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PREFACE

This paper is the ninth in a series of reports growing out of studies
of radar cross-sections at the University of Michigan's Willow Run
Research Center. The primary aims of this program are:

1. To show that radar cross-sections can be determined analyti-
cally.

2. To elaborate means for computing cross-sections of objects of
military interest.

3. To demonstrate that these theoretical cross-sections are in
agreement with experimentally determined values.

Intermediate objectives are:

1. To compute the exact theoretical cross-sections of various
simple bodies by solution of the appropriate boundary-value
problems arising from the electromagnetic vector wave
equation,

2. To examine the various approximations possible in this prob-
lem, and determine the limits of their validity and utility.

3. To find means of combining the simple-body solutions in order
to determine the cross-sections of composite bodies.

4, To tabulate various formulas and functions necessary to enable
such computations to be done quickly for arbitrary objects.,

5. To collect, summarize, and evaluate existing experimental
data,

Titles of the papers already published or presently in process of publi-
cation are listed on the back of the title page.

K. M, Siegel
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NOMENCLATURE

semi-major axis of the oblate spheroid.
a condensation symbol — Equation (44).
semi-minor axis of the oblate spheroid.
condensation symbols -- Equation (77).
Beta function.

the oblate spheroidal coefficient.
incident electric field vector.

X,¥,z components of the incident electric
field vector.

the incident electric vector EI with the phase
factor removed.

I
magnitude of the incident field vector E .

denotes whether Z and L are even or odd in
the In(ﬁ,L).

1/2 the focal length of the coordinate ellipsoid
and hyperboloid.

incident magnetic field vector.

= X,y,z components of the incident magnetic

field vector I_—II.

= magnitude of the incident magnetic field

vector LI_I.

iii
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NOMENCLATURE (Continued)

EO = the incident magnetic field vector IiI, with
the phase factor removed.

In(,Z,L) = integrals occurring in Equations (68) and
(69).

( )M_zm = a solution to the vector wave equation con-

structed from solution to the scalar Helm-
holtz equation.

NZm = the norms of the angular functions.
P = a point of observation in space given in

either oblate spheroidal coordinates (7, t,¢)
or spherical coordinates (r,9, ¢).

I
P = total power intercepted by an isotropic scat-
terer of cross~section o.
I . o X
P = Poynting vector of incident electromagnetic
field.
S . .
P = Poynting vector of scattered electromagnetic
field.
Q = the location of a radiating source in space

given in either oblate spheroidal coordinates
(n',¢',¢') or spherical coordinates (r',0',¢').

R(n),S(¢t), o (¢) solutions of the separated scalar Helmholtz

equation.
Uj m(n) = angular oblate spheroidal wave function.
ij( ¢) = radial oblate spheroidal wave function.

iv
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NOMENCLATURE (Continued)

a = an index used to indicate any of the x, y, or
z coordinates.

a = a vector used to indicate any of the unit

vectorsi , i, ori.
X Ty /

ka = the coefficients in the power series expansion
fr, .
o '
i = the imaginary unit V-1 .
‘i‘x’i ,_iZ = unit vectors in rectangular Cartesian co-
J ordinates.
_in,i€ ,_i¢ = unit vectors in oblate spheroidal coordinate
system.
l = an integer.
k = 21 /\.
m = a separation constant which is found to be an
integer.
n,(e,¢) = the spherical Neumann function.
qﬁm = the coefficients in the expansion of the

radial functions of the second kind.

r =.the radial distance from the origin to a point
in space.
\Y - the differential operator i —2-+i 2 +i -2,
-X 8X ~y 8y ~z 0z
ag, B,Z = arbitrary constant determined by boundary
conditions.
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NOMENCLATURE (Continued)

a = a separation constant.
/m P

Y[ = a separation constant.
m

the Kronecker delta.

N
5

€ =kF.

n = coordinate hyperboloid of the oblate sphe-
roidal coordinate system.

A = wavelength,

§ = coordinate ellipsoid of the oblate spheroidal
coordinate system.

P = distance between two points P and Q in space.
2 = scattering cross-section.
¢ = coordinate angle of the oblate spheroidal

coordinate system measured counter-
clockwise around the z-axis from the
xz-plane.

Y = a solution of the scalar Helmholtz equation.

vi
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INTRODUCTION AND SUMMARY

At the present time, exact solutions are known for the electro-
magnetic scattering cross-sections of only four three-dimensional
configurations: the sphere, the paraboloid, the semi-infinite cone,
and the prolate spheroid. In this paper, the exact back-scattering
cross-section of a fifth three-dimensional configuration, the oblate
spheroid, is obtained. Although this body may be of little practical
importance, the scattering cross-section has been obtained as part
of the first intermediate objective stated in the Preface, to widen the
theoretical knowledge of this field. The solution is obtained for one
direction of incidence and presented in the form of an infinite series.
Much work still remains to be done in developing methods for evalu-
ating this series to obtain numerical values of cross-section.

The electromagnetic scattering cross-section of the oblate sphe-
roid has been obtained as follows: the oblate spheroidal coordinate
system, in which the scalar wave equation is separable and which
includes the scattering surface as a coordinate surface, is chosen.

A plane, linearly polarized wave progressing along the z-axis in the
negative z-direction is incident on the surface of a perfectly conduct-
ing oblate spheroid. Using the method of Hansen in which a solution

of the vector wave equation is constructed from the solution of a scalar
Helmholtz equation, an expression is obtained for the scattered electric
field in series form having a number of arbitrary constants. This ex-
pression is valid everywhere in space. By means of the boundary con-
ditions at the surface of the scatterer, the properties of the scattered
radiation are related to those of the incident radiation so as to obtain
defining relations for the arbitrary constants. Unfortunately, these
defining relations are quite complex and no simple technique has yet
been developed for determining the exact values of the required con-
stants.

The scattered electric field is used to determine the back-scat-
tering cross-section of the oblate spheroid. The back-scattering
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cross-section, ¢, is defined by Ridenour (Ref. 1) as: "¢ (dimensions
of an area) is to be 4w times the ratio of the power per unit solid

angle scattered back toward the transmitter to the power density
(power per unit area) in the wave incident on the target. In other
words, if at the target the power incident on an area o placed nor-

mal to the beam were to be scattered uniformly in all directions, the
intensity of the signal received back at the radar set would be just what
it is in the case of the actual target.'" The expression obtained for the
scattering cross-section depends upon the set of oblate spheroidal co-
efficients which have not been tabulated extensively and upon the above-
mentioned arbitrary constants. Therefore, the usefulness of the ex-
pression for the cross-section, as far as numerical calculations are
concerned, is limited at the present time.

In conclusion, the author wishes to acknowledge his indebtedness
to the work of F. V. Schultz (Ref. 2) and of A. Leitner and R. D. Spence
(Ref. 3).




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-116

II

THE OBLATE SPHEROIDAL FUNCTIONS

To obtain expressions for the incident and scattered electro-
magnetic field and hence the back-scattering cross-section, the
properties of the solutions of the vector and scalar wave equations
for the spheroid are required. These properties are presented
below,

2.1 THE COORDINATE SYSTEM

The solutions of the vector wave equation and of the corresponding
scalar wave equation can be expressed in oblate spheroidal coordinates
n,¢, and ¢. This system consists of three families of orthogonal sur-
faces which are described by 7, ¢, and ¢ equal to constants. The first
two of these families consist of confocal surfaces of revolution about
the z-axis, namely, hyperboloids of one sheet and oblate spheroids as
indicated in Figure 1. The equation ¢ equals a constant represents
the family of half planes through the z-axis, where ¢ is the angle be-
tween these planes and the xz-plane.

z

b

¥ <

Oblate Spheroidal Coordinates
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The equations of transformation from the oblate spheroidal co-
ordinate systems to the Cartesian system are:

F[(l )L+ 62)]1/2 cos ¢,

X

2 2.11/2 .
Y=F[(1'n)(1+$)] /2 gin 4,
z = Fng,

where F is 1/2 the focal length (PP'), -1< <1, 0<¢<w, and 0< ¢<2m.
In the Cartesian system the equation of the oblate spheroid ¢ = 50 is

2 2 2
X +Yy

A B

where A and B are the semi-major and semi-minor axes, respectively,

and are given by
2
A=Fl/1+§ s B=Feo.

The distance from the origin to any point in space is specified by

2 2 2 2 2
r:‘/x +y +z =F‘/1+€—17- (1)

When ¢ is large, r is approximately F¢.

The relations between unit vectors in the Cartesian system and the
oblate spheroidal system are

ey [ AR A7 cos s

[
1

+ -i-é [g (1 - nz)l/z (172 + fz)-l/z] cos ¢ - i¢ sin ¢ (2a)

i, [-n(l ¢ AV ez)'l/z} sin ¢

fi—e
1]

+ if [e(l - nz)l/z (;72 + 52)-1/2] sing +igcos¢ (2Db)
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i [ (1 - 1322 2)_1/2}+is["(1 YL EZ)—I/Z] (2¢)

14=e

and

pte
il

i [-n(l 4 Hl/2 (n? + &)Y cos ¢>]

ti [-n(l + 52)1/2 (n” + 52)_1/2 sin¢]

i [e(l S 0% ez)’l/z} (3a)
Z

- [6(1 ESVERE SN COS¢]
, 21/2 2 2-1/2

+_1_y [6(1 n) (n +¢) smq&:l

i [ne V2GR B2 (3b)

[
I

i

1, -lxsm¢ +;ycos¢. (3c)

2.2 THE SOLUTIONS OF THE SCALAR AND VECTOR WAVE EQUATIONS

The scalar Helmholtz equation,
2 2
V v +kv =0, (4)
in oblate spheroidal coordinates is

2
2 2 1 1 2.2 2
Sl gl (2 L) S s
n on ¢ 1-," 1+¢°/0¢
(5)

€4
where e = kF = %\EF, k = _Bi’ and \ denotes wavelength .

Equation (5) can be separated by assuming a solution of the form

V(n, ¢, 6) = R(n) S(¢) o(4). (6)
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The substitution of Equation (6) into (5) yields

B 2
d _ 2 dR(m) | [ m _ 2 2 _
dn (L-1n)- an —l-nz ate (L=-9)|R(np)=0 (7)
B 2
d 2, dS(¢) m 2 2 ~
de (1+E)'d¢ + —1+ 52 ~-at+e (L+e )| S(e)=0 (8)
a%e (9) 2
> + m o(¢) = O (9)
do¢

where m and a are introduced as constants of separation, Since it will
be convenient later to express a in terms of m and another constant, Z,
a is written as Gy Particular solutions of Equations (7) and (8) will

be denot = = . i /

e denoted by R () Ujm(q) and S(g) ij(g) The functions U ('?)
and ng(g) are known as the angular and radial functions respectively.

A solution of Equation (9) is ¢(¢) = cos m¢. To insure single valuedness,

m is restricted to integral values,

Hansen (Ref. 4) has shown how a solution of the vector wave equation

VV-.V -VX(VXYHkZ\_f = 0 (10)

can be constructed from a solution to the scalar Helmholtz equation by
using the solenoidal relation

a
_1\4() =V X ay s\/v Xa (11)
where a is an arbitrary constant vector and ¥ is a solution to the scalar
wave equation. Furthermore, the vector V can be expressed in terms
of M_(a). In particular, a is restricted to the Cartesian unit vectors _i_x,
X Z
_iy, and _i_z and, correspondingly, M_(a) is restricted to M , My, and M .

The function ¢ is a Lamé product of the functions R (q), S (2), and &(¢).
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2.3 EXPRESSIONS FOR THE ANGULAR FUNCTIONS

Leitner and Spence (Ref. 3) have presented a thorough discussion of
the properties of the angular functions, Since these properties are used
quite extensively here, they are quoted verbatim.

"Equations (7) and (8) may be obtained from the general equation

dF 2
d 2 /m m 2 2
e (l-z)——dZ - l_zz-ajm+e (1L -2z) ij_o (12)

by replacing the complex variable z with h or i ¢, respectively. Equa-
tion (12) differs from the equation of the associated Legendre functions
only in that it possesses an irregular singular point at z = «, The ex-
ponents associated with the regular singular points at z = +1 are +m/2.
A solution corresponding to the positive exponent will be called a func-
tion of the first kind; the other independent solution will be called a
function of the second kind., Since the exponent difference is an integer
the solutions of the second kind will possess logarithmic singularities at
z = +1, Since this point corresponds toh = +1 or £ = +1i it lies in the
physical range of h but outside the physical range of § . Therefore, the
angular functions are functions of the first kind while the radial functions
are functions of both the first and second kind,

"The analogy between (7) and the equation for the associated Legendre
function suggests series of the form

U[m('])=(1"'l2)m/2£ Cf;n (l-r\z)k (/—m) even, | (13)

2m/z N L 2,k
U/m(qhq(l—v\)m/ éczén (1 -n")" (£-m)odd. (14)

Also by analogy

ajm =/(/Z+ 1) + ) (15)
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2
where y/m is a function of ¢ , As in the case of the associated Legendre

equation, A is restricted to integral values equal to or greater than m,
This notation follows that of Page (Ref. 5). Stratton et al. (Ref, 6) use
the symbol, 4, to denote (j - m) as used here. The recursion formulas
for the coefficients in (13) and (14) are

2k (2K + Zm)Cf;n -[(zk -4 +m-2)(2k+ +m-1) - ynj Ci{:flz

- ez Cgf_z = 0, (j—m) even, (16)

2k (2k + 2m) czim - [(Zk - tm-1)@2k+ 2 +m)- yjm] o 4m

2k-2
2 jm
-t Cy =0, (£ -m)odd  (17)
. /m _ . . 1 . /m .
with CO = 1 in either case.” The magnitude of the CZk begins to de-

crease when 2k>(,Z— m) + 2 if (/- m) is even and for 2k>(.£ - m) + 1 if
(,Z— m) is odd. For large values of k

cflzn 2
—>1 + (18)
C,/m Clm
2k=-2 2 2k=-2
4k { —————
CZm
2k-4

IThese recurrence relations were omitted by Leitner and Spence,
Their continued fraction expansions (Eqs. (19) and (20)) have been corrected.

Y

Om =0, (Z— m)even,

4(1 + m) czjm - [(m - Aym + L +1) - Qm] C

)

4(1 + m) Cfm— [(m-ﬁ+1)(m+j+ 2) - wm} Coﬁn=0,

(Z- m) odd.
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regardless of (/- m). As k approaches infinity this ratio must either

2, 2
approach unity or approach zero as ~¢ /4k . In the latter case the
/m
CZk
absolutely for all finite n. From (16) and (17) one may easily obtain the
continued fractions

alternate in sign at large k and the series (13) and (14) converge

2
v ) = = (/+m)Z-m)e
L 2(2/-1)+ 7/'! + (£+m-2)(/-m—2) 62 5
Tz 73) ¥ T (/+m-4)({ -m-4) ¢
6(24 -5) + yjm +

+ (L+m+2)(L-m+2) & 5
2(27+3) - yj + L/+m+4)(/-m+4) € 5
m W5 -7, (/+m+6)(/-m+6)
m 6(27+17) - yfm +

(Z/-m) even. (19)

2

vy == (J+m-1)(Z-m-1) ¢

m 2(2Z -1) + 7 + (/+m-3)w-m-3)e2
m 427-3) + e

+ (J+m-5)(4-m-5) &
6(2/-5) +

+
Um .

+ (J+m+1)(Z-m+1) & )
202243) = 7y (Lrm+3)(L-m+3) e ,
m 4(2/45) - 7/ + (,/+m+5)(/-m+5) €
m 62+ - v, +

(/-m) odd. (20)
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In both (19) and (20) the first continued fraction contains only a finite
number of terms while the second contains an infinite number of terms.
Equations (19) and (20) constitute transcendental equations whose roots
are the eigenvalues of ):/m' The eigenvalues can be computed by

cutting off the infinitely extending continued fraction and solving the
resulting algebraic equation by successive approximations. By re-
taining more and more terms in the continued fraction one can obtain
numerical values for y/m to any desired degree of accuracy.!

"A series for the y/m in powers of 62 may be obtained (Ref. 5)

by substituting
o0
E' ZIm 2k
4 = f € (21)
/m “= 2k

into (19) or (20) and collecting like powers of ez. One finds

Jm 1) +m -1
f2 = 2

(27 -1)(2Z +3) (22)

I  HUL-VHU) | H(+1)H(+2) (23)
4 T 227-1) 2(22 +3)

Jm o am® o1 THU-NEG | HL) U 2) (24)
¢ (22-IN283) | 0 12 (2 to5)  (2a+3)2 (244 7)

2 .2 i
Jm _ H(Z-1H) 4(4m” - 1) 4
8 A22-1) | 2052 (20-1)  atrn)? HEETD)

H(/-3)H(/- 2)

2-4(27-1)2.4-3)

I"A method for rapidly finding the roots of such continued fractions
was independently developed by Bouwkamp (7) and Blanck (8)."

10
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) f/m

_H(/+1)H(+2) 4(4m°” - 1) , 4

2(27+3) (Zj-l)z (zj+3)4(zj+7)2 2(2/+3)

H(/+3)H(L+4) (25)
2-4(2/+3)(2/+5) |’
where
x'2 - m2
H(x) = — (26)
4 -1

The series given in (21) does not appear to converge sufficiently rapidly
to be useful if ¢ is greater than 5. For smaller values of ¢ it may be
used to obtain a good approximation for ym which may then be im-
proved by use of (19) and (20).

"The angular functions corresponding to a given ¢ are orthogonal in
the interval (-1,1), that is

1

J_lUjm ('I) ULm (V]) dq = djL ij (27)
where
_ jm / m+i+j+1 (m+i+i)
ij ) ;01 =201 2i ZJ 1 3.5 R(m+iti)+ 1] (/-m) even,
' (28)
LY N ohm e T i !
N/(m_lgo“]_zow CZi CZj 1-3-5--.[2(m+i+j)+3]: (j'm) odd.
- - (29)

2.4 EXPRESSIONS FOR THE RADIAL FUNCTIONS

Both independent solutions of the radial equation (8) must be in-
corporated in the general solution. For the functions of the first and
second kind Leitner and Spence give

11
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(1)

2,m/2
Vﬂm(é) (1 +; ()O) 2 C (1 +§2)k, (/—m) even, (30)
k=0

0

2,m/2
m Uj (0) k=0

and
(eg)
v, (&) =ay (142 )m/222m+k( e cm Tm
(e2)
(/-m) even, (32)
(e £)
(Z)ij(g) = iay_(1+3 )m/Z Z’ 2m+k( )L C é/;n (m;—)k+1 ’
(Z-m) odd, (33)

where n (e £) represents the spherical Neumann function, and the con-
stants q Jm are given by

0 2I1’1+k ij -1

(m+k)!
q/m ) 2 1+3¢5000 [2(m+k)+1] (/—m) even, (34)

ko0
o PR cﬁn -1

YUm = & T35 [2mik)) (4-m) odd.  (35)

In the problem being considered, the primary interest is in a combination
of those solutions which will represent a diverging wave at large distances

from the spheroid Leitner and Spence show that (3)Y/m(;)" given by

(3)V/m(?)‘ V)m (€)+1()

ij(g), represents such a diverging wave.

12
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They also give an asymptotic expression for this function which will be
very useful:

i€
i Oy o) = ap @/ ™ S, (Lmyeven,  (36a)
ief
im Oy ) =0y @2/ S o) oaa, (36b)
ieZ
1;11_2 Ed;— (3)V/m(;) = q/m(z/e)m m! (—i)m ee; , (Z-m) odd or even.
€£ > o

(37)

13
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III

THE INCIDENT ELECTROMAGNETIC FIELD

Let Q be a source point
and P a point of observa-
tion given by oblate sphe-
roidal and spherical co-
ordinates, P (f,/], ¢, or
r,0,¢), Q (', q',¢', or

> r',8',¢4'). If p is the dis-
X tance between P and Q
Figure 2 and 7 the angle between
Geometry Used in Describing the r and r', then

Incident Electromagnetic Field.

1
p = [rz + (r')2 -2rr' cosv] /2, (38)
and
cos? = sin ® sin 0' cos(¢ - ¢') + cos 6 cos 8', (39)

If the source point Q is moved to infinity along a fixed direction k',
¢!, then for a plane wave progressing along a specified direction (Ref, 3)

. = Y

-ikr cos” E 2(-1)
e = U, (hU
7= o{NZquo Lo\ Lo

4 ﬁm me
L2 3 e
m=1

,Zm U m m'.

() Py )

X U g WU g 0 1y (g)cosmw-w}

(40)

where the ij are given by Equations (28) and (29).

14
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The problem is simplified if the source point is moved to infinity
along the positive z-axis in which casen'=+1, z =r cosy and Equa-
tion (40) becomes

. = J
-ikz 2(-1) (1)
e = — () "V 4, &) (41)
jgo' N J0 W "o 4o
where
oy o do Mgy
Ndo ~ %%Cn C2i TERERNMT (£-0) even,  (42)
and
) /o /o 2 g
NJo = IZO'ZC T3 ) (/-0) odd,  (43)
Let
i
_2(-1)
o * Njo Uy~ 4
and
(1) _ (1)
wjo(/z.;) = Uy, ('l) Vjo(s). (45)

then Equation (41) may be written in the form

s

-ikz _ E' (1)
e = = A,/O ¢/0(/§,$)- (46)

If the incident electric field vector EI is chosen so as to have only a
positive y-component, then the incident electric and magnetic field vec=-
tors (_E_:I, _EI,) can be expressed as

I -ik i
Ey = Eoe 1xz = ZA[O {ljzo(r\ ;) (47)
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and
T -ikz | E (1)
By = Hye = 4L Hy T Ao Voo neB) (48)
Taking the curl of Equations (47) and of (48) yields
VxEI = E | Ay N/ X (i (l)w ) (49)
y 0 =3 jO y "Jo
and
I _ Ew' . (1)
VXHX B HO 7=0 AJOVX(LX Uo)‘ (50)

Assuming a time dependence of the form e-lwt, Maxwell's equations for
free space become

I i I
= =3 5
E kVXI_I_X (51)
and
I i 1
= —Vx 52
H"‘X k Ey (52)

so that EI and HI are expressible as
=y =X

;=li{ . _5_ Ajcv()t//jOX1 (53)

1 i . (1) .
B =15 % Ago V' Wy Xy B

In terms of a solution M L)m for the vector wave equation, Equations (53)

and (54) become
(1) x
2 A 2o (55)

jt=

and

o
W‘I""

16
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and

1

1 ()Y
B = kHo%‘A/o M, - (56)

Using the relations between the unit vectors of the oblate spheroidal
coordinate system and the Cartesian system (Eqs. (3a), (3b), and (3c)),

My, @
40

the components of the solenoidal vector become

(I)M?O - (1)%

0%y

- -1 2 2 2 -1/2 . d (1)

= l,]F l/1+§ (ri +g) sing U o () 35 Vg (3)
+i F_l‘/ -n® ( 2+;2)"1/2 sin¢ (I)V (é)iU (r)
t (I Lo an Jo 1

. -1 2., 2 2.-1 1 d
+i, F [5(1 -l +2h ™ cose vy, ) 3 U0
L 30T+ 207 cose Uy ) 350V (s)} (57)

and
1)y _ o) .
M’/O =V W/OX‘I‘y
= ;'( Fl |/1 rg° (72+$2)-1/2 cos¢ Uy, (@%‘”Vjo(g)
-1]/ 2 2, 2-1/2 (1) d
-%F l-r\ (r\ +2) cos ¢ Vjo (2) ELUJO (r()

-1 2 2 2.-1 . (1) d
ti, F [;(1 "N ) (rk +%7) sing Uo(é)a\Ujo(q)

e+ sme g S My e | e
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Hence, the incident electric and magnetic field (EI H ) can now be ex-
pressed explicitly as R

o { ZA//O[ Vree? o+ 7 2aimou 00 5 Myp0)]
tig A/o[l/ -r( (q +59)" 2 sing | \f/o ()3 QUJO (’()}
2, 2 _2.-1 (1) d
+i¢gAjo[§(l - n )(q +z) " cos¢ Vjo(g)d—ino(q)

d
+¢((1 + g )(r( +2 ) cos ¢ Ujo (,,() (I)V/() (g)}} (59)

and

H--Lg F { Z%l/us o+ Feos 00 ) g7 Mo 0
tg 2 g Voot e g oss Dy 10
g o go[sn -t £ e gy 1500

e+ 20+ 557 sime Uy ) 550V (g)}}-- (60)
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Iv

THE SCATTERED ELECTRIC FIELD

The expression for the scattered electric field must satisfy
Maxwell's equations, the boundary conditions at the surface of the oblate
spheroid, and the boundary conditions at infinity. In order to satisfy
the Maxwell equations it is necessary that the electric field vector sat-
isfy the vector wave equation and the divergence condition. At the sur-
face of the scatterer the tangential component of the total electric field
must vanish, and at large distances from the scatterer the scattered
electric field must have the form of a spherically divergent wave.

Inspection of the asymptotic form of the radial function of the third
kind, (3) (I)V/m and (Z)Yém
the diverging wave condition. To satisfy the boundary conditions at the
surface of the scatterer as simply as possible the values of m are
chosen so that the scattered wave depends on ¢ in the same way as the
incident wave.

ij, shows that this combination of meets

The scattered electric field is then expressed explicitly as

o0
s _Ep ( (3), % (3)z)
E =+ o My v B My (61)
4= 0
where the (3)1_\_/120 and (3)M_21 are inversely proportional to length,

k = 2n/\, and the . and B,Z are arbitrary constants to be determined by

the boundary conditions at the surface of the scatterer. If the super-
script (1) is replaced by the superscript (3) in Equation (57) the expres-
(3)

. X
sion for 1\__/;20 is
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3 -1 -
Ohr =i, 7 Vel e B s v o0 0,00

(3)y

+1E F_l ‘/1 -V(Z(ﬂzﬂiz)—l/z sin ¢ j (E)‘Ujo(")

(3)

. -1 2 2 2.-1 d
+1¢F [ﬁ(l—ﬂ J)(n 4+t ) cos¢ V/O(E)HUJO(U)

tr ) of v eos e U, (=4 Pl ) ] (62)

(3) 1

Bl - p! [n(l ) 77z)-l/z 2 4 &2)—1/2 cin 6 U
vi F‘l[- s+ 0% B singu, Bl (a)]
_l[n(l—n2)1/2(1+ 2 /Z(rz +t ) C°S¢(3)V/Zl(e)dint1(n)

ti, F

ce - 2 AP )  eos o U, (0 1P )le(i)]

(63)
Since the total electric vector at any point is givenby E + E ", the
boundary conditions at the surface can be expressed as
S
[Ei +Ei:, =0 , (64)
=n -nlt =
§ 50
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[EI +ES} =0 . (65)
s 1
E= ¢t
0

Substituting the expressions for the incident and scattered fields
(Egs. 59 and 61) on the surface and using the above expressions for

(3), x (3)
M/o

_ E' , 2.1/2 d (1)
11:0 AjO (1+EO) IEZO (TI)ET VJO (EO)

21/2 d (3)
2;{-aj(1+s ) () \Qo(eo)

and Mil Equations (64) and (65) become

-1
/2 4

t B8y (1l - nz) N (n) (3)V£1 (60)} (66)

and

#n (Leeg) Uy 57 v, (&O)]

0

2 (3) d
= E (1 -n") (¢ )— U, (m)
jgov{ﬁ[ V7o 0o'dy 4o

+r((1+e) d(3)

10 0 37 [0<e0>}

/z - Eg)l/z (3)

+ﬁj[q(1 1% /) ‘%’a_r( Uy, ()
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b )1/2 +E§)1/2 U, d (3)le (50)]} , (67)

The above system of equations can be solved for ay and By by use of the
orthogonal properties of the angular functions Iym (7). If Equations

(66) and (67) are multiplied by U and integrated over the interval

Lm
-1< N <1, then

2,1/2 | _d (1)
Ajo(l+€0) [de VZO(EO)]I

i} Y 2.1/2 | _d (3) (3)
'go{'%“”o) |:de V/o(eo):lll’rﬁ,é Vﬂl“o”z}

(68)
and
. 4 (1) (1)
-1 go A% {(”5 )[ de ,Zo“o)} I+ % Vzo(go”z}}

o

_ d (3) (3)
_Z{Z[“ > )< m‘%’) 3% % Vjo(go)IJ

Z=0

- BZ[“ 52)1/2 <%(3)Y21 (go)) Iy - (1+2 1/2(3)/1 (50)16]} ’

(69)

where

1
LWL j_l Uyo 1D Up (1) AT

I
[ .1 =S_17((1 '7(2)-1/2 Upo 1) Upp ()41

22




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-116

L UL =) 1 Uy (D ULy () dn

! 2 d
-] a-nhu ) g7 Ugo ) dn

! 1/2
I (/L) = 1(1-7) 11(7)UL0(’()M

1
- )1/2

TR NG 7’5%%‘*("“%

The six integrals above can be evaluated in terms of the Beta
functions B (t,k). These functions are defined by:

1

k+1
j-lﬂzt(l - qz)k dq = B(t +1/2,k+l)=

2 k'
(2t + 1) (2t +3) - (2k+ 2t + 1)

(70)

where k and t are non-negative integers.

For / even, L even,

Q0

1 0
_ - E' o 2 k Lo, 2k
: Ew' Zo'cﬁo WO g an
1k=0 3 2s 2k-2s

) jo
gZCZS 2k - Zsj(l_q) dr(
=0 s=0

E and O refer to even and odd values respectively of £ or L.

[}
i

23




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-116
o k
E 0 0
= Cﬁs C;Jk -2 B(l/Z,k+1)
k=0 s=0 S

k

> k+1
0 2 !
4 LO k (71a)

:
it

CZk—Zs 3-5--- (2k + 1)

For ¢ odd, L odd,

11 (4, L) 11 (O, O)

o Kk
2 2 CfO C;S_Z B (3/2,k+1)
k=0 s-o0 ©°° S

k+1

o Kk
: £0 _LO 2 k!
22 Cos Cox-26 35 (2k73) (71b)

k=0 s=0

Since the angular eigenfunctions, U (i(), are orthogonal in the
. /m
interval, (-1,1),

where &, 1is the Kronecker delta function and Njo is given in Equations

L
(28) and (29).

Using a technique similar to that in the evaluation of Il’ the remain-
ing integrals become:

=]

k
I (E,E)=1 (0,0)= 2 2 ¢/l Lo B (3/2,k+l) (72a)
2 2 ot = T2s T2k-2s

I2 (E, O) = I2 (O, E) = 0; (72b)
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13 (E,E) = I3 (O,0)=0 (73a)

ok
/0 0

I (E,0)=L (O,E)-= 2 2 ct? ot B(1/2,k+1); (73b)

3 3 k-0 s-0 2s 2k -2s

I, (B,E) =, (0,0) =0 (74a)
ok
20 Lo ,
I (E,O0)= -2 2 2 s c 0 b B (3/2,k+1) (74b)
4 -0 50 2s 2k -2s

o0 k
I (O,E) =2 2 D1 -9 cl% cE0 B (3/2,k) 5 (74c)
4 k=0 s5-0 2s 2k -2s

I (B,E) = I (0,0) = 0 (75a)
o K

L, (E,0) = égcﬁz ), B(3/2,kH) (75b)
o K

I (O,E) - P Zcfg 0, B(1/2,kH); (75¢)
k=0 5-0

1, (E,E)= L (0,0)=0 (76a)
. K

1, (E,0) = k=20vs=o Cﬁ C;S_ZS [B(3/2,k+2)-(2s+1)3(5/z,k+1)}

(76b)
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0 k
I, (O,E)= - 2 le CLO (2s+1) B(3/2,k+1) (76¢)
6 0o 3 2s 2k-2s

To simplify the writing of Equations (68) and (69), let

L _ 21/2 [ 4 (1)
Bj -A/() (1 +§O) [dé VZO (%0)] Il (Z, L)
L _ 2.1/2 | d (3)

L_(3) |
G,= "V, )L (/, L)

d (1)
dz

L _ 2.1/2 (1)
Rp=Bpo 1130 { V20 (éo)} LU L)+ 307 Vg (2) LA L)

L_ .2 [d(3) ,
Sp = (1+2,) [d% Vso ‘%’J L (LI 5

(3)
Vo Eo) 1, 1)

L _ 2.1/2| d (3)
Ty =-2(1+3)) {dé \Qo(éo)JISw,L)

2.1/2 (3)

+ (1 +§O)

Vjo Eo) L (4 L) (77)

By use of this notation, Equations (68) and (69) take the form

L L L
2 (a, D) +B,Gy)= _}_ B (L=0,1,2...) (78)
= 2 2Ty = 7

o0 oQ
L L L
2 (o, S +p, TZ) = 2 R-(L=0,1,2...) (79)
e R - S

26




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-116

To obtain an approximation to the solution of these two independent
sets of equations, write the first four equations of each set as:

0 0 0 0
aODO+O+O+0... +[30GO+0+[32G2+0+... —BO
0+ D1+0+0+ +0 Gl+0+ Gl- —Bl
% M -+ 046, Gy By G3= .- =B
2 2 2 2
0 0... =
0+0+a, D, +0+ +By G, t0+B, G, + B,
0+0+0+ D3+0+ + G3+O+ G3+ --B3 (80)
a3 3 [31 1 (33 3 3

and

0 0 0 0
0+ a Sl+0+a3S3+0+---+0+Bl T +0+B, T, +0+...

—0+R0+0+R0+

- l 3 * o o

Sl+0+ Sl+0+ + T1+0+ T1+0+
% o CJL2 2 BO 0 ﬁ2 2

1 1
= + 0 0+...
Ry+0+R, +0+

2

2
[ tO+B, T +0+. ..

2 2
O+a S +0+a, S, +0+...+0+p T 3 Ty

3
2 2
-O+Rl+O+R3+...
3 3 3 3
.. 0 0+ ..
CLOSO+0+G.ZSZ+O+ BOTO+ +BZT2+

3
=R(3)+0+R2+0+... (81)
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Here a, and 8. (n=0,1,...) occur in the first, third, ..
2n 2n
equations of system (80) and in the second, fourth, ... equations of
system (81). In particular, as a first approximation, to aO and 60,
consider only the first equations containing oy and BO in each set.
Then
0 0
B0 GO
1 1
~ RO T0
a =
0 0 0
DO G0
1 1
S0 T0 (82)
and
0 0
DO BO
1 1
B - SO RO
0 0 0 *
D0 G'0
1 1
So T (83)
=0,1,... i s s e
The st and anﬂ (n , 1, ) occur in the second, fourth
equations of system (80) and in the first, third, ... equations of system
(81). Hence, by a similar process for n = 0,
1 1
Bl Gl
0 0
} R T
a = -
1 1 1
Dl G'1
0 0
S 1 T1 (84)

[\)
(o)
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and

)
o

w
[—
i
w] wn
— QO bt et [ O et e
Q| X
—_ O k= ] O e

w
3

(85)

For a general a_ or an (n=1,2,...)the n+ 1 equations from

2n
each system in which a and ﬁZn appear must be used. Similarly, for

2n+1 °F Pantl

in whi . .
in which & tl and 62n+1 appear must be used

a general a (n=1,2,...)n+ 1 equations from each system

L
Thus in the above expressions for a and [3 the quantities B TV AIZ,

Gj L" SE, and Tj each depend upon the oblate spheroidal coefficients

Cdzr;: These spheroidal coefficients are completely determined by the

defining equations for C([;m and Cfm and the recursion formulas (16)and

(17).
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v

ASYMPTOTIC FORM OF THE SCATTERED ELECTRIC FIELD

In the previous chapter an expression was obtained for the scattered
electromagnetic field everywhere in space. The back-scattering cross-
section, however, depends explicitly only on the nature of the electro-
magnetic field in the vicinity of the source, that is, in the asymptotic
behavior of the scattered field as € > « and7 = 1.

The expansion of ES was given in the form

E X
s 0 E < (3). x (3). = >
E =— a M, +pB M (61)
= Z = ? — /1
k 0 /0 Y
where (3)M;0 is given by Equation (62) and (3)1_\_/151 by Equation (63).
Substituting the asymptotic forms of (3)V/m’ { Eqgs. (36) and (37)]

into Equations (62) and (63), and letting/Z = 1, leads to

ikr

(3, x _ [ e . ] e
I\_/[/0 l,\s1n¢+l¢ cos ¢ qj0 5 (86)
and
(3). z -1 -1 ikr

) o : e
M, =2¢ k [_1_”s1n¢+L¢cos¢]xqjl 2 . (87)

(

For /( = 1, Equations (3a) and (3c) reduce to
i, = -1 cos ¢ -1 sin ¢ (88)
T x y
and

i =-i sin¢+i cosé¢. (89)
¢ X y
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So that, Equations (86) and (87) become

ikr
(3),.x _ . e
and
ikr
3.z . -1 -1 e
Mﬂ-llyqﬂf k 3 (91)

Substituting Equations (90) and (91) into Equation (61) and neglecting

2
term of order 1/r  the asymptotic form of the scattered electric field

is given by
5 E0 eikr 21
=i — . 2
BT T &% Yo (92)
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VI

THE BACK-SCATTERING CROSS-SECTION

OF THE OBLATE SPHEROID

The asymptotic expression for the scattered electric field (Eq. 92)
makes it possible to formulate the far zone back-scattering cross-
section explicitly.

The scattering cross-section, o, is defined as the cross-section of
an isotropic scatterer which would scatter in the direction of interest
the same amount of energy as the oblate spheroid scatters in that direc-
tion. If P! denotes the total power intercepted by an isotropic scatterer
of cross-section o, then

-y /> (B, (93)

Mo

I
P =¢

I

P I I

E x H

=0

I
where P is the Poynting vector of the incident wave.

Thus the magnitude of the Poynting vector for the wave scattered by
the isotropic scatterer is

p° ¢ (94)

where r is the distance from the center of the isotropic scatterer to the
point of observation.

But ‘ES ‘ is also given by

2
0 ’ ) Eg >
Bl By B Ve e 2 o %2)
Ko Mo k“r°| Z-0
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So that, combining Equations (94) and (95), ¢ is expressed in terms of
the constants % of the scattered electric field as

o 2
2 o0
41 A :
= Z a,q = — 2 a, q , (96)
kz = 2700 T 7 /0
or
2
2 o
47F
o= — a, q (96a)
0
U

where qﬂ0 is given in Equations (34) and (35), F is one half the focal

length and € = 2;:1—?, \ being the wavelength of the incident radiation.

Leitner and Spence (Ref. 3) have tabulated q/z0 for e =1, 2, 3, 4,
and 5 and for Z = 0,1, ... 5. This tabulation of qj0 must be extended

to larger values of Z and ¢ if numerical values of ¢ are to be obtained.
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APPENDIX I

SCATTERING FROM A CIRCULAR DISK

In the limit, £ 0 > 0, the oblate spheroid approaches a circular disk

of radius F. Bouwkamp (Ref. 9) has shown that the scattered field from
such a disk will be infinite at its edge. Flammer (Ref. 10) has solved
the disk problem in terms of oblate spheroidal wave functions which
possess the correct singularities. To demonstrate that the scattered
wave has the correct singularity at £ = 0, the expansion of the radial
functions in terms of Hankel functions used in this paper is inappropriate
and Equations (34) and (46) of Reference 3, giving the functions as power
series in £, should be used.

Then it can be shown that Equation (6) of Part II in Reference 10 and
Equation (61) of this report differ essentially only in the presence of
even values of Zin the summation of Equation (61). However, even

values of / imply even values of ./-m in (3)Mzo and odd values of /-m in
(3)MZI. It can be shown that the radial functions of the first kind vanish
at£ =0, for Z-m odd, while their derivatives vanish at£ = 0 for Z-m

even. This implies that Bj = RE = 0 for £ even, in Equation (77). Thus

Equations (80) for the a, and B/é with ./ even are homogeneous equations

in the disk limit, with the solutions

Hence (61) does in fact reduce to an odd sum over.¢. The singularities
are discussed in detail in Reference 10.

The edge condition of vanishing tangential electric field, which was
used by Flammer to obtain a unique solution, follows automatically
from the solution presented here which required E4 = 0 for all values

of§0.
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APPENDIX II

THE SCATTERING CROSS-SECTION

OF THE PROLATE SPHEROID

The oblate spheroid can be transformed into the prolate spheroid
by the simple transformation:

h oblate =4 prolate,

€ oblate = i% prolate,

¢ oblate = m-¢ prolate, and

€ oblate = ie prolate. (A)

Therefore, if the oblate spheroidal functions and oblate spheroidal
coefficients are transformed into prolate spheroidal functions and pro-
late spheroidal coefficients respectively, the solution of the boundary
value problem for the oblate spheroid should be transformed into the
solution of the same boundary value problem for the prolate spheroid.

This transformation of solutions does, in fact, occur. When the
coordinate transformation is applied, the oblate spheroid becomes a
prolate spheroid and the separated angular and radial differential equa-
tions are arrived at from Equation (12). These equations are satisfied
by the prolate spheroidal functions. Furthermore, the recursion formu-

las for the coefficients-Cff{n take the form,

Iim

2k (2k+2m)C§rkI1 —[(Zk -4 +m-2)2k+ Z+m -1) —ajm] CZk

2
+ € C’ﬁm

it 0 (/- m)even (B)
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and

/m {m
2k(2k+2m)CZk —{(2k-[+m— l)(2k+/+m)-ajm ] CZk
2 Jm
+ € CZk—4_O (- m)odd . (C)

Because these recursion formulas differ for the oblate and prolate
spheroidal systems, the spheroidal coefficients are different, numerically,
in the two systems. This numerical difference leads to different values
of the scattered electromagnetic field and of the scattering cross-section
even though the explicit form of these two quantities is the same in both
coordinate systems.
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