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Abstract

We consider issues related to the order of an autoregression selected using in-
formation criteria. We study the sensitivity of the estimated order to (i) whether
the effective number of observations is held fixed when estimating models of
different order, (ii) whether the estimate of the variance is adjusted for degrees
of freedom, and (iii) how the penalty for overfitting is defined in relation to the
total sample size. Simulations show that the lag length selected by both the
Akaike and the Schwarz information criteria are sensitive to these parameters
in finite samples. The methods that give the most precise estimates are those
that hold the effective sample size fixed across models to be compared.
Theoretical considerations reveal that this is indeed necessary for valid model
comparisons. Guides to robust model selection are provided.

I. Motivation

Consider the regression model y, = x5 + ¢, where x, is a vector of p strictly

exogenous regressors for ¢t = 1,..., T. If we were to determine the optimal

number of regressors, we could set it to be the global minimizer of an

information criterion (IC) such as:

. C

IC(i) = In 67 + ki —
T
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where
T
| A2
o; =T E e
=1

is an estimate of the regression error variance for the ith model, %; is the
number of regressors in that model, C#/T is the penalty attached to an
additional regressor, and 7 is the number of observations available. If p
regressors were available, we have a total of 2” models to consider. The
problem is computationally burdensome, but for a given Cg there is no
ambiguity in how to set up the criterion function. The Akaike information
criterion (AIC) is obtained when Cy = 2, and the Scharwz (Bayesian)
information criterion (BIC), when Cy = In 7. For any T > exp (2), the
penalty imposed by the BIC is larger than that for the AIC. The IC is very
general, and can be justified in a number of ways as we discuss below.
Time series data are correlated over time, and it is widely popular to
capture the serial dependence in the data by autoregressive models. Suppose

=B+ B2t Byt (1)

is the data-generating process (DGP) with e, ~ 1.i.d.(0, o). If p is finite, y, is a
finite-order AR(p) process. If y, has moving-average components, p is infinite.
We do not know p, and we cannot estimate an infinite number of parameters
from a finite sample of 7 observations. Instead, we consider an autoregressive
model of order £:

Vo= P+ P2+ + Bk + e (2)
The adequacy of the approximate model for the DGP depends on the choice of
k. Because the regressors in the autoregression are ordered by time, many of
the 2* permutations can be dismissed, and in this regard, the model selection
problem in autoregressions is much simpler than the strictly exogenous
regressors case. However, because lagged observations are required, the
data available for the estimation of equation (2) are less than 7. A regression
that uses observations # + 1 to T would have an effective sample size of
N = T — n. Therefore, unlike in the case of strictly exogenous regressors
when the definitions of 6,%, Cp, and T are unambiguous, the IC can be defined
in a number of ways. Specifically, let k., be the maximum number of lags
deemed acceptable by a practitioner and consider

: : Cy
I = In &2 M
k:(l)’l-,’-lvl-];}{max C(k) k:(l)T‘l}]:}{max 1 6k(T> + k M (3)
1 T
Ro-1y @
t=n+1

where ey are the least squares residuals from estimation of equation (2).
Although it would be tempting to exploit the largest sample possible and to
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use an unbiased estimator of ¢* in estimations, these choices may not be
desirable from the point of view of model comparison.

This paper considers the sensitivity of the lag length selected by the AIC
and the BIC to different choices for n, 7, and M. The latter affects the severity
of the penalty. The former two determine how the goodness-of-fit is measured.
We consider 10 variations of IC(k) based upon regressions estimated from
t=n+1,...,T,withN=T— n:

i . — ST 52 C
Methods considered: IC(k) = In[->",_,  éu] + k3¢
1 2 3 4 5 6 7 8 9 10
N T—hpy T—k T—k T—kyyy T—kyex  T—hkow  T—k T—k T—kys  T—k
T T—knpax Tk T T T—bkmax—k T—hkpax—k T—2k T—k T—kpax T-k
M T—kpy T—k T T Tebkypw—k T—kyae T—k T  Tehypw—k T—2k

Methods 1, 4, 5, 6, and 9 hold the effective number of observations
fixed as k varies, namely, N = T — k.. Hence the difference in the sum
of squared residuals between a model with & lags and one with £ — 1 lags
is purely the effect of adding the ith lag. Methods 2, 3, 7, 8, and 10 make
maximum use of the data as a model with shorter lags will need fewer
initial values and the regression uses observations ¢ =k + 1,...,T with
N = T — k. However, the sum of squared residuals between a model with &
lags and one with k£ — 1 lags will differ not only because of the effect of
adding the kth lag, but also because the smaller model is estimated with a
larger effective sample size. Hayashi (2000) refers to these as cases of
‘elastic’ samples.

Apart from the degrees of freedom adjustment in the estimation of o2,
methods 6, 7, and 8 are identical to methods 1, 2, and 3, respectively, in all
other respects. Clearly, 67 will be larger after degrees of freedom adjustment.
Criteria that take this into account should be expected to choose a smaller
model, all else equal. The penalty for all 10 methods converges to 0 at rate 7,
but in finite samples, 7 — kypax — kK < T — kyax < T — k < T. Thus, of all the
methods, method 5 puts the heaviest penalty on an extra lag and is expected to
choose the most parsimonious model for a given Cy,.

A quick review of textbooks produce no definitive guide. Priestley
(1981; p. 373) seems to suggest method 2. His argument requires that N
does not depend on k. This, however, is invalid as he also defined N as
T — k. In a multivariate context, Lutkepohl (1993; p.129) defines the
criteria in terms of the length of the time series, which could be 7, T — £,
or even T — ky.. Diebold (1997; p. 26) uses the full length of the data,
T, when defining the criteria. This is consistent with the notation of
method 3. However, estimation with 7 observations is infeasible unless
one initializes the first few lags to 0. The definition is therefore not useful
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in practice. Hayashi (2000) noted several possibilities when implementing
information criteria, but no particular recommendation was made. The
software Eviews (1997), which is used to provide examples in many
textbooks, presents an AIC and BIC individually for each k, which is
consistent with method 2." Enders (1995; p. 88) defines the criteria in
terms of the number of usable observations, but pointed out that the
sample size should be held fixed. This suggests method 1. In view of
all these different recommended specifications, there is a need to clarify
this issue. Hence, while no new theoretical results will be offered in this
note, our simulations and theoretical overview will provide useful guides
to practitioners.

II. Some theoretical considerations

This section considers the guidance provided by theory. The criteria
considered are all based on large sample approximations, but in ways that
imply specific choices of M, n and .

The Akaike information criterion

We first consider the derivation of the AIC for data generated by a finite-order
AR(p) with normal errors. The regression model has & lags. If k > p, f(k) =
(Br,---sBp, 0,...,0)" denote the true parameters, and B(k) = (Bl, ﬁk)
are the estimated parameters. If p >k, p(k) = (fi,...,p,) and B (k) =
(Byse-es Brs 0,...,0). Following the treatment of Gourieroux and Monfort
(1995, pp. 307-309), let f(y|f(k)) be the likelihood function of the data
(Vp+15--->y7) conditional on the initial observations (yy,...,7,). Let
N = T — n. The Kullback distance between the true probability distribution
and the estimated parametric model is

K = Eo[In(f (v|(k))) — In(f ("|B(k)))]

with sample analog:

K=nN"! Z In(f (1| p(k) - Z In(f (| B(k))).

t=n+1 t=n+1
Akaike’s suggestion was to find a K* such that
Tlim EIN(K—K*)] =0

so that K* is unbiased for K to order N~'. Let X, = Wiets-.-» yier) and
!Correspondence with the Eviews support group confirms this to be the case.
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7 (k) = (1/67)(B(k) Z XX/ (k) — p(k))

t=n+1

where

A2 IZ

t=n+1
Using Taylor series expansions, we have
NK = ®7(k)/2 +0,(1) and NK = —®7(k)/2 + 0,(1).
As
N(K —K) = ®r(k) +0,(1), Jim EN(K - K")] =0
for K* = K + ®7(k). Furthermore, ® (k) converges to a y> random variable
with k degrees of freedom. Hence a K* that will satisfy
lim E[N(K—K*)] =0

T—o
is
K*=N"" Z In(f (| p(k) B Z In(f (vl B(k))) + (4)
t=n+1 t=n+1

Under normality, the second term is proportional to —(N/2) In(67). Thus, if
the first term is common to all models, minimizing K* with respect to k is

equivalent to finding the minimizer of:
2k
AIC(k) = In 62 + v (5)

Note the two assumptions leading to equation (5). The first is the commonality
of the first term in equation (4) to all models, which can be true only if # is
held fixed across models to be considered. The second is the use of the
maximum likelihood estimator of ¢ in place of the second term of equation
(4), implying 7 = N.

The C, criterion
Let
Y =01 »e00r), Xi=Xn X .. X)), X=X ... Xor),
with
Xo= ity 0ip) = (X Xar),
where
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! /
5 .

X = (yt—la cee 7yt—k) Xy = (yt—k—la ce ,yt_p)

In what follows, it is understood that X, = 0 if £ > p. Let f = (5; f5,), where
the partition is also at the kth element. Suppose the true model is

Y =X1B) + X8, +e, WithE(etz) = g2

and we estimate the model ¥ = X, f§; + ¢;. If X; and X, have the same number
of observations in the time dimension, then

B — B = (X(X) ' XD0p, + (XX Xe.
Furthermore,
& = MiXof, + Mie, where My = [I — X, (X/X;) ™' X]].
Then
E[erer] = E[163] = ByXoM X By 4 o*te(M,) = ByXoM Xy + (N — k)a”.
The mean-squared prediction error of a model with & regressors is

E[mse(X\f,,X )] = E[(X, B, — XB)'(Xi B, — X )]

=’k + PLXGM 1 X2 B,
= o’k + E[t67] — (N — k)a*
. E[mse(X1$,, XB)] E[167]
. = :k+7—(N—k)
E ~2
o

The C, criterion of Mallows (1973) replaces o’ by a consistent estimate (say,
6?) that is the same across models to be compared giving
)
0%
C :?+(2k—N). (6)
Lemma 1. 1f N is the same across models, then the C, yields the same minimizer

as
~2
* 10}
Cp ==+ 2k,

Furthermore, %C; yields the same minimizer as

o 2k
SC, :lnai—i-T.

The first result is obvious. The second result follows by noting that for any 6°
that does not depend on £, the SC;, (scaled C,) yields the same minimizer as

The developments here follow Judge et al. (1980; p. 419).
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2k 2k _6; 2k
mé? e+ =n(1+62/6* 1)+ 2k 1425
n oy —Ino” +— n(l+a;/6 )—i—T 1t

But this is simply %C; — 1, and hence has the same minimizer as %C;. Note,
however, that these derivations are valid only if X; and X, have the same
number of observations. In our notation, this again suggests N = T — kpax
with T = M, but does not prescribe a particular value for 7.

The FPE criterion

The final prediction error (FPE) criterion developed by Akaike (1969) is based
on minimizing the one-step-ahead prediction error. For a model with & lags,
define (k) = (B, Pa, ..., Pr),and X; = (V,_1, ..., ¥i—s). Given a sample of T
observations, the one-step-ahead mean-squared prediction error is

E(vri1 — B(k)'Xr)* = 0> + G E[((k) — B(k)' XrX7(B(k) — B(K))].
Using the asymptotic approximation that
VN(B(k) — B(k)) ~ N(0,6°T; "), where Ty = E[XzX7],
N times the second term reduces to the expectation a x> random variable with

k degrees of freedom, giving FPE = ¢*(1 + k/N). The maximum likelihood

estimator of o2 is
N
A2 a1l )
o =N g €
=1

and under normality, N67/a* ~ y%_,. As E[N&i/c*] = (N —k), using
02 ~ N62 /(N — k), the FPE can then be written as

2N +k
. N+k—(N—k)
In FPE~ Iné? +1n ( 1
n l’lO'k+ n< + N—k >
. 2k
%1H0i+m.

In our notation, this criterion also prescribes N = T — k., but specifies 1 = N
andM =N - k.

Posterior probability

To develop the arguments for the BIC as defined in Schwarz (1978), we
follow Chow (1983). Let f(y|k) be the marginal probability density function
for the data under a kth order model, f(k) be the prior density for a kth order
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model, and f(y) be the marginal density of the data. Given observations y =
Vu+15---» V1), the posterior probability of a kth order model is f(kly) =
fR k) f(»). If f(y) and f(k) are the same for all &, then maximizing f(k]y)
is equivalent to maximizing f(y|k). To evaluate f(y|k), we use the fact that the
log posterior density of f§ in a kth order model is

In f(B(k)|y, k) = In 7 (y, B(k)) + In f((k)[k) = In f(y]k)

where f(y, B(k)) is the likelihood function for the kth order model with
parameters (k). But it is also known that under regularity conditions, the
posterior distribution of (k) is Gaussian with inverse variance S; i.e.

LBy, k) = (2m)™*2|S|"2 exp[— L (B(k) — B(k)))S(B(k) — B(k))]
x (1+O0(N"?)).

Now evaluate the posterior distributions around the maximum likelihood
estimator, f(k), and approximate In(S) by & In(N) + In(Ry), where

1 T
RN = N Z )(t)(t/
t=n+1

After rearranging terms, we have:

A~

In FO6) =~ In 70, f(8) ~ 5 () — 3 In Ry

Fin f (Bl + 2

If we use the first two terms of equation (7), the usual approximation for
exponential families, we have

+O,(NT12). (7)

In f(y|k) = 1n f(y, p(k)) —gln N.

Now the first term is proportional to (—N/2) In(67), where
T
~2 -1 52
O-k - N Z etk.
t=n+1

Multiplying by —(2/N), the k that maximizes the posterior of the data also
minimizes:

kIn N

BIC(k) = In 6>
() n o + N

(8)

Three assumptions are used to derive equation (7). The first is that the prior is
the same for all models, but this does not depend on » or 7. The second is that
f(y) and Ry are the same across models, which in turn requires that n = k.
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(or N = T — kpay), the same as for the AIC. The third is that log-likelihood
function evaluated at the estimated parameters is proportional to 67. These are
the same assumptions underlying the AIC, ie. 1 = M = N.

Overview

To relate the 10 methods to the theoretical discussions, the AIC and BIC both
require M = N, and In 67 to be the maximum likelihood estimator with
7 = N, and both hold # (and thus N) fixed across models. Allowing for lagged
observations, the largest sample in which »n can be held fixed is to set
n = kmax. Taking all conditions into account, only method 1 satisfies all these
conditions. Note that adjusting t for degrees of freedom would be
incompatible with the AIC or the BIC.

When N does not depend on & and M = 7, the IC can be seen as an SC,
with Cy; = 2. This includes methods 1, 4, and 5. The In FPE is obtained by
letting t = N and M = N — k. Thus, methods 9 and 10 are consistent with the
theoretical underpinnings of the In FPE. Of the 10 methods considered,
methods 2, 3, 6, 7, 8 bear no immediate relation to well-known criteria in the
literature.

III. Simulations

To assess the empirical properties of the 10 methods considered, we simulate
data from 25 time series processes detailed in Table 1. The first 12 are simple
finite-order AR models. But information criteria are often used in cases when
the true model is of higher order. For example, a stationary and invertible
autoregressive moving average (ARMA) process has an infinite autoregressive
representation. We do not consider such models in the simulations because the
true value of p is not admissible by design. Instead, we start with an
ARMAC(1,1) model, (1 — ¢L)y, = (1 + OL)e,, whose infinite autoregressive

representation is
oo

S+ 0)(=0) i =e.

i=0
We then consider a truncated version of it. Specifically, case 13 to case 20 are
finite-order autoregressive processes with p coefficients identical to the first p
terms in the infinite autoregressive representations of ARMA(1,1) processes,
where the truncation point p is chosen such that [B,+] <0.1. The
parameterizations allow us to assess situations when the autoregressive
coefficients decline at a geometric rate. We also consider five cases (21-25)
with ARCH errors. In these cases, we estimate autoregressions in yt2 so the IC
is used to select the order of ARCH processes.
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TABLE 1
DGPformodels 1-20;y, = Pryi1+ - +Bpyiptese~iid NO,1),yo=y_1 ==y, =0

DGP p B B2 Bs Ba Bs Be B Bg 0 ¢
1 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 1 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 1 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 1 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 1 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 2 0.40 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 2 1.10 -0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 2 1.30 -0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 3 0.30 0.20 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 3 0.10 0.20 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 4 0.20 -0.50 040 0.50 0.00 0.00 0.00 0.00 0.00 0.00
13 8 120 -096 0.77 -0.61 049 -0.39 0.31 -0.25 0.80 0.40
14 2 1.00 -0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.80
15 4 1.30 -0.65 033 -0.16 0.00 0.00 0.00 0.00 0.50 0.80
16 2 0.60 0.18 0.00 0.00 0.00 0.00 0.00 0.00 -0.30 0.90
17 2 0.55 0.22  0.00 0.00 0.00 0.00 0.00 0.00 -0.40 0.95
18 3 0.50 -0.25 0.13 0.00 0.00 0.00 0.00 0.00 0.50 0.00
19 8 0.80 -0.64 051 -041 033 -026 021 -0.17 0.80 0.00
20 2 =040 -0.16 0.00 0.00 0.00 0.00 0.00 0.00 -0.40 0.00
DGpP P B B> Bs Ba
DGP for models 21-25; y; = /e, e, ~i.i.d. N, 1), hf =1+ [flhtz_l + e+ [)’mhtz_m
21 0 0.50 0.00 0.00 0.00
22 0 0.80 0.00 0.00 0.00
23 0 0.50 0.40 0.00 0.00
24 0 0.20 0.30 0.40 0.00
25 0 0.20 0.30 0.40 0.05

Notes: For models 13-20, f5; = (¢ + 0)(=0) subject to the constraint that [ > 0.1.

Simulations were performed using Gauss for 7 = 100, 250, 500, and 1,000
with /max set to int[10(7/100)4]. We report only the tabulated results for
T = 100. Results for other sample sizes will be summarized below. Table 2
reports the average k selected by the AIC and BIC over 5,000 simulations,
Table 3 reports the probability of selecting the true model, while Table 4
reports the standard errors. Each row gives results for the 10 methods
considered. For example, the entries in row 5 of Table 3 are the probabilities
that methods 1-10 select the correct model when the DGP is model 5 as
described in Table 1.

The AIC variant of method 3 selects the correct model with probability
0.19, while method 9 achieves a probability of 0.73. Differences between the
AIC and the BIC in DGPs 1 to 20 are along the lines documented in the
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TABLE 2
Average k selected
DGP  p/model 1 2 3 4 5 6 7 8 9 10
Variant of AIC
1 0 0.87 1.50 5.36 120 020 023 040 1.85 0.69 1.22
2 1 1.58 217 574 1.92 0.84 0.88 1.05  2.51 1.39 1.90
3 1 1.83 239 5.8l 2.14 1.18 1.21 1.38  2.72 1.61 2.11
4 1 1.85 242 581 216 1.19 1.21 1.39  2.74 1.65 2.12
5 1 1.86 242 586 215 1.19 1.22 140 2.73 1.65 2.14
6 1 1.87 243 588 218 1.19 1.22 1.40  2.77 1.64 2.15
7 2 235 287 6.09 2.64 1.57 1.62 1.81 322 212 253
8 2 278 325 625 304 213 216 237 357 256 297
9 2 2.81 329 627 3.04 213 218 237 3.6l 2.57  3.00
10 3 259 319 628 292 1.75 1.81 2.03 356 237 287
11 3 338 390 6.63 3.69 239 246 273 423 312 359
12 4 473 516 725 495 416 420 441 548 449 487
13 8 7.04 712 865 736 508 550 566 751 6.53  6.67
14 2 2.51 3.02  6.17 279 1.77 1.82  2.00 335 230 271
15 4 376 424 685 407 282 290 3.12 459 350 3091
16 2 228 280 6.07 257 1.51 1.55 .75  3.16 2.06 246
17 2 242 294 6.13 273 1.67 1.71 1.91 331 221 263
18 3 279 335 631 3.11 195 200 220 372 254 3.01
19 8 583 6.03 820 623 381 412 436 649 527 551
20 2 235 287 603 266 1.60 1.63 1.83 322 213 256
21 0 1.16 1.75 4.74 147 043 045 078 202 098 1.52
22 0 148 2.07 445 1.77  0.71 0.74 .12 2.30 1.31 1.85
23 0 1.98 2.05 457 235 0091 0.97 1.08  2.30 1.75 1.85
24 0 214 174 452 253 08 092 075 196 1.84 149
25 0 2.27 1.55 420 272 092 1.00  0.68 1.76 1.96 1.35
Variant of BIC
1 0 0.06 0.12 031 0.07 0.03 0.03 447 0.13 0.05 0.11
2 1 0.58 0.67 095 063 046 046 480 0.69 0.57 0.65
3 1 1.05 1.11 1.32 1.07 1.01 1.01 490 1.12 1.04 1.09
4 1 1.05 1.10  1.31 1.07 1.02 1.02 493 1.12 1.04 1.09
5 1 1.05 1.11 131 107 102 1.02 494 113 105 1.10
6 1 1.06 1.11 1.32 1.08 1.02 1.02  5.00 1.13 1.05 1.10
7 2 1.31 1.42 1.73 1.37 1.19 1.20  5.23 1.45 1.30 1.40
8 2 197 203 231 200 18 1.89 540 206 195 202
9 2 1.96 2.04 232 1.99 1.88 1.89 542 2.08 1.94  2.02
10 3 1.38 1.51 1.93 146 1.16 1.18  5.42 1.55 1.34 1.46
11 3 175 195 260 191 129 134 592 200 169 189
12 4 4.04 411 440 407 398 399 6.60 4.17 4.02 4.07
13 8 395 4.09 569 434 3.01 3.19 829 448 360 3.74
14 2 151 159 192 156 137 139 529 1.62 149 157
15 4 243 254 306 252 220 223 6.15 262 238 246
16 2 1.28 1.37 1.66 1.32 1.19 1.20 5.22 1.40 1.26 1.35
17 2 141 151 1.8 146 129 130 531 154 139 148
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TABLE 2

(continued)

DGP  p/model 1 2 3 4 5 6 7 8 9 10

18 3 1.59  1.70 212 166 137 139 554 1.75 156 1.66
19 8 291 310 436 317 234 242 766 334 273 290
20 2 130 139 173 136 1.14 1.15 523 142 128 136
21 0 022 037 068 024 0.14 0.14 405 040 021 034
22 0 042 0.64 100 047 029 030 387 069 040 0.60
23 0 049 055 098 057 034 035 4.02 062 047 051
24 0 039 033 065 048 023 025 382 036 036 030
25 0 042 031 058 051 025 026 353 033 038 029

literature. On average, the AIC overparameterizes low-order AR models,
while the BIC abandons information at lags shorter than p more often. For
example, for DGP 19 with model 8, the AIC truncates at six lags on average
with ¢ = 0.26. The BIC, on the other hand, truncates at three lags with
B3 = 0.51.% For some models, the AIC and the BIC have low probabilities of
selecting the correct model. As discussed in Hendry and Krolzig (2002),
although a model selection criterion may have good asymptotic properties
under specific assumptions, one cannot assume that it always has good finite
sample properties.

Our main interest is in the sensitivity of the methods with respect to N, 7, and
M. Of the three parameters, the estimates are most robust to variations in M.
Changing M from T — k (method 2) to T (method 8) or to 7 — 2k (method 10)
apparently makes only small differences. The AIC is especially sensitive to
whether or not N is held fixed. Method 3, for example, with N =T -k
provides estimates that are both mean and median biased. But for the same 7,
method 4 with N =T — k. is more precise although it uses fewer
observations in estimating models with k < k., lags. Furthermore, changing
T from T (method 3) to 7 — k (method 8) can yield sharp changes in the
estimates if we do not hold N fixed. Although the BIC is generally more robust
to different choices of N, differences between methods remain apparent.
Method 7 overestimates p in much the same way method 3 does under the AIC,
and the BIC estimates are in this case also mean and median biased.
Interestingly, method 7 works well under the AIC but not the BIC, implying
that how N, 1, and M affects the IC also depends on the choice of Cj,.

The simulation results thus show that the properties of the criteria can
differ quite substantially across methods especially with respect to whether N
depends on k. To further understand this, recall that the basis of the IC is to
trade-off good fit against parsimony. Let

3For T = 250 and higher (not reported), the & chosen by the BIC is still small.
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TABLE 3
Probability that k= p
DGP  p/model 1 2 3 4 5 6 7 8 9 10
Variant of AIC
1 0 0.70  0.57 0.19 0.64 0.88 0.88 0.81 0.55 0.73 0.60
2 1 0.55 0.46 0.17 0.51 0.59 0.59 056 043 0.57 0.48
3 1 0.70  0.58 0.19 0.63 0.88 0.87 0.81 0.54 0.73 0.62
4 1 0.70  0.58 0.19 0.63 0.89 0.88 0.81 0.54 0.73 0.61
5 1 0.70  0.58 0.19 0.64 0.88 0.87  0.81 0.54 0.73 0.61
6 1 0.70  0.58 0.19 0.64 0.88 0.87 0.81 0.54 0.74  0.61
7 2 0.41 0.36 0.15 0.40 0.39 0.39 0.38 0.34 0.42 0.39
8 2 0.69 0.58 0.20 0.64 0.84 0.83 0.77 0.54 0.73 0.62
9 2 0.68 0.58 0.20 064 084 0383 0.77 0.53 0.72  0.62
10 3 0.16 0.17 0.10 0.17 0.12 0.12 0.14 0.16 0.17 0.17
11 3 0.57 0.47 0.19 0.54 0.59 0.59  0.55 0.44 0.60 0.51
12 4 0.70  0.58 0.21 0.65 0.88 0.87 0.79 0.52 0.76  0.64
13 8 047 040 034 049 024 030 0.27 0.40 0.43 0.38
14 2 0.51 0.44 0.17 0.48 0.53 0.53 0.50 041 0.53 0.47
15 4 0.35 0.31 0.16 0.35 0.27 0.28 0.27 0.28 036 032
16 2 0.36 0.32 0.14 0.35 0.32 0.33 0.33 0.30 0.37 0.34
17 2 0.46 0.41 0.16 0.44 0.46 046 044 038 047 043
18 3 0.23 0.21 0.11 0.23 0.17 0.17 0.18 0.20 0.23 0.22
19 8 0.26 0.22 0.26 0.28 0.07 0.10 0.10 0.23 0.21 0.19
20 2 0.43 0.37 0.16 0.41 0.41 0.41 040 034 0.45 0.39
21 0 0.53 054 023 0.48 0.72 0.71 0.72 0.51 0.55 0.56
22 0 0.41 044 0.21 0.37 0.58 0.58 0.60 042 0.43 0.45
23 0 0.38 0.47 0.23 0.33 0.58 0.57  0.65 0.45 0.40 0.49
24 0 042 057 027 037 065 064 074 055 045 059
25 0 0.41 0.58 0.29 0.35 0.64 0.63 0.74 0.56 0.43 0.59
Variant of BIC
1 0 0.96 0.92 0.84 0.95 0.98 0.98 0.23 0.92 0.96 0.92
2 1 050 052 055 053 043 043 022 052 050 0.52
3 1 0.95 0.92 0.83 0.94 0.96 0.96 0.25 0.91 0.96 0.92
4 1 0.96 0.92 0.84 0.95 0.98 0.98 0.25 0.92 0.96 0.93
5 1 096 092 084 095 098 098 025 091 096 093
6 1 0.95 0.92 0.84 0.94 098 0.98 024 091 0.96 0.93
7 2 0.29 0.32 0.37 0.31 0.21 022 0.19 032 0.28 0.31
8 2 086 0.85 079 086 084 084 027 084 0.86 0.85
9 2 0.86 0.84 0.78 0.86 0.83 0.83 0.27 0.83 0.86 0.84
10 3 0.06  0.08 0.13 0.07 0.02 0.03 0.13 0.08 0.05 0.07
11 3 045 048 054 049 033 034 025 048 044 047
12 4 0.93 090 0.79 0.92 094 094 030 0.88 094 091
13 8 0.11 0.11 0.27 0.15 0.02 0.03 0.40 0.15 0.06  0.07
14 2 044 045 049 046 035 036 023 046 043 044
15 4 0.16 0.17 0.26 0.18 0.08 0.09 0.21 0.19 0.14 0.16
16 2 0.23 0.27 0.32 0.26 0.17 0.18 0.18 0.27 0.23 0.26
17 2 035 038 043 039 027 028 021 038 034 037
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TABLE 3

(continued)
DGP  p/model 1 2 3 4 5 6 7 8 9 10
18 3 0.09 0.12 0.17 0.11 0.05 005 0.15 0.12 0.09 0.11
19 8 0.02 0.03 0.11 0.03 0.00 0.00 028 0.04 0.01 0.02
20 2 031 033 038 033 023 023 020 033 030 033
21 0 0.83 0.83 0.75 0.81 088 088 027 083 0.83 0.84
22 0 0.71 072 064 069 0.78 0.78 024 072 072 0.73
23 0 0.72 076 068 070 079 0.79 026 0.75 073 0.77
24 0 0.80 085 077 077 087 0.87 0.3l 0.85  0.81 0.86
25 0 0.80 085 077 077 086 086 033 084 080 0.85

T
RSSi = Y &,

t=n+1
so that 67 = RSSy/t. Then
IC(k) = In(RSSk) — In(7) + kCyr /M. 9)

Two observations can be made. First, the well-known result in least squares
regression that RSS; is non-increasing in & pre-supposes that the sample size is
held fixed as k increases. This is not necessarily the case when the sample size
is elastic. Secondly, if t depends on £, then £C,,/M — In(t) can be seen as the
effective penalty for k regressors. The penalty becomes non-linear in & in ways
that depend on both M and 7. The two considerations together imply that there
could exist choices of 7, M, and N such that the IC bears unpredictable
relations with £, and in consequence, produce unstable choices of p. Method 3
under the AIC and method 7 under the BIC appear to be such cases, as seen
from the standard errors reported in Table 4.

Equation (9) makes clear that the effective penalty for model comparison is
the term £Cy/M — In(7), which depends on C;;. A method that works for the
AIC with constant C, may not work for the BIC that allows Cj, to vary.
Indeed, such is the case with method 7. To the extent that the penalty reflects
our preference for parsimony, there is no unique choice for M and 7. One can
nonetheless ensure that the penalty moves with & in the most predictable way
possible, and in this regard, letting M and 7 to be invariant to & is desirable.
This, however, is of secondary importance relative to fixing &V, as by ensuring
that RSS; is indeed non-increasing in &, we also ensure that the goodness-of-fit
of two models are properly compared. Holding N fixed in model comparisons
is theoretically desirable and is recommended in applications.

To better highlight the fact that holding N fixed is desirable in model
selection and that a method that works well for the AIC need not work well for
the BIC, we now consider a response surface analysis based on the 20 DGPs
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TABLE 4
Standard error of k
DGP  p/model 1 2 3 4 5 6 7 8 9 10
Variant of AIC
1 0 1.84 248 382 223 0.70 0.79 1.14 285 .51 2.11
2 1 1.76 234 350 2.11 0.80 0.86 1.16  2.69 1.46  2.02
3 1 1.73 227 343 206 062 0.71 1.05  2.61 1.36 1.93
4 1 1.73 230 344 208 0.64 0.72 1.09 2.6l 1.41 1.95
5 1 1.78 230 343 207 0.66 0.72 1.10  2.61 1.42 1.96
6 1 1.80 232 343 212 0.66 0.74 1.09  2.65 1.42 1.98
7 2 1.80 225 3.19 205 0.80 0.90 1.20  2.56 1.48 1.83
8 2 1.66 2.09 3.06 1.92  0.64 0.73 .12 2.37 1.33 1.76
9 2 1.69 2.12  3.06 1.93 0.66 0.78 .12 2.40 1.35 1.80
10 3 1.84 230 3.10 2.11 1.00 1.07 .36 2.59 1.56 1.98
11 3 1.85 2,19 280 2.03 1.39 1.42 1.62  2.42 1.57 1.91
12 4 1.43 1.78 231 1.63 0.60 0.69 1.04 1.99 1.12 1.50
13 8 2.00 2.09 1.40 1.88 213 222 231 2.01 207 215
14 2 1.76 222 3.13 200 0.82 0.89 .22 2.50 1.44 1.87
15 4 1.78 2.15  2.60 1.98 1.08 1.16 145 236 1.54 1.91
16 2 1.80 227 322 207 0.80 0.87 1.18  2.59 1.49 1.87
17 2 1.7 222 316 204 0.82 0.89 1.19  2.54 1.48 1.84
18 3 1.79  2.21 3.01 2.04 096 1.03 1.31 2.51 1.47 1.91
19 8 231 240 1.87 228 .81 2.00 218 244 222 231
20 2 1.76 220 321 205 0.83 0.89 .22 2.52 1.43 1.86
21 0 1.88  2.71 385 220 086 0.90 1.80  2.99 1.57  2.47
22 0 195 285 371 224 1.10 .15  2.10 3.05 1.71  2.62
23 0 236 289 380 258 1.42 1.50 217 310 212 271
24 0 264 280 391 285 153 163 178 3.02 233 251
25 0 276 258 3.88 298 1.62 1.76 1.63 282 246 233
Variant of BIC
1 0 029 049 098 034 0.19 020 3.68 054 028 044
2 1 0.60 0.69 1.08 062 054 054 337 074 059 0.66
3 1 030 045 095 036 021 0.23 331 051 0.28  0.39
4 1 025 042 096 036 0.16 0.17 3.3l 0.52 024 038
5 1 026 044 096 035 016 017 332 050 024 039
6 1 029 043 099 037 0.16 0.17 332 051 0.26  0.38
7 2 0.57  0.69 1.12 063 050 0.51 3.10 0.75 056 0.66
8 2 044 053 106 047 040 041 296 0.63 042 050
9 2 0.44  0.56 1.07 046 041 042 297 063 041 0.52
10 3 0.79 091 1.31 0.84 0.71 0.72  3.01 095 0.76 0.84
11 3 1.42 1.45 1.63 1.42 1.36 1.38  2.73 1.48 1.40 1.44
12 4 037 054 1.05 042 029 031 227 065 032 043
13 8 1.85 193 236 202 1.18 1.38 1.55 2.14 1.58 1.68
14 2 0.60 0.70 1.16 064 051 052 3.04 074 058 067
15 4 0.85 098 143 091 064 067 2.58 1.06 0.79 0.87
16 2 0.52  0.65 1.11 0.57 041 042 312 070 049 0.61
17 2 0.57 0.69 1.14 061 048 049 3.07 0.75 055 065
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TABLE 4

(continued)
DGP  p/model 1 2 3 4 5 6 7 8 9 10
18 3 0.75  0.88 1.29 079 066 0.68 293 093 074 0.84
19 8 1.35 .51 224 1.54 094 1.04 205 .74  1.17 1.32
20 2 0.64 0.71 1.15 0.66 0.60 0.61 3.09 0.77 0.63 0.67
21 0 0.54 1.19 1.70  0.58 041 042  3.67 1.27  0.53 1.09
22 0 0.79 1.56 2.02 086 063 064 3.53 1.65 0.76 1.47
23 0 0.99 145 2.09 1.10  0.78 0.80 3.62 1.60  0.94 1.36
24 0 0.96 1.10 1.68 1.11 073 076 3.69 1.19 0091 1.00
25 0 1.03  0.97 1.51 1.16 0.76 0.78 3.62 1.03 094 091

with no ARCH effects. Simulations were carried out for 7= 100, 250, 500,
and 1,000 thus yielding 800 observations (10 methods, 20 DGPs and four
sample sizes). The dependent variables are (i) the log odds of the true order
(i.e. In(f/(1 — f;)) where f; is the simulated probability of selecting the correct
order for the ith specification), and (ii) the log mean-squared error (MSE). The
regressors are based on the following dummy variables: N, a dummy variable
that takes the value 1 if N = T — k., (0 otherwise); N,, a dummy variable
that takes the value 1 if N = T — & (0 otherwise); 71, a dummy variable that
takes the value 1 if T = N (0 otherwise), M, a dummy variable that takes the
value 1 if M = N (0 otherwise). After an extensive search, we settled on the
following regressors in all four cases (AIC and BIC for both dependent
variables): a constant, Ny, N; X 11, N, X 11, Ny X My, Ny, X My, My X 11, p, pz,
T~', 772 and p/T. 1t is important to note that our aim is to show how using
different specifications for N, M and 1 affects the probability of selecting the
correct model and the MSE of the estimate of the autoregressive order. Also,
some of our designs do not ensure a consistent estimate even for BIC (e.g.
method 7 for which the probability of selecting the correct order is at most
20% even when T = 1,000). Hence, we cannot impose restrictions such
that the regression function implies that the probability of selecting the
correct model goes to 1 or that the MSE goes to 0 as the sample size
increases. Nevertheless, the specification used allows us to highlight useful
conclusions.

The results are reported in Table 5. Evidently, for both the AIC and the
BIC, P(IAc = p) rises and the MSE falls when N = T — k., but the effect is
much larger for the AIC. Whereas having 1 =N or M = N when N =
T — kmax 1s desirable for the AIC, this is not the case for the BIC (see the
coefficients on N; X t; and N; X M, respectively). The effect of setting M =
T =N when N # T — knax 18 an increase in the log of MSE of the AIC by
0.849. But if N = T — k., the net effect is a reduction in log MSE, as
—1.000 + 0.849 < 0. For the BIC, having 1t = M = T — k. yields a
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TABLE 5

Response surface analysis

AIC BIC

Regressor log% log(MSE) log% log(MSE)

N, 1.944 (25.53)  —1.000 (23.44) 0.809 (4.31) ~1.142 (18.31)
N X1 0.111 (1.53) 0.169 (4.62) —0.467 (2.09) 0.484 (6.89)
N> X 1y 1.120 (17.34)  —0.317 (10.52) 0.544 (3.13) —0.787 (13.89)
Ny x M, 0.794 (8.69)  —0.572 (13.59) —0.434 (1.82) 0.341 (4.42)
N> x M, 1.753 (21.79)  —0.981 (30.33) ~1.521 (7.66) 1.342 (14.76)
M x 1, -1.363 (15.59)  0.849 (24.10) 1.070 (4.27) ~0.904 (10.06)
) —0.201 (4.70)  —0.043 (2.06) ~1.247 (10.90 0.243 (6.03)
T ~21.441 (0.68) —121.14 (6.84) 806.18 (8.44) 429.59 (12.24)
P’ 0.028 (6.27)  —0.001 (0.36) 0.099 (7.62) ~0.010 (2.30)
1T ~1,579.2 (0.59)  8,299.1 (5.87)  —76,810.0 (9.49)  —27,811.0 (9.67)
pIT ~25.295 (6.19) 7.444 (3.86) ~16.42 (1.78) 2.483 (0.74)
C —0.471 (4.00) 1.535 (25.90) 1.894 (7.11) ~1.856 (18.02)
n 800 800 800 800

R 0.66 0.71 0.43 0.72

Notes: Ny = 1ifN =T — kpax; No = 1ifN =T~ k; 7y = 1ift = N; M, = 1if M = N. Robust
t-statistics in parenthesis. The response surface is performed using results from DGPs 1 to 20 with
T = 100, 250, 500, and 1,000, giving 800 observations in the response surface analysis.

reduction in MSE of —2.042, with the largest gain coming from setting
M = t. These results are consistent with our casual observation that the model
selection criteria are better behaved when N = T — kpax.

We also rank the methods by the average MSE and by the probability of
selecting the true model. The results are reported in Table 6. Rankings are
reported for all models (column 1), models 1-12 (column 2), models 13-20
(column 3), models 1-20 (column 4), and models 21-25 (column 5). These
groupings are chosen to highlight the fact that the AIC and BIC are better
suited for different data types. For low-order AR models, methods 5 and 6 are
best for the AIC, while 1, 4, and 9 are best for the BIC. Although in theory, the
AIC does not have the property that lim;_.. P(k = p) = 1 when p is finite,
for the models being considered, the AIC apparently performs quite well
overall. Differences between the AIC and the BIC are more marked in models
13-20. In such cases, the AIC performs noticeably better especially when
methods 1, 4 and 9 are used.* Whether one uses the AIC or the BIC in
selecting the order of ARCH processes, methods 5 and 6 are clearly the best.
A feature common to methods 1, 4,5, 6 and 9 is N = T — k... Holding the
sample size fixed is thus crucial in model comparisons.

“When p is infinite and assuming Gaussian errors, Shibata (1980) showed that the AIC achieves an
asymptotic lower bound of the mean squared prediction errors.

© Blackwell Publishing Ltd 2005



132 Bulletin

TABLE 6
Rankings of the 10 variants of the AIC and the BIC

Variant DGP

MSE All 1-12 13-20 1-20 21-25

AlIC
1 2.53 6 0.83 5 4.06 9 2.48 6 2.41 5
2 2.54 5 0.94 6 432 1 2.58 5 2.74 6
3 3.25 7 1.59 7 4.80 6 2.95 7 4.45 7
4 3.79 9 232 9 4.86 4 3.02 9 6.87 9
5 4.88 1 3.56 1 4.99 7 3.87 1 8.93 1
6 5.59 10 4.50 10 5.06 10 4.72 10 9.03 10
7 6.33 4 5.10 4 5.21 5 5.01 4 11.06 2
8 7.22 2 6.47 2 5.96 2 6.26 2 11.63 4
9 9.18 8 8.80 8 7.18 8 8.15 8 13.30 8

10 27.24 3 2983 3 18.57 3 2533 3 34.90 3

Plk = p) Al 1-12 13-20 1-20 21-25
1 0.57 5 072 5 038 1 0.56 6 0.69 7
2 0.57 6 072 6 038 9 056 5 0.63 5
3 0.56 7  0.67 7 038 4 053 9 0.63 6
4 0.52 9 0.64 9 034 10 0.53 7 054 10
5 0.50 1 0.60 1 0.33 2 052 1 0.52 2
6 0.48 10 0.56 4 032 6 049 4 050 8
7 0.47 4 054 10 032 8 046 10 045 9
8 0.45 2 051 2 031 7 044 2 043 1
9 0.43 8 047 8 031 5 041 8 038 4

10 0.20 3 0.18 3 0.19 3 018 3 025 3

Variant DGP

MSE All 1-12 13-20 1-20 21-25

BIC
1 2.65 4 0.74 4 4.99 3 2.85 3 0.52 5
2 2.80 1 0.76 1 6.30 8 3.02 4 0.56 6
3 2.86 8 0.76 9 6.43 4 3.04 8 0.83 9
4 291 2 0.77 10 6.74 2 3.18 2 0.93 1
5 2.93 9 0.80 2 7.02 1 3.26 1 1.19 4
6 2.98 10 0.86 8 7.17 10 333 10 1.59 10
7 3.07 3 0.88 6 7.48 9 3.45 9 1.83 2
8 3.22 6 0.90 5 8.40 6 3.89 6 2.13 8
9 3.31 5 1.42 3 8.67 5 4.00 5 3.92 3

10 20.92 7 2243 7 14.20 7 19.14 7 28.07 7

Pk = p) Al 1-12 13-20 1-20 21-25
1 0.58 8 073 4 030 3053 4 084 5
2 0.58 2 073 1 0.24 8 053 3 083 6
3 0.58 4 073 9 024 4 052 8 0.81 10
4 0.58 10 072 10 0.23 7 052 1 0.81 2
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TABLE 6
(continued)
Ptk = p) All 1-12 13-20 1-20 21-25
5 0.57 1 0.71 2 0.23 2 0.52 2 0.80 8
6 0.57 9 0.71 8 0.22 10 0.52 10 0.78 9
7 0.57 3 0.71 6 0.21 1 0.52 9 0.77 1
8 0.56 6 0.71 5 0.20 9 0.49 6 0.75 4
9 0.55 5 0.68 3 0.16 6 0.48 5 0.72 3
10 0.24 7 0.24 7 0.15 5 0.23 7 0.28 7

Notes: Given a class of models, the first column is the MSE, and the second column is Pk = p).
Let k be the k chosen on average by a given criterion (i.e. results in Table 1). Then the MSE for that
criterion is }ZIJ: (ki — p)2 , where J = 5,000 is the number of replications.

IV. Conclusion

Lag length selection is frequently required in time series analysis. This paper
shows that the formulation of AIC and BIC can affect the precision and
variability of the selected lag order. Textbooks that define the penalty
functions as C7/T can quite easily be misinterpreted as method 2 (which uses
the maximum number of observations N = T — k, and scale the penalty and
the sum of squared residuals accordingly), method 3 (which again estimates
each autoregression using the maximum number of observations, N = T — k,
but scales the penalty and the sum of squared residuals by 7), or method 7
(which instead scales the penalty by T — k and the sum of squared residuals by
T — 2k). Neither is desirable from a practical standpoint. Theory dictates that
the penalty factor must increase in k. In practice, there is some leeway in how
the scaling on the penalty, M, and the degrees of freedom adjustment of the
estimate of the variance, 7, are defined to make this condition hold. Our
simulations show that the methods that give the most precise estimates are
those that hold the number of effective observations, &, fixed across models to
be compared. Theoretical considerations reveal that this is indeed necessary
for valid model comparisons.

Final Manuscript Received: April 2004
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