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Abstract

A sequence of technological breakthroughs are anticipated but their magnitude and timing are
uncertain. A firm, operating in such an environment, must decide how much capacity of the current
best available technology to acquire to meet the future demand growth. It must also determine
whether to replace any of the older vintages partially or completely, with the focus on obsolescence
rather than deterioration as the motive for replacement. Such decisions are of the essence in
electronics and other industries characterized by rapid technological change. Our analysis shows
that it is optimal to purchase, dispose and replace capacity in amounts equal to the demand
increments for an integral number of periods. Also, disposal of excess capacity need be considered
only in a period when a new technology appears, and replacement decisions need be made only in
periods when capacity is purchased to meet future demand. Using these results, a highly efficient
regeneration point based dynamic programming recursion is presented. Computational experience

suggest that it is possible to solve moderate size problems on a personal computer.



1 Introduction

The growth of electronics has had a significant impact on the pace of technological change in a
variety of industries. In industries such as computers, telecommunications, medical equipment
and machine tools, the silicon chip has resulted in new generations of products with superior
performance. The chip industry itself undergoes even faster technological change. For example,
successive generations of memory chips have appeared regularly every 3 to 5 years. (4-megabyte chip
samples were first shipped in 1988, 16-megabyte samples were shipped in 1991 and 64-megabyte
samples are expected in 1994, as reported in Business Week 1990). Less frequent but major
innovations also occur in other industries such as automobiles and pharmaceutical. Managers face
a difficult choice in such environments — whether to acquire (or upgrade to) the latest technology
that appears, or to wait for the next innovation. By upgrading to the latest technology, the firm
reaps the benefits of the latest technology, say in terms of lower operating costs. On the other
hand, the firm may have to pay the acquisition costs and may then find that another innovation

appears soon, making its previous technology investment relatively obsolete.

The other key tradeoff that a manager faces in making technology acquisition decisions is the
issue of how much capacity of new technology to acquire and how much capacity of the older
technology to dispose in any period. Scale economies in acquiring and disposing capacity and
cost of carrying excess capacity need to be considered in making these decisions, in addition to the
factors mentioned earlier. There is also an interesting interplay of scale economies and technological
uncertainty. For instance, purchasing small capacity increments enables a firm to hedge against

the uncertainties of rapid technological obsolescence.

In this paper, we focus on the impact of such uncertain technological breakthroughs, say in
equipment technology, on the capacity acquisition and replacement decisions of a firm that uses
this technology in its production process. As we have pointed out, the manager has to consider a
number of complex tradeoffs in making these decisions. The objective of this paper is to develop
and solve a realistic model of the technology acquisition process to help decision-makers in such
environments. In particular, this paper was motivated by the problem faced by a firm that leases
mobile magnetic resonance imaging (MRI) equipment to hospitals across the country. The MRI

equipment are expensive (upto $6 million) and major technological upgrades appear about once in



three years (Van Horssen 1991). The firm has over 50 MRI units and is often confronted with the

issue of whether or not to upgrade and how many of the units to upgrade.

We consider a discrete time model with a sequence of breakthroughs that are separated by
stochastic time intervals. When a breakthrough occurs, a new equipment vintage becomes available.
We assume that this new vintage dominates the old one, that is, given a choice of which vintage
to adopt, for any size expansion or replacement, the new one would be preferred. The level of
technology achieved with a breakthrough is allowed to be one of several higher levels. In this
model, we assume a finite number of possible technology levels, and that the inter-arrival time
distribution between breakthroughs depends only on the last technology level achieved. Hence, we

can model such issues as saturation in breakthroughs as higher technology levels are achieved.

We consider a model with purchase costs for the acquisition of capacity that are a function
of the amount and vintage of capacity. The other costs considered are costs of carrying excess
capacity and operating costs, both of which depend on the vintage. We also allow for disposal of
older vintages in any period, with a salvage cost function that depends on the amount and vintage
of capacity salvaged, and the new vintage available. The demand for capacity is deterministic and
nondecreasing over time. In each period, the firm has to decide how much capacity of the current
best vintage to acquire, and how much capacity of older vintages to replace. In the next section,
we briefly review the relevant literature. In Section 3, we present the general model considered
here and prove some key properties of the model that are used in subsequent sections to provide
efficient stochastic dynamic programming recursions. In Section 4, we present the recursion for the
case where capacity once used cannot be replaced and in Section 5 we present the recursion for the
case where used capacity can be replaced. Results of a computational study are briefly discussed

in Section 6. In Section 7, we point out some future research directions.

2 Review of the Literature

We briefly review some of the papers in the machine or technology replacement literature and the

capacity expansion literature (Luss 1982) that address the key issues identified earlier.

The early equipment replacement models (refer Pierskella and Voelker 1976 for a survey), with



just one technology, simply consider the issue of optimal frequency of replacing machines to trade
off the increased operating and maintenance costs with age of machine against the fixed costs of
replacing machines. Sethi and Chand (1979, 1982) consider deterministic machine replacement
models with a choice of machines available. They consider an improving technological environment
over time, with better machines available with certainty in successive time periods . For such
models, they present forward algorithms and planning horizon procedures. Jones, Zydiak, and
Hopp (1991) consider a more general model with multiple (or parallel) machines, and fixed and
variable costs associated with replacing the machines, with the number of machines constant over
time. They present two key results to reduce the computational effort in determining an optimal

replacement policy.

There have also been a number of papers in the replacement literature, wherein the time of
appearance of a new technology (machine) is not deterministic. Goldstein, Ladany, and Mehrez
(1988) consider a machine replacement problem with one anticipated technological breakthrough
characterized by a constant hazard rate. They formulate a stationary dynamic programming model
and develop a solution procedure, using the approach of Sethi and Chand (1979), to determine the
replacement timing of the current technology machine. Nair and Hopp (1989) consider a similar
model with one anticipated breakthrough but do not restrict themselves to constant hazard rates.
Also, they use a forecast horizon approach to find the optimal decision. Balcer and Lippman
(1984) present a rich model with a sequence of technological innovations that may or may not
be adopted, with uncertainty in the time between discoveries, the size of each discovery as well
as the future pace of discovery. While the stochastic evolution of technology in our paper is
modeled in a manner similar to theirs, the focus of our paper is different from theirs in a number
of important ways. First, the choices before the firm in Balcer and Lippman are to either replace
the current technology with the new technology or do nothing. In our paper, the firm can decide
the optimal amount of capacity of the new technology to purchase. This allows the firm to hedge
against uncertainty in the future by buying smaller capacity increments. Hence, we do not have
a replace all or nothing scenario. Second, Balcer and Lippman provide economic insights into the
impact of expectations of future technological developments on the replacement decisions. The
focus of our paper is operational rather than economic, in that we aim to develop efficient solution
procedures to determine the optimal amount of capacity of different technologies to be purchased

and replaced. However, we do present a number of key results that provide new insights into the



impact of future technological developments on capacity acquisition and replacement decisions. The
stochastic evolution of technology is similar in Monahan and Smunt (1989), where they consider
a Markov model with a sequence of technological innovations and run simulations to analyze the
impact of uncertainty in interest rates and state of technology on the rate of technology acquisition.
Cohen and Halperin (1986) considered a model with a choice of technologies available, where a
technology is fully replaced by another technology for some fixed cost. They derive interesting

analytical results on the types of technologies likely to be acquired over time.

Capacity expansion models, unlike the machine replacement models, permit consideration of
scale economies. Further, in the environments considered in this paper with high technological
obsolescence and uncertainty, permitting the incremental acquisition of capacity makes the model
richer. While there is a vast literature on capacity expansion models (Freidenfelds 1981, Luss
1982), we are not aware of any papers that consider capacity expansion issues in the context of a
sequence of random technological developments. We briefly review some related work in the capacity
expansion literature that also addresses technology acquisition issues. Hinomoto (1965) considers
a deterministic model of capacity expansion when facilities undergo technological improvement.
Gaimon (1989) presents a dynamic game analysis to understand the impact of competitive forces
on the acquisition of new technology capacity and disposal of old technology. Gaimon (p. 410)
mentions at the outset that “.. firms also run the risk of making an enormous investment in
technology that may soon become obsolete.” Klincewicz and Luss (1985) consider the issue of
when to install facilities of fixed capacity using current technology, when there is spare capacity of
the old technology. They provide procedures for determining the optimal timing decisions under

linear and non-linear demand growth.

3 The Model and Some Properties

In this section, we first present a general model for the problem. We then generalize some of the
regeneration properties present in simpler models (Wagner and Whitin 1958, Veinott 1966) to the
model considered here. In each period, there is a certain demand for additional capacity. Let d;
denote the increase in demand for capacity in period ¢t. We assume that d; > 0. Many papers in the

capacity expansion literature make this assumption (Luss 1982) and it appears to be reasonable in



dynamic environments, where the appearance of new technologies stimulates rapid demand growth.

The sequence of events in any period is as follows. The information regarding the appearance
of a new technology becomes available at the beginning of a period. Based on this information,
capacity disposal, if any, takes place followed by possible acquisition. We now define the decision
variables for the model. Let z4; denote the amount of vintage m capacity acquired in period ¢ and
disposed in period j (> t). The index j in variable zm; insures that capacity disposed in a period
must have been purchased earlier. Let Yy,;: be the total vintage m capacity acquired in period ¢,
ie.,

Ymt = Z.’I}mtj Vm,t (31)

i>t

Let Zy,; be the total vintage m capacity disposed in period j, i.e.,

ij = metj vm, j (3'2)
t<j

Let the excess capacity of vintage m at the end of period ¢ be denoted by I,;. The firm does not
allow capacity shortages. Also, let Z¢,, denote the amount of excess or unused capacity of vintage
m disposed in period t. It is useful to distinguish between unused and used capacity when the
salvage cost depends upon whether the capacity has been used or not. For example, replacement
of used capacity may involve disruption of production activities, in which case the salvage cost of
used capacity will be higher than that of unused capacity. As another example, a car with no miles
on its odometer will fetch a far higher price than a car with even just 100 miles on it. Now, the

amount of unused capacity disposed in a period cannot exceed the amount available. That is,
Zpmj <Imjo1 Ym,j (3.3)
The equation balancing the demand and supply of capacity in each period is,

Y (pt-1 + Yot = Zpp — Ipt) = dp Vi (3.4)
P

Finally, the non-negativity conditions on variables are

Tmijs Imty Yty Zmty Zoy 20 YLt j (3.5)



The total vintage m capacity utilized in period ¢ is,

= m0+zzxmrj —Imt

Tt >t

We now specify various costs in the model. The expected cost of acquiring technology m capacity
in period ¢t is represented by fm: (-). Increasing values of m correspond to better technologies. The
acquisition cost for technologies not yet available in a period is assumed to be infinite. The cost
of carrying a unit of excess capacity of technology m in period ¢ is denoted by hm: (-). We assume
the cost functions fm: (-) and hpy, () are concave to reflect economies of scale; this is a common
assumption in the capacity expansion literature (Luss 1982). The operating cost per unit capacity
for vintage m, when used in period t, is ¢m:. Note that frme (+), Ame (), and ¢y are all functions of
time and of the vintage. This can be used to model phenomena such as declining purchase cAosts

with time (due to wider acceptance of a technology), and lower operating costs for newer vintages.

When a new technology appears, there may be excess (unused) and used capacity of older
technologies, both of which may be disposed fully or partially. Let gpm: (-) denote the net salvage
cost (may be negative) from disposal of excess capacity of technology p in period ¢, given that the
latest technology available is m (> p). Similarly, gpm: (-) denotes the net salvage cost (potentially
negative) from disposal of used capacity of technology p in period ¢, given that the latest technology
available is m. The salvage costs gpms () and Gpm: (+) are functions of time (t), the vintage disposed
(p), and the best vintage currently available (m). Hence, in our model, the salvage cost changes
due to the appearance of new technologies, rather than due to age. This is unlike in the machine
replacement literature, where salvage values are a function of the age of the machine. This is because
the focus in the machine replacement literature is the deterioration of machines with age, leading
to an increase in operating and maintenance costs that induces replacement. However, the focus
in this paper is on the increasing obsolescence of an older technology with the appearance of newer
technologies, rather than on deterioration. In industries such as computers, where electronics has
led to rapid technological changes, obsolescence is the primary motivation for replacement rather
than physical deterioration. For example, the salvage value of a PC drops significantly when a
more powerful PC is introduced, but is not very sensitive to when it was purchased or how long it

was used.



We assume the following functional form for the salvage cost functions gpm: (-):
gpmt (2) = Spme 6 (2) — Tpme2

where §(z) = 1if 2 > 0, and §(2) = 0 if 2 = 0. The non-negative parameters spm; and rpmq
represent respectively, the setup cost and unit revenue from the disposal of technology type p,
when m is the current best technology available. The cost of disposing used capacity, gom: (-) is
expressed similarly. Other papers in the literature, including those by Love(1973) and Chand and

Morton(1982) have used similar salvage cost functions.

The probabilistic evolution of technology is modeled as a function of two factors: (i) the number
of periods between two consecutive innovations and (ii) the new level of technology achieved with
an innovation. Let us assume that the number of possible technology levels achievable within the
potential problem horizon is M, with technology level (m + 1) representing a clear improvement
over technology m; m is assumed to be integer-valued. In particular, we assume that in the chain of
technological improvements, each successive vintage dominates all others that have appeared before.
Given a choice, one would always prefer to acquire the newest vintage. We model the evolution
of technology as a semi-Markov process (Ross 1983). Given that vintage m has just become
available, let Qm (-) and g, (-) denote the cumulative distribution function (cdf) and probability
distribution function (pdf) of the amount of time until the next vintage becomes available. We
assume ¢, (0) = 0. Hence the number of periods between the appearance of successive vintages
depends on the vintage m last achieved, but are independent otherwise. The level of technology
available, once a breakthrough occurs, changes according to a Markov process with a one-step
transition matrix P = [Py,] , where Py, is the probability that vintage n appears, given that the
last vintage that appeared is m. The actual costs of acquiring the technology may depend on the
firm’s past experience and ability in implementing new technologies and this could be incorporated

in the expected cost function f; (-).

A mathematical programming formulation of the problem can now be given as:

T<tj>t
+0pmt (251) + Bpmt (Zot — 231)

Minimize
Zprjy IN, YPhZPt’Z;Q t=1 m(l),m(?),,m(t)

T m(t) (fpt (Ype) + hpt (Ipt) + cpt (Ipo + 2 2 Tprj — Ipt) )

p=1



subject to: (3.1), (3.2), (3.3), (3.4), and (3.5).

The expectation operator E in period ¢ is defined over the joint distribution of the technology
levels m(i), i = 1,...,t, where m(i) is the best technology level available in period i. The joint
distribution, in turn, is a function of the time to discovery distribution @;(-) and the one-step
transition matrix P. The first term within the summation signs is the acquisition cost for capacity
purchases of technology type p made in period ¢t. The second term is the cost of carrying excess
capacity. The third set of terms is the operation cost in period ¢ for technology p. The fourth and
fifth terms, respectively, are the salvage cost of disposing excess and used capacity in period ¢. In
any period ¢, the only technologies that can be acquired, operated and disposed are those that have

appeared until period t, i.e., p = 1,....,m(t).

We now present our main result that is critical in reducing the state space.

Theorem 1 There exists an optimal solution to the problem that has the following properties:

(i) One would never purchase capacity of a vintage in a period when there is excess capacity of

the same or different vintage on hand, i.e.,

Ipt—1 Yme =0 for all p,m,t (3.6)

(ii) One would never purchase capacity of more than one vintage in any period, i.e.,

Ypt Yt =0 for all p,m,t (3.7)

(iii) At any time, there would never be excess capacity of more than one vintage on hand, i.e.,
Int Im¢ =0 for all p,m,t (3.8)
Proof First, for a given sample realization, note that the objective function is deterministic.

It is also concave since the functions f(-) and h(-) are concave, gpmt(-) and Gpme () are fixed

charge functions, and operation costs are linear. Second, we have a set of linear constraints.



Given these two observations, for a particular realization of the stochastic evolution of technology,

the optimal solution is at an extreme point. By definition, an extreme point solution dominates all

non-extreme point solutions for any set of values of the objective function coefficients (i.e., for any
sample realization). Observe that the only uncertainty in the formulation is in the objective function
coefficients (costs and salvage values), since demand is known. The expected cost function is simply
a weighted average of the total cost for all the sample realizations (i.e., a linear combination), and
so an extreme point solution dominates non-extreme points in terms of expected costs too. Now,
note that in equations (3.1-3.4), all the variables—z, I, Y, Z and Z¢ appear exactly once with
a positive (+1) coefficient; in all other occurrences they have a negative (—1) coefficient. This
can be verified simply by transferring the right hand side terms to the left in constraints (3.2-3.4)
and transferring the left hand side terms to the right in equation (3.1). Also, all the variables are
non-negative from (3.5). As a result, the constraint matrix determined by equations (3.1-3.4) is
Leontief (Veinott 1969). From the characterization of extreme points in Leontief matrices (Veinott
1969, also Theorem 6 in Veinott 1968), it follows that if more than one variable appears with a
positive coefficient in the same constraint, then only one of these variables can be positive in the

optimal solution. Hence, conditions (3.6-3.8) follow directly from constraint (3.4). o

Regeneration results similar to those in Theorem 1 have been developed in earlier work (Veinott
1969, Zangwill 1968, Love 1973, Chand and Morton 1982) in a deterministic context and for models
without replacement. Next, we state a number of key implications of Theorem 1 that will be useful
in developing the recursive formulation in the next two sections. The conditions (3.6-3.8) together

imply directly that,

Corollary 1 There exists an optimal solution in which capacity purchases to meet future demand

and excess capacity disposed correspond to demand increments for an integral number of periods.

If this were not true, one would end up in a period with excess capacity on hand that is not
enough to meet the demand increment for that period. Then capacity will have to be acquired in

that period, violating condition (3.6).

Corollary 2 There exists an optimal solution in which whenever a unit of used capacity is replaced,

all units corresponding to that vintage are replaced.



Consider a situation when the firm has an amount of excess capacity on hand that is just enough
to meet the demand increment for the current period. The firm can either put this capacity to use
or dispose it altogether and acquire another technology to meet this demand. It will not be optimal,
according to Corollary 1, to dispose the excess capacity partially. Now, consider the replacement
of used capacity of a technology. All past demand increments met by this capacity can be thought
of as demand increment for the current period with an amount of available excess capacity that is
just enough to meet this demand. The fact that this “excess” capacity has been used earlier has
no relevance, except that cost function g(-) instead of g(-) shall be used for deciding whether to
dispose or not. As a result, the firm can either (continue to) put this “excess” capacity to use, or
dispose it altogether and acquire another technology to meet this demand. In other words, it will

not be optimal to dispose the used capacity of a technology partially.

Corollary 3 There exists an optimal solution in which all capacity purchases and disposals corre-

spond to an integral number of periods.

According to Corollary 1, purchases and disposals of excess capacity correspond to an integral
number of periods. We need to show that the same holds for the disposal of used capacity (and
corresponding purchase) as well. Condition (3.7) together with Corollary 1 imply that demand
increments for any period must have been satisfied entirely by capacity of one technology. That is,
if a technology is in use, its capacity must be equal to demand increments for an integral number
of periods. Now, according to Corollary 2, used technology can only be replaced in its entirety.
As a result, any used capacity disposed (and correspondingly replaced) must be equal to demand

increments for an integral number of periods.

Corollary 4 There exists an optimal solution in which capacity meant to satisfy demand incre-

ments for earlier periods is purchased before purchasing capacity meant for later periods.

If this were not true, we would have excess capacity meant for later periods on hand when

acquiring capacity for earlier periods, violating condition (3.6).

For similar reasons, we have:

10



Corollary 5 There exists an optimal solution in which excess capacity meant to satisfy demand

increments for later periods is disposed before disposing capacity meant for later periods.

Let a period ending with zero excess capacity on hand be referred to as a regeneration period.
A period in which capacity is acquired to meet future demand increments is referred to as an
acquisition period. From the above four results, it is clear that capacity of exactly one vintage is
acquired in an acquisition period to meet the demand increments for all the periods until the nezt
acquisition period. That is, all the excess capacity of an earlier vintage must be completely disposed

(or consumed) before purchasing capacity of a later vintage.

Note that, if technological breakthroughs were predictable, i.e., if the sequence of discoveries
and their timing were all known, it would never be optimal to acquire excess capacity and phen
dispose it unused at a future time. It is the uncertainty in the nature and timing of breakthroughs
that makes disposal of unused capacity possible. However, not all excess capacity need be disposed
and the new vintage adopted immediately. For instance, if further breakthroughs are anticipated
soon with high probability, the firm may be unwilling to dispose all of the excess capacity and
adopt the new vintage immediately. The firm may dispose part of the excess capacity and wait
for even better vintages. Corollary 5 provides us some guidance in restricting the choices to be
considered in deciding what part of the excess capacity to dispose. More generally, the conditions
in Theorem 1 and the corollaries 1 to 5 drastically reduce the choices to be considered in deciding

how much and what technology type capacity to purchase, dispose and replace. Finally we have,

Corollary 6 There erists an optimal solution in which used capacity is never replaced while still
holding excess capacity on hand at the same time. All excess capacity must either be disposed or

consumed (to meet demand) before used capacity can be replaced.

Again, this is because replacement involves (disposal followed by immediate) acquisition which
cannot occur in a period concurrently with excess capacity from condition (3.6). An implication
of Corollary 6 is that we need consider replacing used capacity only in periods where capacity is
anyway going to be acquired to meet future demand increments. That is, replacement of used
capacity can occur only in acquisition periods (note, however, that every acquisition need not be
accompanied by replacement). Clearly, this avoids the need for evaluating replacement in periods

other than the acquisition periods, leading to reduction in the computational effort.

11



Now assume that,

gmnt (Z) < hme (T) + gmn,e41 (z) Vo,tand n>m (3.9)

which stipulates that the cost of salvaging an amount of capacity in a period shall not exceed
the cost of carrying it to the next period and then salvaging it. Condition (3.9) affirms the lack of
speculative motive for holding excess capacity, arising from a later than necessary disposal. Suppose
the firm has some excess capacity on hand when a newer technology appears. Consider the choice of
disposing a part of this excess capacity. The following proposition stipulates when such a disposal

should be carried out.

Proposition 1 It is optimal to consider the disposal of excess capacity as soon as a new technology

become available; any excess capacity to be disposed shall be disposed immediately.

From condition (3.9), it is clear that postponing the actual disposal of the excess capacity to a
period later than the period of appearance of the new technology will only result in higher costs.
When a technology appears, (i) the characteristics of the new technology that has appeared relative
to the vintage of the excess capacity becomes known, (ii) the probabilistic information about the
next innovation becomes available. Both of these pieces of information are not going to change
until the next innovation occurs. Based on this information, the amount of excess capacity to be
disposed can be determined and this decision is not going to be revised until the next innovation
occurs. If we denote a period in which excess capacity is disposed as a disposal period , it follows

from Proposition 1 that the disposal period always coincides with the appearance of a new vintage.

A similar result holds for replacement of used capacity.

Proposition 2 Any capacity acquired for the sake of replacement is put into use immediately.

Suppose this is not true, i.e., capacity of vintage m is acquired in period ¢ for the sake of
replacing vintage p and is carried as excess capacity until some period 7. Since capacity meant for
replacement can not be used to satisfy future demand increments, it can only be used for one of the
following two purposes: (i) the excess capacity of technology m is put into use in period T replacing

vintage p, or (ii) the excess capacity is disposed in 7 because another vintage (say m) may appear

12



and it may not be worthwhile to use m at all. In case (i), it would have been better to put m
into use immediately because we would have saved carrying costs for vintage m and the difference
in operating costs between vintages m and p. Now consider the possibility (ii). It would never
be profitable to purchase capacity in a period and then dispose it immediately. From (3.9), the
cost of immediate disposal never exceeds the cost of carrying capacity to a future period and then
disposing it. Together, the previous two statements imply that case (ii) would not be profitable

either.

From the above results, it is clear that the acquisition and disposal periods constitute the
only two decision epoches in the model, with replacement of used capacity occurring only in the
acquisition periods. Of course, disposal and acquisition periods may coincide. This will happen if
in an acquisition period, a new technology becomes available. In the next two sections, we use these
observations to develop regeneration based dynamic programming recursions in terms of these two

decision epoches.

4 Optimal Capacity Expansion without Replacement

In this section, we present a regeneration point based formulation for the case where capacity, once
put into use, is not replaced. Many organizations, for example, let the older personal computer
trickle down the organizational hierarchy, as newer models are acquired. Similar trends occur in
many other industries where alternative usage for older vintages are identified instead of disposing
them. This trickle-down effect may be a result of low salvage value of used capacity, or simply a
matter of management policy to relegate the used equipment for training or other purposes. The
model proposed in this section serves another purpose. It demonstrates how the properties of the
optimal solution derived in the last section can be used to develop an extremely efficient solution
procedure. It is much simpler than the model with replacement of used capacity, in terms of both
exposition and solution efficiency, because a history of technologies and the amount of capacity
in-use need not be maintained in this case. Hence, the model here provides a good foundation for

the more complex model with replacement of used capacity, to be presented in Section 5.

Suppose all capacity related decisions are taken at the beginning of a period. The sequence of

13



events in any period is as follows. The information regarding current technology becomes available.
Based on this information, capacity disposal, if any, takes place followed by any acquisition. The
production is then carried out incurring operating expenses. At the end of a period, carrying cost
is charged on unused capacity and this excess capacity is made available in its entirety at the

beginning of the next period.

The problem can be thought of as a sequence of acquisition and disposal decisions. The acquisi-
tion decisions are made whenever there is no excess capacity (Theorem 1), and disposal of excess or
unused capacity is considered only when a new technology appears (Proposition 1). We present a
stochastic dynamic programming formulation of the problem in terms of these two decision points.

We first consider the optimal acquisition decision followed by the optimal disposal decision.

4.1 Optimal Acquisition Decision

Consider a period @, with no excess capacity on hand. Suppose the current technology is m which
was introduced in period k, k < 3. Let C (m, k,4) be the minimum expected total cost for period
i onwards, given that current technology m was introduced in period k and the firm has no excess
capacity on hand. Since capacity once put into use is never disposed, all future operating expenses
are sunk as soon as a technology is put into use. Hence, whenever a capacity is put into use, its
operating expenses over the rest of the horizon are immediately accounted. For this reason, we
will exclude from our discussion any operating expenses resulting from capacity already in use at
the end of period 0. Thus, C (m, k, i) represents the total cost-to-go excluding operating expenses
due to capacity already in use at the end of period (i — 1), assuming that the firm makes the best

acquisition decision now and continues to make decisions optimally in all future periods.

Now consider the immediate acquisition decision. Given the scale economies in capacity ac-
quisition, the firm would like to buy capacity for current as well as a number of future periods
(Corollary 2). An impediment to large acquisitions is the carrying charges that the firm must pay
on any unused capacity. An even greater deterrent to large acquisition is the uncertainty surround-
ing possible introduction of a superior technology. Clearly, the firm must weigh the savings derived
from buying larger amount of capacity against the carrying charges and potential obsolescence due

to a newer, superior technology.

14



Consider the choice of buying capacity to satisfy demand increments upto period (j —1). All
potential candidates for j (i < j < T'+1) need to be considered in computing the minimum expected
total cost. For notational simplicity, let d (i,j) represent the cumulative demand increments for
period ¢ through j i.e., .

46, =Y d
t=i
with the convention that d(i,j) = 0 whenever ¢ > j. The cost of acquiring capacity of type m

which can meet the demand for periods ¢ through (j — 1) is fys (d (3,5 — 1)).

Once the firm acquires capacity for periods i through (j — 1), the next acquisition decision is
scheduled for period j. The following mutually exclusive scenarios are possible depending upon the

timing of the next innovation:

1. No new technological innovation appears until period j, in which case the next acquisition
decision will take place as planned in period j, with technology m still the newest available
technology. The probability of this event, given that the technology m has already been

around for the last (i — k) periods is

1—- Qm (,7 — k)

1- Qm (2 -k )
where @, () and g, () denote the cumulative and probability distribution functions respec-
tively of the amount of time elapsed between advent of technology m and the technology

following m.

2. A new technology appears before or at the beginning of period j, say in period v (i < v < j),
in which case the firm will have to reconsider its future strategy. The probability that the

new technology appears in period v is

m (Vv — k)
1_Qm(i_k)

Scenario 2 represents a variety of possibilities which may lead to the next decision point any-
where on the spectrum between v = (i + 1) to v = j. Also, period j can be the next decision
point under scenario 1 or 2, however the newest available technology will be different in each case.

The total cost for each scenario comprises of carrying charges and operating expenses until the
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next decision point plus the minimum expected cost-to-go from there onwards. First, consider the
carrying and operating costs. Let F (m,i,v,j) represent the accumulated carrying costs and all
sunk operating expenses incurred in periods i thru (v — 1) by starting in period i with an amount

of capacity of vintage m just enough to satisfy the demand for periods i thru j — 1. That is,

v—1 v—-1 T
F(mi,v,j) =) hmd(I+ 1,5 =1+ deY em i<v<j (4.10)
I=i g=i I=¢

with all future operating expenses accounted for as soon as a capacity is put into use. While
F (m,i,v,7) represents the carrying and operating costs for each possible v value in scenario 2,

these costs for scenario 1 are denoted by F (m, 1,7, 7). The total cost for scenario 1 is therefore

(F(m,1,4,5) + C (m, £, j))

Now consider the cost-to-go for each possible decision epoch (v) for scenario 2. What might
a firm do if it has excess capacity on hand when a new technology is introduced? The firm may
immediately dispose all the excess capacity and adopt the new technology. Or it may choose to
delay the adoption until some future point in time by retaining and continuing to use some or all of
the surplus capacity on hand. It is possible, that yet another innovation appears in the meantime
and the firm skips a technology in the chain of technological innovations. These possibilities will
be considered when we formulate the optimal disposal decision. For now, let D (m,n,v,j) denote
the minimum expected total cost from period v onwards, given that a new technology n appeared
in period v and excess capacity of technology m is on hand to satisfy demand increments upto
period (j — 1). This again excludes operating expenses due to capacity already in use at the end
of period (v — 1). Considering all the technologies n that may immediately follow m and weighing
the cost-to-go for each possible n with the respective probabilities, we get the cost-to-go for any v
as,

Z PmnD(m’naVaj)

n(>m)

and the total cost for scenario 2, assuming that the next decision epoch is v, is given by

F(m,’i,V,j)+ z PmnD(m)naV,j)
n(>m)
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Weighing the costs for all possible events in both scenarios by their respective probabilities, we

obtain the expression for C (m, k, 7) in recursive form as

C(m,k,i) =
. {fmi (6,5 - 1) + (£5228=R) (F (m,1,5,5) +C (m, k, ) an
inimize j e o , ,
i<jSJT+1 +U=§:+1 (f?'a_s,j(l__)]?f) (F (m,z, V,J) +n(§m) PrnD (m,n, V)J))

Observe that all possible values of j are considered in computing C (m, k,1).

4.2 The Optimal Disposal Decision

We next consider the optimal disposal decision. Consider a period v when a technology n has just
become available. The firm still has excess capacity of technology m available which can satisfy
the demand increments for upto period (j — 1). Suppose some of the excess capacity is disposed
(Corollary 3) and after disposal, the firm is left with enough capacity of technology m to satisfy
the demand for upto period (7 —1). All choices of 7 will be considered, including 7 = v (disposal
of all surplus capacity) and 7 = j (no disposal) and the value that minimizes the expected total
cost will be chosen to compute D (m,n, v, 5). The disposal of unused capacity will incur a cost of

gmnw (d (7,5 — 1)) units, which may be negative.

The next acquisition decision is scheduled for period 7, when the firm will consider the choice of
acquiring technology n. Depending upon the timing of the next innovation, the following mutually

exclusive scenarios are possible:

1. No new technological innovation appears until period 7, in which case the next acquisition
decision will take place as planned in period 7. The probability of this event, given that the
technology n has just appeared, is (1 — Qy (1 — v)).

2. A newer technology appears before or in period 7, say in period ¢ (v < ¢ < 7), in which
case the firm will again reconsider its future strategy by possibly making another disposal
decision in period ¢ (this, in turn, may lead to yet another disposal decision, and so on). The
probability of this event is ¢, (¢ — v). Note that technology n will be skipped altogether in

this case.
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Scenario 2 represents a variety of possibilities which may lead to the next decision point any-
where on the spectrum between o = (v +1) to ¢ = 7. Also, period T can be the next decision point
under scenario 1 or 2, however the newest available technology will be different in each case. The
total cost for each scenario comprises of carrying charges and operating expenses until the next
decision point plus the minimum expected costs-to-go from there onwards. Consider the carrying
and operating expenses first. In both the scenarios, the firm starts in period v with an amount of
excess capacity m that can satisfy the demand for upto period (7 — 1). While in scenario 1 the
firm utilizes all of the excess capacity and incurs a cost F (m,v,7,7) in the process, in scenario 2
it stops at o, with an accumulated cost F'(m,v,o,7). The cost-to-go from period 7 onwards in

scenario 1 will be C (n, v, 7), making the total cost in this case

F (m’l/’ T)T) + C (n! U’ T)

To compute the cost-to-go in scenario 2, suppose the technology that appears immediately
following n is of type s (the probability of this happening is Pns). The cost-to-go from period
o onwards is then D (m,s, o, 7) since the firm still has enough capacity of type m to satisfy the
demand for upto period (r —1). Considering all technologies that may immediately follow n and
weighing the cost-to-go in each case with their respective probabilities, we obtain the cost-to-go for

scenario 2

Z PﬂsD(m7sio-)T)
s(>n)

and the total cost for scenario 2, assuming that the next decision epoch is o, is given by

F (m,v,0,7) + Z PpsD(m,s,0,7)
s(>n)

Weighing the costs for all possible events in both scenarios by their respective probabilities, we

obtain the expression for D (m,n,v, ) in recursive form

D(m7 n) U’j) =
Imny (d(T;j - 1)) + (1 - Qn (T - V)) (F(Tn,I/,T, T) +C (na V’T))
Minimize T (4.12)
versi (X In (0 —v) (F (m,v,0,7) + (Z )PnsD(m,s,o,T)>
o=v+ s(>n
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Observe that all possible choices of 7 are considered in computing D (-). Equations (4.11) and
(4.12) together define the optimization problem and can be used to solve the problem in the usual
sequential backward fashion. Whenever a new technology, say n, becomes available in a period,
say j, which is already scheduled as an acquisition period, the cost-to-go from there onwards can
be given by either C (n,j,j) or D(-,n,j,J), both yielding the same value. In other words, the cost
obtained from the optimal disposal decision, with no excess capacity on hand to dispose, is the
same as that obtained from the optimal acquisition decision, with the same new technology that
triggered disposal, i.e.,

D(yn,j,j)=C(n,5,§) Vn,j (4.13)

This relationship can also be verified from the expression (4.12).

5 Optimal Capacity Expansion with Replacement

When replacement of used capacity is allowed, one must consider all technologies in use as a candi-
date for replacement. For this reason, let us define the history of all past acquisitions by a sequence
{u(1),u(2),---,u(p)}, where u (£) represents the period in which £th acquisition was made and vari-
able p represents the number of acquisitions made so far. A related string is technology-mix sequence
{w(1),w(2), -, w(p)}, where w (£) represents the technology type acquired in period u (). As time
progresses and more capacity is acquired, both acquisition history and technology-mix sequences
are updated by appending the acquisition period and technology type to the respective sequences.

To simplify the notation, we will often use (u)2’=1 to represent the sequence {u(1),u(2),---,u(p)}.

To keep the exposition uncluttered, we assume that initially (at the beginning of period 1),
there is capacity of only one technology type, say type 1. This capacity consists of D, units already
in use and, possibly, excess capacity to satisfy the demand increments for an integer number of
future periods. These assumptions are incorporated by initial conditions u (1) = 1, and w (1) = 1.
More general initial conditions can be incorporated by simply redefining » (1) and w (1). Let (ig be
the sum of demand increments in periods u (§) through u (§ +1) — 1, i.e.,

de = d (u(€),u(€ +1) - 1)
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except for d; which also includes the capacity initially in use, i.e.,
dy = d(u(1),u(2) = 1) + D,

Clearly, the cumulative demand, d—g, is satisfied by technology type w (£) for all €.

An Example: We now illustrate through a sequence of hypothetical decisions how acquisition
history and technology-mix sequences evolve. The decisions, though hypothetical, conform to the
properties of the optimal solution specified in Section 3 and as such, are illustrative of the sequence
of decisions resulting from the proposed model. Consider the acquisition of successive generations
of microprocessors by a firm which initially starts with enough 8086 chips to satisfy the demand
increments for up to period 4. The sequence of innovations in microprocessor chips — 8086, 286,
386, 486, etc. are labelled, respectively, as technology types 1, 2, 3, 4, etc. The sequence of
decisions are summarized in Table 1. Recall that decisions are triggered either by the advent of a
new technology or by lack of excess capacity. The next acquisition decision is thus scheduled for
period 5. Suppose the 286 chip becomes available at the beginning of period 3 when the firm still
has enough 8086 chips to satisfy demand until period 4. The firm must reconsider its decision due
to availability of a new product. The firm, after reconsidering this new information, decides not to
adopt the new technology at this time. No new vintage appears in the next two periods (4 and 5).
At the beginning of period 5, the next scheduled acquisition point, the firm decides to buy enough
286 chips to satisfy the demand for the next six periods (until 10). In period 6, however, 386
chips become available, and the firm must again reconsider its future strategy. After considering all
factors, it decides to dispose some excess capacity (those meant to satisfy the demand increment
for period 10) and retain the rest. The next acquisition decision is thus scheduled for period 10
when the firm plans to acquire 386 chips. However, another discovery occurs in period 7 and a
superior microprocessor, 486, becomes available. At this point the firm decides to dispose all excess
capacity of 286 chips but those already in use are not replaced. A decision to buy 486 chips to
satisfy the demand for periods 7 through 10 is also taken. No new product appears until the next
acquisition point, period 11. At this point, the firm decides to get rid of all 286 chips already in use
(Corollary 5), replace it with 486 chips, and buy extra 486 chips to meet the demand for periods
11 through 14. No new technology appears until period 15, which is again an acquisition period

and the sequence of innovations, acquisitions, and replacements continues.
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Table 1: A Summary of Decisions

t | Event that triggered | Acquisition | Technology- Decision taken
the decision-making history, (u) | mix, (w)
3 | Advent of 286 chip {1} {1} Do not dispose excess 8086 chips.
(technology type 2)
5 | Acquisition period; no {1} {1} Buy enough 286 chips to satisfy de-
excess capacity mands for periods 5 through 10.
6 | Advent of 386 chip {1,5} {1,2} Dispose excess capacity of 286 chip
(technology type 3) meant to satisfy demand for period
10.
7 | Advent of 486 chip {1,5} {1,2} Dispose all excess capacity of 286
(technology type 4) chip. Buy enough 486 chips to sat-
isfy demand for periods 7 through
10.
11 | Acquisition period; no {1,5,7} {1,2,4} Dispose all 286 chips in use. Buy
excess capacity enough 486 chips to replace them
(demand for periods 5 and 6) as well
as to meet demand for periods 11
through 14.
15 | Acquisition period; no | {1,5,7,11} {1,4,4,4} | Under consideration.
excess capacity

The sequence of events and the decisions made in this example illustrate several interesting
aspects of the model. First, the advent of a superior technology does not imply its immediate
adoption if the firm has excess capacity of an older vintage. In the example, the firm continued
to use 8086 chips, as planned, despite the availability of 286 chips in period 3. Similarly, the firm
made only a minor revision in its plan to use 286 chips to meet demand increments until period
10 when 386 chips appeared on the market. On the other hand, the firm immediately embraced
486 chips when it first appeared in period 7. The choice of whether to dispose all the excess
capacity and adopt the new technology immediately or, to continue using the excess capacity of the
older vintage and thus delay the adoption, depends on a number of factors including salvage cost
of the excess capacity, relative merit of the newest technology compared to the old one, and the
likelihood of an even better forthcoming technology. An optimal technology path may not follow
the chain of technological development link by link. For example, a decision to delay the adoption
of 386 chips led to its exclusion altogether due to advent of an even better technology — 486 chips.
Second, recall that used capacity may be replaced only in acquisition periods (Corollary 4). Not
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every acquisition, however, is accompanied by a replacement. In the example, acquisition occurs

in periods 5, 7, and 11 but replacement is done only in period 11. a

The problem can be thought of as a sequence of acquisition, replacement, and disposal decisions.
Disposal of excess capacity is considered only when a new technology appears (Proposition 1).
On the other hand, acquisition and replacement are considered whenever the firm has no excess
capacity (Corollary 4). We provide below a dynamic programming formulation in terms of these
two decision epoches. We first consider the optimal acquisition and replacement decisions followed
by the optimal disposal decision. It is possible that the two decision epoches coincide i.e., a disposal
decision is followed by an acquisition (and possibly replacement) decision in the same period. This

was the case in period 7 in the example.

5.1 Optimal Acquisition and Replacement Decision

Consider a period ¢ with no excess capacity on hand. Let (u)’é’:l, and (w)’g___1 represent the ac-
quisition history and technology-mix sequences, respectively, until period i. Suppose the newest
technology is m which was introduced in period k, k < i. Let C (m,k,i, (u)g=1 , (w)’g:l) be the
minimum expected total cost from period i onwards, given that the firm has no excess capacity
on hand, the newest technology is m which was first introduced in period k and the acquisition
history and technology-mix sequences until this point in time are (u)§=1, and (w)’g=1 respectively.
C (-) is the total cost incurred from now on, assuming that the firm makes the best acquisition and

replacement decisions now and continues to make decisions optimally in all future periods.

Consider the issue of replacement first. The firm has the choice of replacing one or more tech-
nologies adopted in the past by the current best technology, m. Suppose (“7)?=1 is the technology-

mix sequence after the replacement. All choices of (u‘;)’g=1 will be considered such that
W) =w() orm; £=1,2,...,p. (5.14)

Condition (5.14) stipulates that for each technology, we have the choice of either replacing it with
the current best technology or continuing without replacement. Recall that if we choose to replace

a particular technology, we replace all capacity corresponding to that vintage (Corollary 5). These
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conditions, in effect, reduce the choice of (@ ) , significantly, making the dynamic programming

solution extremely efficient. Let 6 be a replacement indicator defined as

b =8(w () ~w(§))

where 6 (z) is the Kronecker delta function given by

lifz>0
6(z) =
0Oifz=0

The replacement indicator, 55, takes the value 1 or 0, depending upon whether technology w (£),
satisfying the cumulative demand d_g, is replaced or not. Overall, the replacement will involve
disposal of i debe units of old capacities which will incur a cost i Tuw(e)m,i (debe) (possibly
negative). Ri;::iu that replacement always coincides with an acquisitioif;l)eriod, wherein capacity is
purchased to meet future demand increments. Suppose the firm decides to acquire d (3, j — 1) units
of capacity to satisfy demand increments in periods i through (j — 1), where (i < j < T'+1). Then,
the acquisition of capacity for future demand and replacement of used capacity together incur an

immediate cost

Fmi (U“l de5¢)+zgw(emz )

As a result of these decisions, the new acquisition history and technology mix sequences are
now {(u)'g:l ,i} and {(w)’g=l , m} respectively (we will often indicate the last element of a sequence
explicitly for clarity; {(u)‘g:l, } is equivalent to (u)2+ =1 ! with u(p +1) = 4). The next acquisition
decision is scheduled for period j. Depending upon the timing of the next innovation, as in Section 4,

the following mutually exclusive scenarios are possible:

1. No new technological innovation appears until period j, in which case the next acquisition
(and possibly replacement) decisions will take place as scheduled in period j. The probability

of this event is
1-— Qm(] -k)
1- Qm (74 _'k)

2. A new technology appears in or before the next scheduled acquisition period j, say in period v

(i < v <j), in which case the firm will have to reconsider its future strategy. The probability
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that the new technology appears in period v is

gm (V — k)
1-Qm(i—k)

The total cost for each scenario comprises of carrying charges and operating expenses until the
next decision point (which is j or v, as the case maybe) plus the minimum expected cost-to-go from
there onwards. First, we consider the carrying and operating costs. Let G (m, iV, 7, (u)§=1 , <w)§=,)
represent the accumulated carrying costs and operating expenses incurred over periods 4 through
(v — 1) by starting in period 7 with acquisition history (u)‘é’:l, technology-mix (0)2’:1 and an amount

of capacity m sufficient to exactly satisfy the demand increments in periods ¢ thru (j —1). That is,

6 s 8 -

v—1 v—-1 v-1 p _ v-l
Z hmd (115 =1)+ T de ¥ om+ L de L eags  i<v<i (519
=1 =1 = = =1

The cost function G (-) is similar to function F(-) defined in the last section, except for the
following two aspects. First, in contrast to F(-), there is an additional term (the last term in
5.15) in G(-) corresponding to the operating expenses for used capacity satisfying all demand
increments prior to period i. Second, F (-) accounted for all future operating expenses the moment
a capacity was put into use, since replacement of used capacity was not an issue. On the other
hand, G (-) accounts for operating expenses only until the next decision point (v). Hence, while
it was unnecessary to maintain history of past adoptions for computing F (-), the possibility of
replacement here makes it necessary to maintain the acquisition history in computing G (-). The
carrying and operating expenses for scenario 1 can be computed simply by letting v = j in the

expression (5.15), which otherwise gives these costs for each possible event in scenario 2.

The minimum expected cost-to-go in scenario 1 is C (m,k, J {(u)Ll ,i} : {(w)’é’:l ,m}). The
minimum expected cost-to-go in scenario 2 can be computed by conditioning on the next techno-
logical breakthrough following m. Say, n is the new technology that appears in period v when
the firm still has excess capacity of technology m. Suppose D (n, v, 7, {(u)’g:l ,i} , {(u‘))’ﬁ;l ,m})
is the minimum expected total cost for period v onwards, given that a new technology n was in-
troduced this period, the acquisition history and technology mix sequences until this point in time

are {(u)§=l ,i}, and {(w)§=1 ,m} respectively, and excess capacity from the last acquisition (of
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technology m) can satisfy demand increments until period (j-1). The computation of D (-) involves

optimal disposal decision which we will consider soon. For any v, the cost-to-go in scenario 2 is

given by

S PnD (10,5, {02y 8} {012, m))

n(>m)

Then, the total cost for scenario 1 is

G (m,4,3,3, (o, (@)82,) + € (m k5 { @iy 1}, { (@), m))

and the total cost for each possible v value in scenario 2 is

G(m,i,u,j, (u}§=1,(w)§=l)+ Z PynD (n,z/,j,{( >E 1t },{(u‘;)g LHm })

n(>m)

Weighing the cost for all possible events in both scenarios with the respective probabilities, we

obtain the expression for C () in recursive form,

¢ (m, ki ()l 0)2,) =

(

f (d(’& .7 - ]-) + Z df6f> + Z gw(f),mt (dféf)

£=1

Minimize 1o i (G(m,z’,j,j()’g () )
i) +(3ml-

ot | o s ) {070 m)

\ + E 1-Qm(i—k)

v=1+1

L () (S

n(>m)

(5.16)

+ 2 BonD (i {en, i} {( >2’=vm})>

Note that all possible choices of j (i < j < T+1) and <“7>?=1 have been considered in computing

C (-), the minimum expected total cost.

5.2 Optimal Disposal Decision

Disposal is triggered by the advent of a new technology. Consider a period v when a new technology

n has just become available. The acquisition history and technology-mix until this point in time
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are given by sequences (u)?:i and {<w>?=1 ,m} respectively. The firm still has enough excess
capacity of the last acquired technology, m, to satisfy demand increments until period (j — 1).
We are interested in evaluating the cost-to-go D (n, v, 7, (u)’g:i , {(w)’é;l ,m}). Suppose, after the
disposal, the firm is left with enough capacity of technology m to satisfy the demand increments
until period (7 —1). All choices of 7 will be considered including 7 = v (disposal of all surplus
capacity) and 7 = j (no disposal) and the value that minimizes the expected total cost will be

chosen to compute D (-).

First, the disposal of unused capacity will immediately incur a cost gmn, (d(7,5 — 1)) (possibly
negative). The next acquisition and replacement decisions are scheduled for period 7. As before,
depending on the timing of the next innovation, the following mutually exclusive scenarios are

possible:

1. No new technological innovation appears until period 7, in which case, the next acquisition
and replacement decisions will take place, as planned, in period 7 with technology n still the
newest available technology. The probability of this event, given that the technology n has
just appeared, is (1 — Qn (7 — v)).

2. A newer technology appears in or prior to 7, say in period o (v < ¢ < 7), in which case the
firm will have to reconsider its future strategy in period ¢ (This, in turn, may lead to yet

another disposal decision, and so on). The probability of this event is g (o — v).

The total cost for each scenario comprises of carrying charges and operating expenses until the
next decision point (7 or ¢) plus the minimum expected cost-to-go from there onwards. Con-
sider the carrying and operating expenses first. The firm starts in period v with an amount of
capacity of vintage m just enough to satisfy the demand for periods v through (7 — 1) and with
an acquisition history sequence {u)’g’:{ and technology mix (w)’g:i. For scenario 2, carrying and
operating expenses until the next decision point, o, are to be considered, and are therefore given
by G (m, v,0,T, (u)’é’:i , (w)é’:i) For scenario 1, the next decision point is 7, and so the carrying

and operating expenses are given by G (m, U, T,T, (u)?:} , (w)’g}).

We consider the cost-to-go for each scenario next. In case of scenario 1, the firm will find itself
in period T with no excess capacity on hand; technology n, which first appeared in period v, will

still be the newest available technology; and the acquisition history and technology-mix sequences
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will still be the same, (u )§+} and (w )p *1 respectively. As a result, the cost-to-go from period 7
onwards will be C (n, v, T, (u )Z*’i , (w)g’:}) To evaluate the cost-to-go for scenario 2, suppose that
the new technology that appears in period o is of type s (the probability of this happening is
only Pp). The firm will find itself in period ¢ with enough excess capacity of the last acquired
technology, m, to satisfy demand for upto period (7 — 1). The acquisition history and technology
mix sequences will still be (u)’g_i_'} and {(w)§=l ,m} respectively. The cost-to-go in this case will be
D (3, o, 7, (u >?+i , {(w)’g:l ,m}). Considering all technologies that may follow n and weighing the

cost-to-go in each case with their respective probabilities, we get the cost-to-go for scenario 2,

S PuD (s,a,r (u )IEH-:,{(w)?:l’m})

s(>n)

The total cost for scenario 1 is
1 1 1 1
G (m, v, 7, (B, (WEE]) +C (myv,m, (WEE) , (w)BE)
while that for scenario 2 is

G (m,v,0,m, WL W) + 30 PasD (5,007, (w22, {(w)le, )
s(>n)
Weighing the costs for all possible events in each scenario with their respective probabilities, we

obtain the expression for D (-) in recursive form,

D (n, v, 7, (u)‘g:i , {(w)’f’=1 ,m}) —
( Gmnw (A (7,5 = 1))

p+l p+l1
+(1—Qn(T—U))<G<m’V,T’T,< >£ 1’< >5‘ ))

+C (n, VT, )g"'i , (w)§f1>
G (m,v,0,7, (W}, (w)22))
)< T PuD (s,0,7 (u )gt},{<w>§=l,m}))

3>ﬂ

M im;mize <
v<r<]

(5.17)

,
\ + Z Qﬂ (U -
o=v+1
Observe that all possible choices of 7 are considered in computing D (-). Equations (5.16) and
(5.17) together define the optimization problem and can be used to solve the problem in the usual
sequential backward fashion. Note that the length of sequences (u) and (w) grow only due to

acquisitions; disposals have no effect on them.
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A relationship analogous to (4.13) in this case would be

D (n,j,4, (), (w)) = C (n,5,4, (w) , (w))  ¥n, j, (), (w) (5.18)
which can be verified from the expression (5.17).

The regeneration point based formulation proposed in this section can be made even more
efficient by further reduction in state space. For example, whenever two consecutive elements
of technology-mix sequence are the same, one can simply delete the second element from both
the sequences (u), and (w). In Table 1, the technology-mix and acquisition history sequences for
period 15 can thus be represented simply by {1,4}, and {1,5} respectively. In fact, since capacity
in use cannot be distinguished from one another except by their technology type, one needs to keep
track of only what kind of technologies are currently in use and in what amount. The detailed
acquisition history and technology-mix sequences are unnecessary and were used in this section
only for ease of exposition. The number of technologies in use at any point will be much smaller
than the potential number of acquisitions until that point, leading to substantial reduction in state

space.

6 Computational Experience

In the past two sections, we presented stochastic dynamic programming recursions for the models
with and without replacement of used capacity. We were able to obtain efficient regeneration
point formulations for an otherwise intractable problem. For the model with replacement of used
capacity, without using any of the results of Section 3, the computational effort would have been
approximately of the order 27 D, where D is the total capacity requirement at the end of period T
and M is the number of possible technology levels that may appear over the next T periods. Clearly
the computational effort is super-exponential. However, using the results, the computational effort
is drastically reduced and is of the order TM+4M5%2M. The computational effort is exponential
even after using the results from Section 3, but it is reasonable for say 4 or 5 possible technology
levels. For the model without replacement of used capacity (Section 4), the computational effort is

only of the order M?T5, which is moderate.
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To assess the computational time, we implemented the recursions for both the models without
any special data structures or coding schemes. The computations were run on an IBM-compatible
personal computer based on a 486 chip running at 33MHz clock speed (almost the current best
technology in personal computers at the time of writing). For the model without replacement of
used capacity, the computation time for problems with 5 technology levels and 12 periods averaged
2 seconds While the computation time for 20 periods averaged 13 seconds. For the model with
replacement of used capacity, the computation time for problems with 12 periods and 4 technology
levels averaged 460 seconds (less than 8 minutes). With 4 technology levels, the computational time
for problems with 6, 8, and 10 periods, respectively, were 7, 35 and 135 seconds. These computation
times appear to be quite reasonable, particularly since capacity related decisions are not taken in

real time.

7 Conclusions

In this paper we have studied a fairly comprehensive model of capacity and technology acquisition
and replacement in environments where successive technological breakthroughs take place stochas-
tically, leading to frequent and uncertain obsolescence of production technologies. We modeled this
problem and presented some key properties of the model that are used to reduce the state space
and computational effort to solve this otherwise intractable problem. In particular, we showed that
it is optimal to purchase, dispose and replace capacity in amounts equal to the demand increments
for an integral number of periods. Further, we showed that it is optimal to: (i) dispose excess
capacity only in periods when a new technology appears, and (ii) replace used capacity only in ac-
quisition periods i.e., periods when capacity is anyway going to be acquired to meet future demand
increments. Using these results, we developed regeneration point based dynamic programming re-
cursions for the models -with and without replacement of used capacity. Finally, we showed that it

is possible to solve moderate size problems on a personal computer in a reasonable amount of time.

We are currently in the process of developing a decision support system for a firm that leases
MRI and other medical equipments to hospitals. The firm faces capacity and technology acquisition
and replacement decisions on an ongoing basis. Our immediate plan is to assess as to what degree

the model developed here captures all the key aspects of the problem faced by this firm and consider
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the appropriate model changes or extensions. Second, we have not considered revenue effects of

technology acquisition in this paper. This should also provide much scope for further research.
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