowles & Maddison, 2002).

Models with rather restrictive assumptions may be

overly simplistic for inferences about natural populations

(Hudson, 1990; Nielsen & Slatkin, 2000; Pritchard et al.,

2000; Beerli & Felsenstein, 2001; Stephens, 2001), or

unable to test specific historical scenarios, especially if

they do not explicitly consider the geographical context

of population structure and divergence (Wakeley, 2001).

Even if a particular method is robust to certain demo-

graphical conditions, that is no assurance that the

parameter estimate will not be significantly affected if

other assumptions are violated. For example, if estima-

tion of a population divergence time is fairly insensitive

to demographical events such as strong bottlenecks or

rapid population expansion, this issue may nonetheless

be irrelevant if the major departure from the model’s

assumptions is the presence of geographical substructure.

A flexible model capable of specifying a large number of

historical scenarios with a rich variety of population

genetic processes may indeed be desirable. While poten-

tially being biologically more realistic, the utility of a

complex model, as discussed earlier, may be offset by

the concomitant increases in the amount of data required

to distinguish among alternative hypotheses or esti-

mate the additional parameters (Wakeley & Hey, 1998;

Beaumont et al., 2002; Knowles & Maddison, 2002), as

well as the increased computational requirements that

make such tests difficult to implement (Kuhner et al.,

1998; Nielsen & Slatkin, 2000; Pritchard et al., 2000;

Rosenberg & Nordborg, 2002).

The challenge is to decide how complex a model

can be fit to the available data without losing the ability

to distinguish among alternative hypotheses or com-

promising the insights that well-constructed, biologi-

cally-meaningful hypotheses can provide (Penny et al.,

1995; Rousset & Raymond, 1997). For example, to test

historical hypotheses, a model may make assumptions

about mutational processes, diverging populations and

migration (i.e. the models parameters). Depending on

the time scale of interest, mutation may have a negligible

effect on the patterns of genetic variation (O’Ryan et al.,

1998; Nielsen & Slatkin, 2000). If the divergence time

is much smaller than the reciprocal of the mutation

rate (i.e. T > 1/l), and the migration rate is substantially

larger (i.e. m � l), ignoring mutational input is most

likely not only justified, but it significantly reduces

computational challenges while also avoiding assump-

tions about the demographical history of the species

before divergence (i.e. assumptions about allele frequen-

cies in the ancestral population) (Nielsen & Wakeley,

2001).

Integrating external information

The potential for parameter estimates and tests of

historical hypotheses to be influenced by statistical

phylogeographical procedures emphasizes the need to

incorporate other sources of data (Romauldi et al.,

2002). These inherent difficulties also illustrate why,

even without contradictory evidence, inferences based

on a limited range of specific features in the genetic

data are necessarily weakened (Penny et al., 1995). In
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contrast, conclusions that are supported by different

methodological approaches and corroborated by infor-

mation other than the genetic data used in the test,

perhaps from external sources such as paleoecological or

bioclimatic data (e.g. Kidd & Ritchie, 2000; Gaggiotti

et al., 2002; Hugall et al., 2002), are not only more

robust, but are also potentially more testable. For

example, consistent results from multiple tests about

the origin of humans have provided support for the out-

of-Africa scenario. These include tests that allow for

phylogenetic uncertainty so the conclusion does not

depend on any single tree being correct, as well as the

integration of diverse types of information into a single

analysis, such as when results from other studies are

used to construct a ‘prior’ for a Bayesian analysis (e.g.

Huelsenbeck & Imennov, 2002). Similarly, corrobora-

tion of inferences about human population structure

has also been possible by using a combination of

approaches for assigning individuals to populations.

These include defining populations a priori on the basis

of geography (Penny et al., 1995), a posteriori group

designations based on inferring the most likely number

of groups and assigning individuals on the basis of

probabilities estimated from a set of independently

transmitted loci (e.g. Pritchard et al., 2000), as well as

a discrimination analysis in which the most likely

geographical origin of individuals are inferred from the

genotypes (e.g. Rannala & Mountain, 1997).

In some cases, integration of external information

into a statistical framework is essential to testing

specific hypotheses (Gaggiotti et al., 2002), including

some that address fundamental evolutionary and eco-

logical theories. For example, by comparing the struc-

ture of gene trees across a number of different species

and reconstructions of the history of fragmentation of

the North Queensland rain forest during the Pleistocene

based on bioclimatic data, Hugall et al. (2002) were able

to test if climatic changes affected species similarly, or if

species-specific ecological requirements determined

how taxa responded to forest fragmentation. Likewise,

Wilding et al. (2001) used patterns of molecular differ-

entiation in an effort to test what role selection had

played in the divergence between populations with two

distinct morphs of snails. Comparisons between the

observed data and the theoretical expectations identi-

fied specific loci that exhibited more differentiation

between morphs than predicted by chance alone,

suggesting these loci were subject to strong disruptive

selection. To confirm that this interpretation was not an

artefact of the model used in the statistical phylogeo-

graphical procedure, they demonstrated that the same

set of highly differentiated loci was consistently diver-

gent across multiple populations and that the patterns

of molecular differentiation corresponded to the ecolo-

gically divergent morphs and not the geographical

locality of individuals.

Brief overview of statistical phylogeo-
graphical methods

In contrast to the fairly restrictive set of conditions of

classic approaches for parameter estimation, the new

methods encompass a wide range of demographical and

biogeographical scenarios. These include models with

varying population size, asymmetric migration rates,

population admixture and structure (e.g. Hudson, 1998;

Kuhner et al., 1998; Edwards & Beerli, 2000; Nielsen &

Slatkin, 2000; Wakeley, 2000, 2001; Beerli & Felsenstein,

2001; Beaumont et al., 2002), as well as those that

explicitly consider the geographical configuration (e.g.

Pritchard et al., 2000; Beerli & Felsenstein, 2001; Gaggi-

otti et al., 2002) or the history of population associations

(e.g. Milot et al., 2000; Knowles, 2001b), although the

latter are less developed.

Statistical phylogeographical methods generally fall

into one of two categories: those that take a summary-

statistic approach vs. likelihood analysis of evolutionary

models (Table 3). Likelihood analyses (where the prob-

ability of observing the data under alternative models is

calculated) take advantage of all the information in the

data, unlike the summary-statistic approach (where a

simple statistic summarizes data) (Felsenstein, 1992).

However, evaluating the likelihood of the data for some

models is computationally demanding and in some cases

intractable. To circumvent the problem of analysing all

possible genealogies and allelic configurations (it is not

computationally possible to evaluate the likelihood of the

data for large sample sizes), Markov chain Monte Carlo

(MCMC) and importance sampling (IS) can be used

(Stephens, 2001; Rosenberg & Nordborg, 2002). In

contrast, summary-statistic approaches are relatively easy

to implement, but their interpretations are very sensitive

to the defined models. Moreover, very different popula-

tion histories can produce the same summary statistic

(because they do not necessarily take advantage of all the

information in the data). For example, a low Fst-value

could indicate an older population divergence with

substantial gene flow, or a recent split with no gene

flow where the shared lineages between populations

reflect their common ancestry. Similarly, the power to

distinguish between hypotheses can be sensitive to how

well the summary statistic extracts information relevant

to the question of interest (Beaumont et al., 2002).

With methods that rely upon summary statistics (e.g.

Hudson, 1998; Wakeley & Hey, 1998; Kliman et al., 2000;

Knowles, 2001a,b; Wakeley, in press), data sets simula-

ted by a neutral-coalescent process are typically used to

estimate the distribution of an appropriate test statistic

under a specific historical model, to which the value of

the statistic calculated for the observed data is compared

(e.g. Knowles & Maddison, 2002). For example, Wake-

ley’s (in press) test-statistic max pi, an interlocus measure

of concordance with respect to a specific genealogical
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split, can be used to statistically distinguish between a

model of geographical isolation and a model of diver-

gence with gene flow. Examination of the distributions of

max pi under the respective models generated from

coalescent simulations shows how differences in theor-

etical expectations for this test statistic could be used to

test the alternative hypotheses.

Alternatively, estimates of parameters of interest as

well as tests of hypotheses can be conducted using

likelihood methods where the probability of observing

the exact sample configuration is calculated (e.g. Nielsen

& Slatkin, 2000; Beaumont et al., 2001; Nielsen &

Wakeley, 2001; Gaggiotti et al., 2002; Huelsenbeck &

Imennov, 2002; Edwards & Beerli, 2000), while taking

into account both sampling and genealogical variation in

gene frequencies (Griffiths & Tavaré, 1994; Kuhner et al.,

1998). For example, by constraining the migration

parameter (i.e. m ¼ 0) compared with a model in which

m is not constrained, a likelihood-ratio test can be used to

determine whether population divergence occurred in

isolation or with gene flow while also generating

estimates of the time of divergence (e.g. Nielsen &

Wakeley, 2001).

In addition to testing hypotheses and estimating

parameters, these methods also make it possible to

investigate whether a particular history can be expected

to have left a trace in the data (Knowles & Maddison,

2002; Rosenberg & Nordborg, 2002; Wakeley, in press).

Consequently, not only is it possible to evaluate the

feasibility of addressing specific hypotheses (e.g. Prit-

chard et al., 2000), but the coalescent simulations can

also provide useful guidance about how many individ-

uals, populations, and loci need to be sampled to answer

the questions of interest (Pluzhnikov & Donnelly, 1996;

Wall, 2000; Wakeley, in press).

Choosing a method

No single method possesses all of what might be

considered ideal qualities for testing historical hypothe-

ses, namely: provides an accurate representation of the

past, considers a diverse array of processes, and still yields

a statistical estimate of that history (Stephens, 2001;

Knowles & Maddison, 2002). Nevertheless, empiricists

are faced with a bewildering array of statistical phyloge-

ographical methods (Table 4). The diversity of methods

as well as their computational sophistication can be

rather intimidating to the uninitiated. Yet by simply

considering the three key steps (Table 2) involved in the

statistical phylogeographical approach in concert with

Table 4 Examples of some different programs used in statistical phylogeography*.

Potential programs for parameter estimation and tests of hypotheses

FLUCTUATE (Kuhner et al., 1998) and MIGRATE (Beerli & Felsenstein 1999):

Likelihood-based methods using MCMC to calculate likelihood surfaces of model parameters. FLUCTUATE can estimate exponential expansion or decline for a

panmictic population with sequence data. MIGRATE includes models for migration between subpopulations and includes the option of inputting a

geographical matrix to incorporate the distribution of subpopulations; it is suitable for both sequence data and microsattelites.

http://evolution.genetics.washington.edu/lamarc.html

GENETREE (e.g. Griffiths & Tavaré, 1994):

Likelihood-based method using IS and includes migration and growth rates in structured populations using sequence data, also allows incorporation of

geographical information. http://www.stats.ox.ac.uk/mathgen/griff/software.html

BATWING (Wilson et al., 2003):

Flexible Bayesian MCMC method for modelling population divergence, population size and growth, and mutation rates, providing investigators a range of

probability distributions to choose priors from; it is suitable for single nucleotide polymorphisms as well as microsatellites.

http://www/maths.abdn.ac.uk/ijw/downloads/download.htm

MDIV (Nielsen & Wakeley, 2001):

Likelihood MCMC approach that will simultaneously estimate divergence times and migration rates between two populations and test divergence with gene

flow models under the infinite-sites and finite-sites model (HKY). http://www.biom.cornell.edu/Homepages/Rasmus_Nielsen/files.html

BEAST (Drummond & Rambaut, 2003):

Bayesian MCMC analysis of molecular sequences for estimating divergence dates, population size and growth, using flexible models of mutation that can

incorporate interlocus differences in substitution processes. http://evolve.zoo.ox.ac.uk/beast/

STRUCTURE (Pritchard et al., 2000):

Bayesian MCMC model-based clustering method for inferring population structure without specifying populations a priori, testing models of admixture,

estimating admixture proportions, identifying immigrant individuals while also permitting the incorporation of geographical information into the inference

process; uses multilocus data, including microsatellites, RFLPs and SNPs. http://pritch.bsd.uchicago.edu/

MESQUITE (Maddison & Maddison, 2000):

Flexible program for testing different evolutionary models of population divergence, including vicariance, fragmentation, and isolation by distance, using

coalescent simulations; suited for sequence data. Various summary-statistics are supported or simulations can be exported to other programs for likelihood

analysis. http://mesquiteproject.org

*See also SITES (e.g. Wakeley & Hey, 1998), LEADMIX (Wang, 2003), and others listed at http://evolution.genetics.washington.edu/lamarc/

popgensoftware.html
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the assumptions associated with the varying methods,

one can make informed decisions about which methods

would be appropriate given the questions of interest.

The differing assumptions associated with various

methods include not only those concerning the param-

eters included in the model (e.g. methods that can be

used to test hypotheses or estimate population diver-

gence times may or may not include a migration

parameter), but also implicit assumptions the user makes

by applying the method. Because specific details of the

history, including the values of the model’s parameters,

affect the ability and power of different methods to test

statistical phylogeographical hypotheses, the applicability

of the methods will vary. To illustrate how important

these implicit assumptions are, consider the case where

the choice is made to use the reconstructed gene tree

itself to test a phylogeographical hypothesis, or in the

latter example to use a Bayesian method.

The structure of any single gene genealogy can be

quite informative under both migration and isolation.

However, the confidence surrounding an inference about

population structure will differ under the respective

models, and also depends on the migration rate and

divergence time (Takahata & Slatkin, 1990). As migration

decreases or divergence times increase, the structure of

gene trees from independent loci will become more

concordant. Yet, the rate of convergence among loci on a

common topological structure (like a population divi-

sion) is slower under a history of divergence with gene

flow compared with divergence in isolation. Conse-

quently, a gene tree reconstructed for one locus will

generally be more informative about population struc-

ture under isolation than under migration, all else being

equal (Wakeley, in press). Therefore, the historical

context itself dictates whether a single or multiple gene

trees would be more appropriate, or if the structure of the

reconstructed gene trees should even be considered.

Relying exclusively on the structure of a single gene

tree itself arguably may place too much emphasis on an

estimate that may or may not accurately reflect a species’

past, whereas by ignoring genealogical structure, a

method may discard valuable historical information

(Knowles & Maddison, 2002; Wakeley, in press). For

example, when populations conform to the standard

coalescent model, the branching pattern of a gene tree

does not contain much information about the population

history (Hudson, 1990). Nevertheless, statistics related to

tree length might be useful to testing different hypothe-

ses about historical population size or expansion (e.g.

Slatkin & Hudson, 1991). When the structure of the gene

tree does not contain information relevant to the

statistical phylogeographical test, or where there are

concerns about how robust the conclusions are to

assumptions about the particular structure of a genealogy

(e.g. Slatkin & Hudson, 1991; Huelsenbeck & Imennov,

2002), integration over all possible genealogies (e.g.

Kuhner et al., 1998; Beerli & Felsenstein 2001; Nielsen &

Slatkin, 2000) may be preferable. In this case, the gene

trees function as theoretical tools for deriving parameters

of interest rather than as the basis for the inference itself

(Hudson, 1998; Rosenberg & Nordborg, 2002).

Similarly, while Bayesian methods are particularly

appealing in that they allow ‘prior’ information to be

incorporated into the model when evaluating the like-

lihood of the data (including information from other

sources such as geographical data; e.g. Pritchard et al.,

2000; Gaggiotti et al., 2002), because they also require

the incorporation of ‘prior information’, they may not

always be appropriate when we have no information to

specify the prior. For example, Wang (2003) demonstra-

ted that assuming that allele frequencies in the parental

populations are independent (e.g. Chikhi et al., 2001)

biases the estimation of admixture proportions, especially

when the parental populations are not completely

differentiated.

So it is not the case that a particular method will

necessarily always be better than another – the issue is

whether a specific method is appropriate given the

question at interest, irrespective if it is a summary-

statistic approach or a full-likelihood analysis. Therefore

successful application of these methods (e.g. Table 4)

requires careful consideration of whether the assump-

tions of the methods are reasonable on a study-by-study

basis (Stephens, 2001; Knowles & Maddison, 2002). The

methods cannot be treated as a black-box from which

‘the’ answer will emerge.

Conclusions

With careful attention to decisions about how we test

historical hypotheses, statistical phylogeographical

approaches can provide unprecedented views into a

species’ history. This information is essential to under-

standing what factors shape patterns of population

genetic variation and divergence, but also the processes

underlying the speciation process as well. In the future,

methodological developments that permit testing of

complex models while incorporating information from

multiple loci and data from external sources will no

doubt become commonplace. Thus, the accuracy and

potential insights of statistical phylogeographical tests

will continue to increase, thereby making statistical

phylogeography a vital and integrative link between

evolutionary and ecological processes.
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Wall, J.D. 2000. Detecting ancient admixture in humans using

sequence polymorphism data. Genetics 154: 1271–1279.

Wang, J. 2003. Maximum-likelihood estimation of admixture

proportions from genetic data. Genetics 164: 747–765.

Wilding, C.S., Butlin, R.K. & Grahame, J. 2001. Differential gene

exchange between parapatric morphs of Littorina saxatilis

detected using AFLP markers. J. Evol. Biol. 14: 611–619.

Wilson, I., Weale, M. & Balding, D. 2003. Inferences from DNA

data: population histories, evolutionary processes and foren-

sic math probabilities. J. Royal Stat. Soc. Series A 166: 155–

188.

Received 9 August 2002; revised 4 April 2003; accepted 9 August 2003

10 L. L. KNOWLES

J . E V O L . B I O L . 1 7 ( 2 0 0 4 ) 1 – 1 0 ª 2 0 0 3 B L A C K W E L L P U B L I S H I N G L T D


