
THE LAW OF GENIUS AND HOME RUNS REFUTED
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In a lively, provocative article, DeVany claims inter alia that the size distribution of
home runs follows a continuous ‘‘power law’’ distribution which is nested in a larger
class of ‘‘stable’’ statistical distributions characterized by an infinite variance. He uses
this putative fact about the size distribution of home runs to argue that concern about
the use of steroids to enhance home run ability is necessarily misplaced. In this article,
we show that the initial claim is false and argue that the subsequent claim about the
potential importance of steroid use does not follow from the first. We also show that
the method used to establish that the size distribution of home runs is characterized by
an infinite variance is unreliable and will find evidence ‘‘consistent’’ with infinite
variance in all but the most trivial of data sets generated by processes with finite
variance. Despite a large and growing literature that spans several fields and uses
methods and arguments similar to DeVany’s, we argue that mere inspection of the
unconditional distribution of some human phenomenon is unlikely to yield much
insight. (JEL C16, L83)

I. INTRODUCTION

‘‘Empirical regularities in biology, as in
other fields, can be extremely interesting. In
particular, such regularities may suggest the
operation of fundamental laws. Unfortu-
nately, apparent regularities sometimes can-
not stand up under close scrutiny’’ (Solow,
Costello, and Ward 2003).

A lively, provocative article by DeVany
(2007) in Economic Inquiry argues that:

d ‘‘the statistical law of home run hitting is
the same as the laws of human accomplish-
ment developed by Lotka . . ., Pareto . . ., Price
. . ., and Murray . . .,’’

d ‘‘there is no evidence that steroid use has
altered home run’’ hitting,

d ‘‘the greatest accomplishments in [sci-
ence, art, and music] all follow the same uni-
versal law of genius,’’ and

d ‘‘the stable Paretian model developed
here will be of use to economists studying
extreme accomplishments in other areas,’’
which apparently follows from his claim that
the size distribution of annual home run pro-
duction has a finite mean but infinite variance
and follows a ‘‘power law distribution.’’
DeVany’s argument is not unique: it is part
of a large and growing literature where claims
of the ubiquity of power laws are legion.1

DeVany takes the additional step of con-
necting this statistical analysis to an argument
about the effect of steroids on home run
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ABBREVIATIONS

CCDF: Complementary Cumulative Density

Function

CLE: Central Limit Theorem

MLE: Maximum Likelihood Estimates

SOC: Self-Organized Criticality

1. A recent survey by Newman (2005) cites evidence
that a diverse number of things allegedly ‘‘follow power
law’’ distributions including ‘‘city populations, the sizes
of earthquakes, moon craters, solar flares, computer files,
wars, the frequency of use of words in any human lan-
guage, the frequency of occurrence of personal names
in most cultures, the number of papers scientists write,
the number of citations received by papers, the number
of hits on web pages, the sales of books, music recordings
and almost every other branded commodity, the numbers of
species in biological taxa, and people’s annual incomes.’’
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hitting by major league ballplayers: ‘‘steroid
advocates have to argue that the new records
are not consistent with the law of home runs
and, that the law itself has changed as a result
of steroid use.’’

Our purpose of this article is to suggest that
the above should be met with a fair amount of
skepticism.

First, we try to provide some background
on previous attempts to identify the existence
of universal laws and provide the intellectual
context for DeVany’s claims.

Second, we show that DeVany’s claims fol-
low from a flawed statistical inference proce-
dure. His procedure, with probability 1,
would find evidence consistent with ‘‘infinite
variance’’ for virtually any nontrivial data
set. To do so, we first analyze the size distribu-
tion of a quantity, which could not follow
a power law distribution and show that using
DeVany’s inference procedure, we would be
led to the same (incorrect) claim. We also
discuss the important distinction—elided
by DeVany and others writing in related
literatures—between an unconditional distri-
bution and a conditional distribution.

Third, we observe that the size distribution
of home runs cannot follow a power law dis-
tribution and show that the posited class of
distributions provide an inadequate approxi-
mation to the data, at best.

Fourth, while concurring with DeVany’s
implicit criticism that ‘‘steroid advocates’’
who rely on recent ‘‘trends’’ to substantiate
their views have not made their case, we sug-
gest that the problem is that the question is ill
posed. The level and distribution of total home
runs in any given year is minimally a function
of hundreds of things: the quality of pitching,
the weather, the introduction of new ball
parks, the number of games played, the distri-
bution of baseball talent across the teams, and
so forth. To claim that only one ‘‘cause’’ is
responsible for a trend involves some (possibly
unstated) assumption about the myriad of
other factors. Indeed, what is sauce for the
goose is sauce for the gander: those seeking
to support or deny the claim that increased use
ofsteroidshaveledtoincreasedhomerunhitting
will have to employ considerably more ‘‘shoe
leather’’ than mere statistical analysis of the
unconditional distribution of home runs per
player or time trends in home run hitting.

We conclude by observing that neither
examination of time trends in annual home

run production nor examination of the uncon-
ditional distribution of home runs will settle
the dispute between ‘‘steroid advocates’’ and
‘‘steroid opponents’’ and that more convinc-
ing evidence will have to be sought elsewhere.

II. DOES A POWER LAW IMPLY ‘‘SELF-
ORGANIZING CRITICALITY’’ AND SO FORTH?

We are not the first to argue that claims
about universal laws should be met with some
skepticism. Indeed, our criticisms are depress-
ingly familiar.2

The stringency with which the goodness of a fitted
model should be assessed depends to a degree on
the claims that are being made about the model.
The claim that a model is correct, as opposed
merely to providing a useful approximation,
should be subjected to particularly close scrutiny.
Such claims have been made about the power law
model for size-frequency data without adequate
scrutiny. (Solow, Costello, and Ward 2003)

Claims about the ubiquity of statistical dis-
tributions have a long history. A classic exam-
ple is from Feller (1940).

The logistic distribution function . . . may serve
as a warning. An unbelievably huge literature
tried to establish a transcendental ‘‘law of logis-
tic growth’’; measured in appropriate units,
practically all growth processes were supposed
to be represented by a function of [a particular
distributional form] Lengthy tables, complete
with chi-square tests, supported this thesis for
human population, for bacterial colonies, devel-
opment of railroads, etc. Both height and weight
of plants and animals were found to follow the
logistic law even though it is theoretically clear
that these two variables cannot be subject to the
same distribution. Laboratory experiments on
bacteria showed that not even systematic distur-
bances can produce other results. Population
theory relied on logistic extrapolations (even
though they were demonstrably unreliable).
The only trouble with the theory is that not only
the logistic distribution but . . . other distribu-
tions can be fitted to the same material with
the same or better goodness of fit. In this compe-
tition the logistic distribution plays no distin-
guished role whatever; most contradictory
theoretical models can be supported by the
same observational material.

Theories of this nature are short-lived because
they open no new ways, and new confirmations
of the same old thing soon grow boring. But the
naive reasoning as such has not been superseded
by common sense, and so it may be useful to
have an explicit demonstration of how mislead-
ing a mere goodness of fit can be. Feller (1940)
as cited in Brock (1999).

2. See Keller (2005) for a useful review of some of the
history.
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Brock (1999), cited by DeVany, cites Feller
to warn economists and others against making
precisely the types of claims DeVany makes:

I will make the general argument here that,
while useful, these ‘‘regularities’’ or ‘‘transcen-
dental laws’’ must be handled with care because
. . .most of them are ‘‘unconditional objects’’ i.e.
they only give properties of stationary distribu-
tions, e.g., ‘‘invariant measures,’’ and, hence,
can not say much about the dynamics of the
stochastic process which generated them. To
put it another way, they have little power to
discriminate across broad classes of stochastic
processes.

Even active researchers in the area have
begun to observe ‘‘that research into power
laws . . . suffers from glaring deficiencies’’
(Mitzenmacher 2006). Nonetheless, a long his-
tory of researchers making extravagant claims
about phenomenon that derive from the re-
semblance of their size distribution to some
statistical distribution has not slowed down
the making of the claims. Feller’s (1940) rejec-
tion of ‘‘universal models of growth,’’ Solow,
Costello, and Ward’s (2003) rejection of
power laws in biology, Miller and Miller and
Chomsky’s (1963) rejection of the usefulness of
Zipf’s law of word length (Zipf 1932) are a
few examples of prior (apparently failed) at-
tempts to raise the level of discourse and raise
the quality of attempts to ‘‘validate’’ or subject
such theorizing to ‘‘severe testing’’ (Mayo 1996).3

Our argument is complicated by at least
two issues:

1. DeVany argues that ‘‘steroid advocates’’
are wrong. Unfortunately, he cites no one
actually making the claims he attributes to
such advocates.

2. DeVany makes claims about the size dis-
tribution of home runs and refers vaguely to
notions of ‘‘self-organized criticality’’ (SOC)
without spelling out the implications of such
notions for hypotheses about the effect of ste-
roids on home run hitting.4

An important concern, which we address in
Sandpiles, SOC, and Home Runs? section,
revolves about (2). What is the law of genius?
How would we know if some phenomenon
was subject to such a law? Indeed, what does
it mean to say, as DeVany does, that home
runs are ‘‘more like the movies . . . or . . . earth-
quakes . . . than dry cleaning?’’

A useful introduction to ‘‘complexity the-
ory’’ for economists can be found in Krugman
(1996). And though we cannot recapitulate the
logic entirely, we sketch the notion of SOC
which we believe is key to understanding the
implicit argument DeVany makes. Only then
is it possible to understand why some might find
it plausible to assert that ‘‘the law of home runs’’
might look something like ‘‘the law of earth-
quakes’’ and why such an assertion might lead
some to suggest that ‘‘steroids don’t matter.’’

Sandpiles, SOC, and Home Runs?

To place both our arguments and DeVany’s
in context, it would be most helpful to provide
a comprehensive review of some of the argu-
ments made by students of ‘‘self-organizing’’
or ‘‘complex’’ systems which lie at the heart
of some of DeVany’s analysis. We cannot
obviously do that here.5

3. It is routinely claimed that the putative fact that size
distribution of word lengths follows Zipf’s implies some-
thing important about language, for example, Li (1992)
observes that ‘‘probably few people pay attention to
a comment by Miller in his preface to Zipf’s book [(Miller
1965)] . . ., that randomly generated texts, which are per-
haps the least interesting sequences and unrelated to any
other scaling behaviors, also exhibit Zipf’s law.’’ See also
Perline (1996) for an enlightening discussion.

4. We would hasten to add that this omission may be
for no other reason than editorial constraints as DeVany
cites some of the relevant literature.

5. Krugman (1996) provides a sober yet optimistic dis-
cussion of this approach from an economist’s perspective.
For an enthusiastic appraisal and simple introduction, see
Bak (1996) or Bak and Chen (1991). Krugman (1996)
identifies three components of the complex system:

‘‘1. Complicated feedback systems often have
surprising properties.
2. Emergence—[situations in which] large inter-
acting ensembles of individuals [or neurons,
magnetic dipoles, . . .] exhibit collective behavior
very different from [what one might have]
expected by simply scaling up the behavior of
the individual units.
3. Self-organizing systems: systems that, even
when they start from an almost homogeneous
or almost random state, spontaneously form
large scale patterns.’’

As Krugman observes, these components, especially the
first two, are not unique to complex systems. The standard
general equilibrium model, for example, can be described as
displaying complex feedback (everything depends on every-
thing else). As to ‘‘emergence,’’ it is possible to view the Par-
eto optimality as ‘‘emergent’’ behavior generated by self-
interested agents. Despite having some of the features asso-
ciated with complex systems, neither of these would usually
be viewed as examples of ‘‘complex systems.’’ (We do not
mean to suggest that complex systems have not been devel-
oped or used by economists. An example of a classic model
exhibiting all three components [and generally considered to
be an example of this approach] is Schelling’s famous model
of segregation, Schelling 1969, 1978.)
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Instead, we think we can convey much of the
implicit logic at the core with a short description
of the canonical example of a system display-
ing self-organizing criticality—Bak’s sandpile
(Bak 1996; Bak, Tang, and Wiesenfeld 1988;
Bretz et al. 1992; Nagel 1992; Winslow 1997).

Tesfatsion (2007) provides a nice intuitive
explanation, which covers most of the impor-
tant points:

When you first start building a sand pile on
a tabletop of finite size, the system is weakly
interactive. Sand grains drizzled from above
onto the center of the sand pile have little effect
on sand grains toward the edges. However, as
you keep drizzling sand grains onto the center,
a small number at a time, eventually the slope of
the sand pile ‘‘self organizes’’ to a critical state
where breakdowns of all different sizes are pos-
sible in response to further drizzlings of sand
grains and the sand pile cannot grow any larger
in a sustainable way. Bak refers to this critical
state as a state of self-organized criticality
(SOC), since the sand grains on the surface of
the sand pile have self-organized to a point
where they are just barely stable.

What does it mean to say that ‘‘breakdowns of
all different sizes’’ can happen at the SOC state?

Starting in this SOC state, the addition of one
more grain can result in an ‘‘avalanche’’ or
‘‘sand slide,’’ i.e., a cascade of sand down the
edges of the sand pile and (possibly) off the
edges of the table. The size of this avalanche
can range from one grain to catastrophic collap-
ses involving large portions of the sand pile. The
size distribution of these avalanches follows
a power law over any specified period of time
T. That is, the frequency of a given size of ava-
lanche is inversely proportional to some power
of its size, so that big avalanches are rare and
small avalanches are frequent. For example,
over 24 hours you might observe 1 avalanche
involving 1,000 sand grains, 10 avalanches in-
volving 100 sand grains, and 100 avalanches in-
volving 10 sand grains . . ..

At the SOC state, then, the sand grains at the
center must somehow be capable of transmitting
disturbances to sand grains at the edges, implying
that the system has become strongly interactive.
The dynamics of the sandpile thus transit from
being purely local to being global in nature as
more and more grains of sand are added to
the sandpile (Tesfatsion 2007).

Stipulating to this being an accurate de-
scription of avalanches in sandpiles6 and stip-
ulating to the ubiquity of such SOC in diverse
fields and situations, some of the leaders in this

field have drawn some rather wide-ranging
implications for science or social science.

If this picture is correct for the real world, then
we must accept instability and catastrophes as
inevitable in biology, history, and economics.
Because the outcome is contingent upon specific
minor events in the past, we must also abandon
any idea of detailed long-term determinism or
predictability. Large catastrophic events occur
as a consequence of the same dynamics that pro-
duces ordinary events. This observation runs
counter to the usual way of thinking about large
events, which . . .looks for specific reasons (for
instance, a falling meteorite causing the extinc-
tion of dinosaurs) to explain large, catastrophic
events. Bak (1996, p. 32, emphasis added)

To put it yet a different way, the sandpile
forms, experiences avalanches, and so forth
as a consequence of a single causal process.
Great catastrophes arise from the identical
mechanism as the periods of noncatastrophes.

We think DeVany means to make a similar
argument regarding the production of home
runs: home runs are the ‘‘catastrophe’’ in
a SOC process. Applying Bak’s and DeVany’s
logic to home run production, we might be led
to conclude that the process that produces
a year with few home runs for an individual
batter can be identical to the process that pro-
duces a year with an extremely large number
of home runs. Moreover, a further hunt for
causes for extreme events might be unwarranted.

As we discuss in detail below, this seems an
unwise inferential leap. Even in the case of sand-
piles, the fact that avalanches can arise from the
same causes that generate periods of low ava-
lanche activity does not necessarily imply that
other causes are not or cannot be at work.
We conjecture, for example, that the introduc-
tion of a typical 3 yr old with a plastic shovel into
a sandpile laboratory might predictably lead to
avalanches even in a system that until that time
exhibited SOC. At a minimum, we doubt that
many parents would accept without question
a 3 yr old’s denial of involvement with the sand-
pile avalanche on the grounds that he or she
could not have caused the avalanche since the
sandpile exhibited SOC—especially if the 3 yr
old is observed in the vicinity of the avalanche
with sand all over his or her clothes.

III. A POWERLESS POWER LAW TEST

The bulk of the statistical analysis in DeVany
is in section 5 ‘‘The Distribution of Home
Runs’’ and section 6 ‘‘The Law of Home Runs.’’
The core of the statistical argument and upon

6. While such a process is rather easy to generate in
a computer simulation (Winslow 1997), actual practice
is quite different. In laboratory experiments with sand-
piles, the sand and setup require a fair amount of tweaking
to behave in the idealized way described above (Bretz et al.
1992; Nagel 1992).
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which the subsequent statistical analysis rests
is that the unconditional distribution of home
runs hit in a year follows a so-called ‘‘stable
distribution.’’7 In particular, the claim is made
that the distribution of home runs is character-
ized by a subset of this class of stable distribu-
tions in which the variance of home runs is
infinite. Consequently, DeVany infers that
‘‘this makes it a ‘wild’ statistical distribution,
far different from the normal (Gaussian) dis-
tribution that people are tempted to use in
their reasoning about home runs and most
other things. Things are not so orderly in
home runs; they are rather more like the mov-
ies . . . or earthquakes . . . than dry cleaning.’’

How does DeVany establish that the size
distribution of home runs follows a power
law? The method is simple. Fit the data to a
‘‘stable’’ distribution and check whether the
estimated parameters are consistent with a sta-
ble distribution with infinite variance. If so,
conclude that the data are generated from a
‘‘wild’’ statistical distribution and follow the
‘‘universal law of genius.’’

The exponent is a measure of the probability
weight in the upper and lower tails of the distri-
bution; it has a range of 0 , a � 2 and the var-
iance of the stable distribution is infinite when a
, 2. The basin of attraction is characterized by
the tail weight of the distribution (a). This
remarkable feature tells us that the weight
assigned to extreme events is the key distin-
guishing property of a stable probability distri-
bution . . ..8 The tails of a stable distribution are
Paretian and moments of order �2 do not exist
when a , 2. This is typical of many extraordi-
nary accomplishments, as seen in the works of
Lotka, Pareto, and Murray. Its mean need not
exist for values of a, 1. When a5 2, the stable
distribution is the normal distribution with
a finite variance. The parameter a is called
the tail weight because it describes how rapidly
the upper tail of the distribution decays with
larger outcomes of the random variable; smaller
implies a less rapid decay of probability.

Put more simply, DeVany’s procedure is
estimate the four parameter stable distribu-
tion. If the estimated value of a , 2 conclude
that the distribution of home runs has infinite
variance.

Does X Follow the Law of Genius?

To make clear why this analysis is problem-
atic, we perform a similar analysis on a differ-
ent random variable, which we call X for the
moment. Following DeVany, we display a
smoothed histogram of X (using the conven-
tional ‘‘Silverman rule-of-thumb bandwidth’’)
and compare it with the normal distribution
implied by the empirical mean and variance
of X in Figure 1.

As is true with size distribution of home
runs, the size distribution of X is decidedly
nonnormal. As with the home run data, the
upper tail is poorly fit by the normal distribu-
tion. Table 1 repeats the more formal analysis
in DeVany (2007). The table displays our esti-
mates of the four parameters of the stable dis-
tribution by maximum likelihood using the
same program as DeVany (2007) but using
data X.9 We display our results for X along
side DeVany’s results using the same data
on individual home run hitting [DeVany
(2007); Table 1].10 While the distribution of
X and the distribution of home runs are not

FIGURE 1

Does X Follow A Power Law ?

0
.0

5
.1

.1
5

D
en

si
ty

0 10 20 30 40

X

Kernel Density of X

Normal Density Estimate Implied by first two 
empirical moments

7. ‘‘Stable distributions are a rich class of probability
distributions that allow skewness and heavy tails and have
many intriguing mathematical properties’’ (Nolan 2007).
One difficult aspect of these distributions is that, except in
a few special cases, there exists no closed-form expression
for the probability density and distribution functions.

8. The stable distribution has a total of four parame-
ters. For the other three parameters, ‘‘. . . the skewness
coefficient—1 � b � 1 is a measure of the asymmetry
of the distribution. Stable distributions need not be sym-
metric; they may be skewed more in their upper tail than in
their lower tail. The scale parameter c must be positive. It
expands or contracts the distribution in a non-linear way
about the location parameter d which is the center of the
distribution’’ (DeVany 2007). Following DeVany, we limit
our discussion to just the one parameter, a.

9. See Rimmer and Nolan (2005) for details.
10. Our estimates of the four parameters are identical

to those estimated by DeVany (2007), although our calcu-
lated value of the maximized log likelihood function is
somewhat larger than reported in the article.
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identical, they both have the properties which
are ‘‘consistent’’ with the random variable X
possessing an infinite variance, namely that
the estimated value of a (one of the four param-
eters of the stable distribution) is less than 2.

Does X follow a power law? No. We defined
X as the number of mentions (times five) of the
word ‘‘normal’’ or ‘‘normality’’ on a page of
the web draft of DeVany (2007).11 Surely, X
does not possess infinite variance: presumably,
the number of words that Economic Inquiry
will allow to be printed on a page is finite;
an author who proposed to submit an article
including nothing but the words normal and
normality would stand a low chance of having
the article included in the journal.

Why is DeVany’s procedure flawed? Most
simply, observing that the estimated value
of a is less than 2 can only be construed as evi-
dence for an infinite variance conditional on
the data actually following the stable distri-
bution. Among stable distributions (Nolan
2007), those consistent with finite variances
only occur on the boundary of the parameter
space—when a 5 2. Since a � 2—by defini-
tion—DeVany’s procedure will always pro-
vide evidence for an infinite variance unless
it reaches the boundary. Putting aside the con-
siderable difficulties in maximum likelihood
estimation when the true value of the param-

eter lies on the boundary of the parameter
space, even a variable ‘‘just shy of nor-
mality’’—that is, a 5 1:9—is consistent with
an infinite variance. More importantly, if the
data are not from the stable distribution—say,
uniformly distributed, exponentially distributed,
and so forth—such a procedure will almost
surely result in an estimated value of a , 2.

IV. OTHER PROBLEMS WITH THE ANALYSIS

There are other significant problems with
the analysis in DeVany (and in much of liter-
ature which purports to have found evidence
for the workings of ‘‘power laws’’):

1. There is a failure to distinguish between
conditional and unconditional distributions.
If the number of at bats, for example, were
allowed to follow a power law, the relationship
between home run hitting and at bats could be
nonstochastic, deterministic, and purely mechan-
ical and the unconditional distribution would
follow a power law. Home run hitting in such a
situation would be more like dry-cleaning than
‘‘genius’’ despite the fact that the size distribu-
tion of home runs followed a power law.12 Mere
inspection of the variance of the unconditional
distribution of total home runs, in general, tell
us nothing about whether steroids matter.

2. Like much of the literature, DeVany does
not contemplate the possibility that the observed
size distribution of home runs is a mixture of
many different—individual—(nonpower law)
statistical distributions. Hence, estimating
the parameters of a single (falsely imposed) sta-
tistical distribution cannot, in general, be ade-
quate for reliable inference about the potential
existence of a ‘‘fundamental’’ law.13,14 Perline
(2005) shows that data are often cited as

TABLE 1

X versus the Home Run Data: Fitted to the

‘‘Stable’’ Distribution

Index a b Scale Location

DeVany’s data 1.6422 1.00 6.219 12.30

X 1.07657 0.966409 1.28782 11.484

Notes: MLE estimates of the four-parameter stable
distribution. The estimates in the first row replicate
DeVany (2007) using home run data from 1950 to
2004. The estimates in the second row use data on variable
‘‘X’’; see text for details.

11. The data we used were as follows:

Page 2 3 6 7 8 9 10 11 13 16 20 22 41 The other
32 pages

Number
of mentions

1 1 5 7 5 1 4 2 1 1 2 4 1 0

We multiplied the number of mentions by five. The data
were collected using the (undated) web draft which was cre-
ated on June 14, 2006. For the kernel density estimate we
used an Epanechnikov kernel and a bandwidth of 1.558.
The normal density estimate used the sample mean of X,
which was 3.89 and had a sample standard deviation of 8.18.

12. In our previous draft, we generated a toy example
in which steroids improved performance and the uncondi-
tional distribution of home runs had infinite variance. In
this example, when we conditioned on the number of at
bats, the variance of home runs was either very finite or
zero (DiNardo and Winfree 2007).

13. It is possible, however, that aggregation of objects
following their own power law could itself produce
another power law. See, for example, Gabaix (1999).

14. In our previous draft, for example, we observed
that the assumption that total home runs are indepen-
dently and identical distributed as a power law was clearly
violated. In such a world, we would also expect that the
individual with, say, the maximum home runs in a season
would be essentially chosen at random from all players.
Today’s home run leader might be next season’s zero
home run hitter. A focus on a single unconditional distri-
bution would, in general, ignore such difficulties.
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following a power law, but a more careful look
illustrates that the data are often a mixture of
different distributions.

A. Power Law as ‘‘Law’’ and ‘‘Approximation’’

In Section III, we documented the difficul-
ties with DeVany’s inference procedure as well
as the more general problem of reasoning
about the existence of a law from the uncon-
ditional distribution from a quantity. Thus
far, we have argued that the inference proce-
dure was faulty. Nonetheless, it remains possi-
ble that the inference drawn from such
a procedure might be correct: a broken clock
is still correct twice a day, as the adage goes.

Unfortunately, such is not the case here. The
problem is so grave that it is considerable work
to even contemplate a situation in which it
might be reasonable to characterize the distri-
bution of home runs as following a ‘‘power
law’’ and hence having a tail that is ‘‘subject
to bursts or avalanches.’’ That is, the distribu-
tion of home runs cannot follow the distribution
that DeVany posits and even if it could, he is
not licensed to draw the inferences that he does
about the nature of home run production.

We agree with criticism of related work on
SOC that a serious problem with this litera-
ture is the unwillingness to put the proposi-
tion that an outcome follows a power law
to even a minimally severe test. In a discus-
sion, Solow, Costello, and Ward (2003) sug-
gest that the problem with much of the power
law literature in biology is the failure to eval-
uate the power of the power law against an
explicit alternative.15 Indeed, DeVany, fol-
lowing a tradition in the ‘‘complex studies’’
literature, considers no alternative to a distribu-
tion with infinite variance (except the stable
normal distribution).

While we wholeheartedly concur with this
critical judgment (and therefore compare
a power law to other distributions), we wish
to emphasize that in the present case such
an analysis is superfluous: there are other even
more insurmountable obstacles.

B. Why Home Runs are Immediately Inconsistent
with a Stable Distribution

The most immediate problem is that the
size distribution of home runs is immediately
inconsistent with the posited distribution in
DeVany (2007) even before approaching a sys-
tematic analysis of the data:

1. The number of home runs is bounded
below by 0. Indeed, Figure 4 of DeVany dis-
plays only part of the estimated probability
density function, that part where the number
of home runs is greater than or equal to zero.
The estimated power law distribution, if it
were to be taken literally, predicts that 11%
of baseball players would have a negative
quantity of home runs. We think it safe to
assume that negative home runs do not exist.

2. The number of home runs by a given
player is discrete, not continuous as posited
by the class of stable functions DeVany chose
to estimate. No one will ever hit 1.2 home runs
in a season. Somewhat surprisingly, DeVany
makes a related observation regarding team
production of home runs when he dismisses
the ‘‘home runs per game statistic.’’16

3. If we are willing to assume that the num-
ber of games, at bats, and so forth in a given
year is bounded from below by 0 and above
by some arbitrarily large value M then it im-
mediately follows that for any discrete distri-
bution, the variance is bounded by M2

4
, which

is the variance of the Bernoulli distribution
with equal-sized mass points at 0 and M .
Indeed, there is a long literature on establish-
ing bounds for the variance of distributions
with finite domain—for example, Muilwijk
(1966), Gray and Odell (1967), Jacobson
(1969)—where the bounds can be tightened

15. Specifically, they considered data from Yule
(1925), an early proponent of a power law hypothesis.
Yule is better known perhaps for his work in Economics
where he documented a positive correlation between the
degree of pauperism in a district and the generosity of pro-
vision of food for the poor; this was used to argue that
there was a causal relationship between the generosity
of such relief and the degree of pauperism in Yule
(1899). See Freedman (1999) for a discussion. Yule used
data representing the frequencies of genera of different
sizes for snakes, lizards, and two Coleopterans (Chryso-
melidae and Cerambycinae). When Solow, Costello,
and Ward (2003) examined four of Yule’s cases, they were
able to reject the discrete power law distribution proposed
by Yule (1925) versus a discrete nonparametric alternative
in three of the four cases.

16. From DeVany (2007, p. 22): ‘‘If you think for
a moment about the constraints of a ball game, it becomes
obvious that home runs per game cannot be a well-
behaved statistic that can be used to make sharp compar-
isons. The number of home runs in a game is an integer,
not a continuous variable. The number of league games is
an integer too. Dividing these numbers will give rational
numbers, but they will not be distributed normally and
will have strong modes at a few typical values.’’

DINARDO & WINFREE: LAW OF GENIUS AND HOME RUNS REFUTED 57



under various conditions (assumptions about
symmetry, unimodality, etc.).17

4. There is no single description of a power
law. Indeed, in the case of discrete variables, it
is common to define a power law as a probabil-
ity mass function (Newman 2005) such that:

f ðxÞ} x�a:ð1Þ

This is of course problematic if x can take the
value of 0. One may choose the expedient of
focusing on observations above which exceed
some threshold (and above 0) in the discrete
case and describing the results as consistent
with ‘‘the upper tail following a power law’’18

(even if the distribution above some threshold
follows some other nonpower law distribu-
tion19), but an estimation procedure that allows
one an extra degree of freedom to choose this
threshold after looking at the data are obvi-
ously not going to be very powerful.20

C. Fitting Unconditional Distributions

Despite the substantial caveats we have enu-
merated, we present several different attempts
at fitting single distributions to home run data
in Table 2.

In the first four specifications, we consider
the data including zeros. In the fifth, we con-
duct an analysis excluding data on individuals
who hit no home runs (‘‘excluding zeros’’).

TABLE 2

Maximum Likelihood Estimates of the Size Distribution of Home Runs per Player in Major

League Baseball—1950–2004a

Distribution Stableb Stablec Stabled Negative Binomial Discrete Power Law

Index (a) 1.6422 1.64221 1.64221 1.378

b 1.00 1 1

Scale 6.219 6.21928 6.21928

Location 12.30 12.3041 12.3041

r 1.506172

p 0.1141677

Log likelihood �39,294.2 �43,812.4 �43,217.8 �41,780.7 �47,552.8

Number of observations 11,992 11,992 11,992 11,992 11,552

Includes 0 Home Runs Y Y Y Y N

aVersion 5.3 of the data were obtained at http://baseball1.com/content/view/57/82/. Following DeVany (2007), we drop
observations in the year 2005 or persons with less than 200 at bats. Therefore, all player-years with at least 200 at bats from
1959 to 2004 were in the sample. We note that the data also include multiple observations from some players in the same
year if they played for multiple teams or had multiple ‘‘stints.’’ This also implies that a player’s home run total is only for
a specific team for that year and not necessarily the entire season.

bEstimates reported in DeVany (2007).
cEstimates from using the Sloglikelihood command to calculate the maximum likelihood value in Mathematica

(Rimmer and Nolan 2005).
dThe maximized value of the log likelihood function is calculated by adding the log of the probability distribution

function at each home run value observed in the data.

17. N.B. The existence of bounds somewhere in the
data generation process is not necessarily inconsistent with
some version of a power law. For example, a random walk
model of growth with a (lower) barrier could produce a size
distribution consistent with Zipf’s laws. See, for example,
Gabaix (1999). More descriptively, accurate models would
have to allow for the ‘‘birth’’ and ‘‘death’’ of new ballplayers.

18. The ‘‘Hill estimator’’ (Hill 1975) is one popular
way to assess ‘‘upper tails.’’ Consider the case when the
upper tail of the distribution of some random variable
x follows: 1 � F(x) 5 x�aL(x), where L(x) is constant
above some threshold. The Hill estimator of a uses only
information from the highest k-order statistics from a sam-
ple of size n � nn:n, . . ., nn � k:n. The estimator of a is given
by: H

ðnÞ
k [

Pl
i 5 1 k

�1logk
i 5 1logðnn�iþ1:nÞ � logðnn�k:nÞ

where 1 � k, n (Haeusler and Teugels 1985). We are
not aware of any attempt to evaluate the properties of this
estimator when a researcher gets to choose k.

19. See Nolan (2007).
20. Perhaps obvious is not the correct word. See the

useful discussion in Perline (2005) for a demonstration
how a judicious choice of a lower truncation point can
transform data generated by the most mundane of non-
power law distributions into data whose upper tail seems
to follow a power law distribution. We also concur in his
judgment that ‘‘Shoehorning the data into one- or two-
parameter models, such as the Pareto or Yule or the
lognormal, while simultaneously excluding some inconve-
nient portion of the distribution, has too long been the
norm. Many of the examples of inverse power laws pro-
posed through the years are probably FIPLs (False
Inverse Power Laws) best represented by finite mixtures
of distributions.’’
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In the first column of the table, we present
DeVany’s estimates of the stable distribution.
In the next two columns, we reproduce our
estimates using two variants of the same
Mathematica program used by DeVany to
generate his results. In the next column,
we report the maximum likelihood estimates
of the two parameter negative binomial
distribution.

Next, we repeat the exercise with a sample
that excludes all individuals with zero home
runs and present the results of fitting an appro-
priate version of a discrete power law.21

We draw several conclusions from this sta-
tistical analysis:

1. With the exception of the maximized
value of the likelihood function, our estimates
of the parameters are essentially identical to
DeVany’s estimates.22

2. Despite having four parameters, the sta-
ble distribution does a poor job of ‘‘fitting’’ the
data. The negative binomial distribution, with
only two parameters, for example, results in
a higher value of the maximized log likelihood.
If you were to believe that the stable distribu-
tion or the negative binomial distribution were
the only two hypotheses to be considered, con-
sidered them equally likely (and were willing
to overlook the negative and fractional home
run predictions of the stable distribution) the
‘‘weight of the evidence’’ (Good 1981; Peirce

1878) would still be against the power law dis-
tribution.23 Of course, if you were to allow
other possibilities you would certainly reject
the stable distribution and quite possibly the
negative binomial distribution. We also illus-
trate this point in Figure 2 with a graph of the
estimated stable distribution, negative bino-
mial distribution, and the histogram of the
data. Clearly, the negative binomial distribu-
tion estimates the actual distribution better
than the stable distribution. It does not mis-
takenly predict negative home runs.

3. The situation looks no better when we
focus just on the positive observations. As
before, the weight of the evidence is against
the power law distribution.

We would like to stress that the problem is
not unique to DeVany:

While the arguments found in the statistics lit-
erature concerning the use of scaling distribu-
tions for modeling high variability/infinite
variance phenomena have hardly changed since
Mandelbrot’s attempts in the 1960s to bring
scaling distributions into mainstream statistics,
discovering and explaining strict power law
relationships has become a minor industry in
the complex science literature. Unfortunately,
a closer look at the fascination within the com-
plex science community with power law rela-
tionships reveals a very cavalier attitude
toward inferring power law relationships or
strict power law distributions from measure-
ments. (Willinger et al. 2004)

Figure 3, taken directly from DeVany
(2007)24, is a case in point. As he describes

FIGURE 2

Empirical and Fitted MLE Estimates of
Probability Density Function
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21. In a previous draft, following Solow, Costello, and
Ward (2003), we also estimated the parameters of an alter-
native class of distributions that has declining tails. Spe-
cifically, we fit the size distribution of home runs
subject only to the constraint that frequency with which
individuals hit a specific number of home runs is nonin-
creasing in the number of home runs. That is, if pk is
the probability of a player hitting k home runs and n is
the highest number of home runs that can be hit in a season,

pn , pn�1 � . . . , pk , pk�1 , pk�2 , . . . , p0:ð2Þ

This is a more severe test than the negative binomial
since the class of nonpower law alternatives implicitly con-
sidered is larger. It, indeed, did fit the data better than the
discrete power law distribution.

22. We corresponded briefly with Professor DeVany
on the subject. We have not been able to determine the
source of the discrepancy in the estimate of the maximized
value of the log likelihood function, but it may be a typo-
graphical error or a different version of Mathematica
given the almost exact correspondence between his and
our estimates of the parameters of the distribution and
the fact that we appear to be using the exact same data
set (judging by the number of observations and sample
means DeVany reports).

23. When comparing only two statistical hypotheses,
the difference in the value of the log likelihood function
can be interpreted as the (Bayesian) posterior log odds
ratio if the initial probabilities attached to the two possi-
bilities were .5.

24. It is labeled as Figure 5 in his article.
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it, this figure displays a ‘‘remarkable’’ fit of the
‘‘cumulative theoretical and empirical distri-
butions.’’ One need not cavil about the defini-
tion of remarkable to demonstrate that with
a more appropriate metric of ‘‘fit,’’ the home
run data are not well approximated by a
power law.

The problem with DeVany’s figure is, as
Willinger et al. (2004) demonstrates, that such
a display is quite powerless; with such a plot, it
is difficult to distinguish power law from non-
power law data or discriminate among power
laws (i.e., different values of a).25 Even if we
stipulate to ‘‘ignoring the zeroes,’’ it is easy
to generate a more powerful visual test of
the proposition.

One aspect of ‘‘self-similarity’’—as this
property is referred to in the complex systems
literature26—is that the definition in Equation
1 implies the ‘‘complementary cumulative den-
sity function’’ (CCDF) is linearly related to size:

logð1� Pðx � x0Þ � a� alogðx0Þ;ð3Þ

where (1 � P(x � x0)) [ P(x . x0) is the
CCDF or one minus the cumulative proba-
bility of hitting at least x0 home runs. The
approximation becomes exact as x0 / ‘. This
property suggests a useful visual display to
assess the fit of the data to a power law: one

merely plots the natural logarithm of the
CCDF against the log of size. This particular
display highlights the fit (or lack of fit) in the
tails of the distribution and makes it relatively
easy to distinguish the fit of the tail to different
choices of a. Often, researchers use a rank-size
plot, or quantile-quantile plot, to examine the
fit of a power law distribution. Although the
rank-size plot is a useful tool in some
settings, one advantage of the log CCDF is
that it is more powerful at detecting the good-
ness of fit (or lack thereof) in the tail of the
distribution.

As Figure 4 demonstrates, the power law
provides a poor approximation globally and
in the tails of the distribution. The most
appropriate power law—the simple discrete
version of the power law—gives the worst fit
to the data, globally and in the all-important
tail. The ‘‘inappropriate’’ power law (the con-
tinuous stable version) gives a slightly better fit
but fits quite poorly in the tail. The negative
binomial distribution—which is as well
behaved as it is possible for a distribution to
be—seems more deserving of the moniker
remarkable than the power law distributions
in terms of quality of fit.

Figure 4 also helps explain why it is much
easier to find a power law if one is allowed to
characterize part of the distribution that one
chooses after the fact as being a power law:
it is easy to convince oneself that even a very
convex shape is linear if one can systematically
ignore part or most of the curve.27

There is another, informal, yet instructive
way to evaluate how well the continuous sta-
ble distribution works as ‘‘the law of genius.’’
Under the hypothesis that the fitted continu-
ous stable law distribution is correct, we can
use estimates from the cumulative density
function to generate predictions for the num-
ber of genius home run hitters we should
have expected to see over the period from
1959 to 2004. We can also do the same with
our ‘‘dry-cleaning’’ distribution, the negative
binomial distribution.

For example, according to the negative
binomial distribution, the expected number
of players that would have hit 100 or more
home runs is 0.23; the expected number who

FIGURE 3

Plot of Fitted Stable Distribution Estimates
and Empirical Cumulative Density Function

from DeVany (2007)

25. A frequently employed test in this literature
employs variations of the Q-Q plot, which are also prob-
lematic. See Willinger et al. (2004).

26. DeVany discusses this briefly in section 10 and on
page 11: ‘‘[if the distribution is from the stable distribu-
tion] this implies that any way you look at the process
you should [see] that the distribution has the same shape.’’

27. The fit of the continuous stable distribution fit to
the nonzero observations is no better than that produced
by using all the observations as DeVany does and to avoid
clutter, it is dropped from Figure 4.
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would hit more than 1,000 according to the
same estimates is essentially 0 (the all-time
record for home runs in a season is 73).

This is arguably a sign of bad fit for the neg-
ative binomial distribution. However bad the
fit, the continuous stable law fits remarkably
worse; our estimates from that distribution
suggest that there should have been more than
48 players to hit 100 home runs or more.
Again, according to that same distribution,
we would expect .88 players to hit 1,000 home
runs or more. Worse yet is the estimated dis-
crete power law distribution: by that distribu-
tion, we would have expected to see 1,709
players hit 100 or more home runs and 716
players would have to hit 1,000 or more home
runs. This would be unthinkable to most
baseball fans, especially since record for at
bats is 716. (An important distinction be-
tween the continuous and the discrete versions
of the power law distributions being discussed
is that the former has more parameters. It
is not surprising it fits better, even for
discrete data.)

We hasten to add that although the news is
unremittingly bad for the power law distribu-
tion that we and DeVany have estimated, we
do not mean to suggest that we believe that
any of our alternative distributional choices
are realistic or even particularly useful. More-
over, even if some ‘‘fix’’ of the sample or esti-

mation procedure were to lead to a proper
statistical test that could not reject some subset
of the data from following a power law, none
of DeVany’s other inferences about steriods,
and so forth would be warranted. In the con-
text of this type of problem, the whole idea of
fitting a parametric model of the size distribu-
tion of home runs seems like a really bad idea
(except perhaps as a ‘‘quick and dirty’’ way to
communicate some features of the data). Like
any human endeavor (and much else), home
run hitting is a process so ill-understood that
it would be a miracle if any simple parametric
model (such as the stable distribution) were
able to characterize it.28

Apropos of why one would expect some
outcome to be distributed as a power law or
some other class of distributions, it is also

FIGURE 4

Log-Log Plot of Complementary Cumulative Distribution Function of Home Runs
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28. Indeed, one of the serious problems with the
power law hypothesis is that it would be difficult to learn
about without enormous amounts of data. The wild dis-
tributions discussed by DeVany take their character from
the extreme tails of the distribution. Such phenomenon are
consequently ‘‘rare’’ and therefore quite difficult to learn
about. Heyde and Kou (2004), for example, observe that
there are good reasons to doubt simple comparisons of
likelihood in this context. In part, this is a problem
because of the importance of correctly characterizing
the tails of the distribution. A sharp ability to discriminate
between a tail following a power law distribution and a tail
following an exponential distribution generally requires
enormous amounts of data, at a minimum (Heyde and
Kou 2004).
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important to remember that the ubiquity of
the normal distribution in statistical analysis
does not arise because the characteristics of
the objects of study are distributed normal-
ly—rather they often follow because we are
studying systems that can be well approxi-
mated by ‘‘chance set ups’’ (Hacking 1965)—
the randomized controlled trial is the canoni-
cal example of such a set up—and the sample
means of such a process can be shown, by some
variant of the Central Limit Theorem,29 to be
approximately normal even when the out-
comes under consideration are not distributed
normally, as long as the outcomes have finite
variance.30 As we discussed in Section IV,
assessing whether an outcome has a finite var-
iance can often be established merely by dem-
onstrating that outcome is bounded.

V. CONCLUDING REMARKS

As we have argued thus far, mere inspection
of the size distribution of a random variable is
insufficient to draw any conclusions about the
process generating the data. While some distri-
butions might allow for a rough approxima-
tion of the data, and this may be sufficient
for some purposes, an approximation is not
adequate for the purpose of drawing some sort
of ‘‘causal’’ inference. That is, it may be fair
to say that Zipf’s power law—Pðsize. SÞ}1

S
—

provides a rough approximation to the size
distribution of cities (Gabaix 1999), but quite
another (inappropriate) matter to infer any-
thing about the mechanism of city growth
directly from that fact. To take one example
from economics, Gabaix (1999) demonstrates
that the mechanisms that could induce a Zipf’s
law for cities could be very different and result
in very different inferences: ‘‘[although] the
models [might be] mathematically similar, they
[may be] economically completely different.’’31

Though not the focus of this article, we do
believe that there may be a link between ste-

roids and home runs. Indeed, numerous play-
ers have admitted and/or tested positive for
performance-enhancing drug use. Moreover,
many other players have been implicated with
steroid use with varying degrees of evidence.
For example, the Mitchell report, sponsored
by Major League Baseball, linked 88 players
to performance-enhancing drugs. Guilt was
not proved by the Mitchell report, but it made
clear that steroid use was not rare in Major
League Baseball. Many of these same players
have had unprecedented seasons; we doubt
this is mere coincidence. Casual observation
would also suggest that over the past 10 or
15 yr, there has been an increase of players hit-
ting a large number of home runs at surpris-
ingly older ages.

That is, we are sympathetic to the idea that,
for certain ballplayers, it is possible that judi-
cious use of steroids may contribute to some
(possibly temporary) increase in home run hit-
ting. It is important to stress, however, we
have not made this case here. Our most impor-
tant point is that proof of such a claim would
take a great deal more work than mere casual
inspection of statistics on home run hitting
than we have engaged in here.32 A higher stan-
dard of evidence is needed to establish or
refute such a claim.

As we have demonstrated, none of the sta-
tistical analysis provided in DeVany (2007)
speaks to the claim that the causal impact
of the judicious use of steroids on home run
hitting is zero. Inferring the existence of fun-
damental causal laws—that is, the law of
genius—from the statistical distribution of
some outcome is difficult, at best.

The view that aspects of the human condi-
tion or human behavior could be summarized
by autonomous statistical laws has a long and
not entirely distinguished history. It is ironic,
given the aspersions cast on the normal distri-
bution in DeVany (2007), that Galton’s ex-
plorations into the normal distribution were
in part motivated by a quest similar to
DeVany’s—to explain the ‘‘exceptional’’ and

29. In fact, the notion of Lévy stable or stable distri-
bution is so named since it is a CLT of sorts for variables
with infinite variance (Gnedenko 1943, Gnedenko and
Kolmogorov 1954).

30. Alternatively, if the log likelihood of the data gen-
eration process is approximately quadratic with a constant
Hessian, it can be shown that the maximum likelihood
estimator of a quantity is approximately normal (Geyer
2005; LeCam 1986; LeCam and Yang 2000).

31. Indeed, Gabaix (1999) states simply that ‘‘eco-
nomic models [for describing the size distribution of cites]
have been inadequate.’’ See also Krugman (1996).

32. N.B. It is certainly possible that even if some play-
ers could benefit from judicious use of steroids, it could
also be true that some people would not benefit. In the
terminology of the ‘‘treatment effect’’ literature, there
might well exist ‘‘treatment effect heterogeneity.’’ The
effect of steroids on a typical major league baseball player
might be positive, while the effect of steroids on the home
run production of the authors of this article might well be
zero or negative.
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‘‘human genius.’’33 Galton worried about
breeding mediocrity. Others took the existence
of apparently stable (i.e., nonchanging) distri-
butions as vitiating free will.34 Indeed, using
different language, Galton (1892) was among
the first to use simulation to display an ‘‘emer-
gent’’ system. Galton’s famous quincunx was
a vertical board with equally spaced pegs and
a hole at the top in which marbles could be
placed. The marbles entered the top of the
device and were allowed to fall randomly35

to reach the bins at the bottom. A figure
from his book (Galton 1894) is displayed in
Figure 5. The normal distribution that re-
sulted was described as ‘‘order out of chaos.’’36

Today, we think of it as a useful mechanical
model of the normal distribution as the limit-
ing distribution of the binomial and few would
attribute any ‘‘deeper’’ rational for this behavior.

We believe it is fair to say that there has
been no convincing evidence of the existence
of any causal laws regarding any aspect of
the human condition regulated by the normal
distribution (or any other distribution) since
such ideas were proposed in the nineteenth
century. The class of stable distributions inves-
tigated by DeVany (2007) may prove to be an
exception, although we think it quite unlikely.
If, nonetheless, economists are to take up
DeVany’s suggestion that the ‘‘stable Paretian
model developed here will be of use to econo-
mists studying extreme accomplishments in
other areas,’’ we can only hope such claims
will be subject to far more rigorous scrutiny
than they have up to this point. Until then,
we think it is wise to treat such claims with
great skepticism.
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