A MODULAR IMPLEMENTATION OF THE
SAVaNT ANTICIPATORY ROUTE GUIDANCE
ALGORITHM*

Daniel J. Reaume
Department of Industrial & Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109-2117
Technical Report 95-27

November 1995

*This work was supported in part by the Intelligent Transportation Systems Research
Center of Excellence at the University of Michigan. '



A Modular
Implementation of the
SAVaNT Anticipatory

Route Guidance

Algorithm

Daniel J. Reaume

Department of Industrial and Operations Engineering
University of Michigan, Ann Arbor MI

Abstract

The SAVaNT anticipatory route guidance algorithm determines user-optimal routings for
vehicles in a traffic network by iteratively executing a route optimization program and a
traffic simulation. In this paper, we describe an implementation of the SAVaNT
algorithm wusing a modular system architecture. We then examine various
implementations of SAVaNT employing rolling horizon procedures to reduce
computational effort.



Introduction

The SAVaNT (Simulation of Anticipatory Vehicle Network Traffic) system, developed
at the University of Michigan , optimizes of vehicle routings in a traffic network. [1] This
system consists of a routing program and a simulation program that are called iteratively as
depicted in Figure 1.

Traffic Simulator |
(Integration)

Optimal routing
tables

Routing Program

Initial link
travel times

Link travel
times

(Hiroute)

No

times identical
to previous
iteration?

Yes

Terminate with |

user optimal

routing

Figure |

Given an initial set of time dependent link travel times, the routing program computes a
set of routings. These routings are optimal in the sense that if the provided link travel times
are the actual travel times experienced by vehicles, then the vehicles will experience the
shortest possible trip times. Unfortunately, this generally is not the case since a new routing
of vehicles changes congestion patterns, thus modifying the link travel times from those
provided to the routing program.

Applying the routings provided by the routing program, the traffic simulator simulates
the passage of vehicles through the traffic network and outputs the time dependent link travel
times experienced by these vehicles. In [1], it was proven that if these travel times are
identical to those used by the routing program to produce the routings used by the traffic
simulation in this iteration, then these routings are user optimal. User optimality implies that
no vehicle may shorten its travel time by unilaterally deviating from the provided routings. In
the event that tables of time dependent link travel times differ in consecutive SAVaNT
iterations, the travel times most recently generated by the simulation are input to the routing
program to begin another iteration of the optimization scheme.

As originally implemented, on a Macintosh Computer, the SAVaNT system consisted of
the Hiroute vehicle routing program, written in C, and the Integration traffic simulator,
written in FORTRAN. A top-level Hypercard script controlled the iterative execution of these
two modules. For two reasons, this architecture proved to be less than optimal. First, and most
importantly, Hypercard is a Macintosh specific application, hence its use prohibited the
execution of SAVaNT on speedier workstations to analyze the behavior of very large traffic



networks. Secondly, many research problems in traffic optimization may be examined by
modifying the SAVaNT package appropriately, hence it would be desirable for SAVaNT to
be coded in a modular manner to facilitate such modifications.

To remedy these limitations, we have developed a new modular implementation of
SAVaNT around a set of high level, platform independent C subroutines. These routines also
simplify the replacement of SAVaNT components, such as the traffic simulator, with a
minimum of effort. Using these subroutines, we have extended SAVaNT to allow it to
optimize vehicle routings using rolling horizon procedures.

In the first section of this paper, we describe the details of the subroutines with which the
new SAVaNT optimizer was constructed. The second section of this paper is devoted to a
discussion of the issues to be addressed in the construction of a rolling horizon
implementation of SAVaNT. Finally, the third section of this paper describes the actual
implementation of a SAVaNT in a particular rolling horizon framework.



Subroutines for Traffic Simulation

The principal task of the SAVaNT optimization program is to iteratively execute various
modules, and to allow communication between these modules. This task may be subdivided
into three major classes of functions performing the following duties:

e Execute a module and wait for that module to terminate.
e Move a data file from one location to another.

e Truncate or modify a data file.

Executing a Module

To execute a module, we have developed the C subroutine launchprogram with the
following functionality:

Calling convention:
int launchprogram(const char* filename)

Return values:
0 if program executes and terminates successfully
1 otherwise

Moving a Data File

Although certain implementations of the C language contain library functions to perform
this task, many do not. Hence, to preserve code portability, we have developed the subroutine
copyfile to make an identical copy of a file having filename oldfilename in a file having
filename newfilename. This subroutine does not modify the original file in any way.

If a file is to be moved rather than copied, the ANSI-C library function remove() may be
employed to delete the original file after a.copy operation takes place.

Calling convention:
int copyfile(char* oldfilename, char* newfilename)

Return values:
0 if file is copied successfully
1 otherwise

Modifying a Data File

This class of functions encompasses a wide variety of subroutines, often specific to the
particular modules used in an optimization system. We present those used in one rolling
horizon implementation of SAVaNT.

Set the simulation length to equal n time periods: This subroutine modifies the input files
to the traffic simulator to indicate that n time periods must be simulated. In the case of
Integration, this task reduces to modifying a parameter in the file master.fil, hence the name
of the subroutine.



Calling convention:
int modifymast(int n)

Return values:
0 if successful
1 otherwise

Set the routing horizon to equal » time periods: This subroutine modifies the input files to
the traffic routing module to indicate that link travel times are only provided for the first n
time periods, and that routing information should be produced for » time periods. The routing
program uses its own conventions to account for vehicles left on the network at the end of
these n time periods. In the case of Hiroute, this task reduces to modifying a parameter in
the file siminfo.dat, hence the name of the subroutine.

Calling convention:
int modifydat(int n)

Return values:
0 if successful
1 otherwise

Set the accuracy with which the simulation will report experienced link travel times: To
ensure the convergence of SAVaNT, a parameter called delfa must sometimes be modified to
modify the link travel times reported by the traffic simulator. In the case of Integration, a
parameter must be changed in the file master.fil. We will discuss this issue in the third
section of this paper.

Calling convention:
int changedelta(float delta)

Return values:
0 if successful
1 otherwise

Merge routing tables: In many instances, it is useful to fix the first part of a routing table,
-and merge the end of a newly generated routing table onto this fixed portion in order to cover
the entire simulation horizon. The following subroutine concatenates the time periods len-
rhorizon to len of a routing table, genroute to the first len-rhorizon-1 time periods of fixed
routing table, fixedroute, to generate the new routing table in file newroute. We must
provide the subroutine with highnode, the number of origin/destination zones in the traffic
network, since the number of such nodes determines the size of vehicle routing tables.

Calling convention:
int mergefiles(int len, int rhorizon, int highnode, char *fixedroute, char *genroute,
char *newroute)

Return values:
0 if successful
1 otherwise



Issues in Constructing a Rolling Horizon Implementation of SAVaNT

Rolling Horizon Algorithms

In a rolling horizon algorithm, difficult problems are broken into a sequence of smaller
problems which may be more efficiently solved in the manner depicted in Figure 2.

Solve .
subproblem for Imolement
periods tto t+T Optimal decisions for d ecFi)si ons in
given the state of subproblem .
the system at periods tto t+R. |
time t.

Is t+R
greater
than H?

Terminate

Figure 2

Consider the optimization of a system over time periods 0 to H, a potentially difficult
problem. Instead of solving this single large problem, let us begin by solving the subproblem
corresponding to time periods 0 to T and implement the decisions thus computed until some
time R, where R may not be greater than 7. Given the current state of the system at time R, we
then solve the subproblem corresponding to time periods R through R+7, and implement the
decisions thus computed from time periods R through R+R. Proceeding in this manner, we
will eventually construct a policy providing decisions for time periods O through H, the
timespan of the original problem. We call H, the length of the original optimization problem,
the study horizon. T, the extent to which we look forward in each subproblem, we call the
rolling horizon. R, the length of time during which the decisions computed in each
subproblem are implemented, we call the horizon roll. The term rolling horizon arises since at
every R time periods we “roll” forward our subproblem horizon of length T by a distance R.

For a more practical example, consider the difficult problem of optimally routing
vehicles in a traffic network from 7:00am to 7:00pm. Suppose we instead first solve the
problem of optimally routing vehicles from 7:00am to 8:00am, a much smaller problem, and
implement these routing decisions from 7am to 7:30am. Then, at 7:30am, suppose we
determine optimal routing decisions for the next 60 minutes, given the current state of the
traffic network, and implement those decisions for the next 30 minutes. Proceeding in this
manner, we may reduce the optimization of 12 hours of traffic into 24 much smaller problems
of optimizing only a single hour of traffic at a time. In this case, the study horizon in 720
minutes, the rolling horizon is 60 minutes, and the horizon roll is 30 minutes.

Note that a rolling horizon solution is generally not an optimal solution to a problem. In
the vehicle routing example, for instance, myopically looking ahead only one hour at 7am



might cause one to overlook a congestion causing event occurring at 8:15, such as a shift
change at a factory, thus leading to the computation suboptimal routings. The extent of this
suboptimality for various choices of rolling horizons and horizon rolls is an open research
question.

Starting a Simulation with a Loaded Network

In a rolling horizon algorithm, each subproblem begins with the system to be optimized
in a state that depends on previously implemented decisions. Hence, to solve a routing
subproblem using the SAVaNT algorithm, it is necessary to be able to apply SAVaNT to a
loaded network.

Due to the principal of optimality of dynamic programming, the route previously taken
by a vehicle will not influence its optimal route from its current position to its destination. No
changes are therefore required to the routing program if SAVaNT is applied to a previously
loaded network.

The traffic simulator currently employed by SAVaNT, Integration, unfortunately only
allows simulations to begin with an empty traffic network. To simulate a loaded traffic
network from time 77 to time 72 using Integration we actually simulate from time 0 to 72
using

e atable of traffic flows corresponding to the interval from 0 to 72

e a routing table consisting of the routings which produced the loaded
network at T/, to which is concatenated the routing table for the interval
from T/ to T2

The routing table used in the above step may be generated using the subroutine
mergefiles() discussed in the first section of this paper. Note that in practice, implementing a
rolling horizon version of SAVaNT using the Integration traffic simulator is extremely time
consuming, since rather than simulating a sequence of short time intervals, one must simulate
a sequence of ever longer time intervals. In theory, however, one could easily substitute a
traffic simulator allowing non-empty initial networks in place of Integration to overcome this
limitation.

Integration Technicalities

In the course of developing subroutines for interfacing with Integration, several
previously undocumented limitations of the simulator were discovered. First, if we only
change the simulation length parameter in the input file master.fil to truncate an Integration
simulation set up to run for » time periods to run for only m<n time periods, Integration may
crash or produce incorrect results. This occurs because travel demands may be’ scheduled for
time periods between m and n. Though Integration recognizes such a condition as an error
and notes it in the error file runerr.out, it does not discard the invalid vehicle arrivals as one
would expect, but rather tries to schedule them, with disastrous consequences.

To accommodate this shortcoming of Integration, the input file listing the rates of travel
demand must be pre-processed to eliminate demands occurring after the end of the
simulation. We have programmed the application odgen to accomplish this task, reading in
the desired simulation length from a text file called simlen.

The second undocumented limitation of Integration is that each link in the traffic network
is assigned 1000 spots in “driveways”. If a link is filled, due to congestion, array space is
allocated so that up to 1000 vehicles scheduled to begin their trip on the link may wait in a
buffer at any one time. Unfortunately, if a 1001st vehicle is scheduled to enter the link, but is



blocked, the error condition is not detected. Rather a 1001st entry will be added to the buffer,
leading to memory corruption that may completely crash the system or produce incorrect
results. We have implemented error checking code in Integration to eliminate this condition.

Cycling in SAVaNT

The SAVaNT optimization procedure terminates when two consecutive iterations yield
identical time dependent link travel times. Consider the case that occurs when no set of link
travel times repeats in consecutive iterations of SAVaNT, but such a set of link travel times
repeats in two non-consecutive iterations. Since the routing program uses these travel times to
compute routes that are then employed by the traffic simulator, such an occurrence will lead
to infinite cycling.

In [2], Wunderlich demonstrates that sufficient perturbations of link travel times will
always eliminate cycling in SAVaNT, at a cost of accuracy. Since inaccurate link travel times
are used, the “optimal” solution reported by SAVaNT will not truly be optimal for the traffic
network being optimized, but rather for a network which would yield these travel times.

To perturb link travel times, we employ a parameter called delta. Suppose a vehicle V
enters link / at time 7/ and reaches the end of the link at time 72. We therefore have that the
travel time on link / for vehicles entering the link at time 7/ is (T2-T1). Instead of recording
this data, we record that vehicles entering link / at time T1+delta(T2-T1) experience travel
time (72-T1). We therefore record experienced link travel times to have occurred at later
points in time than when they actually did occur. Accurately reported link travel times
correspond to a delta value of 0.0. A delta value of 1.0 corresponds to probe accounting,
whereby Vs experienced travel time on / is recorded to be the travel time to be experienced
by a vehicle entering / at 72, which is in fact Vs departure time from /. By making delta large
enough, no experienced travel times will be recorded before the study horizon, and free flow
link travel times will always be reported to the routing program, thus causing SAVaNT to
converge.

Because of the many subproblems to solve in a rolling horizon implementation of
SAVaNT and the fact that cycling in any single subproblem will cause the entire optimization
procedure to fail, it is highly desirable to allow delta to be dynamically incremented to deal
with such cycling. In the case of Integration, the subroutine changedelta() modifies delta to
an appropriate value in the simulation control file, master.fil, thus allowing such control over
delta 1o be easily implemented.

What is a SAVaNT subproblem?

To implement a rolling horizon solution to a problem, one must first be able to
decompose the problem into a sequence of subproblems. The definition of such a subproblem
in the context of the SAVaNT optimizer is an open research question, with several possible
alternatives.

Consider a routing subproblem corresponding to optimizing traffic from time A through
B. What is the appropriate Integration simulation to employ in this case? One alternative is to
terminate the simulation at time B, and then apply the routing program to optimize the routing
tables for the interval from A to B. A difficulty with this case is that for short roll horizons,
this interval will be short, and hence since few vehicles could complete their trips in this
interval, end-of-study affects will dominate the computations performed by the routing
program.

An alternative to this situation is to allow the simulation to run to some time H’ after B,
but to allow no new trips to begin after B, and then to apply the routing program to optimize



routes over the interval from 4 to H'. For large enough H’, the traffic network will always
empty, thus eliminating the end-of-study effects discussed in connection with the previous
alternative, but introducing new end-of-study effects instead.

Further complications are introduced by the use of delta. Recall that a vehicle traversing
a link during the interval from 77 to 72 will have its travel time on the link recorded as the
link travel time experienced by a vehicle entering the link at time T'/+delta(T2-T1). In some
cases, for positive delta values, a link travel time experienced before time 4 could be
recorded as occurring affer time 4. Thus the subproblem of optimizing traffic over the
interval from A4 through B would not only be influenced by the state of the network at time 4,
but by the routes used by vehicles before time 4. Whether such influence is beneficial or
detrimental to solution quality is currently unknown. This issue is particularly significant in
the case of Integration, where such situations may occur due to the scheme used to begin a
simulation with a loaded traffic network.

Parameters Influencing SAVaNT Performance

Several parameters of a traffic optimization problem may affect the performance of
SAVaNT on the problem. These parameters include the time between routing table updates,
the time between updates of link travel times, exponential smoothing parameters, the initial
state of the traffic network, network loading, and the method of applying and modifying
delta.

Let us first consider the effect of the length of time between routing table updates. In
Integration, routing tables are updated every tree seconds. A larger value for tree ensures that
fewer routing decisions need be made, thus speeding convergence of Integration, at the cost
of decreasing the accuracy of the simulation. In the case of Integration, this is doubly true
since for each link, only a single experienced travel time is reported for each interval of tree
seconds. This travel time is currently obtained by exponentially smoothing the sequence of
travel times experienced in the interval over the link according to a smoothing parameter.
Alternatively one could also use the mean of the link travel times experienced in the interval
or even the most recent link travel time experienced. The final effect of tree is that when
implementing a rolling horizon version of SAVaNT using Integration, both rolling horizon
and horizon roll must be in multiples of tree seconds to because of the way Integration reports
travel times and deals with routing tables.

Rather than computing a new link travel time each time a vehicle enters a link,
Integration employs an exponential smoothing procedure to update link travel times every
sample seconds. The flow of vehicles into the link in the past sample seconds is exponentially
smoothed with the current estimate of flow on the link to compute a new vehicle flow on the
link. This flow is then used to compute a link travel time. Finally, this time is exponentially
smoothed with the current link travel time to determine a travel time for the link over the next
sample seconds. While a smaller value for sample improves the accuracy of the simulation, it
also entails considerable computational burden.

Currently, the SAVaNT optimization algorithm has only been applied to traffic networks
that are initially empty because of the difficulties of simulating previously loaded networks
using Integration. This introduces a start-of-study effect which may affect algorithm
performance. Using the routing-table merging technique to apply SAVaNT to a previously
loaded traffic network is an ongoing research problem.

In addition to its initial loading, the loading of a traffic network throughout the
optimization window may significantly affect the performance of SAVaNT. Conditions of
light loading cause dynamic routing to yield few benefits over free-flow routing. Another
important factor is the level of penetration of intelligent vehicles in the traveling population.



With many vehicles all seeking optimal routings, the gains available to the individual drivers
are not as great as if few vehicles were given such routing information.

A final parameter influencing the performance of SAVaNT is the delta value used to end
cycling conditions. Since an increase in delta leads to a more inaccurate simulation, it is
desirable to increase delta as slowly as possible. Conversely, if delta is not increased
sufficiently quickly, several increases to delta might be required to escape a cycle, with the
intervening SAVaNT iterations being wasted. Once a cycle has been escaped and SAVaNT
converges, allowing the algorithm to roll forward to the next subproblem, the issue arises as
to what value delta should be reset. To obtain the most accurate simulations possible, delta
could be reset to 0, or it could be kept at its current value in anticipation of cycling
conditions. Once convergence occurs for a particular value of delta, it is also possible to
attempt to reduce delta as far as possible before cycling occurs in order to improve solution
accuracy.

Currently, the use of delta causes an experienced link travel time of ¢ time units to be
recorded (delta)(?) time units after the time the corresponding vehicle entered the link. This
scheme allows probe accounting to be easily implemented by using a delta value of 1.0, but
has the possibly undesirable effect of reporting far more inaccurate travel times for long,
congested links than for short, quick links, since reporting delay is proportional to link travel
time. Another possible scheme that could be investigated is to report all experienced link
travel times as occurring at delta time units after the corresponding vehicle enters a link.



A Rolling Horizon Implementation of SAVaNT

In this section, we present a particular rolling horizon implementation of SAVaNT. This
implementation has been applied to the optimization of a model of the Troy Michigan traffic
network, whose construction is detailed in [3], over a 30 minute period. We will use the
Integration and Hiroute modules this implementation, though other comparable modules
could be easily substituted.

Initially, we will assume that the traffic network is empty. We set the parameters of
Integration such that routing tables and reported link travel times are updated every 120
seconds, and that link travel times are updated internally every 30 seconds. The default
exponential smoothing method is used by Integration to compute link travel times. We will
use a rolling horizon of 600 seconds and a horizon roll of 600 seconds.

The value of delta is initially set to 0.0, yielding the most accurate link travel times, and
will be incremented by 0.5 every time cycling occurs. Once convergence occurs and a
subproblem is solved, delta will be reduced to back to 0.0. We will allow vehicles traveling in
the “fixed” portion of simulations to have their travel times recorded in intervals
corresponding to the “variable” portion of the simulation if perturbations by delta lead to
such circumstances. We define a routing subproblem over the interval from 7/ through 72 to
be such that at time 72, Integration will terminate, and only link travel times from time 0
through 72 will be reported to the routing program.

Using the above problem specification, we obtain the rolling horizon implementation of
SAVaNT expressed by the following flowchart:



rolling_horizon:=600 seconds
horizon_roll:=120 seconds
delta:=0.0

study_horizon:=1800 seconds
current_horizon:=rolling horizon

&

Call modifymast{() to set Integration simulation length to be current_horizon seconds.

Call modifydat() to set Hiroute optimization length to current_horizon seconds.

Call flaunchprogram(odgen) to modify travel demand table to eliminate trip departures done=1
after current_horizon seconds.

done:=0

iter=1

Call tfopyfile() to copy initial travel time file to be used as input to routing program. done=-1

&

Call launchprogram(hiroute) to run Hiroute.

: outing table
Yes

current_horizon=rolling_horizon?

done=0

QNO

Call copyfile() to copy

routing table produced by B8 | Call mergefiles(rolling_horizon,current_horizon,highnode) to
merge routing table with fixed routing table.

Call launchprogram(integration) to run Integration.

Q Travel time file




Store link travel time file produced by Integration.

Copy link travel time files from the current and previous iterations to be
used as input to fcomp.

Call launchprogram(fcomp)to run fcomp to check whether consecutive
link travel time files are identical..

Yes }

done=1

link travel time files identical?

QNO

Call launchprogram(fcomp) max(0,iter-2) times to check for a cycle.

Yes Q

Q No

delta:=delta+0.5
Call changedelta(delta)
to modify Integration
input file.

done:=-1

iter=iter+1

Call copyfile() to copy link travel time file
produced by Integration to be used as
input to Hiroute.

current_horizon=horizon

NOQ

current_horizon=
current_horizon+ rolling_horizon
delta=0.0




Conclusions

We have developed a modular, extendible framework of software tools for the
construction of traffic optimization algorithms. Using these tools, we have created a rolling
horizon implementation the route guidance algorithm SAVaNT. In the course of the
development of this algorithm, we have identified many parameters and variations of the
SAVaNT algorithm which we plan to examine both theoretically and through empirical
testing in order to improve both the speed and accuracy of the algorithm.



References

[1] Kaufman, D. E., Smith, R. L., and Wunderlich, K. E., 1992. Dynamic User-Equilibrium
Properties of Fixed-Points in Iterative Routing/Assignment Methods. IVHS Technical Report
92-12, University of Michigan.

[2] Wunderlich, K. E., 1994. Link Travel Time Prediction Methods and Convergence for
Iterative Anticipatory Route Guidance Methods.

[3] Wunderlich, K. E., and Smith, R. L., 1992. Large Scale Traffic Modeling for Route-
Guidance Evaluation: A Case Study. IVHS Technical Report 92-08, University of Michigan.



