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ABSTRACT

The second-order effect of electromagnetic propagation on the essentially
static-field distribution of the magnetostatic modes of a ferromagnetic sample is obtained
by an iteration-type technique. It is found that the magnetostatic potential constitutes the
source in a mathematical sense for a second-order correct field distribution. The internal
sample fields are investigated for a ferrite cylinder enclosed between parallel conducting
plates and they are found to consist of resonant modes whose frequencies are determined
from a characteristic equation., These frequencies reduce to those of the magnetostatic
modes in the limit of vanishingly-small wave numbers. For a nonzero wave number the fre-
quencies differ from the corresponding magnetostatic limits by an amount which depends on
the sample shape. These resonant frequencies are size-dependent as contrasted to the size-
independent magnetostatic modes. It was found that no resonant frequencies are possible
above a critical value which depends on the spacing between the plates. A sample mode,
whose resonant frequency is in a region forbidden to the magnetostatic modes, can exist if

the sample size exceeds a critical value.






1. INTRODUCTION

A ferromagnetic sample will exhibit a number of energy storage resonances
that are essentially independent of size if the sample is small compared to a wavelength.
Such resonances occur in the microwave spectrum and have been explained as resonant modes
of oscillation of the sample magnetization. For small samples these modes have a static
field distribution which can be obtained from a scalar magnetic potential and have therefore
been called magnetostatic modes (Ref. 1). However, the static fields correctly describe the
actual sample fields only for infinitesimal samples. It is the purpose of the present paper to
extend the static solution to include the effect of electromagnetic propagation by an iteration-
type technique. Since the internal sample wavelength is many orders of magnitude greater
than the lattice spacing, the effect of exchange interaction may safely be ignored. It will also
be assumed that the sample shape is such that the tensor susceptibility components are inde-

pendent of position in the sample.



2. THE MAGNETIC POTENTIALS AND THEIR APPROXIMATIONS

The electromagnetic fields associated with a ferromagnetic sample may be

obtained from the scalar and vector magnetic potentials:

H-ve.2
H=ve - = (1a)
—_ 1 -
E = 'EVXA (1b)

If the Lorentz gauge condition is selected to relate these two potentials then they must satisfy

similar inhomogeneous wave equations:

V2@ + k?® = -V- M (2a)

2% L k2R - -y M

VA + kK°A = RoE = (2b)
where k? = ki2 = ? € inside sample

_ 2 _ .2 s
=k “=w uoeo outside sample

and where, of course, M = 0 outside the sample.

For a sample situated in free space, the potentials may be obtained formally in terms of the

ikr
. e .
free space Green's function Iy 0 n the form

1 . _eikr
CID:-E](V-M)—r—dV (3a)

b

= ikr
1 M) e :
_—47r“oef<8t> r dv (3b)



The primed variables are the coordinates of the source points and the unprimed variables

are the coordinates of the field points. These potentials may be expanded formally in a

power series of (ik)

o n
1 ik n-1 =
@:-EZ(nffr (v - M) av' (4a)
n=0
o n —
.. 1 vk on-13M
A= - B Y fr i (4b)
n=0
Then by substituting Eqs. 4a and 4b into Eq. la there results:
47H = - V [fv'Mdeikfv-Mde..}
r
- (k)2 | [ M av' + ik [ Madv' + (5)
-

For all field points inside and on the sample the magnitude of the nth term in the first bracket

is less than [(ka)n/n!] f (V- M/r)dv'| where a is the largest sample dimension. If the

sample is sufficiently small compared to a wavelength (i. e., ka << 1) then the contribution
of higher-order terms will be made negligible by suitable choice of ka. A similar situation
exists for the terms of the second bracket. Its leading term can be made negligible relative
to the leading term of the first bracket for (ka) sufficiently small.

The lowest-order term in Eq. 5 is the so-called magnetostatic term. If
d = f (Vv - M/47r) dv' then © is the magnetostatic potential. It was this term that was
used by Walker (Ref. 1) to describe the sample fields in the quasi static approximation,
which is really valid only for zero time dependence or infinitesimal samples. The second
term in the first bracket of Eq. 5 vanishes since it is the gradient of a constant. One might
conclude at this point that there is no first-order term present. However the magnetization
is also a function of ik so it may be expanded in a series whose coefficients are functions of
position. The series for M and H may be represented as:

M =M + ik M, +..
o] 1

==
n

ﬁo + (ik) ﬁl + o (6)



If these expressions are substituted in Eq. 5 and the first-order terms are collected there

results:

v . (1\710+ik1\—/[)

47r

H +ikH =-v/ dv' (7a)

Then let }_1(1) = ﬁo + ik ﬁl and IT/I(I) = IVIO + ik 1Vl1 and @(1) = f (v - lVl(l)/‘lnr) dv' where the
1)

M

superscript represents a truncated series correct to first order. It is seen that H(l) = Vdn(
but v - B = o (V- M + ﬁ)] =0 and M is related to H by the susceptibility tensor (see Eq. 15):

IVI(I) = (X) ﬁ(l) = (X) Vé(l) 0:

vzl - L ¢. [(X) Vq;(l)] = - K Vt?‘@(l) (7b)

where the subscript t refers to transverse coordinates and where K is the diagonal component
of (X). The above equation is the same as that used by Walker to characterize the magneto-
static modes. Therefore the magnetostatic mode approximation can be used to describe the
fields inside a ferromagnetic sample correct to the first-order effects of electromagnetic

propagation.

2.1 The Second-Order Magnetic Field

If <I>(2) and -1:1(2) represent respectively the scalar potential and magnetic field
correct to second order then:

52 - vel® % [ = av (8)

(2)

It is possible to know & */ correctly only if M is known to second order. The magnetization
is related to ﬁ through the susceptibility tensor and because V - B must vanish a pair of
self-consistent equations (correct to second order) can be solved simultaneously to deter-

(2).

mine &'7/:

and



Combining these equations produces an expression for & 2 :

2 (2) k.2 M
(1+K) Vt2q>(2) + 0 aqz>2 + ki2 @(2) =——i—n [(X) f 0 dv'] (11)
inside the sample and:
qu)(Z) + 1«:02 <IJ(2) = 0 outside the sample (12)

The boundary conditions are the continuity of potential and the normal component of flux
density.

The nonhomogeneous equation (11) can be solved by use of the appropriate
Green's function. The source for this equation p = (—ki2/411r) v [(X) Zo] is derived from
the magnetostatic approximation which will be presumed known. For the free-space situa-

tion Ko = f (MO) (4171')_1 dv' so the differential equation for _Ao is:

VEA = -M
O (6]

This equation must be solved using the correct Green's function for the geometry in which
Ko must satisfy the same homogeneous boundary conditions as H. By Green's identity the

solution to Eq. 11 will be

(2) _ . (2) a (2) | 4ar
% = [Gp av' - [ |69V G-GV Y|
sample surf. of sample

where G is the Green's function and where P = 47 p(1+K) 1. The potential at the sample

(2) (2)

in l surf. i

but the normal gradient of ./ is not

(2)
out , surf.]

known there, so the Green's function will be chosen to vanish on the surface. Thus the

surface is known [i. e.,

Green's function will satisfy:

thG £ T%K (VZZG + kizG) = -8(r-1'") 8(¢ - ¢') 6(z - 2 (13a)

G = 0 at sample surface (13b)
One of the boundary conditions has already been used so the remaining condi-

tion of continuity of normal flux density must be applied. Neglecting the permeability of

free space which is a constant factor this boundary condition may be written as follows:



(2)
<aq>0ut . : . A>

(2)
EJ(IDin = 9 -(2) "
(1+K) 3 + k2 A A+ == 9+ k2 A . $ (14a)
n i 0. oT in i 0.
in in surf.

where n is the coordinate normal to the surface, 7 is the coordinate tangential to the surface

and il and #are unit vectors in the respective coordinate directions. Equétion 14 contains
one undetermined constant. This constant is the ratio of the magnitudes of the scalar poten-
tials outside to inside the sample. If Py, Were an independent source (i. e., determined by
external devices) then the above constant would be determined by Eq. 14. However, P de-

(2)

pends on the coefficient of "/ so it is merely a source in the mathematical sense that is
derived from the magnetostatic approximation. There is an additional condition to be applied
in this problem namely that the magnetostatic approximation must still be valid. In the limit

of vanishing k the external potential must be equal to the internal magnetostatic potential at

the sample surface. Thus the limit:

Lim (2) _
K~ 0 l:@out = & (14b)

0.

] in
sample sample
surface surface

determines the constant in Eq. 14a. When this value is substituted into Eq. 14a the latter be-
comes the characteristic equation of the sample modes. Equation 14a then will have roots
only for discrete values of the parameters K and v which depend on frequency and are not in-
dependent.

For any given sample size, as k approaches zero, Eq. 14a approaches the
characteristic equation of the magnetostatic modes, but letting k -~ 0 for a fixed sample size
is equivalent to letting the wavelength get arbitrarily large compared to the maximum sam-
ple dimension. The magnetostatic approximation is valid for this situation. Thus the effect
of electromagnetic propagation on the resonant frequencies of the magnetostatic modes may
be demonstrated by independently varying the parameter k. In order to illustrate the details

of this effect a specific example will now be presented.



Fig. 1. A ferrite cylinder is enclosed between a pair of infinite
parallel perfectly conducting plates. The sample
is saturated axially by H.

2.2 An Example

Consider the case of the circularly cylindrical ferrite rod enclosed between a
pair of infinite parallel conducting plates with its axis normal to the plates (see Fig. 1). This
problem is particularly convenient because it is separable and because the boundary condi-
tions are easily applied. The sample is saturated axially by a dc magnetic field. A circu-
larly cylindrical coordinate system is chosen with its axis along the sample axis and with its

origin on one of the plates. The susceptibility is a tensor:

K iv
X) = { J (15)
-iv K

where K and v are as defined in Ref. 1 and independent of position in the sample. The tensor
elements will not be independent of position for a sample shape which is not an ellipsoid of
revolution but by the method of Appendix II such independence is possible. Because the
sample is saturat’ed axially the boundary conditions at the plates are the vanishiﬁg of the
normal component of magnetic field. The boundary conditions at the lateral surface are the

continuity of potential and normal flux density.

Because of the boundary conditions on the potential the conditions on the
Green's function for the scalar potential will be: G = 0 on the lateral surface (i.e., r = a)
and VnG = 0 at the ends of the sample. In this case the solution to Eq. 11 becomes by

Green's identity:



(2) _ v (2) :
o) = fcpmdv f@out v G da (16)
sample lateral
surface

where p = ki2 (1+K)_1 v [(X)- Zo]

The homogeneous boundary condition on the metal plates will mean that the scalar potentials

inside and outside the sample must vary as cos ,Bmz, where Bm = m‘dn and where d = length

of the sample and also the spacing between the plates.

The external potential may be written down at once from Eq. 12:

9 .
@gu)t = B Kn (alr) et 10 9 cos Bmz (17)

1

where ay = (Bm2 - 1«:02 )2 and Kn is the modified Bessel function of the second kind.

The Green's function for this physical arrangement is:

. : in|g-¢/| ,
... Jn(azr ) Cn(azr) e cos Bmz cos Bmz .
aqm da Cn (aza) Jn(aza)

v
L]

' t in ¢_¢' '
- . Jn(azr) Cn(azr ) e I I cos Bmz cos Bmz .
a o da Cn' (a 2a) Jn(a 2a)

A

r' (18)

where C (a r) J (o r + I' N (a,r) and where C_(a,a) = 0 determines I" and where
nn 2 n 2 n

L
; 2
ay = < 17K > and a = sample radius.

Using this Green's function in the surface integral of Eq. 16 the latter becomes:

(2) K (ala) Jn(azr)

_ , n + in ¢
® = f Gpmdv + B T (e a) e cos Bmz (19)
n 2
To determine [ the equation v? Ko = - 1\710 must be solved. This may be accomplished by
means of another Green's function which satisfies V2 G0 =-08(r-r")6(g -¢")6(z-2". It

should be noted that k? Ko is the second-order contribution to the magnetic field due to
the vector potential. This quantity will be used not only to obtain P but to write the bound-

ary condition of the normal flux density. Using Green's identity:



AOi = f GOMoi dv' + a surface integral (20)
all space
for each component of Ko' The surface integral will be taken along the plateé and across a
lateral surface at infinity. Because IVIO contains only transverse components Xo will contain
only transverse components. The normal derivative of the transverse components of Ko
must vanish at the plates so that if VnGO = 0 at the plate then the surface integral is identi-

cally zero. This Green's function GO then becomes:

. . Kn(er') In(ﬁmr) et inl¢-¢'| cos Bmz cos Bmz' .

Pra™da (LB a) K (3 a)-1(3 a)K '(B a)]

A
o]

-1
n

K (B, r)I(B r)e ilmlgz)—(b I cos Bz cos Bz’

1 _ '
Famaa[L (B ) K (B a)-1(8 a)K '(5 a)l
The quantity 1\_/1O is the magnetostatic approximation to the magnetization:
2@ . 0@ 0 0%
= o v Po |4 » o K %o
Mo_<K4_ar+r—a¢>r+<w—ar+r_a¢ ) (22)

where @0 is the magnetostatic potential which was determined in a previous paper (Ref. 3):

d =1 <er> eim¢cos3 z (23)
o n f1+—K m .

Here, a unity coefficient has been arbitrarily selected without loss of generality. Using the
component values of -1\710 , as obtained from Egs. 22 and 23, and using the Green's function

GO , the components of Ko may be obtained:
+ in g

A
ro

]

F(r,K,v) e cos Bmz

A¢O

iG(r,K,v)e 2 d o Bmz

where F and G are real functions (see Appendix I). Using these components of Ko the source

Py, may be obtained:

p_ = H(r,K,u)eim(Zs

cos Z
m 'Bm



where H is also a real valued function of r, K, v and is listed in Appendix I. Using this P

and the G from Eq. 22 it is possible to write Eq. 19 as:

K (aa) J (a,r)
a2 - H, (r,K,v) + B -2 Ji(a n_2

2?)

where H1 is a real function of r, K, v (see Appendix I). If these quantities are substituted in

Eq. 14a it becomes for this problem (neglecting common factors):

1 2 _ 2 i
oleKn (a 1::1) + ko Fo(a, K,v) = (1+K) {ki a Hl(a., K,v) +

o[ H@EY) 2
V4t a kl T + BKn(a 13.) + kl G.l(a, K, l/) (24)

where Fo’ Fi and Gi are the functions F and G outside and inside the sample surface re-
spectively. F0 Fi’ Gi and H1 are real and appear in Appendix I. The value of B as deter-
mined from Eq. 14b is:

K [(8,_2) (1+K)'1/2]

B =
K (8 a)

Using this value for B the characteristic equation of the sample modes may be written:

Kn'(a 1a.) J '(aza) Kn(Bma) Hz(a, K, v)
-1 2] (

25)

n o1 n %2 K (a2) I [Bma( 1+K)

where H2 is defined in Appendix I.

The roots of the characteristic equation (25) may be obtained graphically by

defining y = a.\/(;.l2 - Bmz) (1+K)_1 as the independent variable and plotting both sides of
Eq. 25 as a function of y for each n and m. The two resulting graphs for each n and m will

intersect in an infinite number of points (ynm which are the roots of Eq. 25. A similar

0
technique was used (Ref. 3) to obtain the roots for the magnetostatic approximation by de-

fining X = Bma (1+K) 1 and obtaining Xnrn From the form of Eq. 25 it can be seen that

¢

it reduces to the characteristic equation of magnetostatic modes (Ref. 3) for ki = 0. The

10



fact thaty = i X for ki = 0 is only a consequence of the particular form in which the internal

expansion modes were written and the significant relation is that |y| = | Xl for ki = 0.

From the sets of roots Xnmﬁ and Ym the normal expansion modes and

1
hence internal fields are specified for either the magnetostatic case or the second order
solution. Thus a more careful investigation of these roots will constitute a specification

of the salient features of the effect of propagation on the magnetostatic approximation.

There are five such features:

(1) The roots specify a set of corresponding resonant fre-

uencies w :
q nm{’

(2) There is a frequency above which the resonant fre-
quencies are complex;
(3) The values of Yom

are shifted from X fork, > 0
nm i

L £
by an amount which depends on the sample shape;

(4) The more exact values for W g 2re size dependent
whereas the magnetostatic values are size independent;

{5) Sample modes are possible in a frequency region in

which magnetostatic modes cannot exist.

2.3 Resonant Frequencies

Because k, K and v are each functions of frequency then y is also a function of

frequency and discrete values for y correspond to discrete frequencies (wn Physically

mﬂ)'
the values of K and v are determined from the frequency of oscillation of the assembly of
magnetic moments which produce the magnétization of the sample. Therefore the normal
expansion modes each correspond to an oscillation of the sample magnetization. Energy can
be coupled into the sample from external microwave circuitry at each of these frequencies so
that they may be considered sample resonances. In actual samples there will be losses so

that a measureable Q will exist at each sample resonance. These resonances have been ob-

served experimentally and their characteristics noted (Ref. 4).

2.4 The Effect of Imaginary Parameters

The resonant frequencies will be real for all frequencies such that «, is real.

1

However, when o is imaginary the characteristic equation will contain a ratio of Hankel

11



functions which is in general complex. The roots in this case will be complex and cannot

correspond to resonant sample frequencies. For all w < wc = Bm(,uoeo)_l/2 the parameter

ay will be real and resonant sample modes can exist. It is interesting to note that for ay
imaginary the external potential is proportional to Hfll) ( |a1|r) which in the present conven-

tion represents an outgoing wave. Thus the sample modes exist in a frequency region in
which the external fields are evanescent.

It is also possible for a, to have imaginary values but the effect of this on the
roots of Eq. 25 is much less severe. The internal potential is proportional to Jn(azr) and
this function enters the characteristic equation as @, Jn'(a 2a)/Jn (aza) which is a real ratio

whether a, is real or imaginary. Therefore Eq. 25 has real roots independently of whether

a, is real or imaginary.

2.5 Shift in Resonant Frequencies

It has been shown that y = iX for k = 0 and that the resonant frequencies de-
rived from y reduce to those of the magnetostatic modes for k = 0. This corresponds to an
infinite wavelength which is physically incorrect for a time dependent field. However, it
has been demonstrated for samples sufficiently small compared to a wavelength that k may
be neglected relative to terms of the order of 1/a for a first-order approximation. Letting
k =0 in the second order solution is a somewhat artificial means of representing this situa-
tion. If k is replaced by nk in Eq. 25 and n varied from zero to unity, the effect of propaga-
tion on the roots of the characteristic equation can be demonstrated. This was done and it was
found that for the roots corresponding to real a, the roots shift by a larger amount for large
o than for small o where o is the aspect ratio of the sample (a/d). This means that the
magnetostatic approximation is better for long thin cylinders than for flat thin disks, pro-
vided the maximum size is small compared to a wavelength in both cases.

The latter phenomenon may be explained by comparing the nature of the mag-
netostatic solution with the second order solution. In both cases, the axial components of the
scalar potential consist of standing waves, which is also true for the exact solution. The
approximation has been introduced in the radial component so the approximate solution is
better for small radii (thin cylinders) than large radii (flat disks), since (ka) is smaller for

the former than for the latter. Thus the magnetostatic approximation is better for thin

12



cylinders than flat disks. This situation is not fundamental to the magnetostatic approxima-
tion but may be attributed to the artificiality of the homogeneous boundary condition at the
plates for the configuration of the example (Ref. 3).

2.6 Size Dependence of Sample Modes

It was demonstrated in Ref. 3 that the resonant frequencies of the magneto-
static modes are independent of sample size but depend largely on sample shape. This re-
sult was arrived at because the sample dimensions enter the characteristic equation for the
magnetostatic modes only in the sample aspect ratio. However it is not possible to specify
Eq. 25 entirely in terms of this ratio. Rather it is necessary to know the actual radius and

length of the sample to compute y Therefore the resonant frequencies, which are

nm{’

specified by y depend on the actual sample size, a fact which is consistent with experi-

nm{’
ment (Ref. 4).

2.7 Resonance Outside the Frequency Region of the Magnetostatic Modes

From the literature (Ref. 5) it has been shown that magnetostatic modes can
be classified as volume modes or sﬁrface modes depending upon whether 1 + K is positive or
negative. It has also been shown (Ref. 6) that magnetostatic modes cannot exist in th-e fre-
quency region w < y H, where Hi is the internal biasing magnetic field and y is the gyromag-
netic ratio. However, the more exact solution shows that modes can exist in this region
provided the sample size exceeds a certain minimum. This can be shown with reference to

the definition of y and with the observation that K >0 when w < ¥ H.l:

’ 2 2
al ki _Bm

M

S0 1\/1+K|:

> 1 foru)<yHi

ynm I

l /klz - Bmz

then a > for wn <vyH,.

m/ 1

which is not necessari-

. . 2 2 -1
However for samples of this size (a ki) > Yom ¢ \/(1 Bm /ki )
ly small compared to unity and so the predictions based on the second-order solution are not

valid. Nevertheless the exact solution would involve the same Green's function for the scalar

13



potential. Even though the latter is not sufficient by itself for writing the boundary conditions
it would form a part of the final characteristic equation and would therefore determine at

least in part the resonant frequencies of sample modes. The functional form of the potential

would still be proportional to I [a/(ki2 - Bmz) (1+K)_r ] in the characteristic equation

and so the definition of y could be used for a graphical solution for the roots. Thus there

would be a set of values Yome = a/ (k12 - Bmz) (1+K)-1 which would determine the sample
resonant frequencies. Then the criterion that 1 + K > 1 for a frequency less than y Hi would
again predict a minimum sample size for such a result. There is nothing at all new in this
fact since for large samples a cavity-type resonance must be observed in which the sample
modes are intimately related to the surrounding microwave structure.

‘ 12
(k*-8,%)

m is defined as the critical sample size then reso-

I 4 " Ynmy
nance below the region of magnetostatic modes is possible for all samples exceeding this
size. This critical sample has a minimum for each root of the characteristic equation as
a function of frequency. The frequency for the minimum sample size is determined by A,

the ratio of the saturation magnetization to the internal biasing field and is

1
w =y Hi V(1+1) - ()\+/\2)2 It is not possible to compute the actual critical size with-

min
out first obtaining the roots of the exact characteristic equation but the prediction that reso-

nances occur below y Hi was based only on the form of the exact characteristic equation and

useful features of its roots.

14



3. CONCLUSIONS

The magnetostatic mode field distribution is the zero-order approximation to
the field in terms of ka where a is a maximum outside sample dimension. The second-order

solution has shown that:

(1) The field distribution consists of resonant modes which

reduce to the magnetostatic modes for k = 0;

(2) The corrections to the resonant frequencies of the mag-

netostatic modes depend on the sample shape;

(3) The resonant frequencies were found to be size dependent
as contrasted to the size independent magnetostatic res-

onances;

(4) Resonant frequencies are complex above a critical fre-
quency. The form of the exact solution has shown that:
a sample resonance can occur outside the region to which
the magnetostatic resonances are confined if the sample

exceeds a critical minimum.

15



APPENDIX I

d _ a ' er' '
F0 - amﬂdn Kn(er) [(K+ v of In(er ) In [1:K drt +

8. r' — | r' dr'
J1+K o nom n+1 J 14K

nom o nom m
v g a g_r'
= [ K (B 1)I . < m >r' dr']
+K r nom J 1+K
Cn(aza) a
Hl(a’K’ v) ad a, c aza) Jn(a Za) f Jn(a 2r) Py Tdr

16



a

H2(a,K, v) = (1+K) [aJ (2 Of Jn(azr) pm(r) rdr + ki2 Fi(a, K):I -

where

2 5, 2
uki Gi(a,K) ko Kn(m‘na)H(K)

kZ
5 2 .
Pm = TK {5; I:KFi(r’K) kGi(r’K’] *

g [Fi(r,K) - kGi(r,K)]}

17



MAGNE T

Fig. 2. The section of the ferromagnetic cylinder between plates
will support a very uniform internal field.

APPENDIX II

The requirement that the susceptibility tensor components be independent of
position in the sample effectively demands that the internal dc magnetic field be uniform,
Clearly this cannot be the case if the sample is placed in the uniform field of a magnet, The
demagnetizing field will be highly nonuniform for such an arrangement, However it is possi-
ble to maintain a uniform internal field in the following physical arrangement (see Fig. 2):
from a long cylinder of the material desired and of the diameter of interest, cut a right
section of the length desired; place this section in a strip line of spacing equal to the section
length; obtain two more cuts from the original cylinder which are each long compared with
the spacing of the strip line and place them, one on either side of the strip line coaxial with
the section included in it; magnetize to saturation along the common axis. The dc field in
the section between the strip line plates will be uniform since it is in the middle portion of a
long ferromagnetic cylinder. The microwave energy will be contained in the strip line and
so the section so included will be the equivalent of that picture in Fig. 1 in which the internal

dc field is uniform.
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ERRATA
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4853-18-T

Page 6 Equation 14a Ko should read Ko
out out

Page 9 Equation 21 Delete vertical bar before "in]g-¢':"
Page 10 Line 3 - Equation should read:

Kn’(a 1a) Jn(a 2r)
Jn(aza)

<I>(2) = <H1 (r,K,v) + B

t+ in
)e ¢cos8 Z
m

12 1/2

Page 14 Paragraph 2 (ki2 - Bmz) should read (ki2 -B_ %)

m

Page 16 Appendix I

Line 5 should read:

_ a B_r'
In(er) [(K+V)n 1’-{ Kn(er’) In ( ;r:K) dr' +

K B a g_r'
m f K(B._ r")I m r' dr':l
JIF R r 0% M AV

Line 9 should read:

_ a B_r'
1(8 r) [(+K-V)n If K ( )T ( T+K> dr' -






