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Abstract

Spatial patterns are ubiquitous in nature. Because these patterns modify the temporal

dynamics and stability properties of population densities at a range of spatial scales, their

effects must be incorporated in temporal ecological models that do not represent space

explicitly. We demonstrate a connection between a simple parameterization of spatial

effects and the geometry of clusters in an individual-based predator–prey model that is

both nonlinear and stochastic. Specifically we show that clusters exhibit a power-law

scaling of perimeter to area with an exponent close to unity. In systems with a high

degree of patchiness, similar power-law scalings can provide a basis for applying simple

temporal models that assume well-mixed conditions.
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I N T R O D U C T I O N

Spatial patterns and aggregated population distributions are

common in nature and in a variety of spatio-temporal

models with local ecological interactions (e.g. Pickett &

White 1985; de Roos et al. 1991; Hassell et al. 1991; Ives

1991; Davis et al. 1992; Levin et al. 1993; Tilman & Kareiva

1997). However, there exists a large number of simple

temporal models, descendants of the well-known Lotka–

Volterra equations, that completely ignore space and

consider only mean population numbers. Are these

‘mean-field’ or ‘box’ models mostly heuristic tools that

should be relegated to ecological textbooks and to

experiments that can impose well-mixed conditions? Or

are there conditions under which these models can

approximate ecological dynamics in systems with complex

spatial patterns? These questions underlie recent efforts to

derive macroscopic descriptions for quantities such as

population or patch type densities from microscopic

descriptions of local interactions (e.g. Levin & Pacala

1997; Filipe & Gibson 1998; Dieckmann et al. 2000; Socolar

et al. 2001). They also relate to earlier efforts to parame-

terize the effect of aggregated spatial distributions in simple

temporal models (e.g. Hassell & May 1974; Hassell 1978,

2000). These questions continue to be relevant today for

understanding increasingly complex systems whose interac-

tions are both local and nonlinear, for addressing dynamics

at increasingly large scales, and for formulating spatially

implicit models amenable to policy analysis (Roughgarden

1997).

Translating dynamics from microscopic processes, at the

individual or patch level, to macroscopic rates, at the

population or landscape level, is essentially a scaling

problem in the spatial dimension (Levin 1992). In parallel

to and separate from work on such dynamical scalings,

ecologists have also been interested in descriptions of how

patterns vary with the spatial scale of observation (e.g.

Bradbury & Reichelt 1983; Krummel et al. 1986; Palmer

1988; Hastings & Sugihara 1993). Power-law scalings have

attracted particular attention as signatures of scale invari-

ance, revealing the existence of heterogeneity over a broad

range of scales (Sugihara & May 1990). We demonstrate

here a link between a descriptive and a dynamical scaling in

an individual-based predator–prey model with complex

spatial patterns. Specifically, we demonstrate a relationship

between the geometry of the spatial patterns and a simple

modification of the mean-field equations proposed earlier

(Pascual et al. 2001) to approximate the long-term dynamics

of population densities at large scales. This simple approxi-

mation preserves the functional forms and modifies only the

parameters of the mean-field equations. The modified

parameters are exponents that account implicitly for the

effect of patchiness on the population rates. In this sense,

our approach is similar to that used in disease models that

incorporate exponents to modify the mass-action transmis-

sion term and empirically take into account heterogeneous
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mixing (e.g. Gubbins & Gilligan 1997; Finkenstädt &

Grenfell 2000). We propose that a key property allowing this

simple approximation in the predator–prey system is a

power-law scaling of the clusters, which we suggest will also

occur in other spatial stochastic systems for antagonistic

interactions in ecology, such as those for disturbance–

recovery and host–parasite dynamics. We further demon-

strate the robustness of our results, including the constancy

of the modified exponents and the applicability of the

simple model for different parameters of the individual-

based simulation. Although the focus here is on local

interactions in space, similar questions apply to models for

complex biological systems whose local interactions are

defined over a social, physiological, or ecological network.

T H E M O D E L

Our predator–prey model follows individuals in space and

time and is both stochastic and nonlinear (see Durrett &

Levin 2000; or Pascual & Levin 1999). Space consists of a

two-dimensional lattice in which each site is either occupied

by a predator, occupied by a prey, or empty. The state of a

site in the lattice changes in time according to the following

processes. Predators hunt for prey by searching within a

neighbourhood of prescribed size at rate 1. The parameter q

specifies the number of sites in this neighbourhood. Only

predators that find at least one prey can reproduce, and do

so with a specified probability b2 ¼ 1/10. The offspring is

placed in the original site of the predator which has moved

to the site of its prey. This local growth of predators can

correspond to two different biological scenarios: the

production of real offspring by reproduction or the

behavioural aggregation of predators near prey by immigra-

tion from outside the system. Predators that do not find

prey are susceptible to starvation and die with probability

d ¼ 1/3. This loss can describe the actual mortality of

starving predators, or their emigration from the system. The

prey reproduce locally only if a neighbouring site is empty at

rate b1 ¼ 1/3. There is movement through mixing: neigh-

bouring sites exchange state at a constant rate m ¼ 1. In the

model, stochasticity is demographic, representing the

uncertainty in the fate of an individual, and is implemented

through rates that specify probabilities for the associated

events to happen in a given interval of time. Specifically, an

event occurs at times of a Poisson process with the specified

rate. Simulations have shown that the spatial patterns

change continuously as clusters of prey form and disappear

through local growth and predation (see figure 1 of Pascual

& Levin 1999). Initially let us briefly summarize previous

findings which show that a simple modification of the

mean-field system accounts for the effects of spatial patterns

on mean population densities (once transients have died

out).

T H E M O D I F I E D M E A N - F I E L D A P P R O X I M A T I O N

The dynamics of population densities vary with the spatial

scale at which the system is observed, and in particular the

amplitude of fluctuations decreases with scale. At the scale

of the whole grid (e.g. 700 · 700 sites), population densities

show only small fluctuations around an apparent steady

state. By contrast, the mean-field model that one would

write if individuals were well mixed and space was

unimportant displays pronounced limit cycles (Pascual &

Levin 1999). These equations of the ‘Lotka–Volterra’ type

are

dp

dt
¼ b1p½1 � ðp þ hÞk� � h½1 � ð1 � pÞq�

dh

dt
¼ b2h½1 � ð1 � pÞq� � dhð1 � pÞq

ð1Þ

where h and p denote the predator and prey density,

respectively, the exponent k equals one since the prey

inspects a single site in its neighbourhood, and q equals

eight, the number of sites in the hunting neighbourhood of

the predator (Durrett & Levin 2000; Pascual et al. 2001).

A simple change to these ordinary differential equations

permits one to approximate accurately the long-term

dynamics of population densities in the spatial system

(Pascual et al. 2001). We have shown that the spatial patterns

in the original individual-based system reduce the per-capita

rates of predation and prey growth but preserve their

functional forms. The functional forms remain those of the

mean-field model but with modified parameters. For

example, in the per-capita predation rate [1 – (1 – p)q] the

exponent q, which specifies the size of the predator’s

hunting neighbourhood, takes the value of 3.7 instead of 8.

Similarly, the exponent k in the prey growth rate decreases,

and only these two changes in parameters are needed to

account for the effects of the spatial patterns on the

dynamics of mean densities. Thus, the resulting system of

ordinary differential equations takes a very specific form and

one that is particularly simple to write: one can just borrow

the expressions of the well-mixed model but modify the

parameters to account for the role of space.

We consider here one additional set of parameters within

this range, in which the neighbourhood for local growth and

predation is given by 4 neighbouring sites instead of 8. In

this case, the corresponding mean-field model exhibits

decaying oscillations towards an equilibrium, instead of a

limit cycle. As before, however, the mean-field model

approximates poorly the dynamics of densities in the spatial

system (Fig. 1). This is not surprising since spatial patterns

develop as before, with prey clusters continuously forming

and disappearing locally. By following the exact same steps

as in Pascual et al. (2001), we can compute a modified

exponent q ¼ 2.75, for which the mean-field equations

Cluster geometry and model simplification 413

�2002 Blackwell Science Ltd/CNRS



approximate accurately the long-term dynamics of the

spatial system (Fig. 1). It is important to note that the values

of the modified exponents are not obtained by fitting these

temporal trajectories but from an independent estimation of

the associated rates. For example, the exponent q is obtained

by fitting the per-capita predation rate [1 – (1 – p)q] as a

function of prey density p (Pascual et al. 2001).

Thus, for the two spatial simulations considered (with

q ¼ 8 and q ¼ 4, respectively) the mean-field equations,

with modified parameters but identical functional forms,

provide a simple model for the large-scale and long-term

dynamics of population densities. This simple approxima-

tion begs the question of why it works at all, given the

elaborate spatial patterns in the simulations. We focus next

on the modified exponent q of the predation rate.

C L U S T E R G E O M E T R Y A N D M O D I F I E D E X P O N E N T

We consider the clusters formed by the set of sites that are

not occupied by prey, and are therefore either empty or

occupied by predators. We refer to this set as the non-prey

set B. This set is of relevance to explain qm, the modified

value of q, and more generally the per-capita predation rate,

½1 � ð1 � pÞqm �, because in this rate, the term ð1 � pÞqm is

the probability that a predator is isolated from prey and

therefore, surrounded by non-prey sites. Recall that a

predator eats only if it finds at least one prey in its

neighbourhood. Thus, properties of the non-prey clusters,

the environment where the predators live, are relevant to the

isolation of predators and to the value of qm. A non-prey

cluster is defined as a group of non-prey sites connected to

each other by neighbourhood distances, where the neigh-

bourhood of a site is specified in the model.

Figure 2(a) shows the non-prey set B for the spatial

simulation with q ¼ 8. In Fig. 2(b), only the sites of this set

that make up its interior perimeter are kept. This perimeter

is defined as the set of sites in B with at least one prey in

their neighbourhood. Thus a predator in the perimeter is by

definition in contact with a prey. Comparison of Fig 2(a)

and (b) shows that the perimeter accounts for a large

fraction of the non-prey set almost everywhere in the grid. A
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Figure 1 Comparison of the dynamics of prey densities at large

scale in the spatial simulation (red, q ¼ 4), in the corresponding

mean-field model (blue, q ¼ 4, k ¼ 1), and in the modified

mean-field model (black, q ¼ 2.75, k ¼ 0.81). The dynamics of the

spatial simulation are shown only after transients have died out,

starting at time 3000. The modified mean-field model provides an

accurate approximation of population densities in the spatial

simulation only for the long-term dynamics after transients.

Simulations of the spatial system use periodic boundary conditions

and a grid size L2 ¼ 7002.

Figure 2 Non-prey clusters and their inter-

ior perimeter shown for 200 · 200 sites of

the grid: in (a) and (c), the clusters (black) are

shown for the simulations with q ¼ 8 and

q ¼ 4, respectively; in (b) and (d), only the

sites within these clusters that belong to

their interior perimeter are shown in the

same colour. Comparison of the surface

occupied by the clusters to that occupied by

their interior perimeter (black sites, a and b,

c and d) reveals that the perimeter accounts

for a large fraction of the clusters’ area.

414 M. Pascual et al.

�2002 Blackwell Science Ltd/CNRS



similar pattern is seen for the simulation with q ¼ 4 (Fig. 2,

compare c and d). Because this property of the perimeter

will be key to our argument later, we show next that it is

made possible by a particular scaling of the clusters of B.

Predators in this perimeter, by definition, are not isolated.

Thus, isolated predators find themselves in the complement

of this set, in the interior of B, which we call BI. We denote

the respective measures (or densities) of these sets in the

lattice by b and bI, and the interior fraction of B by F, with

F ¼ bI

b
:

A perimeter that accounts for a large fraction of the non-

prey set implies a low interior fraction F (23% and 28% for

q ¼ 4 and q ¼ 8, respectively). For sufficiently large lattices

and clusters of regular geometry, such as that of circles and

squares, the presence of large non-prey clusters would

unavoidably lead to a large interior fraction F. To

understand why this is not the case here, we consider the

size and the interior perimeter of individual clusters. The

size s is given by the number of sites in a cluster and its

perimeter ts, by the subset of sites that are in contact with at

least one prey. Figure 3(a,c) shows that the perimeter scales

as a power law with the size of the clusters, and that it does

so with an exponent close to unity (0.98 and 0.97 for q ¼ 4

and q ¼ 8, respectively). Thus, the perimeter of individual

clusters grows as fast as their size, and close to the fastest

possible rate. In this way, the interior fraction f of individual

clusters, given by

f ¼ ðs � tsÞ
s

; ð2Þ

becomes independent of cluster size. Most important to our

argument, f does not grow with size, and is comparable for

small and large clusters (Fig. 3,b,d). The geometry embodied

in the scaling ts » s is thus one possible way to achieve a low

interior fraction of the whole set B.

We return now to the value of the modified exponent q to

establish its relationship to the geometry of the system. We

start by assuming that predators are distributed at random in

B, an assumption we later revisit. Then, the probability p
that a predator is isolated can be computed as

p ¼ F : ð3Þ

On the other hand, the probability of isolation can also be

computed as

p ¼ ð1 � pÞqm ð4Þ
where p is the density of the prey, and the exponent qm

corresponds to the effective number of sites in the

neighbourhood of an isolated predator. If both prey and

predators were well mixed, qm would equal q, the original

size of the neighbourhood in the spatial simulations.

However, the prey forms clusters and as a result, the space

in which the predators live has a specific geometry, which

modifies q. The resulting value qm is obtained by equating

eqns 3 and 4, which gives

qm ¼ logðFÞ
logð1 � pÞ : ð5Þ

Thus, qm is a function of the interior fraction F, or

equivalently, of its complement, the perimeter fraction of

the non-prey set. Since b ¼ (1 – p), we can also write

qm ¼ logðbI Þ
logðbÞ � 1; ð6Þ

which shows explicitly the dependence of qm on the

geometry of B. Table 1 gives the estimated value of qm

and compares it to the modified exponent q of the mean-

field model for both simulations. Equation 6 provides a

surprisingly good estimate of such exponent. This result
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Figure 3 The perimeter of individual non-prey clusters scales lin-

early with their size in a log–log plot: in (a), for the spatial simu-

lation with q ¼ 8; in (c), for that with q ¼ 4. Notice that the size

of clusters for the simulation with (a) q ¼ 8 displays a gap at

intermediate sizes. Nevertheless, for all sizes, the points relating

perimeter to size fall on the same line. As a result of the scaling of

perimeter with size, the interior fraction f of the clusters remains

constant with size. The resulting constancy of the interior fraction

f with the size s of the clusters holds better for (d) q ¼ 4 than for

(b) q ¼ 8. For both, however, the largest clusters exhibit a small

interior f, comparable to that of clusters orders of magnitude

smaller.
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confirms that the isolation of the predators itself, key to the

formulation of the predation rate in the simplified model,

can be estimated directly from the interior fraction F as

postulated in eqn 3. The isolation of the predators created

simply by the ratio of interior to total area of the space in

which predators live, explains a reduction by almost one-

half of the exponent from the well-mixed to the spatial case.

To close the argument we return to the assumption of the

random distribution of predators in the non-prey set and

relate it to the described geometry of this set, specifically to

the perimeter scaling. From the local rules and parameters of

the individual-based simulations, we do not expect the

predators to be randomly distributed in B: predators must

find prey to survive and reproduce with probability b2, and

they do so only if they are in the perimeter of B; the resulting

offspring are initially located at most one site away from this

boundary; predators that deplete local clusters of prey find

themselves isolated and die with probability d. Only for high

b2 and low d, we expect the resulting distribution of isolated

predators to be close to random, with a large fraction of

predators in the interior of the non-prey set. For our

simulations, however, most of the predators are in contact

with the prey, lying in the perimeter of B, and most of the

isolated predators are a single site away from their meal.

But are these observations really inconsistent with the

assumption of a random distribution of predators in B? We

claim that they are not, and that this is the case in these

simulations because the interior fraction F is low. For low F,

the perimeter is a large fraction of the non-prey set. Thus, if

predators were distributed at random in this set, they would

find themselves largely in its perimeter, and those that do

not, the isolated predators, would be for the most part in

contact with this boundary. As shown earlier, the low value

of F is itself related to the power-law scaling of the

perimeter with size for individual clusters, which leads to

clusters whose interior fraction f is independent of size. The

constancy of f further implies that predators live in

environments with the same geometry, with regard to their

proportion of perimeter to interior, whether in small

‘‘ponds’’, ‘‘lakes’’, or ‘‘oceans’’.

The proportion of perimeter to interior is also independ-

ent of the size of the lattice itself. To show this, we first

observe that both the total size and the total perimeter of B

scale as a power law with the size of the lattice and with the

same exponent of two (results not shown). From these

scalings, it follows by definition that F is constant with the

size of the lattice. Then, for all clusters, their interior

fraction f also takes this constant value since the scaling ts » s

implies that f ¼ F.

R O B U S T N E S S O F T H E R E S U L T S

We end with evidence for the robustness of our results

to variation in the parameters at the individual level. We

focus first on the relationship key to our argument

equating the isolation of the predators p to the interior

fraction F. Figure 4(c,d) shows that for different values

of the probabilities of starvation d and reproduction b2,

the numerical value of p in the simulations is close to

that F. This similarity holds for different values of the

prey’s growth rate (b1 ¼ 0.1, 0.4, and 0.7, results not

shown). In these plots, high values of F > 0.5 are

obtained only for a combination of high b2 and low d.

In this case, prey are sparse, forming small clusters.

Predators deplete local clusters fast, giving rise to many

offspring that survive a long time but become isolated

and distributed randomly in the interior of the non-prey

set. It is away from these extreme parameter values,

when prey are not sparse and prey patchiness develops,

that the equality of p and F becomes non trivial. The

argument presented in this paper is relevant for this large

region of parameter space.

Further evidence for robustness reveals the constancy of

the modified exponent qm across parameters of the

individual-based model. Equation 5, which relates this

exponent to F, holds regardless of parameter values

(Fig. 4 a,b). These graphs demonstrate an even stronger

constraint between dynamics and geometry the exponent

remains constant as the density of the prey and the isolation

of the predators vary. Figure 5 shows that the proposed

modified mean-field model with the same modified expo-

nents approximates well the long-term dynamics of popu-

lation densities for different parameters values of the spatial

simulations.

Finally, the power-law scaling relating perimeter to area of

the non-prey clusters is also robust to parameter variations.

This scaling holds with an exponent close to one across

parameter space, breaking down progressively only for large

b2 and low d when prey are sparse and finite non-prey

clusters span too small a range. The exponent of the power

law falls in [0.88, 0.99] and [0.86, 0.97] for q ¼ 4 and 8,

respectively, for 0.1 £ b2 £ 0.7, 0.1 £ d £ 0.9, with b1 set at

0.1, 0.4 or 0.7.

Table 1 Comparison of the exponent in the per-capita predation

rate [1 – (1 – p)q]. The original value of q is that used in the spatial

simulations and corresponds to the number of sites in the neigh-

bourhood of the predator. The modified value of q is that for

which the mean-field model approximates accurately population

densities at large scale, once transients have died out. The value qm

is defined in the text and is determined from geometrical con-

siderations

Original q Modified q Estimated qm

8 3.70 3.20

4 2.75 2.75
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Figure 4 (a, b) The modified exponent qm is

constant across parameters at the individual

level. The symbols (*) plot the value of F as

a function of mean prey density p, both

computed from the spatial simulation, for

different parameters b2 (in [0.05, 0.85]) and

d (in [0.15, 0.95]). The curves plot the

expected relationship between these varia-

bles (equation 5) for a fixed value of (a)

qm ¼ 2.75 and (b) qm ¼ 3.7. (c, d) The

similarity of F and the probability of isola-

tion of a predator p also holds across the

same range of parameters. Similar results are

obtained for different values of the prey’s

growth rate b1 (0.1, 0.4, and 0.7).
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Figure 5 The modified mean-field system

with fixed exponents q and k approximates

the dynamics of population densities for

different values of the parameters b2 and d.

In (b) and (d), the error of the approxima-

tion er f is computed as jps � pMMF j=ps ,

where ps is the mean prey density in the

spatial simulation and PMMF the prey density

in the modified mean-field model, both after

transients have died out. In (a) and (c), the

corresponding value of P is shown. (Top

panels: q ¼ 4 and k ¼ 1 in spatial simula-

tion, q ¼ 2.75 and k ¼ 0.81 in MMF;

bottom panels: q ¼ 8 and k ¼ 1 in spatial

simulation, q ¼ 3.7 and k ¼ 0.62 in MMF).

Similar results are obtained for different

values of the prey’s growth rate b1 (0.1, 0.4,

and 0.7).
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D I S C U S S I O N

We have shown that an individual-based predator–prey

model generates long-term spatial patterns characterized

by a power-law scaling of the perimeter of the clusters

with their size. This scaling was related to an implicit

representation of space in a simple temporal model for

the long-term dynamics of population densities. Numer-

ous power laws have been described for spatial patterns

in nature (Sugihara & May 1990; Hastings & Sugihara

1993). Power-law scalings similar to the one described

here can provide a basis for applying mean-field or ‘box’

models with modified parameters, in systems for which

well-mixed conditions do not hold and interactions and

movement are local, resulting in patchy distributions. The

empirical implication is that functional responses for well-

mixed systems but with modified parameters, can yield

reasonable approximations to per-capita population rates

at large scales. Empirical fits of such functional responses

would yield the modified parameters, in our case

exponents, and not the values expected under well-mixed

conditions. These modified exponents account for the

effect on population rates of spatial patterns at smaller

scales.

We conjecture that similar results will apply to other

spatio-temporal models with local and antagonistic eco-

logical interactions, specifically those whose corresponding

well-mixed dynamics display either decaying or sustained

cycles. Candidates include spatial models for host–parasite

interactions and models for gap dynamics through physical

disturbances. This conjecture is supported by recent

findings showing that two other lattice models display

similar cluster-size distributions to that of the prey in our

predator–prey system (Pascual et al. in press). Although

the systems differ in the details, they share local processes

of growth and inhibition that can lead to decaying or

persistent cycles under well-mixed conditions. Future work

will address the applicability of our results to dynamics

that treat space continuously and incorporate larger

neighbourhoods of interaction and different movement

patterns and distances. We expect the results to break

down progressively with larger neighbourhoods. In the

extreme limit of large q, the mean-field model itself with

no modification of the exponents should hold. We have

treated here the opposite case of local neighbourhoods

composed of near neighbours. What happens in between

remains to be examined. Ultimately, however, no single

approach to treat space implicitly will hold universally.

There is clearly a variety of spatial patterns and

mechanisms generating these patterns in nature. But the

results presented here suggest that a key issue is to

identify properties of the spatial patterns that underlie the

success of a given approach.

The modified mean-field model provides a semi-empirical

method to scale the system from local (individual or patch)

to large (population or landscape) levels. The method can be

labelled as semi-empirical because the computation of

modified exponents requires knowledge of the spatial

distributions at the local level to fit the functional responses

(Pascual et al. 2001). Semi-empirical approaches to scale

spatio-temporal dynamics complement more formal (ma-

thematical) ones such as the method of moments. Moment

approximation methods (or pair approximation for discrete

states) modify both the functional forms and the dimen-

sionality of mean-field systems by adding variables for

spatial variances and covariances (e.g. Bolker & Pacala 1999;

Sato & Iwasa 2000; Keeling et al. 2001). By contrast, the

number of variables and the expression of the functional

forms are preserved in our simple model. Furthermore,

formal methods are applicable only when the details at small

scales are known and sufficiently simple to allow the

derivation of equations for aggregated quantities and their

spatial moments. The parameterization of spatial effects on

temporal dynamics, however, may often be required for

systems in which knowledge and measurements of small

scale processes are unavailable. In such cases, more

empirical approaches are needed which represent space

implicitly by using properties of the spatial patterns (e.g.

Hassell & May 1974; Hassell 1978, 2000). Modified mean-

field models provide one possible avenue. We know how to

write the equations and all spatial effects are captured in the

modified parameters.
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