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Abstract

Two models of register allocation for straight-line programs are investigated in the
literature: the permutation model, and the temporary-spilling model. The problem of
register allocation in the permutation model is NP-complete, while in the temporary-
spilling model it is polynomial. However, in practice, the polynomial solution is intract-
able because the degree of the polynomial is too large for practical consideration. The

paper surveys the results related to the temporary-spilling model. Heuristic algorithms
are also surveyed.



1. Introduction

Register oriented architectures are the most commonly used computer architec-
tures. Registers are special memory locations, which play a different role than the rest
of the memory: access time to the registers is much shorter than to the other memory
locations, hence registers improve the efficiency of programs; registers may also perform
specific tasks which cannot be performed by the ordinary memory locations, like to hold

the index value for index addressing, etc.

To improve the efficiency of a program, it is advantageous to assign certain infor-
mation to the registers. If an operation produces a temporary result which will be
reused, then both the time of storing and retrieving can be shortened by storing the tem-
porary result in a register. However registers are a scarce resource; typically there are
many more temporary results than available registers. Registér allocation algorithms
then select those candidates for which the over-all contribution to the efficiency of the

program is the greatest.

In the literature, several algorithms are given which provide allocation of registers.
The algorithms are usually presented in the context of an idealized computer architec-
ture and a set of constraints, under which the algorithms work. .T hese constraints may
involve whether or not we allow permutation of the instructions, whether or not we
allow storing the contents of a register even if that value will be used sometime in the
future, whether or not we allow branch instructions, etc. The idealized architecture and
the constraints taken together are usually referred to as a model. The properties and

algorithms differ substantially for different models.

The models are usually grouped into three different categories, based on the pro-

grams allowed:



Local models deal with programs which are in fact a single expression. The resuits
related to these models can be found in [AHO76a), [BUS69], [NAK67] and [SET70].

Local models are not reviewed in this survey.

Straight-line models deal with straight-line programs, i.e., programs without the

control instruction.

Global models deal with general programs. Global models are not reviewed in this
survey. The relevant results can be found in [AGR79], [BEAT74], [CHA82], [DAY70],

[HAR75), [KEN72), [LEV81] and [WARTS].

This survey deals with properties and algorithms of the straight-line models. In the
literature, two different models of this category are investigated. We call them the pro-

gram permutation model and the temporary-spilling model.

The program permutation (or pebbling) model is investigated in [AHO76b),
[BRU76), [GLT80] and [SET75] and can be characterized in the following way: We are
looking for both optimal utilization of registers, and optimal sequence of instructions in a
straight-line code. It has been shown that the register allocation for this model is NP-
complete [AHO76b], [SET75], and P-space complete if we allow repetition of some com-
putations [GLT80]. This means that no effective algorithm for this model is known; all
known algorithms guaranteed to find the optimal solution require an exponential number
~of steps. However several heuristic algorithms were published in [AHO76b], and
[BRU76], and they give approximate solutions to the problem. The permutation model

is not covered in the survey.

Temporary-spilling model is investigated in [FRE74], [HOR66], [KEN72] and
[LUCSB7], and can be characterized in the following way: We shall assume that the

instruction sequence cannot be changed, and are trying only to find the optimal



utilization of the registers. We allow temporary storing of intermediate values in the
memory. It was shown that an algorithm for this problem is polynomial, if we assume
that the number of registers is consvant (which is true for a given computer). However
this polynomial algorithm is practically intractable, because the degree of the polynomial
is too large in most instances. (It is equal to the number of registers.) Several heuristics
are published in the literature [BEL66], [FRE74]. However we shall make distinction
between the general results, and the specialized results which apply to the index registers
only. The general case is treated in Section 2 and first part of Section 3, while the spe-
cialized index register allocation problem is treated in the second part of Section 3. Sec-

tion 4 contains several heuristic algorithms.



2. Temporary spilling model

In this section, we shall deal with the temporary spilling model of the register allo-
cation. The important feature of the model is the fact that the code sequence is fixed --

the algorithm is not allowed to change the sequence.

Without loss of generality, we will assume that all instructions are one-operand
instructions. The rationale behind this assumption is based on the fact that it is easy to
convert any other instruction set into one-operand instructions. For example, instruc-
tion a:=05b X ¢ will be converted into the sequence bca’ , where b stands for
instruction “load 5", ¢ stands for “load ¢ (and execute operation X )”, and o'
stands for ‘‘store a ". Note that store instructions will be denoted by the name of the
variable followed by apostrophe ’ , while load instructions will be denoted by the name

of the variable.

We will disregard the difference between the individual operations, considering only
the difference between loading and storing of a variable. This simplified model is easy to
investigate and it preserves all important features of the programs, and hence it is useful

for practical purposes.

Intuitively, a variable either can be located in memory only (in the following defini-
tion denoted by M ), or it can be located both in memory and in a register, in which
case the value in the register may be the same as the value in memory (denoted R ), or

the values may differ (denoted D ). Formally, this is defined in the following way:

2.1. Definition

Let A be a set of variables, then a state is a function S:A — {R,M,D}. For

states we will use the following alternative notation:



S={a]|S(ae) =R} U {b' |S(b)=D}. Also, set A will be called the set of load
instructions, set A' = {4’ |ain A} the set of store instructions, and set B=A U A’

the set of snstructions. A (straight-line) program is a (nonempty) string of instructions.
If p is a program, then |p| will denote the lengfh of the program, and p(i) will denote

the i* instruction.

Note that in the definition above, the “state” is defined in two different ways (as a
function and as a set), and the sets A, A’ , have two different meanings (as variables
and instructions, respectively). This choice éf the notation corresponds to [HOR66), and
makes usage very flexible. From the context, it will be always obvious which particular

meaning is being dealt with. These definitions are illustrated by the following example:
Example 2.1.

As an example, consider set of variables A = {s,,c} and program

p = aba' ¢' ac, which corresponds to the sequence of instructions

load
load
store
store
load
load

O 8 o a oa

Here, |p|=16, and p(1)=4a, p(2)=1b, p(3)=4a' , etc. As previously remarked, we
shall disregard actual operations which may be executed in the program, such as multi-

plication, addition, etc.

If we have a state S = {a,b' }, then S(a) =R i.e., variable 4 is located both in
a register and memory, and the value in register is the same as the value in memory;

S(b) = D, i.e., the variable b is located both in a register and memory, and the value



in register is different from the value in the memory. For variable ¢, we have that ¢,

¢! ¢S,hence S(c)= M, i.e., the variable ¢ islocated in the memory only.
In the next definition, we shall define the allocated program.
Definition 2.2.

Let r denote the number of registers. For the states we will consider, the number
of variables (either with apostrophe or without) in S always will be less than or equal
to r. An allocated program is a couple ¢= <p,s> where p is a program,
p= p(l) p(2)---p(M), and 2 is a sequéncé of states & = #0) s(1) - - - o(M). Triple
g(5) = <p(3), 8(+-1), &(5) > will be called a step.

The previous notions are illustrated by the following example:

Example 2.2.

Suppose we have 3 variables a,b,c and r = 2 registers. Then possible states are
{a,b}, {a' ,b}, {a,c}, etc.

An example of an allocated program is a program ¢ = <p,s> where
p=oabd ¢ ac, and &= {a,b}{ab)} {ab}{d b} {d ¢ }{d ,/ }{d,/}. Then
o(1) = {q,b}, s(4)={d ,¢ }, etc. Steps g1) = <s, {a,b}, {a,6}>,
9(2) = <, {a,8}, {a,0}> , etc.

In the next definition, we shall define the cost of an allocated program. The cost

will be based on the cost of a step:
Definition 2.3.

Let & be an instruction, and S, T be the states. Then cost of step is a function
cost(a,5,T) > 0. Let ¢ = <p,s> be an allocated program, for which |p| = M, then

cost of program cost(g) = cost(g(1)) + cost(¢(2)) + - - - +cost(g(M)) .



Now we can formulate the allocation problem in the following way:
Definition 2.4.

Let p be a program, then the temporary-spilling problem is to find s such that
<p,s> is an allocated program and cost(<p,s>) is minimal. Sequence s is then

called the minsmal allocation.

In [HOR66] an algorithm for the temporary-spilling problem for index registers is
introduced. The algorithm is explained in the form of ‘“‘rules”, some of which apply to
general-purpose registers, while others apply to index registers only. We explain a some-

what generalized version of the algorithm for general-purpose registers.
Algorithm 2.1.

Create a list of all possible states, and for each state s define

Cost (0,5)=0;
For i:=1 TO M DO ({i.e., for every step of the program do}

BEGIN

Create a list of all possible states, and for each state define

Cost (i,8) = min; {Cost (i-1,t) + cost (p(i-1),4,9)|¢ is a state}.

Make a link from state s back to state ¢.

END
Select the state T such that Cost(M,7) is the minimum. Reconstruct the sequence
8(0), 8(1), ... ,s(M) = T and denote it s. Then <p,s> is the allocated program with

minimum cost.
Proof of the correctness of this algorithm is by induction on M .

The complexity of the algorithm is given by the following formula: Let 5 be the

number of the variables, r the number of registers, and M the number of steps. Then



the asymptotic estimate of the number of distinct states is 0(b"), and the number of

different steps is 0(5%"), hence the complexity of the whole algorithm is 0(M.5%").

For a fixed computer architecture, the number of registers r is constant, and
hence this is a polynomial algorithm. However the size of the exponent is such that the
use of this algorithm is impractical. As an illustration, consider a situation with 16
registers, 20 variables and program of length 100; then the number of the steps of the
algorithm will be approximately 4.107 , which is clearly way beyond any reasonable use-
fulness. In [HORG6), several techniques are presented which lower the number of states
the algorithm has to generate. Some of them are applicable to general-purpose registers,

while others are applicable to index registers only. They are based on a more detailed
investigation of the structure of the cost function, and they will be dealt with in Section
3. Another approach is based on heuristic methods, where we try to evaluate how likely
a given state is to be a part of the minimal allocation, and consider only the most

promising states. This approach is dealt with in Section 4.



3. Improvements in the basic algorithm

The algorithm presented in the previous section is clearly unacceptable because of
its complexity. Onme of the ways to achieve a more acceptable algorithm is to trim the
set of states which are generated by the algorithm for every step. [HOR66] provides
several techniques which are repeated here. These techniques are based on a more
detailed definition of the cost function, which allows improvements in the algorithm. As
remarked earlier, some of them apply to the general-purpose registers, while others apply

to the index registers only.
First we consider the generally applicable techniques.
Definition 3.1.

Let I be a set of integers, let ¢: {M,R,D} — I be a function called cost of snstruc-
tion and let C: {M,R,D} X{M,R,D} — I be a function called cost of change. Define cost

of a step as a sum
cost (a,8,8) = c(s(a)) + 3 {C(d2), )] o(2) # U2), z # a} .

Intuitively speaking, the cost of change from one state to another consists of the
cost of the instruction, plus the cost of changes of states of all individual variables. The
cost of these changes is in fact the cost of extra load and store instructions, which have
to be included into the program, if we want to change a vari#ble’s state.

Then we can trim the set of the states using the following ‘“rule of minimal
change™:

Algorithm 3.1.

Let p be a program. Let p(i) be an operation, and s(i-1) be a state, then define

8(i) in the following way:

10



(a) If p(i) = o and either a € o(i-1) or &' € &i-1), then s(i) = o(i-1).

(b) If p(3)=4" and &' €ei-1), then ofi)=1s(i-1). If s € s(i-1), then
s()) = (o(--1) - {a} U {a }.

() If p(s) ¢ «i-1), then either (i) = #(i-1) or generate all possible &) in
which one variable is replaced by p(3) .

Proof of the correctness of this algorithm is by induction on the size of the program.

This improvement cuts down the complexity of the algorithm. For each step, we
‘now have O(b".r) different possibilities, and hence the complexity of the algorithm is

O(M.b".r). This is a somewhat better, but still impractical complexity.
Another improvement is the following algorithm:

Algorithm 3.2. Let s ¢t be two states. Then define the cost of change from s into
t to be (' (s¢)=Y{C(s(2)3): oz) # #z)}. Then if in a step i,

Ci) > Qi) + C' (s,t), then do not generate ¢ .

While this rule again trims the number of states to be generated in a step, it still

preserves the asymptotic complexity introduced above.

In [HOR66, LUCG67], part of the results were oriented towards index registers.
There are several important distinctions between index registers and general registers.
Index registers are both read and updated in operations of the type &' , while the gen-
eral registers are written only. Also index values cannot be read from the memory and
immediately used in an operation; they first must be loaded into a register. If we accept
these restrictions, we can apply the following rule which trims the number of the states

generated even further (in the case of general registers, the rule does not apply):

11



Algorithm 3.3.

Let i be the current step of the program and let j > i be the first step after ¢
in which either z or z' occurs, k> i be the first step in which z' occurs. Denote
j-i=4d(i,z),and k-i=diz' ). If 2' never occurs after step i, set d(iz' )= o0,
and if z also never occurs after i, set d(i,z) = co. Then we can trim the number of

the states generated by the following additional rules:

Let s, t be two states of step i, which differ exactly in one element. Let this ele-

ment be s or o' €3, b or ' €t. Eliminate state ¢ in any of the following cases:

(6 a€s,bord €t dia) < dsb),and C(i,s) < C(s5,8) .
(b) o' €8, b€t did )< dib), and C(s8) < C(3t) .
(c) o €s,b €t,dsd )< dsb),and C(i,s) < C(3,t)

As a corollary, suppose p(i) ¢ o(+-1), o or o' € ei-1), and b or b' € &i-1).

Then do not generate s(i) by replacing s or o' if:

(a) a,b € 8(i-1) and d(i,6) < d(s,b)

(6) o' ,b€s(i-1)ora b € 4i-1)and di,d ) < d(3,h) .

In [KEN72], practical experiments with index register allocation are reported, where
the number of states was trimmed by all the rules above. It is reported that the average
number of states generated in a step was about 1.5, which indicates that the trimming

rules are very effective for index registers.

12



4. Heuristic algorithms

In the previous two sections, we listed several algorithms for register allocation of
both general-purpose and index registers. It is obvious that in the case of general-
purpose registers, the algorithms are not very promising from the point of view of
immediate usability. However there are several heuristic algorithms published in
[FRET74], which are much more efficient and hence more suitable for practical use. The
common characteristic of all these algorithms is that they generate just one state for

each step, and they only approximate the optimal solution to a larger or lesser degree.

The first algorithm of this section is published in [BEL68] and reprinted in
[FRE74]. The heuristic is based on the idea that the general-purpose registers are

treated as index registers.
Algorithm 4.1.

Let p be a program. Then for each step i, include the variable p(i) into the
state. If the number of variables in the state becomes bigger than the number of regis-

ters, then store variable z for which d(,z) is the maximum.

The algorithm is of complexity O(M) and it requires either two passes or backward
scanning. It gives an optimal or near optimal solution in the situations in which
c(M) > C(M,R) + (R M)+ ¢(R). This is certainly true for paging mechanisms and
index registers, for which the algorithm was originally published, where direct reading of
memory is not available and hence its cost is oo . However for general-purpose register
allocation, this is usually false, and the algorithm gives the optimal solution only some-

times. The following example contains a situation where the algorithm fails:

13



Example 4.1.

Let us consider a computer with two registers. In the following columns, we have
the program (the left column), the states produced by Algorithm 4.1 (the central

column), and the optimal solution (the right column).

c,a ¢,b
c c,a c,b
a c,a ¢,b
b b,a c,b
a b,a c,b
b b,a c,b
c c,a c,b
c c,a ¢,b
c c,a ¢,b

Suppose we have the following cost functions: ¢(R)=1, ¢M)=2,
OM,R) = C(R,M) = 3. Then the cost of the allocation produced by the Algorithm 4.1

is 14, while the optimal solution costs 10.

Another heuristic algorithm published in [FRE74] is the so-called usage count algo-

rithm. It is defined in the following way:
Algorithm 4.2.

Let p be a program, and let M(i,a) be the number of consequent references of
the current value of variable & (called usage count). Then for each step i, include the
variable p(i) into the state, and decrement its usage count. If the number of variables
in the state becomes bigger than the number of registers, then store variable z for

which M(i,z) is the minimum.

The complexity of the algorithm is O(M) and again it requires either two passes or
backward scanning. This algorithm works well when references to variables are uni-

formly distributed in a program, or when large clusters of references are concentrated at

14



the beginning of the program. If there is a large cluster at the end of the program, the
algorithm gives poor results as demonstrated by the following example:
Example 4.2.

Let us again consider a computer with two registers. In the following columns, we
have a program (left column), state as allocated by the Algorithm 4.2.(central column),

and optimal solution (right column):

b,c a,b
b b,c a,b
a b,c a,b
a b,c a,b
b b,c a,b
a b,c ab
b b,c ab
c b,c b,c
c b,c b,c
c b,c b,c

Suppose we have the following costs: C(M,R)= (\RM)=1, {R)=1, and
¢(M) = 2, then the cost of the allocation by Algorithm 4.2. is 12, while for the optimal

program in the right-most column it is 10.

Both previous heuristic algorithms require backward scanning or two passes
through the program. However in certain applications, neither one is acceptable; hence,

other criteria for register allocation must be used, as in the following algorithm:
Algorithm 4.3. (Least recently used heuristic.)

Let p be a program. For each step i, include variable p(i) into the state. If
number of variables in the state becomes bigger than the number of registers, then store

the variable which was least recently used.

15



Effectiveness of this heuristic obviously strongly depends on the distribution of
variable references within the program. The advantage is that very little computation is

needed; hence this algorithm is very effective.
A similar general idea is the basis for the following algorithm:
Algorithm 4.4. (Least recently loaded heuristic.)

Let p be a program. For each step i, include the variable p(i) into the state. If
the number of variables in the state becomes bigger than the number of registers, then

store the variable which was least recently loaded into a register.

Again in this case, the effectiveness of this heuristics strongly depends on the distri-
bution of the variable references in the program. The effectiveness of this and the p{evi-
ous heuristics are experimentally studied in [FREGG]. The data indicate that the usage
count algorithm gives results which are very close to the optimum (within 5% range of
the optimum), while least recently used and least recently loaded algorithms give some-
what worse results (by approximately 10%). Of the two, the least recently used algo-

rithm gives somewhat better results.

16
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