Anticipatory Route Guidance
Using Rolling Horizon Procedures

Daniel J. Reaume
Department of Industrial & Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109-2117
Technical Report 96-9

July 1996



UNIVERSITY OF MICHIGAN
ITS PROGRAM

ANTICIPATORY ROUTE GUIDANCE
USING ROLLING HORIZON PROCEDURES

Daniel J. Reaume

Abstract

The SAVaNT optimization package has been developed to determine user-optimal routings for
vehicles in a traffic network. To facilitate practical implementation of SAVaNT, we have re-
implemented it in a rolling horizon framework. We present the modeling difficulties involved in

this effort and examine algorithm performance when applied to the Troy, Michigan traffic
network.
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1. INTRODUCTION

SAVANT

One of the goals of the ITS (Intelligent Transportation Systems) initiative is to reduce travel
delays experienced due to congestion by choosing a more appropriate routing for vehicles.
Traditionally, due to the difficulty of the problem, algorithms determining routing decisions have
not been anticipatory, ignoring congestion effects caused by re-routing vehicles in order to avoid
existing traffic congestion.

The SAVaNT (Simulation of Anticipatory Network Vehicle Traffic) route optimization system
(1] is an anticipatory traffic optimization algorithm which has been mathematically proven to
generate user-optimal vehicle routings. By user-optimal, we mean that no vehicle may reduce its
experienced trip time by unilaterally changing its route. This is as opposed to a system-optimal
routing, which minimizes the total travel time of all vehicles on the network. Since it is difficult
to measure the level of user-optimality of a routing, we will use average trip time as our
performance measure for SAVaNT throughout this paper, even though this measure relates to
system optimality.

As mentioned above, not only does the choice of a non-anticipatory optimal routing depend on
the current time-dependent link travel time profiles, but by re-routing vehicles to avoid
congestion, this routing also modifies this link travel time profile. The routing, optimal for the
original set of link travel times is therefore in general no longer optimal for the modified link
travel times. SAVaNT is an iterative procedure which proceeds to find a fixed point in this
feedback loop such that link travel times yielding a routing remain unchanged if this routing is
implemented.

SAVaNT proceeds as illustrated in Figure 1. From an initial estimate of link travel times, a
routing program computes a non-anticipatory optimal routing based on the assumption that
these travel times will hold regardless of routing computed. A traffic simulator then applies this
routing to determine the time-dependent link travel times it yields. The new set of link travel
times are then input back into the routing program and the process iterates. If, at any time, two
consecutive iterations yield identical link travel ume profiles, then a user-optimal routing has
been computed [1].



SAVANT-CNV

Unfortunately, it is quite possible that the link travel time profiles from two non-consecutive
iterations of SAVaNT may be identical. In such a situation, which we call a cycle, it is clearly
impossible to ever generate a fixed point. Wunderlich [2],[3] has developed a method of avoiding
such cycles by deliberately introducing error into link travel time profiles reported by the
simulation program. The resulting algorithm is called SAVaNT-CNV since it ensures
convergence to a fixed point.
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Figure 1: The SAVaNT optimization system

At the heart of SAVaNT-CNV is a parameter called delta which regulates the degree of
inaccuracy of reported link travel times. If a vehicle enters link / at time ¢ and requires time efl,t)
to traverse the link, then under SAVaNT-CNV, it will be reported that vehicles entering / at time
t+(delta)(e(l,t)) will traverse the link in time efl,t). As illustrated in Figure 2, a delta value of 0.0
corresponds to accurate information. The more delta is increased, the more inaccurate are
reported link travel times. When delta is 1.0, we have a situation called probe accounting, where
if a vehicle leaves a link at time ¢, then its link travel time will be reported as if it had entered the
link at time ¢.



SAVaNT-CNV proceeds identically to SAVaNT until a cycle is detected. Then, as illustrated in
Figure 3, delta is incremented and the traditional SAVaNT loop restarts, but with more
inaccurate link travel time information. In the course of the optimization process, delta may be
increased several times, but we are guaranteed that eventually SAVaNT-CNV will converge. This
is since, for delta large enough, all vehicles will have their effective link entry times “shifted” past
the end of the simulation, hence only free-flow link travel times are reported to the routing
program.

Time t Time t+e(l,t)
L Ink; ]

Reality:

Vehicles entering link / at time t experience link travel time e(l,t).

Reported:

Vehicles entering link / at time t+(delta)(e(l,t)) experience link
travel time e(l,t).

| Timeline >
Time t: ‘Time Time Time
Actual t+0.5¢(l,t) tre(lY): t+1.5¢(l,t)
'Departure | Actual
Time ? Arrival Time
'Reported Reported Reported Reported
link entry link entry link entry link entry
time if time if time if time if
delta=0 delta=0.5 delta=1 delta=1.5
(probe
accounting)

Figure 2: The effect of delta
ROLLING HORIZON PROCEDURES

At each iteration of the SAVaNT algorithm, an optimal routing must be determined for the
entire problem horizon, and a simulauion must then be run up to this horizon. If the problem
horizon is long, this may lead to extremely slow execution. Further, in a practical situation,
traffic demand patterns will not be known exactly until they occur, hence any traffic simulated in
the SAVaNT loop will, at best, be an approximation. It therefore seems reasonable to attempt to



break the optimization process up such that a sequence of routings is determined for short time
periods, each smaller routing problem being solved only when required and using the most recent
data available. Such an approach is called a rolling horizon procedure and is illustrated in Figure
4. The length of each subproblem is called the rolling horizon (R), and the length of time during
which a subproblem solution is implemented before another subproblem is solved is called the
roll (). Obviously, the roll may be no greater than the rolling horizon, but it may be shorter, in
which case part of each subproblem solution is discarded. The case where roll and rolling horizon

are 1dentical is called a full roll.

In practice, rolling horizon procedures generally execute more quickly, since several the small
subproblems are usually much easier to solve than the large original problem. More importantly
from a practical viewpoint, only one subproblem need be solved at a time to yield implementable
routing decisions. Unfortunately, since a rolling horizon procedure only considers an immediate
part of the original optimization problem at a time, its solutions tend to be myopic and are
generally not optimal. In the case of vehicle routing, this myopia may not be significant, since
travel demand is not known a priori, hence routings are only optimal for an approximation of
the actual vehicle routing problem. Since the rolling horizon procedure need only solve
subproblems when the corresponding decisions need to be implemented, it therefore benefits
from more recent and accurate traffic data.
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Figure 3: SAVaNT-CNV

In this paper we will examine rolling horizon implementations of the SAVaNT-CNV algorithm
using the INTEGRATION traffic simulator and the Hiroute vehicle router. Section 2 will
present such an algorithm as well as empirical results from its application to a simple traffic
network. The algorithm will be refined to better deal with end of study effects in Section 3, and
results of its application to optimization of the Troy, Michigan traffic network will be presented.
Section 4 will examine the effect of varying traffic conditions on the performance of the rolling
horizon algorithm by introducing a major incident into the Troy network. In Section 5,
performance of the algorithm will be examined using a lower penetration level of guided vehicles
and higher congestion in the Troy network in order to highlight algorithm performance
characteristics. Finally, Section 6 will suggest avenues for further research and improvement of
the algorithm.
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2. AN INITIAL ROLLING
HORIZON IMPLEMENTATION

PROBLEM DEFINITION

To construct a rolling horizon implementation of SAVaNT, it is essential to first have a well-
defined concept of a subproblem over an interval [¢1,t2]. The most obvious and simple way to
define such a subproblem is to apply SAVaNT-CNV, starting with the network in its state at 1,
and optimizing until ¢2. Such a definition has one very large drawback: If there is no way for a
vehicle to reach its destination in time (¢2-t1), what is considered to be an optimal route for such a
vehicle? For short rolling horizons, the great majority of vehicles may fall in such a category.
One possibility, the one used in our implementation, is to assume that link travel times will stay
constant after time ¢2, thus giving a meaningful definition to an “optimal” route for each vehicle.
Note that such a solution is subject to a very large end-of-study effect, since most vehicles are
thus assumed to spend the majority of their trip under constant link travel time conditions. The
rolling horizon SAVaNT-CNV algorithm corresponding to this subproblem model is as depicted
in Figure 5. Note that the INTEGRATION traffic simulator may only begin execution with an
empty network. Hence, to effectively begin a subproblem with a loaded network, it is necessary
to execute INTEGRATION starting at time 0, using a fixed set of vehicle routing tables until the
start of the subproblem. In practice, this arrangement loses much of the computational
attractiveness of the rolling horizon procedure, but this is only an artifact of the choice of
simulation software, not of the algorithm itself.

EMPIRICAL RESULTS

Our initial implementation was applied to a simple traffic network consisting of four nodes
with bi-directional links forming the edges of a square, as depicted in Figure 6. This small
network corresponds to a segment studied in [4] of the Sioux Falls network. Vehicles were routed
onto the network from each node to each other node, the demand rate for each origin-destination
pair varying according to a normal distribution centered on the mean presented in [4] and
updated each minute.

The INTEGRATION traffic simulator requires a new routing table each time slice. These
routing tables contain, for each (n,d) pair of node n and destination node d the identification
number of the next link a vehicle currently at node n should take to get to node d. For the
purposes of these empirical tests, we used a time slice of 2 minutes and a problem horizon of 30
minutes. In addition to using a single routing table for each time slice, INTEGRATION also
employs the same link travel times throughout a time slice, updating them by exponential
smoothing at the start of each slice. At the start of each subproblem, delta is set to 0.0, denoting
accurate reporting of link travel times. When cycling occurs, delta is incremented in steps of 0.5.



In our simulations, twenty five percent of vehicles were designated to be of Class 3, or
“intelligent”, routed according to the SAVaNT routes, another twenty-five percent were of Class
2 and were routed quasi-dynamically, and the remainder were routed as background traffic, Class
1. Quasi-dynamic vehicles are routed under the assumption that current link travel times will be
maintained indefinitely and are assigned new routes every time slice. Background vehicles are
routed according to free-flow link travel times, as if no congestion existed.

Figure 7 expresses the results of applying the rolling horizon SAVaNT-CNV algorithm to
the routing problem using various rolls and rolling horizons. Note that in this figure, both rolls
and rolling horizons are expressed in terms of 2 minute time slices, and that the case of a 15 time
slice roll is actually the original, non-rolling horizon version of SAVaNT. The groups of bars in
the graph represent different rolls corresponding to a same rolling horizon, though not all roll-
rolling horizon combinations were evaluated. No clear relationship between roll or rolling
horizon and performance is obvious from Figure 7. In fact, the non-myopic original version of
SAVaNT produced the worst solution. This apparent contradiction is due to the use of varying
delta values and to SAVaNT’s search for user-, rather than system-optimal solutions.
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Figure 6:Fragment of the Sioux City network used in empirical tests
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3. A REVISED ROLLING
HORIZON IMPLEMENTATION

PROBLEM DEFINITION

In the previous section, we noted that our definition of a subproblem led to very large end of
study effects. These effects, we postulate, may contribute to the apparent randomness between
average trip time and roll or rolling horizon. Hence, to minimize these effects, we have redefined
the rolling horizon subproblems. Rather than terminating simulations and route computations at
the end of the rolling horizon, we allow these to continue up to the problem horizon. We
delineate our rolling horizon by curtailing all inflow of vehicles to the traffic network after the
rolling horizon. Thus, since far more vehicles will be allowed to complete their trips in each
subproblem, we reduce the magnitude of the end of study effects. The revised algorithm is
illustrated in Figure 8. Obviously, this comes at a computational cost of running longer
simulations and computing more routing table entries. However, since the routing table
construction is not the computationally intensive module of the SAVaNT system and since no
new vehicles enter the network after the rolling horizon, rolling horizon subproblems are still
less computationally costly than the original problem. Additionally, subproblems generally
require far fewer SAVaNT iterations than does the original problem.
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The current traffic simulator, INTEGRATION, is time-driven and scans the traffic network
every 0.1 seconds to check for events such as vehicles arriving at nodes, vehicles entering the
network, etc. An event-driven simulator, on the other hand, computes in advance the time of the
next event and skips immediately to that point in time. Thus, if INTEGRATION were replaced
by an event-driven simulator, the computational savings would be considerable, since, after the
rolling horizon, the number of vehicles remaining in the network to trigger events diminishes
rapidly.

EMPIRICAL RESULTS

In a further effort to distinguish the effects of roll and rolling horizon from possible artifacts
of the problem definition, we have replaced the Sioux City subnetwork with a far more detailed
model of the Troy, Michigan traffic network. This model, containing 529 links, 202 nodes, 72
origin/destination nodes, and over 100 signalized intersections, represents all major freeways and
arterials in the city of Troy. Developed by Wunderlich [5], it is depicted in Figure 9. A constant
inflow of approximately 50000 vehicles per hour, representing heavy congestion, is applied to the
initially empty network for 30 minutes. The problem horizon is 30 minutes, divided into fifteen
120 second time slices. As in Section 2, 25% of the vehicles were routed by SAVaNT, 25% were
routed quasi-dynamically, and the remainder were routed according to the shortest free-flow
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Figure 9: The Troy, Michigan traffic network
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The average trip times of SAVaNT-routed vehicles as a function of different rolls and rolling
horizons are illustrated in Figure 10. Results are grouped by rolling horizon, with the bars within
each group representing different rolls. There appears to be a trend toward shorter trip times
with longer rolls and shorter rolling horizons. This appears counterintuitive, since myopic
solutions seem to be preferable. However, the results maybe be interpreted to be reasonable,
since longer rolls allow subproblem solutions to be used to better effect and since longer rolling
horizons tend to cause more cycling, and hence require larger values of delta with
correspondingly less accuracy in link travel time estimates. Note, however, that the greatest and
least average trip time experienced differ by only approximately 1%, hence any trend may not be
significant.
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Figure 10: Average trip time of vebicles guided by rolling horizon SAVaNT-CNV

1
0.995
0.99
0.985
0.98
0.975
0.97
0.965
2 4 6 8 10 12 30

Rolling Horizon
(minutes)

EClass 1
B Class 2
OClass 3

travel time)

Average Travel Time
(fraction of average Class 1

Figure 11: Performance of rolling horizon SAVaNT-CNV with respect to vehicle class

13



We also examined the improvement in trip times of SAVaNT-guided (Class 3) vehicles over
background (Class 1) and quasi-dynamic (Class 2) vehicles. Normalizing with respect to the trip
times of Class 1 vehicles and considering only full-roll scenarios, we obtain the results of Figure
11. Each group of three bars represents the average trip time of vehicles of the three classes using
the corresponding rolling horizon and a full roll. What is significant in this figure is not the
appearance of a trend, but the complete lack of such a trend. Figure 11 suggests that the choice of
roll has insignificant effect on the performance of SAVaNT-CNV.

Though the revised version of SAVaNT-CNV reduced the magnitude of end-of-study effects,
such effects still exist and may distort the meaning of performance parameters. The average trip
time data, for instance, is taken from an INTEGRATION output file. Unfortunately,
INTEGRATION only counts the trip times of vehicles that have completed their trips when
computing this information. Thus, a particularly bad routing that excessively delays vehicles with
long trips may in fact be reported to yield a lower average trip time, since shorter trip times will
be over-represented! We have examined two methods for minimizing this distortion.

The first alternative assigns to all vehicles stranded on the network at the end of the problem
horizon the average trip time experienced by vehicles completing the corresponding trip. Figures
12 and 13 correspond to Figures 10 and 11, but use this new accounting scheme for stranded
vehicles to compute average trip times. With this new accounting, it appears from Figure 12 that
longer rolling horizons yield longer average trip times. Note also from Figures 11 and 13 that the
improvement in performance between SAVaNT routings over the other routings is significantly
greater when stranded vehicles are accounted for. As before, the average trip times of the three
classes of vehicles remained relatively constant as the rolling horizon was varied.

A second method for dealing with distortions in reported average trip times by
INTEGRATION is to eliminate the possibility of stranded vehicles. Though few stranded
vehicles are left on the network in the first rolling horizon subproblems since vehicles have
nearly 30 minutes to reach their destinations, this number increases as the algorithm progresses.
Rather than always terminating simulations and routings at the problem horizon, in our case 30
minutes, we instead terminated them at 60 minutes to allow the vast majority of vehicles to
complete their trips. The results of this series of simulations are expressed in Figures 14 and 15.
The average trip times in Figure 14 vary by almost an order of magnitude more than those in the
corresponding Figures 10 and 12. Contrary to these figures, the trend in Figure 14 suggests that
longer rolling horizons, rather than shorter ones, yield shorter average trip times. This is the
result one’s intuition would suggest. However, comparing Figure 15 to Figures 13 and 11, it is
apparent that when the network is allowed to clear, quasi-dynamic routing tends to perform
almost as well, and in some cases better, than SAVaNT-CNV routing. We postulate that this is
since a significant portion of total trip time is incurred after the problem horizon of 30 minutes,
in a long period of relatively light congestion where quasi-dynamic routing is nearly optimal.

14
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4. DEALING WITH VARYING
TRAFFIC CONDITIONS

TRAFFIC SCENARIO

In the previous section, we always assumed that travel demands and road capacities stayed
constant throughout the routing problems. Clearly, this is an unrealistic assumption. Because of
their myopic nature, the performance of rolling horizon algorithms clearly may be degraded if
either of these assumptions fails to hold. To measure the extent of this degradation, we again
consider the traffic scenario from Section 3, but we now simulate an incident by completely
closing a link representing part of the [-75 freeway, the largest road in Troy, from 15 minutes to
30 minutes into the scenario, as depicted by the bold arrow in Figure 16. Such a shutdown should
reduce the congestion on the remainder of the I-75 and hence modify traffic patterns throughout
the network.
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Figure 16: The Troy, Michigan traffic network with an incident
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EMPIRICAL RESULTS

Since it produced the most significant trend in previous experiments, we chose to allow the
network to empty to minimize end of study effects. The average trip times for vehicles of each of
the three classes in the Troy network in the presence of an incident are graphed in Figure 17. As
usual, each group of three bars represents the average trip time of vehicles of each class using the
corresponding rolling horizon with a full roll. The performance of rolling horizon SAVaNT-
CNV in this scenario seems to have little dependence on the length of the rolling horizon. Note
that the performance of quasi-dynamic routing approached that of SAVaNT more closely than in
previous experiments. This agrees with our intuition, since in the presence of varying traffic
conditions, the myopic nature of rolling horizon SAVaNT-CNV should lead it to approximate
quasi-dynamic routings.
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5. THE TROY NETWORK
REVISITED

TRAFFIC SCENARIO

The greater the congestion, the more benefits stand to be reaped from using an anticipatory
routing algorithm such as SAVaNT. Further, the lower the penetration of SAVaNT-guided
vehicles into the traffic network, the greater will be the reduction in the trip times for such
vehicles, as observed by Wunderlich [3]. Intuitively, this is since at high penetration levels, the
large volume of guided vehicles shifting to more efficient routes has a more significant effect on
raising the congestion, and hence the travel time, along such routes. To more clearly distinguish
the performance characteristics of rolling horizon SAVaNT-CNV, we will therefore consider a
scenario of high congestion and low penetration, first presented in Wunderlich [3]. Traffic
inflow rates are increased by 33% over those in Sections 3 and 4, but inflow is terminated after a
problem horizon of 24 minutes. Simulations are allowed to run for 2 hours to allow the network
to clear completely in each rolling horizon subproblem. Time slice length is reduced to 90
seconds to improve the accuracy of link travel time estimates. The penetration levels of Class 2

(quasi dynamic) and Class 3 (SAVaNT-guided) vehicles are both dropped to 5%. No incidents are
modeled.

DELTA-CURTAINS

Recall that the INTEGRATION traffic simulator must begin all simulations with an empty
network, hence, to solve a rolling horizon subproblem, it is necessary to run INTEGRATION
from time O using a fixed set of routing tables until a desired loaded network is attained. If a
positive delta value is employed to deal with cycling, it 1s therefore possible for vehicles arriving
at their destinations before the start of the rolling horizon subproblem to have their arrivals
shifted into the subproblem time interval. Thus, supposedly “fixed” events, vehicle arrivals
occurring before the start of the rolling horizon subproblem, may vary with delta and influence
the subproblem solution. Further, in any practical implementation of rolling horizon SAVaNT-
CNV, the traffic simulator should be capable of starting with a fixed loaded network when
applied to subproblems. Hence, in such an implementation, the shifting of vehicle arrivals from
before the start of a subproblem to the subproblem interval itself could not take place.
Effectively, a “delta-curtain” s placed at the start of the subproblem time interval, preventing any
vehicle arrivals occurring before the curtain to be shifted forward through it in time.

19



In order to determine the effect of the presence of a delta-curtain, we applied rolling horizon
SAVaNT-CNV to the traffic scenario described above using full rolls with rolling horizons of 4,
8, 12, and 16 time slices, both with delta-curtain and without. Note that the last case, a rolling
horizon of 16 time slices, is equivalent to non-rolling horizon SAVaNT-CNV.

EMPIRICAL RESULTS

The results of applying SAVaNT-CNV to the new traffic scenario are expressed in Figure 18.
The presence of a delta-curtain always had a negative effect. In the two instances where the delta
curtain had a significant detrimental effect, extreme cycling was noted. Obviously, since there is
only one subproblem when a rolling horizon of 16 time slices is used, the delta-curtain had no
effect in this instance. Figure 19 graphs the average time spent in the network per vehicle as a
function of time for each rolling horizon/curtain combination. The discontinuity after 16 time
slices results from the termination of new vehicle inflow, thus eliminating a source of vehicles
with little or no time in the network. As time progresses, the network empties and average travel
time converges to the values expressed in Figure 19. Note that the rolling horizon used and the
presence or absence of a delta-curtain had virtually no effect before the problem horizon of 16
time slices.
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Figure 18: Average trip times of vehicles guided by rolling horizon SAVaNT-CNV
as a function of rolling horizon and presence of a delta-curtain

Let us consider one instance where the presence of a delta curtain led to significant
deterioration of routing quality and examine what went wrong. In this case a rolling horizon of 4
time slices was employed in concert with a delta-curtain. From the INTEGRATION output, we
found that a maximum of 658 Class 3 (SAVaNT-guided) vehicles were present on the network at
the end of any time slice. Hence, most Class 3 vehicles were usually the only member of their
class on links. Cycling was thus encouraged, since these lone Class 3 vehicles, the sole source of
Class 3 congestion on links, would tend to flipflop between two routes having similar travel
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times. As delta was incremented to deal with the cycling, only vehicles arriving at their
destinations after the start of the rolling horizon subproblem had their trips shifted forward in
time by delta. Because of the delta-curtain “holding back” all vehicles arriving at their destinations
before the start of the rolling horizon subproblem, it appeared to the routing program that
conditions similar to free flow existed near the start of the subproblem. Only Class 3 vehicles
arriving at their destinations after the start of the subproblem therefore affected the SAVaNT
solution, and the sparsity of such vehicles was further exacerbated as they were spread out
chronologically by the effect of delta. Cycling was thus further encouraged, leading to further
increases in delta, which in turn encouraged more cycling. Eventually, delta tended to reach
values so large that SAVaNT computed an optimal routing little different from a free flow
routing.

Figures 20 and 21 illustrate the performance differences between the cases where a rolling
horizon and roll of 4 time slices was employed respectively with and without a delta-curtain.
Note the change in the graph of the average time spent in network by SAVaNT-guided vehicles
in these two figures. Figures 22 and 23 are corresponding graphs illustrating the number of
vehicles of each vehicle class in the network as a function of time using a delta curtain and
without a delta-curtain, respectively. In these last two figures, the number of Class 2 and Class 3
vehicles is multiplied by 18 to normalize the quantities with respect to the number of Class 1
vehicles. Due to the low penetration level of Class 3 vehicles, considerable cycling was present in
both cases, leading SAVaNT-guided vehicles to experience longer travel times than quasi-
dynamically guided vehicles. Note in Figures 22 and 23 the jog in the graph indicating a sudden
disparity in the number of Class 2 and Class 3 vehicles in the network resulting from particularly
bad cycling in the subproblem routing Class 3 vehicles in the interval from 8 to 16 time slices.

Note further from Figures 20-23 that relatively little difference exists between the average
times spent in the network by the three classes of vehicle during the problem interval itself, from
0 to 16 time slices, as compared to at the end of 2 hours. Partially, this is due to the small fraction
of vehicles that managed to complete their trips during the problem interval, but it also suggests
that the unrealistic “rampdown” phase with zero vehicle inflow may be biased toward quasi-
dynamically routed vehicles. This observation is reinforced by Figures 24 and 25 which contain a
comparison of average time in the network for each class of vehicle after 16 time slices (the
problem horizon) and after 2 hours, respectively, for various rolling horizons. These figures
represent the case when no delta-curtain was employed. Values in these Figures 24 and 25 are
normalized such that the average time in the network for Class 1 vehicles is 1.0. From these
figures, it appears that rolling horizon has little impact on the performance of Class 3 vehicles
with respect to the other vehicle classes. The performance gap between Class 2 and Class 3
vehicles increases in all cases from approximately 6.5% of the Class 1 travel time after 16 time
slices to 9% after 2 hours. In absolute terms, the performance gap triples from an average of 0.5
minutes to 1.5 minutes during the same interval.
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Figure 19: Average time spent in network by SAVaNT-CNV guided vehicles as a function of time, rolling
horizon, and presence of a delta-curtain
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Figure 21: Average time spent in network by vehicles from each class as a function of time
using a rolling horizon of 4 time slices and using a delta-curtain
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6. EXTENSIONS AND
CONCLUSIONS

The SAVaNT optimization system has been shown to yield user-optimal routings for
detailed, realistic traffic networks, such as the Troy network. For practical implementation, some
form of rolling horizon version of the algorithm such as outlined in this paper is vital. We have
experimented with several different models of the rolling horizon subproblem in an effort to
improve the performance of this algorithm. Above all other factors, this modeling issue appears
to be the key factor in algorithm performance, far outweighing the choice of rolling horizon and
roll in importance. Coupled to the modeling question is the design of appropriate test networks
to evaluate the performance of SAVaNT. To date, all experiments have been conducted on
initially empty networks which, due to the limitations of computer time, have never been
simulated long enough to reach approximately steady state loadings. We hope to examine more
realistic test scenarios to more fairly judge the SAVaNT algorithm.

A second major issue to address is the use of proper modules in the SAVaNT system.
Because of its time-driven nature and inability to start with a loaded network, INTEGRATION
is unsuitable for real-world implementations of rolling-horizon SAVaNT-CNV. However, since
SAVaNT has been developed using the INTEGRATION traffic simulator from the beginning, it
is unknown how much of the behavior of the SAVaNT algorithm is an artifact on the
INTEGRATION traffic model. Currently, INTEGRATION exponentially smoothes the flow
on each link and then uses this flow in a BPR impedance function to compute link travel times
[5] at the start of every time slice. These new link travel times are then exponentially smoothed
with the previous ones to produce a set of link travel times to be used throughout the next time
slice. In our numerical experiments, the BPR impedance function utilized was linear, yielding
relatively minor slowdowns due to congestion. In addition to fixed link travel times, a single
routing table is employed for each vehicle class throughout each time slice. Before replacing
INTEGRATION in the SAVaNT system, 1t is of key interest to determine how the damping
effect of exponential smoothing and a linear BPR function, together with the coarseness imposed
by time slices, affects algorithm performance. The importance of this task is highlighted by our
discovery of the very significant performance effects of a delta-curtain and on INTEGRATION’s
method of accounting for stranded vehicles.

Though subproblem modeling and traffic simulator are of primary importance in the design
of any rolling horizon implementation of SAVaNT-CNV, any such design must place
considerable emphasis on dealing with cycling. Throughout our research on rolling horizon
implementations of SAVaNT-CNV, excessive cycling has almost always been the cause of poor
algorithm performance. In practice, 1t appears that many routings yielding cycles produce lower
average trip times than does the solution SAVaNT eventually produces by incrementing delta.
One approach to dealing with cycling is therefore to reduce the algorithm’s optimality criterion.
Rather than insisting on identical link travel ume tables from consecutive iterations of SAVaNT,
some margin for error could be allowed. Only that portion of the link travel time tables
corresponding to the current subproblem, for instance, could be compared to test for
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convergence. Alternatively, some threshold level of differences between the two iterations could
be tolerated.

In conclusion, now that the SAVaNT-CNV optimization algorithm has been successfully
implemented in a rolling horizon framework, we realize that further experiments are necessary
to obtain a fuller understanding of the underpinnings of its performance, primarily with respect
to scenario modeling, algorithm modules, and cycling behavior.
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