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The maximum likelihood approach to phylogenetics

rests on frequency probability theory.  This stands in
stark contrast to the logical probability of corrobora-
tion-based cladistic parsimony.  History is particular and
cannot be described in terms of universal statements
about abstract generalities, the task of the historical sci-
ences being one of explanation, not prediction. Thus,
frequency probability methods of estimation are inap-
propriate for making historical inferences. Maximum
likelihood estimation procedures are deconstructed from
numerous perspectives in spite of their supposed
impressive technicalities.  Charges of parsimony’s incon-
sistency are rendered mute, because its justification lies
elsewhere, yet maximum likelihood is still subject to
Wald’s dilemma if realism is of any interest.  Although
all epistemologies make assumptions, the models
employed by maximum likelihood are problematic and
deterministic, as opposed to the unproblematic back-
ground knowledge characteristic of cladistics.  Apart
from issues of logical and sampling dependencies, the
requirements of frequency probability theory are
non-trivial and the maximum likelihood estimation of
phylogeny can neither escape, nor satisfy the tenets of
calculus independence (e.g. i.i.d.) inherent in the multi-
plicative relations of the method.  If phylogeneticists are
to maintain a rational foundation for their epistemology,
neo-justificationist appeals to some metaphysical truth
must be abandoned in favour of the realism of
sophisticated falsification. © 1997 The Willi Hennig Society

INTRODUCTION

We are concerned with probabilism in phylogenetics.
Much of the current disagreement relating to phyloge-
netic methods reduces to the markedly different
concepts of logical probability and frequency probabil-
ity.  The former probability serves as the refutationists’
justification for cladistic parsimony (Farris, 1983;
Kluge, 1997), whereas the latter underlies several veri-
ficationist approaches.  By “logical probability” we
admit that in common parlance “probability” has var-
ied interpretations and meanings.  We, as others
(Popper, 1959, 1983; Lakatos, 1970), distinguish
between the calculus of frequency probability typified
by Bayes’ theorem

p(h,e) = p(e,h)p(h)/p(e)

in which the first term, p(e,h), formally is the likelihood
of the evidence (e) in light of the hypothesis (h),  and
that logical  probability exemplified in Popper’s (1983)
degree of corroboration

C(h,e,b) = [p(e,hb)-p(e,b)]/[p(e,hb) - p(eh,b) + p(e,b)]

in which h is the hypothesis in question, e is the
evidence and b is background knowledge.  

No-one disputes what the alternative hypotheses are
in phylogenetics.  That is, for N taxa there are exactly
(2N-3)!/2N-2(N-2)! possible bifurcating cladograms, all
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of which are capable of explaining observed character
state distributions.  These trees, then, comprise part of
the premise for any phylogenetic analysis irrespective
of method.  Verification uses what Popper (1983) called
the “mistaken solution of the problem of induction” by
seeking the “induced hypothesis” with the highest
probability and in which a probability of 1.00 would be
certainty.  In contrast, falsification seeks the hypothesis
that best survives the severity of test offered by the
data, that is, the most corroborated hypothesis.  The
problem with the verificationist program is that it
denies nothing.  For example, consider the premise “if
bitten by a spider and given antivenom within three
hours, the probability of surviving is 0.86”.  Suppose
Pablo is bitten and receives the antivenom.  If Pablo
survives, this cannot be attributed to the antivenom,
because there is the prior possibility that he could have
died even with the antivenom.  In fact, the 0.86 schema
would equally explain why Pablo died, why he nearly
died or even why he survived.  Verificationist
approaches to phylogenetics, like maximum likeli-
hood, suffer from this failure as well, because all trees
are assigned a non-zero probability, and yet no more
than one tree actually can be correct — thus the proba-
bilities are not explanatory.  Other fields of science,
including medicine, have already acknowledged that
using “statistical estimates ... is unavoidably arbitrary,
will often be contested and will have differential
effects” upon our conclusions relating to singular cases
(Lynn et al., 1997:56).

We focus on the verificationist methodology of max-
imum likelihood in this paper, because of its obvious
reliance on frequency probability and in light of its
increasing popularity in phylogenetics.  Our conclu-
sions, however, also apply to other neo-justificationist
forms of induction in phylogenetics.  For example, tax-
onomic congruence relies on the frequency of finding a
clade in common among different data sets (Kluge and
Wolf, 1993), the comparative method relies on the fre-
quency of homoplasy in the characterization of
adaptation (Harvey and Pagel, 1991; Foster et al., 1996;
Larson and Losos, 1996), there are the resampling and
permutation procedures which are intended to assess
confidence in phylogenetic hypotheses statistically
(Felsenstein, 1985; Faith, 1991), allelic frequencies are
used as historically heritable transformations (Swof-
ford and Berlocher, 1987; Wiens, 1995), and there are a
variety of weighting criteria which are determined by

the frequency of some observed character state (Farris,
1969; Carpenter, 1988; Williams and Fitch, 1990;
Goloboff, 1993; Knight and Mindell, 1993).  Our
criticisms of frequency probability derive largely from
the historical context in which that form of probabilism
is employed.  We begin with a philosophical consider-
ation of universals and particulars, because their
distinction makes it clear why frequency probability
methods cannot apply in historical inference, neither to
the instances of sister species common ancestry or the
instances of descent with modification that character-
ize those historical patterns.

Devotees of maximum likelihood methods exhibit
little concern for philosophy, and even denigrate cla-
distic parsimony for its appeal to such foundations.
For example, Huelsenbeck (1996:7) has remarked that
you “throw in a lot of philosophical mumbo-jumbo
and you have the [cladistic] parsimony method”.  To
the contrary, we believe that the coherence and gener-
ality of cladistics, and its reliance on parsimony, is due
in large part to a solid grounding in philosophy, and it
is with these same issues that we begin to build our
case against the use of frequency probability in infer-
ring history.

THE NATURE OF INDIVIDUALS

There remains considerable confusion in compara-
tive biology concerning universals and particulars.  A
simple question-answer exchange between a probabi-
list and a historian illustrates how easy it is to conflate
the two. 
Probabilist:  “What is the chance of life evolving on
earth?” 
Historian:  “Chance? It simply did.” 
Probabilist:  “What is the chance that life has evolved, or
could evolve, elsewhere in the universe?” 
Historian:  “None.” 
Probabilist:  “Don’t we have a good idea of the physical
and chemical conditions necessary for life on earth, the
number of appropriate stars and M-class planets, and,
from that, would you not agree that we can predict the
likelihood of there being life elsewhere?” 
Historian: “Certainly not.  Of course the answer might
have been yes, if I had understood your question to
Copyright © 1997 by The Willi Hennig Society
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mean a kind of life.  Obviously, your question is meta-
physical, as opposed to scientific.”

The difference in perspective between the probabilist
and the historian is more than mere semantics.
Biological life is earth-bound through a historically sin-
gular continuum of common ancestry.  Even if DNA
and RNA arose independently somewhere else in the
universe, it would not be “life”, because it would be
ontologically independent.  Metaphysically one might
find something in common between life and some
other independent thing in the cosmos that
looks-like-life, but it could not be life in a biological sense
if it arose independently.  Consider “wings”.
Although it is clear that “wings” permit “flying” —
that birds have wings and fly, that bats have wings and
fly, and that flies have wings and fly — “flying” does
not confer ontological identity on those things we call
“wings”.  There is no spatio-temporally universal
“wing” that encompases them, because the respective
origins of these various wings constitute independent
events in time.  Per contra , wing-of-robin and
wing-of-stork possess this identity.  Such identity is by
virtue of common ancestry alone. The following
review of universals and particulars provides a more
detailed and formal explanation for why the probabi-
list cannot make meaningful predictions about unique
historical events, and why the phylogeneticist must
embrace a different form of probabilism as the basis for
explanation, i.e. historical inference with logical proba-
bility, not with frequency probability.

Universals and particulars play different roles in sci-
ence (for additional examples see Frost and Kluge,
1994).  Universals (classes, sets, generalities) are spa-
tially unrestricted, and usually temporally unrestricted
as well.  In contrast, particulars (composite wholes,
entities, things) are spatio-temporally restricted.  Uni-
versals are abstractions, whereas particulars are the
actual things that populate the universe.  Prediction is
achieved through abstract generalization, while partic-
ulars serve as the empirical basis, the explanans, for
formulating and others for testing scientific generali-
ties.  Generalities cannot be tested with other
generalities.  For example, the universal abstract prop-
osition “all swans are white” can only be tested with
observational propositions of swans, not with other
theoretical propositions like “all swans are black”.
Note that we refer to “observational propositions”
instead of facts, because our so-called facts are

themselves fallible in terms of our observations.  Most
fields of biology, like ecology and population genetics,
employ frequency probability in their empirical search
for generalities, and we are not denying the utility of
this approach in those pursuits.  Phylogenetic system-
atics, on the other hand, is concerned with the
explanation of historical particulars, one of singulari-
ties, such as clades and evolutionary transformations.  

Ordinarily, membership in a universal is determined
intensionally (connotatively) — that is, there is a list of
properties severally necessary and jointly sufficient for
inclusion (or exclusion) in the set.  These intensions
cannot be “wrong”— it is impossible for a member of a
set not to meet the set’s definition.  So, classes have
“sharp edges”, because of the exclusive middle, some-
thing being either in the set, or not.  Members of a class
have no spatio-temporal  connections (Fig. 1A); histor-
ical origin and location in space are irrelevant to
deciding membership.  The reason for this is that the
definition of a universal cannot change, without
becoming a different universal.  For example, consider
“things round”.  In this class, there is, for instance, a
coin, a plate, a discus, etc.  Even two different pennies
included in the class have no spatio-temporal connec-
tion, because their inclusion is determined by their
roundness, not by being pennies, or having been repro-
duced by the same mint.  The member/class relation is
logically non-transitive.  That some coins happen to be
in the class “round” does not deny that there may be
coins outside the class (Canadian nickels, for example).
The names of universals are predicates.

A particular can be either a member of some class or
a part of some other particular.  Those particulars of
the latter kind, which exhibit continuity, one to
another, also are individuals (cf. bird wings above),
and historical connections (like genealogy and descent
with modification) count as continuity (Fig. 1B).  The
spatio-temporally restricted nature of particulars is
necessary for continuity.  In sharp contrast, as noted
above, a universal is denied historicity, because it is
unrestricted.  The continuous existence of an individ-
ual has two consequences.  First, there cannot be
instances (pl.) of an individual.  Identical twins are
nonetheless two individuals, and there cannot be two
Mammalia, anymore than there can be more than one
Darrel Frost. There might be more than one definition
of Mammalia, however, no two definitions can be held
simultaneously to be correct.  Likewise, each
Copyright © 1997 by The Willi Hennig Society
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evolut ionary t ransformat ion is  unique in  a
spatio-temporally restricted, historical, sense.  Even
physico-chemically identical nucleotide convergences
in DNA cannot be the same historically, because each
transformation is spatio-temporally exclusive of the
other.  Second, however, it is possible for an individual
to change during its existence and still retain its
individuality.  For example, an organism, the para-
digm individual, exhibits ontogeny and that change,
no matter how great (e.g. metamorphosis in anurans),
does not alter the wholeness of the individual, either
spatially or temporally.

Cohesion is what keeps the parts of an individual
together, and cohesiveness may be expected of an

entity that has continuity.  The cohesiveness of an indi-
vidual is ascribed to the integrated actions of its parts
(Kluge, 1990).  For example, an organism’s cohesive-
ness may be due to its parts being functionally
integrated, as the result of genetic and epigenetic pro-
cesses.  It is in this functional sense that organisms are
said to be self-delimiting.  Some consider gene flow
(recombination) to be responsible for the cohesion of
biparental species.  Developmental homeostasis might
be another significant process, in so far as it may help
to explain the apparent cohesiveness of uniparentals.
Continuity and cohesion imply that individuals have
the potential to be affected by, and participate in, natu-
ral processes.  If an entity reacts and acts as a cohesive
entity it is the focus of some natural process.  Such par-
ticipation gives those entities reality, whether or not
humans are present to perceive or discover them.  Uni-
versals come to be meaningful only to the extent that
they are instantiated by particulars.

Three general kinds of individuals might be of inter-
est to evolutionists and systematists.  There is the
interactor, the individual that acts in a unitary way in
processes (e.g. an organism interacts in reproductive
processes).  Second, there is the replicator, an interactor
that reproduces itself, such as mitochondria, cells, and
DNA strands.  And finally, there is the historical indi-
vidual, some more inclusive part of history, whose
cohesiveness is apt to be nothing more than a conse-
quence of its history (Kluge, 1990; Ereshefsky, 1991;
Frost and Kluge, 1994).

Parts of history can be referenced in different ways.
For example, the clade Mammalia is specifiable by
enumeration of all things mammal, mammal =
{monotreme + marsupial + placental}, or by pointing to
the common ancestor of same.  Thus, individuals are
“defined” ostensively.  Notice, by either enumeration
or pointing, the sister groups or the common ancestor
are the parts, not the entity whose name may be inten-
sionally defined (contra de Queiroz, 1992:305).  Also,
Mammalia can be diagnosed: mammal = {things with
mammary glands, hair, etc.}.  Here, the part/whole
relation of the clade Mammalia is set forth extension-
ally (denotatively).  “Definition” by extension occurs
when a group of items or observations taken together
are evaluated individually, and generalities about
them are used descriptively in the form of an intension
(Brady, 1983).  A character diagnosis in cladistics is an
extension.  Primacy in extension and intension can be
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FIG. 1. Examples of universality (A) and individuality (B).  In
panel A, a principal components space (PC I by PC II) intensionally
defines the similarity of four species’ (a-d) representatives’ (1-4)
locations within that space.   The phylogeny of four species (a-d),
whose history is “defined” ostensively in terms of their relative
recency of common ancestry, is illustrated in panel B.
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easily confused, the things taken together being most
important in the former, whereas it is the definition
itself in the latter that is critical.  Unlike intension, there
is no basis for saying the individual has been
“correctly” identified whatever form ostension takes,
by enumeration, pointing, or extension.  No com-
pletely accurate definition or essential characteristic
exists for an individual.  Relative to a precisely defined
class, an individual has a relatively “fuzzy” boundary
(physically speaking).  For example, when an organism
originates, and ceases to exist, cannot be specified pre-
cisely. Similarly, an evolutionary transformation
cannot be defined with class-like precision.

 Individuals are said to be parts, not members.  The
part/whole relation of individuals is functionally tran-
sitive.  For example, Darrel Frost is simultaneously
part of other individuals, Homo sapiens, Homonidae,
Primates, Mammalia (and cetera), by virtue of common
ancestry.  Individuals are given proper names (e.g.
Darrel Frost, Mus musculus, Vertebrata).

Thus, it follows that an intensionally defined set
satisfies the requirements for frequency probability —
precision and potentially indefinitely many indepen-
dent members (Bartlett, 1962:10–36).  However, it is
equally clear that the application of frequency proba-
bility to individuals (clades, lineages, organisms,
synapomorphies) is inappropriate, because of their
uniqueness and non-independence.  For frequency
probability to apply to phylogeny there has to be a set
of simultaneously possible trees, but if only one tree can
be “true” then all others necessarily are false (Fig. 1B).
So, historical particulars are singular (the same argu-
ment holds for other parts of history, like evolutionary
transformations).  Frequency probability can only
assess the probability of particulars in a class of concur-
rently possible instances, such as in the principal
components space illustrated in Fig. 1A.  The class to
which the particulars can legitimately belong has a size
greater than one, and there is nothing that forbids two
or more particulars from occupying exactly the same
point in that space.

Those who apply frequency probability to the
instances of sister-species common ancestry, as well as
to the instances of descent with modification that serve
as the tests of that history, must therefore seek special
justification for their applications.  All such justifica-
tions will be judged against other approaches used in
reconstructing history, and especially those which do

not involve frequency probability.  Obviously, cladistic
parsimony presents a particularly serious challenge to
those who may argue for maximum likelihood.
Cladistic parsimony is sufficient to explain the relation
of individuals, and its justification lies in logical
probability which does not violate any of the tenets of
individuality.

STATISTICAL CONSISTENCY

Homoplasy provides a useful basis with which to
explore further the issue of probabilism.  In phyloge-
netic systematics, homoplasy is considered just as
deserving of explanation as is homology.  On the other
hand, the more statistically minded consider
homoplasy to be problematic “noise”, that is, some-
thing to be factored out in order to improve estimation.
The importance of statistical consistency in evaluating
methods, such as cladistic parsimony and maximum
likelihood, depends on how homoplasy is to be
understood.

Hillis (1995:5) argued that accuracy can be measured
in terms of statistical consistency (see also Penny et al.,
1992).  A method is said to be statistically consistent
(“convergent” in the parlance of philosophers) when it
is certain to converge on the truth when applied to a
data set of infinite size.  Otherwise, the method is said
to be statistically inconsistent.  Statistical consistency
follows from the law of large numbers, where the sam-
ple can be made conceptually large without limit.
Hillis (1995) redefined “efficiency” in terms of how fre-
quently the “correct” tree can be obtained.  In fact,
though, an unbiased (convergent or consistent) estima-
tor is not an efficient one, whereas a biased one is
bound to be more efficient.  

The issue of statistical consistency in phylogenetic
inference was raised by Felsenstein (1978), who
attempted to show that cladistic parsimony, under his
particular model of evolutionary change, not only
would fail, but would do worse as more data are
obtained.  The statistical inconsistency space, in refer-
ence to cladistics, has been called the Felsenstein Zone,
and the underlying general issue is referred to as the
“long-branch attraction” problem.  Consider the exam-
ple in which two “long branches” exhibit evolution in
proportion to the length of the branch, according to a
Copyright © 1997 by The Willi Hennig Society
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maximum likelihood model.  Felsenstein’s (1978:407–
408) particular model in that example requires “that
parallelism of changes be more probable than unique
and unreversed changes in an informative part of the
tree”.  Hendy and Penny (1989; see also Farris, 1973)
claim that cladistic parsimony is statistically consistent
under models other than the unequal rates of evolution
example illustrated in Swofford et al. (1996: figure 8).
The zone of statistical inconsistency is given the special
name, the Felsenstein Zone, because “the only hope of
getting the correct tree is by sampling few enough
characters that we may be lucky enough to obtain more
of the character patterns favoring the true tree than of
the more probable character patterns favoring the
wrong tree” (Swofford et al., 1996:427).  This amounts
to an assertion of truth from sampling error.  Sober
(1988: figure 16) generalized the issue of statistical con-
sistency, which exemplifies how it has been used in
evaluating different phylogenetic methods.  But, is sta-
tistical inconsistency and the Felsenstein Zone, as it
applies to cladistic parsimony, anything more than a
red herring?

Concerns for consistency are inseparable from those
regarding truth, but Hume’s (1739) challenge (the
problem of induction) has never been met, suggesting
that “the search for truth” was a misguided venture in
science from the start and one that has no basis in real-
ity.  The simple argument is that we never can know an
objective truth, thus “accuracy” is rendered empty as
an empirical aim. The frequency probabilist argument
which claims convergence on the “true” parameter
when increasing data consistently converge on one
solution belies the more subtle problem of induction.
Watkins (1984:163, see also Quine’s (1975) Underdeter-
mination Thesis, and Felsenstein’s (1973:241) own
admission) remarked that “whenever a highly exact
theory T seems to be brilliantly confirmed by evidence
E, there is a huge, indeed infinite, set of possible alter-
natives T’, T’’... to T, each having a relation to E similar
to that which T enjoys”.  Even in Edwards’ treatise on
likelihood (1992:34) we are admonished that we
should “also be influenced by the simplicity of the
hypotheses, by their relevance ... and by a multitude of
subtle considerations that defy explicit statement.  The
scientist must be the judge of his own hypotheses, not
the statistician”.

For example, why is it necessary for a rule of infer-
ence to be statistically consistent for it to be reasonable

(Sober, 1988)?  Consider that statistical inconsistency
has no bearing on the reasonableness of cladistic parsi-
mony as a refutationist  research program in
phylogenetic inference.  Steel et al. (1993a; see also
Farris, 1973) also point out that cladistic parsimony can
be rendered a statistically consistent estimator of phy-
logeny if gene sequence data are corrected for
unobserved substitutions.  Such action, however, has
the disadvantage that cladistic parsimony can then no
longer be justified as a refutationist research program
(Kluge, 1997).  No practical consequences follow from
demonstrating statistical inconsistency, because there
is no reason to believe that the method necessarily will
fail in the finite case (Farris, 1983).  Moreover, statistical
consistency does not suffice to justify a rule of infer-
ence.  Two methods (even phenetics, under certain
circumstances) might converge in the long run on the
truth; however, in the finite they might not.  As empir-
ical scientists, we must operate in the finite.  Consider
a more familiar example: the mean and mode of a nor-
mally distributed parameter will converge on the same
(true) answer in the infinite case; however, their esti-
mates are different with finite data (Sober, 1988, 1993).
Thus, statistical consistency is not a sufficient criterion
with which to judge methods, either cladistic parsi-
mony or maximum likelihood.

An estimator (rule of estimation) is consistent, or
inconsistent, only in relation to some “model”, and if
the model is false then there is no guarantee that the
method will converge on the truth when it is applied to
the real world (Farris, 1983; Sober, 1988).  It is, of
course, easy to demonstrate the fallibility of any
method, even maximum likelihood. Some have main-
tained that parsimony generally is inconsistent
(Goldman, 1990; Yang, 1993, 1996; Zharkikh and Li,
1993; Takezaki and Nei, 1994; Tateno et al., 1994; Swof-
ford et al., 1996; Huelsenbeck, 1997) as though it has
been demonstrated that parsimony is always bound to
converge on the “wrong” solution and is simply not to
be trusted, whilst maximum likelihood is generally
consistent.  First, no method in and of itself can be said
to be consistent or inconsistent.  Second, consistency is
not an emergent property of a method, it is a property
of estimators for given situations and analyses.  All
methods potentially are consistent and all methods
potentially are inconsistent, the difference being
merely circumstantial; any method
Copyright © 1997 by The Willi Hennig Society
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“that is consistent under one set of circumstances can be made
inconsistent under others; it is only a matter of imagining the
circumstances.  If the model employed is not constrained by
realism, ‘consistency’ is meaningless...Since the kind of argu-
ment [Felsenstein] employed shows the same ‘fault’ for every
conceivable method, it in fact shows nothing” (Farris, 1986:25).

Finally, there is “Wald’s dilemma” (Wald, 1949) — if
the number of nuisance parameters increases as a func-
tion of the addition of “data” then the method cannot
be consistent.  Likelihood justifications consider con-
vergence in a method only in relation to the addition of
ever-increasing character information.  Although in
some circumstances characters are of interest to phylo-
geneticists, the core of the cladistic research program
concerns relationships among taxa.  Adding taxa to a
maximum likelihood analysis has received little
attention, but adding taxa increases the nuisance
parameters proportionately. This is no different for
adding characters, of course.  Adding one more nucle-
otide entails the estimation of ntax-1 new ancestral
states.  That is, the addition of any data monotonically
increases the number of parameters needing estima-
tion and renders the starting parameters of base
frequencies and branch lengths in time as incidental,
rather than structural (see Models and Assumptions
below).  Edwards (1992:109) saw “no reason to sup-
pose that it is always possible to eliminate a nuisance
parameter” and that “integrating them out of the
model ... is a dubious virtue, for if a parameter is inex-
tricably associated with another parameter ... I should
prefer to face up to the fact that I may have inadequate
information”.  All this indicates that, in principle,
when applied in phylogenetic inference, maximum
likelihood cannot be saved by an appeal to statistical
consistency.

Goldman (1990:348) offered the observation that
“statisticians have never doubted  that consistency is a
desirable property”.  This is simply false (e.g. Fisher,
1938; Hacking, 1965; Edwards, 1992).  Leaving aside
the notion that consistency is a “primitive postulate”
(Fisher, 1938), it might yet deserve our attention.  There
is a fundamental distinction that can be drawn
between the task of statistics and that of phylogenetics.
Statistical measures are required for making estima-
t ions regarding col lect ions of  observational
propositions by way of an abstract generality.  That is,
there is no spatio-temporally real thing that we can
point to called a “mean”, or a “variance”.  These are
useful abstractions that exist only in our psychology as

scientists.  “Mean”, “median” and “mode”, for exam-
ple are simply measures of central tendency for a
population of individuals.  But neither does “central
tendency” exist in any physico-objective reality.  Con-
sider that the mean number of fin-rays in a group of
gobiid fishes can be said to be 6.3.  Whereas this may be
a useful construct for estimating whether or not this
group of gobies has more rays than some other group,
we can simultaneously be certain that there is no goby
anywhere that has 6.3 fin rays.  We can also reasonably
state that even though this group of gobies can be said
to have “significantly more” fin rays than some other
group, this does not mean that all gobies in this group
necessarily have more fin rays than all gobies (or a par-
ticular goby) in the other group.  How is “statistical
error” to be interpreted in an evolutionary or other sin-
gular framework?  Is there some super-psychological
reason that any one goby should have 6.3 fin rays, for
example?

The issue of statistical consistency has something to
say about the reliability of our empirical measures as
reasonable estimators of some meaningful abstraction,
but it is silent on the reliability or specifics of the data
themselves; the data merely are.  In phylogenetics,
however, we are not interested in some abstract gener-
ality regarding the group of taxa we are working with.
We are concerned with uncovering the actual spa-
tio-temporally real history of divergence, the species
genealogy.  Without wholly belabouring Sober’s (1988)
coin-flipping example, the irrelevance of consistency to
objective reality amounts to common sense.  If the best
corroborated hypothesis is false, this merely means
that the data are lying to us about the objective truth.  If
the data are lying to us, short of special knowledge or
providential wisdom, surely our best corroborated
hypothesis ought to be false!  To assert otherwise is
simply unempirical.  The lack of recourse to objective
truth (sans time-machine) renders these concerns
immaterial anyway.  We should be at least suspicious
of a rubric that requires “convergence on the correct
tree as the data available become infinite” (Hillis,
1995:4) when neither a correct tree nor infinite data
ever will be available.  In the practical case which seems
to consume our colleagues with doubt and angst,
should two long-branched taxa group together in a cla-
dogram, it may well be that the two taxa actually are
each other’s closest relatives (see also, Farris, 1986:25).
Carmean and Crespi (1995) and Huelsenbeck (1997)
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were quick to judge the grouping of Diptera and Strep-
siptera as indicative of statistical inconsistency,
because it conflicted with their preconceived notions of
relationships,  and because they had long branches.
Yet Whiting et al. (1997) demonstrated that indepen-
dently two different genes and morphological data all
point to these taxa actually being each other’s closest
relatives.  The likelihoodist, in denying his own basic
observations (e.g. that these two cytosines are the
same) relinquishes any empirical foundation for speci-
fying precisely why these two branches necessarily
should be kept apart.

MODELS AND ASSUMPTIONS

Arguably, it is not possible to explain something de
novo.  That is, all knowledge is inexorably intermingled
in ways that often are less clear than we would like to
believe.  Thus, the charge that there can be no inference
without making some assumptions of some kind is
valid.  Galileo’s inferences regarding the moons
revolving around Jupiter, though seemingly simple
facts (observational propositions), cannot be separated
from assumptions regarding optics and the bending of
light through a series of lenses prior to arriving on his
retina.  Nonetheless it is a grave mistake to class all
underlying propositions in one summary notion of “all
assumptions are models”.  In the systematics commu-
nity, these arguments often are made in a framework
such as “you cannot have assumption-free science, we
make our models explicit, parsimony does not, yet this
does not free it from assumption”.  Comments such as
these, and like Goldman’s (1990:346) “no model, no
inference”, conflate all assumptions with model.

  There are deterministic assumptions (which we call
models) and there are non-deterministic assumptions
(which we label background knowledge).  Models, by
their very nature in epistemology, determine (in part)
the interpretation of observational propositions.  A
simple case is the evaluation of the difference between
some parameter of two populations wherein an
assumption of stochastic normality is made.  We do not
deny the value of these model-assumptions.  In fact,
the assessment of such an abstract population differ-
ence is not possible without making some sort of
deterministic assumption.  It is also clear, however,

that whatever hypothesis is found to be corroborated,
is necessarily a joint hypothesis.  We may well reject
the null hypothesis of sameness, but we do so with the
understanding that we have rejected the null hypothe-
sis either because it is in fact false, or because the model
we have imposed on the question is not appropriate.
In this sense the assumption is “problematic”.  “Prob-
lematic” should not be confused with “is a problem”.

An assumption is problematic if it is deterministic to
the outcome of the test.  Background knowledge is, by
definition (Popper, 1963), unproblematic.  It is some-
thing we can assume as holding “true” while we
conduct our test.  We simply assume that it is on the
one hand necessary but not deterministic to our con-
clusions.  It need not be actually true in a metaphysical
sense.  For example, Galileo’s observational proposi-
tions took as background knowledge assumptions
about optics.  This is unproblematic, because it hardly
exerts an effect on the moons of Jupiter.  Describing the
orbit of the moon around the earth entails some back-
ground knowledge such as an assertion that the disk in
the sky actually represents a sphere, not a disk, and
that the moon is not created each dusk and destroyed
each dawn.  What seems frequently to get confused is
the notion that any knowledge we might have neces-
sarily is “background knowledge”.  We trust that the
distinction between “problematic” and “unproblem-
atic” clarifies the issue.

In phylogenetics, cladists do make assumptions.  But
are these assumptions models, or are they background
knowledge?  We take it as unproblematic that the spe-
cies in our analysis are in fact related.  This amounts to
an assertion that there is some singular  history of life
and that somewhere there is a common ancestor for all
species.  Note that it is not a statement about how spe-
cies are related.  Is this a deterministic model or is it
background knowledge?  If species are not somehow
related (life is polyphyletic or was providentially cre-
ated), the background knowledge we have assumed is
false and our hypothesis will be false.  However, hav-
ing tentatively held the assumption does not
determine how the species will be judged to be related
by character evidence.  It is a necessary assumption but
it is not a problematic assumption.  More to the point
(Ward Wheeler, pers. comm.), if we discover tomor-
row that all life is the product only of special creation,
we can still do cladistics, operationally, in terms of
summarizing the observed character generalities.
Copyright © 1997 by The Willi Hennig Society
All rights of reproduction in any form reserved



 

Probabilism and Phylogenetic Inference

 

321

                            
Notably, we could not do likelihood, because there
would be no meaning to the imposed models of histo-
ries of base-substitution, transition probabilities and
branch-length nuisance parameters required by the
method.

Cladists also make the assumption that the clades
under consideration are not the product of hybridiza-
tion between different species.  Again, this is taken as
unproblematic background knowledge.  Having made
this assumption will not determine the results.  The
results are determined by the competition among char-
acters for groups.  Nonetheless, it is an assumption,
and a serious one (though unproblematic, it is a problem).
Should we ever “know” that all taxa are the end prod-
ucts of interspecific hybridization, we would then have
to consider abandoning cladistics, but we would only
do so in favour of a yet-to-be-developed methodology
which could deal non-arbitrarily with reticulations in
terms of explanatory power.

Cladistic parsimony also takes as unproblematic that
the patterns of character distribution are historically
contingent (descent with modification).  It may well be
that this is not so.  It may be that character patterns are
due to something else.  However, if they are due to
something else, this does not change the calculus of the
cladistic parsimony method.  That is, the making of an
inference does not require that characters be historically
contingent, though this may be a “problem” for mak-
ing a “true” inference, because we cannot know the
truth, it is “unproblematic”.

Consider the following situation: a man is found
hanging from a noose in an empty room that is locked
from the inside.  We observe that he is dead.  We
observe that there is a puddle of water on the floor
beneath him.  We hypothesize that he committed sui-
cide by standing on a block of ice, throwing a noose
around his neck and waiting for the ice to melt.  We
have a hypothesis that is better corroborated than the
hypothesis of foul-play.  Note that there is no assertion
of truth here.  It may (in truth) be that he was mur-
dered, but such a hypothesis would require additional
data for it to be corroborated.  For the moment, we have
suicide as our best hypothesis.  What assumptions
accompany the suicide hypothesis, and are they back-
ground knowledge assumptions or  are  they
deterministic assumptions?  We have taken it as
unproblematic that ice melts at temperatures greater
than 0° C.  But then if ice did not melt at 0° C the man

is still hanging by his neck.  More to the point, he is
dead.  We have taken it as unproblematic that this man
knew how to lock a door.  But if he did not, the door
would still be locked from the inside.  In fact, no deter-
ministic models are assumed here; there is only
background knowledge.  Most importantly, there has
been no statement about the frequency with which this
kind of man kills himself from which we calculate the
probability that he has done so.  Nor is there any deter-
ministic model regarding the frequency with which
people on the whole commit suicide by standing on a
block of ice from which we determine that it is likely he
has done so.  These models are not required for the
inference of this singular case, and they have no bear-
ing on it.

It has been argued (Felsenstein, 1978, 1982; Saether,
1986) that cladistic parsimony assumes that evolution
proceeds parsimoniously.  There appears to be an
assumption that homoplasy is rare, because it mini-
mizes homoplasy.  This is a background-knowledge
criticism, not a model-based criticism.  There are many
models that can be considered which would cause
homoplasy to be rare, but this was not the criticism.
The criticism is that homoplasy is assumed to be rare,
and this clearly does not obtain.  As many analyses
with a global consistency index of less than 0.50 will
evidence, finding the most parsimonious tree does not
require history to be parsimonious.  Likelihoodists
have argued that because cladistic parsimony is
unlikely to discover the correct tree unless rates of
change are slow, it must then necessarily assume that
rates of change are slow.  This, however, makes a vari-
ety of presuppositions.  The most serious of these is
that there is an inference to be made from transforma-
tions that have gone unobserved.  This, however, falls
afoul of the fallacy that absence of evidence is necessar-
ily evidence of absence.  That is, maximum likelihood
is supposed to be superior in its “allowing for” multi-
ple substitutions.  By definition, there are no tangible
observations requiring this explanation.  Thus, the con-
cern for these unobserved changes amounts to an ad
hoc declaration that there must be something wrong
with our observations in the first place.  This conclu-
sion is necessarily based on a presumption of rates of
change, predicated on a generality derived from all
other nucleotides in the analysis.  It is no accident that
Popper (1983:133) saw ad hocness and circularity to be
opposite to independence.  In other words, one cannot
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claim that nucleotide sites are treated independently
and simultaneously “correct for” multiple substitu-
tions.  It also presupposes that a frequency probability
framework is the most appropriate within which to
assess history.  The argument that a most parsimoni-
ous tree is unlikely, is no more damning than is the
charge that a likelihood tree is unparsimonious.  Though
rates of change might be a problem, they are unproblem-
atic to the calculus of cladistic parsimony.

Relating back to the issue of statistical consistency,
wherein the data are lying, surely the best explanation
of the data, the most corroborated hypothesis, ought to
be a falsehood.  Cladists contend that frequency prob-
ability is not the correct framework in which to judge
historical hypotheses.  We know (background knowl-
edge) that the improbable is possible and that the
possible can occur.  To argue otherwise would deny
the existence of life itself for surely it is improbable (see
above).  The probabilistic argument lies at the very
heart of contemporary creationist arguments; after all,
“there is no mathematical probability whatever for any
known species to have been the product of a random
occurrence of random mutations” (Cohen, 1984:205).
The calculus of cladistic parsimony does not require
anything regarding rates of change, amounts of
homoplasy, base compositions or the like.  Nor does it
require that which we observe to be probable.  It
requires only that the preferred hypothesis be better
corroborated by the data than the alternatives; that the
explanation explains the explanans.  This cannot be
claimed (and indeed has not been) for maximum like-
lihood methods.

As indicated above, in model-based estimation, what
may seem to be merely another hypothesis is in fact a
conjunctive hypothesis which involves something
other than that which the experimenter is interested in,
and yet which the experimenter cannot ignore.  Likeli-
hood analyses must assess the probability of a given
change in light of some model.  For example, if trans-
versions are less likely than transitions under the
model, and one has the choice of a transversion here or
a transition there, the transition will be considered
more likely.  What underlies the hypothesis of species
relationships, in this case, is a requirement that transi-
tions actually are more likely than transversions, and
always have been in all particular cases.  A mere suppo-
sition has now been taken as an absolute.  If transitions
are not more common in the history of these taxa, then

the method has lied (even if the data have not lied).
Moreover, because of issues like relative branch
lengths, whether a transition is two versus five times
more likely than a transversion is also deterministic to
the result.  That is so, because the experimenter’s
choice of transition/transversion ratio is taken as fact
and that governs the end point of the test.  Whether or
not the choice of model has an observable effect is irrel-
evant.  The calculus of the method is such that a choice
will govern the probability of a kind of change, and
thus has a bearing on the calculus of the method even
if it does not effect the outcome of the analysis.  The
likelihoodist who asserts that because the shape of the
tree “is robust to” changes in models misunderstands
her own epistemology.  Because frequency probability
is the philosophical framework, if one model results in
a tree with a probability of 0.004 and some other model
results in the same tree with a probability of 0.002, the
framework requires that the former tree+model esti-
mate be explicitly preferred.  Huelsenbeck (1997)
admitted this in his preference for the HKY85+G5

model’s achieving a lower log-likelihood.
“Robustness”, though over-used in systematics, is

seen as a supposed virtue for a phylogenetic method
with little regard for what it can be said to be robust to.
Likelihoodists claim (Huelsenbeck and Hillis, 1993;
Hillis et al., 1994) the robustness of their estimates to
violations of the model, and thus appear to imply that
this holds for any violation of model assumptions.  An
example: data are generated according to stochastic
model M1 (e.g. Jukes–Cantor) and a tree is estimated
employing stochastic model M2 (e.g. Kimura 2-param-
eter) and it is found that M2 makes the same (or
similar) estimate as would have been made if M1 had
been employed in the estimation.  The method is then
proclaimed as being “robust”.  In fact all that has been
established is that if the process of all character change
was in truth M1, M2 would also do a good job of recov-
ering the true tree.  So, is it that the method is robust in
discovering? Or is the modeled process merely robust to
being discovered?  Even if a cornucopia of stochastic
models are used in generating data, and then in esti-
mating a tree from those data, the best that can be said
is that the method is robust to the discovery of phylog-
enies when characters have changed due to purely
stochastic processes.  In this light it is not surprising
that some are now declaring that “Evolution is a sto-
chastic process” (Penny et al., 1991:160, emphasis
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added).  The neutral theory of evolution may well be
an interesting abstract generalization about the uni-
verse of molecular sequence data (or perhaps not,
Gillespie, 1991), but when this generalization is
rejected by the data, surely we are compelled as
rational scientists actually to reject it, and with it meth-
ods that rely upon it for their justification.  To
paraphrase Hillis (1995:6): “It makes no sense to simu-
late a tree using a [stochastic model]... and then
conclude that a method that assumes a [stochastic
model] is generally better”. 

The manner in which model-based assumptions are
chosen in a likelihood analysis runs counter to several
well-characterized logical fallacies.  The most damning
of these is “post hoc ergo propter hoc” (after this therefore
because of this – confusing pattern with cause, or more
simply, having the cart before the horse).  An extreme
of this is the syllogism: “All humans breathe.  All
humans eventually die.  Therefore dying causes
humans to breathe”. The fallacy is merely arguing to a
premise from a conclusion.  Various authors (e.g.
Thompson, 1975; Goldman, 1990) have recognized the
need to avoid specious assumptions of equal rates of
change and equal base composition in the model used
by likelihood.  This is also required, in part, to avoid a
particular problem relating to independence of
assigned probabilities (see below).  The manner in
which this is accomplished is to determine base com-
position from the extant taxa and relative branch
lengths from those extant character distributions as
well (on, for example, a preliminary parsimony tree).
Because these values, the observed patterns, are
employed in the model, and the model is taken to be
causal of the observed patterns, the analysis explicitly
has taken the results of an evolutionary process to be
causally part of that process (the assigning of a base
composition to some arbitrarily chosen root node
entails the same problem).  This is very much like con-
cluding that the bending of a tree causes the wind to
blow.  Admittedly, this is not a new gambit in evolu-
tionary studies.  Evolutionary taxonomists, for
example, might have believed  the essence of tetrapods
to be terrestrial locomotion, and thus assigned primacy
to the pattern of limbs as especially causal: “Tetrapods
have femurs so that they might walk”.  We trust that
the incendiary debates about essentialism and
teleology do not need repeating.

Likelihood requires assumptions, but these assump-
tions are models that are deterministic of the outcome,
as opposed to assumptions which are unproblematic.
Models are, by definition, assertions regarding gener-
alities in the universe.  Some may wonder if we cannot
accept it as background knowledge that, on the whole,
transitions do occur more frequently than transver-
sions.  To be taken thus would require that statement
to be unproblematic, and non-deterministic to the
results.  Clearly this is not so.  In a likelihood inference,
the model assumptions that must be made relate to
prior probabilities of base composition (π), branch
lengths and the specifics of classes of transformation
types (transitions and transversions). In order to
achieve the probability of the tree in question one must
find the product of the probabilities of characters,
which are determined by the sums of the probabilities
of each possible pattern of ancestral states, which in
turn are determined by the product of the probabilities
of each transformation, which finally, is determined by
the probabilities assigned in the four-by-four Q matrix.
Because all of these components go into the calculus of
the method and determine the results, they cannot be
said to be unproblematic.  Our most serious concern is
the static nature of Q.  That is, topologically, the same
Q matrix is required to apply across all branches, for all
clades for the entire history of the tree.  (That the Q
matrix might be allowed to be iteratively adjusted does
not save it from this criticism.  The final Q matrix may
well be different from the original but it is still applied
as a universal across the tree.)

Whereas we might be able to demonstrate on the
whole that the proportional representations of bases A,
C, G and T are 0.26, 0.24, 0.27 and 0.23, respectively, it
hardly seems reasonable to assert that this has been so
in all aspects of the tree across all characters and
throughout the entire history.  However, this is pre-
cisely Felsenstein’s (1988:529) assertion that “processes
of base change probably do not differ much in related
species”.  This concern is not trivial as it must be
remembered again that the resulting hypothesis is con-
junctive: this tree is a good hypothesis assuming the
applicability of the model.  Whereas some dismiss the
concern for models as merely a matter of best-fit (e.g.
Swofford et al., 1996; Huelsenbeck, 1997), others have
acknowledged that the models used in maximum like-
lihood are contingencies which require testing outside
of the context of the analysis itself (Thompson, 1975;
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Farris, 1986; Sober, 1988; Goldman, 1990).  That such
testing is not regularly done does not reduce the force
of this requirement.  Consider a simple empirical case
involving the protistan group Alveolata.  Alveolata is
comprised of three principal clades: ciliates,
dinoflagellates and apicomplexans (the latter includ-
ing malaria parasites).  On the whole, for actin,
nucleotides are about equally represented (between
0.23 and 0.26 each).  Yet, when we break this down into
the constituent phyla, we find that apicomplexans
deviate considerably from the other two (πA = 0.29,
πC= 0.19, π G = 0.21, π T = 0.28).  However, even these
deviant values are not representative of the particular
taxa within the Apicomplexa:

Lest some static model be considered applicable to
the ciliates, consider the marked variation among cili-
ates, and even within the genus Oxytricha :

Even these values are not representative of patterns
across all sites, as revealed by looking at 3rd positions
of codons in isolation:

So, it is clear that a model of base substitution (any
one model) cannot apply across all characters or across
all taxa.  We need not add to this the issue of rates being
differential across clades.  In short, we have no more
reason to relegate substitution type and transition/
transversion ratios to background knowledge than we
have to proceed thus with codon usage biases
(Eyre-Walker, 1991).  Our knowledge of these phenom-
ena is not unproblematic to our epistemology.  For
these reasons Swofford et al. (1996) asserted that max-
imum likelihood methods should not be used for
amino-acid encoding nucleotides.  Should we then
infer that Swofford et al. meant we should only use
maximum likelihood for structural RNA genes and for
introns?  These same concerns apply equally well to
RNA genes wherein there are hypervariable and con-
served regions relating to stems and loops in the
secondary structure.  We are left, then, with an episte-
mology that disallows use of morphological data,
disallows use of amino-acid encoding data, disallows
use of nucleotide data showing codon or dinucleotide
biases, and yet claims to be more realistic than the use
of cladistic parsimony which permits (indeed insists)
on using all of the data available (Kluge, 1997).  Is it any
wonder that in the face of this methodological limita-
tion, likelihoodists are now insisting that the data are
limited, not the method, and that morphology never
had anything to offer phylogeny and systematics (e.g.
Hedges and Maxson, 1996). We see Miyamoto’s episte-
mological abjuration, having once argued so strongly
in favour of total evidence (Miyamoto, 1985) and now
insisting that data never be combined (Miyamoto and
Fitch, 1995), as a thinly veiled verification of his newly
acquired acceptance of likelihood, notwithstanding the
attempt to couch it in terms of vague “process-
partitions”.

In summary, a static Q matrix is deterministic to the
outcome of a likelihood analysis and thus is not back-
ground knowledge.  The Q matrix is applied across the
entire history of the taxa under consideration, and
across all characters, and yet the applicability of con-
stant base compositions in separate clades is refuted
easily, violating the requirement for spatio-temporal
independence of  the  universal  model .   The
deterministic imposition of constant frequencies of
transformation types is similarly refuted.  It may be
suggested, then, that Q is only a weakness, not a flaw,
because having recognized this problem we need only

πA π C π G π T

Plasmodium falciparum 0.36 0.13 0.18 0.33

Toxoplasma gondii 0.22 0.30 0.26 0.23

πA π C π G π T

Oxytricha fallax 0.25 0.31 0.23 0.22

Oxytricha nova 0.29 0.23 0.23 0.25

Euplotes crassus 0.30 0.22 0.24 0.23

Tetrahymena thermophila 0.26 0.26 0.19 0.29

πA π C π G π T

Alveolata 0.17 0.35 0.18 0.27

T. gondii 0.05 0.48 0.24 0.21

P. falciparum 0.42 0.06 0.04 0.46

O. fallax 0.10 0.53 0.18 0.18

O. nova 0.25 0.32 0.17 0.25

E. crassus 0.26 0.30 0.20 0.22

T. thermophila 0.15 0.40 0.10 0.34
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apply multiple models to circumvent this failing (as is
attempted with Gamma distribution corrections [Steel
et al., 1993b; Yang, 1993;] and the like).  Unfortunately,
this will render likelihood untenable, not because of
the computational difficulty (though this is serious
enough), but because of how this impinges on the issue
of nuisance parameters.

  “Wald’s dilemma”, as we have characterized it, is
precisely this: a likelihood analysis is impossible if the
number of parameters increases proportionally with
the addition of new data.  Nuisance parameters are
parameters which we are not necessarily interested in
but which we need to estimate from the data in order
to estimate those that we are interested in.  In order to
assess the difference between two populations we
need only estimate one parameter for each population,
for example, the mean.  No matter how much new data
we add, there is still only this one parameter per popu-
lation.  Here, likelihood is tenable.  However, Wald’s
dilemma is encountered, for example, in estimating a
line from a series of points.  For each new data point
added, the parameter of the squared distance of the
point to a line must be calculated before we can get to
the parameter of the line itself.  Wald saw that the only
way around this was to impose a ceteris paribus clause,
his condition #1, that F(x,Q) is discrete for all Q or is
absolutely continuous for all Q, and admitting some
elementary probability law f(x,Q).  Or, simply, assume
homogeneity.  The regression line can be estimated in
a likelihood framework if and only if there is an
assumption of some constant probability density func-
tion like normality, but thus requiring independence
and identical distributions.  For the phylogenetic appli-
cation of likelihood to be tenable, this assumption must
hold as well, though we have shown above, and it is
widely admitted (Cramer, 1946; Neyman and Scott,
1948; Lindgren, 1976; Goldman, 1990; Gaut and Lewis,
1995), that it does not.

We do not claim that likelihoodists have been wholly
unconcerned with this issue.  The reality of rate differ-
entials and the inapplicability of one class of transition
probabilities has received some attention.  It is vari-
ously argued that in order to compensate for these
phenomena one could employ, for example, Gamma
distribution rate corrections across characters, or a
log-determinate transformation across branches.  Use
of these transformations of the instantaneous Q matrix
amounts to an admission that one static matrix is

unrealistic and merely substitutes multiple equivalents
in its place.  We submit that two static models in place
of one is merely doubly unrealistic.  Although we still
object to the notion that anagenic change along an iso-
lated branch is even static and stochastic, the logical
end point to arguing for multiple transition matrices
would be to have a different one for each internode.
This would have us logically employ 2T-2 different
matrices for T taxa in an analysis.  But, as we have seen,
different characters should also be expected to have
different properties.  If one then tries to modify the
likelihood method by permitting different models for
each character, and different models for each clade or
branch, then one adds more parameters to the method
for each new character or taxon added to the matrix.
One new character would add one new set of base fre-
quencies, and one new set of transformational
probabilities to be estimated from the data; and one
new taxon would add one new hypothetical ancestor
to be estimated, and two new branch length relative
rates, and so on.  Felsenstein (1988:529) freely admitted
that Barry and Hartigan’s (1987) allowance for a realis-
tic flexibility in transition probabilities was not tenable,
concluding that “the truth must lie somewhere in
between”, and thus apparently asserting that truth
does not require realism.  As well, Kim (1996:363) was
forced to admit that in maximum likelihood analyses
fewer taxa are to be preferred over more taxa.  So, the
solution to the problem of a static matrix would itself
violate the requirement that there be a limited set of
parameters to be estimated, or as succinctly put by
Goldman (1990:351) “this approach renders inferences
virtually impossible”.

In this section, we have attempted to clarify the dis-
tinction between models and background knowledge
as two distinct kinds of assumptions that phylogeneti-
cists might make.  Most importantly we have
underscored the distinction by asking whether or not
the assumption is deterministic to the inference made
in terms of the calculus of the method.  In the body of
its calculus the result provided by cladistic parsimony
is determined only by the data.  Hillis (1995:5) uncriti-
cally accepted the notion that “all methods are based
on explicit or implicit assumptions about the evolu-
t ionary process”.  Regarding models  of  base
substitution, this is plainly false.  That cladistic parsi-
mony might be said to deviate from some objective
truth under conceivable historical contingencies may
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be so, but it is not bound and determined to do so by its
calculus.  It might still render the objective truth or it
might not.  Because it is not determined to do so in its
calculus, cladistic parsimony does not assume a pro-
cess model.  That is, there is no such thing as an implicit
model.  Models, by definition, are explicit.  Likelihood-
ists cannot overcome the deficiencies of joint
hypotheses by merely issuing a declaration that all
methods employ them.  We also see this concern for the
objective truth as illusory.  We admit that there is a
truth, but this admission can only be metaphysical, it
cannot be an empirical guide, because we have no way
to assess accuracy (comparison to proven truth) for any
singular part of history.

INDEPENDENCE AND OPERATIONALISM

Kim (1996) argued that the “structure of the models
[in maximum likelihood] is not unreasonable” and
pointed both to symmetric transitions as well as the
requirement for independent and identical distribu-
tions of character information. These models would
only be reasonable if these criteria ever were met in the
methodology.  As indicated above, Wald (1949) also
asserted the requirement for independence and identi-
cal distribution of the data (X), and Felsenstein
(1973:246–247) admitted as much.  We have already
shown that these requirements do not obtain for nucle-
otide data any more than they can for any historically
contingent patterns.  The argument that cladistic parsi-
mony too requires independence of characters such
that likelihood estimation is no more flawed, misun-
derstands that non-independence exerts its effects at
various levels.  There are logical or causal dependen-
cies in data (exemplified by interaction effects found in
analyses of variance, or base pairing in stem regions of
ribosomal sequences). Logical dependence applies
equally to cladistic parsimony analyses as it does to
likelihood analyses.  For cladistic parsimony, there is
the requirement that homoplasious transformations
are logically independent, otherwise fewer ad hoc
hypotheses are required than have been inferred from
the data (Farris, 1983; Farris et al., 1995).  There are sam-
pling dependencies in data acquisition (such as the
mesh size of a fish net used for collecting, or
sequencing nucleotide characters in a row).  Sampling

dependencies, though of critical importance in likeli-
hood analyses, are of limited concern for cladistic
parsimony.  With corroboration as the governing prin-
ciple in cladistics, any and all data are worthy and
capable of offering refutation of relationships.  It mat-
ters not if those data were sampled in a particular
order, in a row, or alphabetically for that matter.  Sam-
pling widely is still important if we are to claim
severity of test, but sampling randomly is not.  Finally,
there are calculus dependencies which are not at all rel-
evant to cladistic parsimony but can be shown to
confound any application of likelihood.  At the level of
the calculus of a method (that is, the requirements of
the mathematical procedures) cladistic parsimony
makes no assertions.  Suppose that we can assert that
all character distributions are independent and that
characters were sampled randomly (assertions, by the
way, that never can be made insofar as “random
sequencing” is an oxymoron), the phylogenetic appli-
cation of maximum likelihood still fails regarding
independence in the calculus of the method.  The calcu-
lus of  the l ikel ihood of  a  tree involves two
multiplicative levels and one additive level.  For prob-
abilities to be multiplicative in frequency probability
calculus, they must be independent of each other.  For
probabilities to be additive, they must be disjunct.  The
summation of probabilities of the various ancestral pat-
terns are disjunct.  That is, one cannot be both A as well
as G for a particular hypothetical ancestor.  So likeli-
hood satisfies this element of its calculus.  However,
the two multiplicative relations are (1) the probability
of a certain transformation type having occurred (as
determined from the instantaneous Q matrix) multi-
plied across branches in the tree for a character, and (2)
the probabilities obtained for each individual character
which are multiplied to obtain the final probability of
the tree.  For these to be multiplicative in the calculus,
they must be independent quantities, or “since we
assume independence of evolutions in different charac-
ters, we calculate the likelihood of the tree separately
for each character and then multiply these” (Felsen-
stein, 1973:247).  However, the Q matrix is derived
from all characters.  That is, the base compositional π
values (in the HKY85 or F81 models) applied to charac-
ter i are contingent on all of the compositions of all
other characters.  Thus, the probability obtained for
character i, being dependent on Q, is transitively (in the
logical sense, not the temporal sense) dependent on
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character j (and all others), just as j is on i.  There is a
difference between assigning prior probabilities to
characters as though they were independent and
assigning conditional probabilities which admits that
they are not.  If one has the conditional probabilities
based on C characters, the point at which the transition
probabilities of C-1 characters is determined, that of the
Cth character is already determined.  This is why, for
example, the t distribution equals the z distribution
only when degrees of freedom are infinite (“Student”,
1908).  Statisticians regularly acknowledge these biases
in conditional probabilities and variously correct for
their effects (e.g. Efron and Gong, 1983).  Likelihoodists
have yet to explain how their phylogenetic applications
circumvent this problem of non-independence.  The
argument could be made that in the face of large
amounts of data the effect would be small.  In fact, this
is demonstrably false.  Huelsenbeck’s (1997) results, in
which likelihood consistently separated Strepsiptera
from Diptera, rest on a single character (#203 in the
alignment). Maximum likelihood analysis of the same
data set used by Huelsenbeck (1997), with this one
character removed, groups Strepsiptera and Diptera
together irrespective of the model (Siddall and
Whiting, 1998).

The LogDet transformation (Lockhart et al., 1994) is
particularly revealing in this respect.   Lockhart et al.
(1994) acknowledged that it was unrealistic to assume
that base compositions don’t vary across a topology or
at nodes.  Like Barry and Hartigan (1987) they suggest
adding a new parameter to the model (dxy) to compen-
sate each internode for this.  In point of fact, to do so
simultaneously admits historical non-independence of
character state transformations on ancestral recon-
structions while still requiring this independence in
the calculus of the tree estimator.  Goldman (1990:350)
had already noted that if one estimates “these variables
as though they were parameters of the model ... as the
amount of data (i.e., the number of characters)
increases, the number of parameters increases” and
this too falls outside of the scope of consistent estima-
tion (Wald, 1949; Felsenstein, 1973).  This, and related
approaches, aimed at correcting for the illegitimacy of
models in relation to historical contingencies, violates
the premise for a Poisson-directed instantaneous rate
matrix requiring that we “have assumed that the prob-
ability of change during any time interval is
independent of the times and numbers of previous

changes” (Felsenstein, 1973:241).  Similarly, the relative
and mean rate parameters (r and µ), which apply to
character i through Q, are dependent upon all other
characters, and likewise all other characters are depen-
dent on i.  A possible way around this, regarding rates,
would be to assert a model of equal rates of change
instead of character-derived relative rates.  Leaving
aside, for the moment, how untenable a molecular
clock actually is, this would merely shift the problem of
independence from one of characters to one of trans-
formations.  In a constant rate model, the probability of
changing on branch a is not independent of branch b if
the lengths of branches a and b are dependent, as they
must be under a clock model.  If branches a and b lie on
the same trajectory, making branch a longer requires
that branch b be shorter.  The probabilities of transfor-
mations being dependent on these lengths cannot then
be said to be independent.  Felsenstein (1973, 1988)
noted that in the absence of a molecular clock, consid-
eration of the nodes in a tree estimator would entail too
many nuisance parameters unless some prior distribu-
tion could be applied to the duration of the internodes
(u dt).  That Ranalla and Yang (1996) have now done so
by applying a Yule branching process seems to simply
ignore Felsenstein’s (1981) and Goldman’s (1990:356)
admonishment that “the many factors involved in spe-
ciation ... do not readily permit such a simple model”.
Even in the case of real character independence, the
calculus of maximum likelihood cannot be saved from
violating the independence of calculated probabilities.
Independence is not a philosophical triviality.  It goes
to the very core of frequency theory logic.  Indeed,
maximum likelihood has come a long way from having
to “oversimplify the complex process of mutation, nat-
ural selection, and random genetic drift into sudden
changes from one state to another” and requiring in the
model “also the process of sampling by which we
obtained the data” (Felsenstein, 1973:240–241).  Its sim-
plicity is now a virtue (Kim, 1996) and its models, once
acknowledged to be restrictive and unrealistic, now
constitute analytical power (Swofford et al., 1996;
Huelsenbeck, 1997).

The notion that a likelihood analysis renders an
assessment of how probable some tree is misunder-
stands the method.  In fact, all that receives a posterior
probability in a likelihood analysis, p(e | M, T), are the
character data (e) (that is, the probability of the evi-
dence given the model and the tree), not the tree which
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would require the expression to be p(T | M, e).  Assign-
ing terms to likelihood analyses like “Maximum
Posterior Probability” (Rannala and Yang, 1996) serves
only to obfuscate this distinction further, as though the
tree is somehow made more probable.  The likelihood
of a hypothesis, given the data, L(h,e), is a probability,
but it is a probability of the data [L(h, e) = p(e, h)], not
of the hypothesis itself.  Because only the data are prob-
abilified, likelihood methods might yet be useful for
asking questions about some property of the charac-
ters.  Thus, a likelihood analysis could reasonably ask
does a Jukes-Cantor or a Kimura model assign a higher
probability to finding these data? Whatever answer is
returned from this query could add insight into some
generality concerning the characters in the group, but
only a generality — it would say nothing about how
well the data match some other stochastic or non-sto-
chastic model’s expectations, and nothing about
expectations for some other group. However of what
value is probabilifying data points that we already
know?  It says nothing about the probable relation-
ships of taxa, because it is not designed to do this.  It is
for this reason that likelihood values cannot logically
be compared on the different topologies as is explicitly
attempted in the phylogenetic applications.  What
meaning is there for probabilifying these data given
this tree if the trees are not the same and “why should
we accept the probability model?” (Edwards,
1992:209).  Relationships among taxa are not abstract
generalities, they are real and they are singular.  All
that is needed, to ascertain the posterior probability of
the character data (if this is our interest), is some exter-
nal best-corroborated tree to add to the model.
Cladistic parsimony offers this corroboration. 

LOGIC AND PROBABILITY

Scientific philosophy has undergone considerable
change since Aristotle’s metaphysical essentialism,
and probably more so in this century than in any other
previous period (Reichenbach, 1951).  Evolutionary
biologists, and indeed biologists in general, are rarely
concerned with the logical formulations of their episte-
mology, certainly markedly less so in comparison, for
example, to mathematicians and physicists (e.g. Boltz-
man, Einstein, Galileo, Hanson, Hertz, Mach, Newton,

Poincaré, Schrödinger). By this we do not mean to
imply that biologists ignore “logic” (in the small “l”,
Vulcan sense) as it is used colloquially (e.g. the sen-
tence, 2 + 2 = 5, is illogical).  In contrast, we are
concerned with the formalisms of “Logic” (written
large with a capital “L”) in the deeper sense.  Biologists
are no more immune to the requirements for a sound
philosophical foundation than are these other sciences
if our occupation ever is to be more than a simple cata-
loguing of the experiences of our senses.  Evolutionary
biology, and phylogenetics in particular, demands this
even more because, like the quantum physicist, we are
not able to observe that which we seek to explain.  Per-
haps it is the dual nature of the phylogeneticists’
occupation that has led to this abdication of the
requirement for a formal philosophy.  With the excep-
tion of the end point of our endeavours (i.e. the tree),
we are consumed as naturalists with the gathering of
data.  This snake has 168 ventral scales.  Bats have
wings.  There is a cytosine in the 1236th position of this
gene in this leech.  And so, insofar as all which system-
atists do tends to be straightforward and seemingly
philosophy-free, there is a tendency to consider the last
step as but a continuation of that which precedes it:
mere operationalism.  Experimenters A and B wonder
whether or not this population of fish is part of some
larger stock.  Experimenter A conducts genetic analy-
ses of  f ishes from a larger region and finds
homogeneity.  Experimenter B conducts telemetric tag-
ging surveys availing himself of GPS technology and
finds that the fish migrate over some larger distance
coincident with the region found by experimenter A.
The two lines of inquiry have converged on the same
answer and it is legitimately considered well sup-
ported.  The choice of technique does not amount to a
deep philosophical issue in this case.  However, it is a
grave error for biologists, so used to this regime, to
extend this to the uncritical acceptance of a variety of
phylogenetic methods (neighbor-joining, maximum
likelihood, cladistic parsimony, genetic distance, etc.),
and then to seek the consensus of solutions found by
these techniques.  Carl Woese, for example, asserted at
the 1996 meeting of the Society of Protozoologists in
Tucson, that the groups jointly found by maximum
likelihood, neighbor-joining, and cladistic parsimony
(and ostensibly UPGMA too) are explicitly to be pre-
ferred.  There has even been a kind of revisionist
history regarding the demise of phenetic methods, as
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though they reached their ungainly scientific death
only because of some mathematical sensitivity to
unequal rates (Saitou and Nei, 1987; Hillis et al., 1994).
Phenetics perished in the face of a failure to achieve
greater explanatory power over its competitor, cladis-
tic parsimony, a failure to realize its factor-asymtote
claims, and because to assert that similarity is anteced-
ant to phylogeny is to argue that carts push horses.
The differences in these techniques run much deeper
than mere methodological calculus.  The competing
methods for phylogenetic explanation are exclusive of
each other.  Cladistic parsimony denies frequency
probabilism, likelihood denies corroboration, and
neighbor-joining fails to be explicit at all (Farris et al.,
1996).  Mutually exclusive methodologies cannot be
simultaneously invoked by an experimenter.  Contem-
porary phylogeneticists tend to look to others for their
epistemology, perhaps considering the frequency of
publications invoking this or that method to be a suit-
able guide for the acceptability of their science, when
in truth one needs to look elsewhere to decide what
method is defensible.  To act otherwise is to allow arbi-
trariness and to invite ridicule from the rest of science.
Whether it is that cladists “hide behind” philosophy or
that likelihoodists “hide behind” naked operational-
ism depends on whether or not one thinks one needs a
rational basis for one’s science.

 Philosophies of science are not so nearly well
defined as are the cursory expositions which follow
here, and yet there is need of a clearer sense of a “phi-
losophy-space” so that systematists can better decide
what is defensible, and so that the phylogeny debate
can continue more intelligibly.  Some general philoso-
phies can be quickly discarded as non-scientific and
irrelevant to phylogenetic inference.  Academic scepti-
cism, for example, simply denies the existence of
knowledge.  Intellectualism considers as knowledge
only those things which we can fathom independent of
our senses (such as geometry, mathematical calculus,
etc.).  Relativism would have us consider knowledge to
be unique to the individual’s psychology, and thereby
deny any objective reality.  This is not to say that these
philosophies are wrong, only that they are concerned
with metaphysical issues, like truth, and cannot guide
us as scientists.  Scientific philosophies are empiricist as
opposed to intellectualist, and fall, generally, into veri-
ficationism/justificationism, or into falsificationism.  A
simplist ic  view of  these general i t ies  is  that

justificationists are concerned that their theories be
true, whereas falsificationists are concerned that their
theories not be false.  There are distinctions within these
broad groups though.  Classical justificationism holds
that knowledge consists of proven propositions —
proven by wisdom, experience or the power of intellect
— and has been the hallmark of science for centuries.
The claim that truth can be deduced from observation
and the induction of logical proof by factual evidence
are both justificationist paradigms.  For the justifica-
tionists (Kant, 1781; Mill, 1878), Euclidean and
Newtonian proofs were exemplary.  The work of one
individual, Einstein (1950), unintentionally destroyed
the classical justificationist framework through
non-Euclidean geometry and through Relativity’s
superiority over Newtonian mechanics.  All theories
thereafter must be viewed as equally unprovable —
truth through scientific inquiry vaporized.  Neo-justifi-
cation, now espousing probability as opposed to
certainty, was required to save the classical justifica-
t ionis t  f ramework from sophistry .   For  the
neo-justificationist, although all theories may be
unprovable, some theories are more probably true than
others (Carnap, 1956) — a theory is neither true nor
false, it is merely more or less probable given the evi-
dence.  This offered a comfort zone to scientists, who
need not be concerned with being right or being
wrong, but need only assign a P-value to be able to get
on to the next question.

Falsificationists differ markedly in their interpreta-
tion of the nature of evidence, but not all falsification is
the same.  Justificationists (whether neo- or classical)
object to the notion that a single disconfirming datum
should overthrow a theory in the face of so much con-
firming evidence.  This conflates falsificationism sensu
lato with the more restricted naive or dogmatic falsifica-
tion.  Felsenstein (1988:530) has taken an identically
unintelligible stance regarding cladistic parsimony,
suggesting that because falsification “is not absolute...
statistical concepts must be admitted through the back
door”. Arguably there are no, and never were any,
dogmatic falsificationists like the lurking absolutists
imagined by Felsenstein. Falsificationism merely
states, in contrast to classical justification, that no
amount of positive evidence can prove something true,
but this hardly admits that any amount of negative evi-
dence can prove something false. Felsenstein cannot be
held wholly to blame for his naive perspective insofar
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as Weyl (1949) and Braithwaite (1953) also handed to
nature the task of saying “No” to scientists’ theories.
However, scientists themselves, generally acknowl-
edging the fallibility of their own observations, have
not.  The methodological falsificationist differs somewhat
in acknowledging the fallibility of observation, such
that a theory is held tentatively, and, in the face of dis-
confirming observation, three things are possible:
either the negative data are false (as can, one hopes, be
determined by repeating experiments with appropri-
ate controls), or the theory is false and must be
discarded, or the theory must be expanded in order to
account for the observation.  The expansion of a theory
weakens it by the addition, ad hoc, of auxiliary compo-
nents.  In methodological falsification, a theory teeters
on the edge of the explanatory power engendered on
the one hand by how falsifiable it is, and on the other,
of the tendency to explain everything (and so nothing)
as it becomes encumbered with ad hocisms (Lakatos,
1970).

Sophisticated falsificationism differs still, and it is to
this which we contend cladistic parsimony belongs.
We do not pretend to speak for all cladists.  As we sug-
gested above, each must decide what they are doing
and why they are doing it.  Sophisticated falsification
does not judge theories by their closeness to some
objective “truth” or distance from some objective
“falsehood”, as neither can be known either for certain
or with any degree of certainty.  Truth, though not
irrelevant to science, is nonetheless irrelevant to the
choice among scientific theories, because it is unknow-
able, and yet we still need a rational reason to choose
among competing theories.  It is this notion of compet-
ing theories which is the hallmark of sophisticated
falsification.  Suppose we have a Keplerian theory of
the movement of planets and a Newtonian theory, and
suppose that both of these theories are in some objec-
tive sense false, but of course, short of divine
intervention, we do not and cannot know that they are
false.  We are in need of a theory to explain the move-
ment of planets.  Kepler’s Laws fully explain the
elliptical movement of the planets. So do Newton’s.
Which theory is to be preferred?  Kepler’s theory has as
many confirming instances as Newton’s, in fact more
because Newton’s theory fails to explain Mercury’s
perihelion (see also Berkeley, 1710).  The justificationist
cannot choose between the two.  The methodological
falsificationist might prefer the mechanistic theories of

Newton but is troubled by the disconfirming evidence
in Mercury (“maybe there is an unseen moon”).  The
probabilist (neo-justificationist) must assert on the
basis of frequency theory that Kepler’s theory is proba-
bly true and that Newton’s theory also is probably true,
or she might even suggest that Newton’s theory actu-
ally has a low probability, because of the many things
it tries to explain.  That is, if a theory like Kepler’s tries
to explain one thing it has a higher probability than a
theory which tries to explain many more things,
because there is a greater chance, in the latter, that one
of those things will not be true (like Mercury).  That is,
“high probability is the dubious reward for saying
very little, or nothing” (Popper, 1983:223).  The sophis-
ticated falsificationist sees this all as beside the point.
A theory is to be preferred if it has a higher empirical
content than some other theory.  Thus, Newton’s theory
is to be preferred over Kepler’s, because the theory not
only says something about planetary motion but also
asserts that a 200 lb stone and a 4 oz apple both hit the
ground at the same time and at a rate of acceleration of
9.8 meters per second squared.  By saying more about
more things the theory has a larger suite of potential
falsifiers.  Insofar as it says reasonable other-things that
are borne out, it is more corroborated than Kepler’s
theory, even though Kepler’s theory may have no dis-
confirming evidence and in spite of Newton’s theory
being born false (because of Mercury).  This too is why
General Relativity is to be preferred over Newtonian
gravitational theory.  Even if General Relativity also
failed to explain Mercury’s orbit, it would be preferred
for its empirical content.  General Relativity embodies
Keplerian and Newtonian phenomena and adds to this
the contraction of space and time under motion, the
speed of light as an absolute, and so on, all in one
theory.  There is a larger class of potential falsifiers, and
at face value Einstein’s theory has a very low
probability (by virtue of the sheer number of phenom-
ena it claims it can explain).

 Having considered philosophy of science thus, it is
clear that maximum likelihood is predicated on proba-
bilism (neo-justificationism) where there is a premium
on the frequency of unknowable truths, and cladistic
parsimony is predicated on sophisticated falsification
where there is a premium on corroboration and
empirical content, even coming at the expense of
probability.  We hold that in addition to whether or not
a likelihood analysis can withstand the requirements
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of its calculus, which in terms of calculus indepen-
dence we have shown it cannot, it is perhaps more
important whether or not its logical framework holds
up under rigorous scrutiny.  We must beware, as
succinctly put by Popper (1983:60), “the cult of
impressive technicalities or the cult of precision
[which] may get the better of us, and interfere with our
search for clarity [and] simplicity”.

The neo-justificationist framework has come under
serious criticism by philosophers of science for its focus
on probability as a guide to scientific endeavor
(Russell, 1946) and for placing a premium on auxiliary
hypotheses (Popper, 1959, 1963, 1983; Lakatos, 1970).
Long ago, Hume (1739:139) remarked that “even after
the frequent or constant conjunction of objects, we
have no reason to draw any inference concerning any
object beyond those of which we have had experience”.
This is not to suggest that statistical estimation is
beyond the pale of serious science, but it is limited to
abstractions.  Statistical estimation procedures are
designed to make generalities about the universe.
Whether or not humans are more closely related to
chimps or to gorillas is not an abstract generality.
When this logical relation is taken to be a symmetrical
one, that is, when specifics are inferred from generalities,
probability theory steps beyond its logical bounds.
Bernoullian (Bernoulli, 1713) probability theory, for
example, states that in the case of large numbers, the
objective (parametric) probability will lie very close to
the observed frequency and thus the observed
frequency will probably be a good estimate of the
objective probability.  What likelihoodists confuse in
this theoretical framework is that this relies on
repetitive cases and large numbers (truth being
obtained in the infinite).  In phylogenetics we are not
faced with large numbers or repetitive cases.  So long
as time is taken to be linear, history has occurred but
once.  Large numbers and their generalities cannot be
relevant to finite singular cases.  Consider some event’s
occurrence (1) or non-occurrence (0) and the series of
observations:

0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 1.

The relative frequency of occurrence is f(0) = 0.5 =
f(1).  In the infinite this holds as well.  In the more

limited case, however, it does not.  Suppose we only
observed five of these in a row.  There are 26 ways in
which we could have done this.  We are most likely to
have concluded that f(1) = 0.4  [f = 0.27], equally likely
to have concluded that f(1) = 0.0, 0.2, 0.6 or 1.0 [f = 0.15,
respectively] and least likely to have concluded that
f(1) = 0.8 [f = 0.12].  Even if we observed all possible
series of five observations in a row we would come to
the conclusion that f(1) = 0.48.  The reason for this
anomaly is that in the above series of events, even
though under the law of large numbers, given the
series in its infinite iteration, we can be certain that f(1)
=0.5, in the finite case there is more structure to the
data than mere stochastic process.  Bernoullian laws
cannot distinguish the above series from the following:

0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1,
0, 0, 1, 0, 1, 0.

The observation that some phenomenon matches the
expectations of a stochastic process “in the long run”
does not allow us to infer that the process is, in fact,
stochastic or that it will have been in any particular
case.  An example of this distinction, in a phylogenetic
framework, is given in Fig. 2. Across the taxa in this
illustration, there is an equal representation of A, C, G
and T (π = 0.25), but the process leading to that repre-
sentation differs in the two trees.  In one we may well
have the Poisson-directed Markov rule, but surely we
do not on the second representation of their relation-
ships.  In fact, as suggested by the analogy above,
although the complete representation of taxa in the sec-
ond tree indicates equal base compositions, if we had
been interested only in the relationships of a sub-clade
of this group, we would have come to a very different
conclusion.  The probabilist would be forced to con-
clude that the underlying processes vary according to
our sampling routine as opposed to history, that our
observations exert a direct causal effect on history.
This is a clear example of the logical Fallacy of Division
in which a property of the whole is also taken to be a
property of its parts (see also the distinction between
specification and scalar hierarchies in Frost and Kluge,
1994).
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Now consider flipping a coin 10 times.  In one series
we obtain:

H, H, H, H, H, H, H, H, H, H.

In another series we get:

H, T, H, H, H, T, H, T, H, H.

Assuming the coin is equally weighted, which obser-
vation is more probable?  The likelihoodist would
hasten to judge the second to be more probable than
obtaining 10 heads in a row.  However, if the events are
conjoined somehow, this need not be so.  That is, if get-
ting “heads” depends on what happened before it (is
historically contingent), probability theory falls apart
in the face of its requirement for sampling indepen-
dence.  What,  then, if  the events are wholly
independent?  If the coin is equally weighted, the prob-
ability of getting a heads on a toss is 0.5, and so is
tails.There are 256 ways in which we could have got
heads or tails in 10 successive throws, thus p(H, H, H,
H, H, H, H, H, H, H) = 0.004 and p(H, T, H, H, H, T, H,

T, H, H) = 0.004.  They are equally probable.  What if
we take the likelihoodist’s perspective of saying that
the probability of heads, as ascertained from the sec-
ond series, is 0.7?  In this case, the first series of throws
(p= 0.028) is actually more likely than the second (p =
0.0005) from which the rule was derived.  Again, this is
only damning of frequency probability calculus
applied to the particularness of the singular series, not
of its relevance to abstract generalities like “a throw on
average”.  Regarding phylogenetic inference, Hillis
(1995:4) argued for “efficiency... measured in terms of
[finding] the correct solution at a given frequency”.
This might be germane if, in fact, there were frequen-
cies of history.  Insofar as there is but one history for a
given set of taxa, Hillis’ rubric is left empty. 

There is also great confusion about prediction and
explanation (Scheffler, 1957), the most important being
that “an explanation is not fully adequate unless it
could have served as a basis for predicting the phe-
nomenon under consideration” (Hempel and
Oppenheim, 1948:137–138), which invokes a structural
identity for explanation and prediction.  However,
they are not the same.  Predictive success requires the
possibility of predictive failure.  That is, the dual truth
of some predictor (like a model) and some phenome-
non (character distributions) does not make the
predictor explanatory any more than a clairvoyant’s
correctly predicting that something will occur and it
then occurring (see also Wenzel and Carpenter, 1994).
Take, for example, the gambler’s fallacy:  Roberto Alo-
mar is batting 0.300.  He comes to bat three times in a
game and fails to get a hit.  The naive gambler bets
heavily on Alomar’s getting a hit on the fourth at-bat,
because he is “due”.  Our objective probabilist, like the
likelihoodist, sees this differently and asserts that,
because he is batting 0.300, he still has only a 30%
chance of getting a hit, but this too fails to take into
account the full scope of knowledge.  In the first place,
because Alomar failed to get a hit in his last three times
at bat, he is actually batting 0.297; the probabilities
have changed, because they are historically contingent
phenomena1.  More to the point, Alomar either will or
he will not get a hit and there is no probability that can
be assigned to that one event: betting on one event
alone is foolish.  Historical sciences are explanatory (or
postdictive) not predictive.  The explanation that best
explains the explanans must necessarily be preferred.

G C T A C G T A G T A T C A C G

A A A A C C C C G G G G T T T T

FIG. 2. Two sets of nucleotides with identical frequencies (0.25),
but with different histories.
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Whether or not it is predictive of some other phenom-
enon is irrelevant.

Popper’s (1983) critique of probabilism carried two
main points demonstrating the illogic of this inductive
framework.  If a highly probable theory is our objec-
tive, we must certainly fail.  In light of an infinite
possible number of theories, each with non-zero prob-
ability, all theories must actually have a probability of
zero.  In the likelihood framework, any hypothesis is
joint (tree + model) and there is an infinite number of
possible models, never mind that only a certain num-
ber of models has been offered so far. It was, at one
time, admitted that “there seems to be an infinite vari-
ety of possible models [and] No pretense is made that
Table 1 is exhaustive” (Felsenstein, 1973:241).  The like-
lihoodist must accept that any theory proffered must
then have a probability of zero.  However, the probabi-
list might counter in a Bernoullian appeal that this
theory utters more truths than some other theory.
Leaving aside the fact that this could never be demon-
strated, if the frequency of truthhoods is taken to be of
primary concern, the probabilist enters a quagmire.  If
the frequency of falsehoods stemming from a theory is
non-zero, then in the infinite case there will be an infi-
nite number of falsehoods, and in the face of an infinite
number of falsehoods, surely the theory is falsified (see
also Nagel, 1939).  Neo-justificationists like Bernoulli,
Carnap and Keynes each struggled with these logical
flaws and admitted that there was no avoiding them.
Felsenstein, Goldman, Hillis, Huelsenbeck, Rannala,
Swofford, and Yang have neither admitted these, nor
struggled with them, but they cannot avoid them any
more than could those who came before them.

1Actually (Jim Carpenter, pers. comm.) whether three at-bats drop Alo-
mar’s average to 0.297 depends on where we are in the season, and
basically would be a very special circumstance.  Early in the season, three
0-fer’s on a 0.300 average would drop the average a lot more, so his aver-
age would be well below 0.297, while late in the season the same sequence
would drop the average less, so that he would still be above 0.297.  For
illustrative numbers, consider that a 0.300 average the first week of the sea-
son would be based on something like three hits in 10 at-bats, so the collar
drops him to 0.230, while the last day in the season, where a key starter
like Alomar might have 600 at-bats, that means 180 hits gets 0.300, and
the 0-for-three leaves him at 0.298 (with a chance to end at 0.300 —
because it’s rounded up — if he gets a hit his last at-bat).  Which, contract
incentives being what they are these days, he might really press to do, so if
he hadn’t spat on any umpires recently you might bet on him to get that
hit, because he’ll press a little, not too much, and late in the game he’s
probably going to be seeing mostly fastballs anyway, even if it’s a blowout,
because everybody will be looking to get out of there.  All of which goes to
prove the point about historical contingency.

Evidence is merely that.  Hume (1739) was correct in
asserting that there is nothing ampliative in probability
that will garner us a metaphysical truth from finite
data.  The probability of the evidence (e) 

“does not make [the hypothesis] h 'probable': for to say that h is
probable is to say that it is more probable than not that h is true.
This would mean that it is more probable than not that h agrees
with all of the facts in the world: that there exists no counter
example, no fact that contradicts it.  But no finite evidence e can
ever tell us that” (Popper, 1983:346).  

There is, however, an alternative to a frequency
probability of historical estimation, and this is a logical
probability regarding corroboration in historical infer-
ence.  When it is recognized that explanation and
prediction are separate precepts in scientific under-
standing, then evidence and probability are seen to
stand in different relations: evidence to explanation
and frequency probability to prediction.  Our task in
the historical sciences is one of explanation, not of pre-
diction.  It matters little whether or not Caesar probably
crossed the Rubicon.  It matters only if Caesar crossing
the Rubicon is the better corroborated explanation of
the various explanans surrounding the historical ques-
tion.  Cladistic parsimony certainly can be thought of
in an inductive probabilist framework (Felsenstein,
1973; Sober, 1988; Goldman, 1990), but this is a mistake.
Casting cladistic parsimony in this light deviates from
its ontological basis as explanation of character distribu-
tions evidenced in the taxa we use (Hennig, 1966; Farris,
1979, 1983; Frost and Kluge, 1994).  Swofford et al.’s
(1996:426) dismissal of cladistic parsimony in a cita-
tionless footnote is shameful.

The search for truth is certainly what drives the
humanistic component of biologists’ desire to discover
and uncover.  Our assertions regarding the terminal
elusiveness of this truth may be seen by some as trou-
bling or even nihilistic.  We counter that it is the
impossibility of achieving truth that ensures the con-
tinuation of scientific endeavour, and that guarantees
our perpetual realization of that which is more valu-
able than truth itself — understanding.
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