THE UNIVERSITY OF MICHIGAN
COLLEGE OF ENGINEERING
Department of Chemical and Metallurgical Engineering

Technical Report

THERMODYNAMIC MEASUREMENTS USING OPTICAL ABSORPTION IN METAL VAPORS

Philip A. Rice
David A. Ragone
James A. Craig

ORA Project Q2668

under contract with:

U. S. ATOMIC ENERGY COMMISSION
CHICAGO OPERATIONS OFFICE
CONTRACT NO. AT(11-1)-543
LEMONT, ILLINOIS

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1962
This report was also a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The University of Michigan, 1962.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>vi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. DESCRIPTION</td>
<td>3</td>
</tr>
<tr>
<td>III. HISTORY OF METHOD</td>
<td>5</td>
</tr>
<tr>
<td>IV. OPTICAL ABSORPTION THEORY</td>
<td>8</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>B. Absorption by Atoms</td>
<td>8</td>
</tr>
<tr>
<td>General</td>
<td>8</td>
</tr>
<tr>
<td>Hyperfine Structure and Self-Broadening</td>
<td>13</td>
</tr>
<tr>
<td>Simultaneous Determination of τ and N</td>
<td>18</td>
</tr>
<tr>
<td>C. Absorption by Molecules</td>
<td>20</td>
</tr>
<tr>
<td>D. Other Effects</td>
<td>22</td>
</tr>
<tr>
<td>V. THERMODYNAMIC MEASUREMENTS</td>
<td>25</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>25</td>
</tr>
<tr>
<td>B. The Use of the Clapeyron Equation and the Calculation of Activities</td>
<td>26</td>
</tr>
<tr>
<td>C. Activity Measurements in a Lead-Bismuth Alloy</td>
<td>29</td>
</tr>
<tr>
<td>D. Discussion of Lead-Bismuth Activities</td>
<td>38</td>
</tr>
<tr>
<td>E. The Activity of Bismuth in U-Bi</td>
<td>42</td>
</tr>
<tr>
<td>F. Discussion of U-UBi Measurements</td>
<td>45</td>
</tr>
<tr>
<td>G. Heats of Vaporization Measurements</td>
<td>47</td>
</tr>
<tr>
<td>Bismuth</td>
<td>47</td>
</tr>
<tr>
<td>Discussion of Bismuth Heats of Vaporization Calculation</td>
<td>51</td>
</tr>
<tr>
<td>Lead</td>
<td>53</td>
</tr>
<tr>
<td>H. Discussion of Lead Heat of Vaporization Determination</td>
<td>53</td>
</tr>
<tr>
<td>VII. SUMMARY AND CONCLUSIONS</td>
<td>64</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>67</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>127</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Heats of Vaporization</td>
<td>50</td>
</tr>
<tr>
<td>II</td>
<td>Estimated Vapor Pressure in Atm at 1000°K</td>
<td>59</td>
</tr>
<tr>
<td>III</td>
<td>Spectral Constants</td>
<td>60</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic of Experimental Apparatus</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Representative Absorption Lines and Bands</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Van der Held Plot</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Hyperfine Correction Function</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Bismuth Absorption Data, Helium Pressure = 0</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Atomic Bismuth Absorption Data, Helium Pressure = 746 mm Hg</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Diatomic Bismuth Absorption Data</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Atomic Lead Absorption Data, Helium Pressure = 746 mm Hg</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>Lead Absorption Data, Helium Pressure = 0</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>Activity of Bismuth in Lead-Bismuth Alloy, Helium Pressure = 746 mm Hg, using Bi</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>Activity of Lead in Lead-Bismuth Alloy, Helium Pressure = 746 mm Hg</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>Activity of Bismuth in Lead Bismuth Alloy, using Bi$_2$</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>Activity of Bismuth in Lead-Bismuth Alloy, Helium Pressure = 0</td>
<td>39</td>
</tr>
<tr>
<td>14</td>
<td>Activity of Lead in Lead-Bismuth Alloy, Helium Pressure = 0</td>
<td>39</td>
</tr>
<tr>
<td>15</td>
<td>Uranium-Bismuth Phase Diagram</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>Bismuth Absorption data Above U-UBi</td>
<td>44</td>
</tr>
<tr>
<td>17</td>
<td>Activity of Bismuth in U-UBi</td>
<td>46</td>
</tr>
<tr>
<td>18</td>
<td>Bismuth Absorption Data</td>
<td>48</td>
</tr>
<tr>
<td>19</td>
<td>Corrected Bismuth Absorption Data</td>
<td>49</td>
</tr>
<tr>
<td>20</td>
<td>Lead Absorption Data</td>
<td>54</td>
</tr>
<tr>
<td>21</td>
<td>Corrected Lead Absorption Data</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Equipment</td>
<td>67</td>
</tr>
<tr>
<td>B. Experimental Procedure</td>
<td>70</td>
</tr>
<tr>
<td>C. Thermodynamic Energy Balance</td>
<td>71</td>
</tr>
<tr>
<td>D. Atomic Absorption Theory</td>
<td>73</td>
</tr>
<tr>
<td>E. Molecular Absorption Theory</td>
<td>77</td>
</tr>
<tr>
<td>F. Effect of Hyperfine Structure on Absorption Lines</td>
<td>81</td>
</tr>
<tr>
<td>G. Determination of Self-Broadening Effects in an Equilibrium Liquid-Vapor System</td>
<td>84</td>
</tr>
<tr>
<td>H. Sample Calculation</td>
<td>86</td>
</tr>
<tr>
<td>I. Raw Data</td>
<td>100</td>
</tr>
</tbody>
</table>
N Concentration of the absorbing atoms in atoms/cc
N' Concentration of excited atoms in atoms/cc
N_I Concentration of the broadening gas in atoms/cc
I_t Intensity of transmitted light
I_o Intensity of light before absorption
I_\omega Intensity of light at wave number \omega
\P_\omega Absorption coefficient at wave number \omega in cm^2/atom
l Length of the light absorption path, cm
X Optical density in atoms/cm^2, equals Nl
c Velocity of light in cm/sec.
\epsilon_2/\epsilon_1 Ratio of the statistical weights of the excited and ground states
S Integrated intensity, equals \int \P_\omega \, d\omega

\b_D Doppler half-breadth: equals the half-breadth of the absorption line when \P_\omega is half its maximum value and only Doppler broadening is present.
\[\b_D = \left(\frac{2RT \ln2}{mc^2} \right)^{\frac{1}{2}} \omega_o , \text{ cm}^{-1} \]

\b_N Natural half-breadth arising from the inherent uncertainty in the energy levels. It equals the half-breadth of the absorption line when \P_\omega is half its maximum value and only natural broadening is present.
\[\b_N = \frac{1}{4\pi c^2} , \text{ cm}^{-1} \]

\b_C Collision half-breadth due to interactions between the absorbing atoms and the other atoms present. It equals the half-breadth of the absorption line when \P_\omega is half its maximum value and only collision broadening is present.
\[\b_C = \frac{\sigma_T^2}{\pi c} N_I \times \left(\frac{2\pi RT}{1/M_1 + 1/M_2} \right)^{\frac{1}{2}} , \text{ cm}^{-1} \]

\b_S Self-broadening half-breadth resulting from interactions between the absorbing atoms themselves. It equals the half-breadth of the absorption line when \P_\omega is half its maximum value and only self-broadening is present.
\[\b_S = \frac{\sigma_S^2}{\pi c} p a \left(\frac{2\pi RT}{1/M_1} \times \frac{2}{M_1} \right)^{\frac{1}{2}} , \text{ cm}^{-1} \]
\[b = b_N + b_C \]

\[M_1 \text{ or } M \quad \text{Molecular weight of the absorbing gas} \]

\[M_2 \quad \text{Molecular weight of the broadening gas} \]

\[T \quad \text{Absolute temperature in } ^\circ \text{K} \]

\[p \quad \text{Vapor pressure of absorbing gas, atm} \]

\[\Delta H_v \quad \text{Heat of vaporization of absorbing gas} \]

\[\Delta c_p \quad \text{Difference between the constant pressure heat capacities of the absorbing gas and its equilibrium liquid} \]

\[R \quad \text{Gas constant} \]

\[C_I \quad \text{Integration const for the Clapeyron Equation} \]

\[\omega \quad \text{Wave-number } = \frac{1}{\lambda}, \text{ cm}^{-1} \]

\[\lambda \quad \text{Wavelength} \]

\[\tau \quad \text{Average lifetime in the excited state, sec} \]

\[\sigma^2_1 \quad \text{Optical collision cross-section, sq. } \text{Å} \]

\[\beta \quad \text{The total energy absorbed over the incident intensity, cm}^{-1} \]

\[\sigma^2_s \quad \text{Optical Collision cross-section for self-broadening, sq. } \text{Å} \]

\[T_R \quad \text{The transmittance of an absorption band} \]

\[f \quad \text{Fugacity} \]

\[a \quad \text{Avagadro's number} \]

\[A \quad \text{Area of the absorption line} \]

\[\text{cu.} \quad \text{Chart Units} \]

\[\text{Sq. in.} \quad \text{Square inches} \]

SUBSCRIPTS

- **self**: Absorption data are self-broadened
- **no self**: Absorption values are not affected by self-broadening
- **SQRT**: Absorption data are proportional to the square root of the vapor concentration
- **LIN**: Absorption data are directly proportional to the vapor concentration
- **t**: Indicates data taken at 746 mm Hg helium pressure
- **0**: Absorption data were taken at zero helium pressure
- **f**: Absorption data have been corrected for self-broadening and hyperfine structure
ABSTRACT

The purpose of this study has been to investigate the amount and the reliability of the thermodynamic information which can be obtained by measuring the absorption of light in spectral lines and bands by metal vapors. The technique involves measuring the amount of light absorbed in particular small wavelength regions corresponding to the electronic transitions of gaseous atoms and molecules. The relationships existing between the amount of light absorbed by the equilibrium vapor and the vapor pressure were ascertained as a function of temperature. These were then used to deduce relationships from which activities of an element in solution and its heat of solution were calculated.

Optical absorption measurements were made for pure lead, pure bismuth, a test lead-bismuth alloy, and a uranium-bismuth alloy. From these measurements, the activities of lead and bismuth in the lead-bismuth alloy, the activity of bismuth in U-Bi, and the heats of vaporization of lead and atomic and diatomic bismuth were calculated.

The values of the heats of vaporization at 298°C obtained in this work are given in the table below along with appropriate values obtained by other workers.

<table>
<thead>
<tr>
<th>THIS WORK</th>
<th>BRACKETT AND BREWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH_{Bi}, 298°C</td>
<td>$49,600 \pm 1100 \text{ cal/gm mole}$</td>
</tr>
<tr>
<td>ΔH_{Bi_2}, 298°C</td>
<td>$49,430 \pm 2000 \text{ cal/gm mole}$</td>
</tr>
<tr>
<td>ΔH_{Pb}, 298°C</td>
<td>$47,240 \pm 850 \text{ cal/gm mole}$</td>
</tr>
</tbody>
</table>

Also calculated from the measurements of the 3067Å Bi and 2833Å Pb absorption lines were the vapor pressure of atomic bismuth, the lifetimes of the excited states and the optical collision cross sections for He-Bi and
He-Pb and self collision cross sections for bismuth and lead.

The method is a useful one for measuring thermodynamic properties of alloys, if one is careful to correct for or mask out unwanted contributions to the absorption lines and bands. It is more accurate for determining activities and heats of vaporization than for determining absolute vapor pressures or heats of solution. It is relatively quick and allows independent measurements of a number of species in the vapor.
CHAPTER I
INTRODUCTION

The thermodynamic properties of alloys are commonly determined by effusion cell, gas transport, ebullition, or electrochemical techniques. All but the electrochemical method measure the vapor pressure of a particular element above an alloy and use this parameter to calculate the thermodynamic properties of the element in the alloy. Effusion cell and gas transport techniques are generally only applicable to systems which have vapor pressures between 10^{-8} - 10^{-5} mm Hg., since above these pressures bulk flow becomes a significant factor. On the other hand, ebullition point techniques are accurate only for vapor pressures above 0.1 mm Hg. For all three of these vapor pressure methods the relative amounts of each species must be known if there is more than one specie in the vapor. Electrochemical measurements are also often impossible in metal alloy systems because potential cells cannot be constructed at the necessary high temperatures. A technique which is especially applicable in the vapor pressure range of 10^{-5} - 1 mm Hg and which can easily measure more than one specie in the vapor is needed. Optical absorption is a likely candidate since the spectra of different absorption species are independent of one another. The method has not been widely used because of the difficulties in relating the optical absorption data to the vapor pressures of the elements of interest. Thus, the purpose of this work has been to examine more fully optical absorption as a method for determining the thermodynamic properties of alloys. To do this the thermodynamic information which can be obtained by measuring optical absorption parameters was defined and the reliability of this information, once it had been obtained, was estimated. Also, because the possibility became apparent during the course of the investigation, both
the lifetime in the excited state of the Bi 3067Å line and the vapor pressure of atomic bismuth were determined simultaneously, using the Clapeyron Equation and proper optical absorption measurements.
CHAPTER II

DESCRIPTION OF THE METHOD

Optical absorption utilizes the fact that atoms and molecules absorb radiation at certain characteristic frequencies. Every kind of atom has a particular set of absorption frequencies which correspond to a particular set of energy levels. Briefly the method consists of directing a parallel beam of continuous-spectrum light through an absorption cell which contains the absorbing atoms in a certain concentration. The light radiation is absorbed in certain narrow frequency ranges by the atoms or molecules in the vapor. The amount of absorption is then recorded by a spectrometer in the form of an intensity versus frequency trace. Auxiliary equipment is used to control the temperature and the total pressure at which the absorption takes place. The principal components of the experimental apparatus are shown in Figure 1 with a more complete description given in Appendix A.

Using optical absorption to measure thermodynamic properties involves two general steps: the calculation of the concentration of absorbing atoms or molecules in the vapor from the measured optical absorption parameters and the calculation of the thermodynamic properties of the condensed alloy phase from the vapor concentration. In this dissertation the two calculations are discussed in terms of the measurements which must be made and the errors which may arise. Then the experimental results of a number of example systems are compared with those which are predicted by theory and with those obtained by other experimental techniques. In conclusion the advantages and disadvantages of the method are discussed, the possible experimental results which may be obtained using the method are summarized, and the magnitude of the errors involved when the method is used are estimated.
Figure 1. Schematic of Experimental Apparatus
CHAPTER III
HISTORY OF METHOD

Optical absorption has most commonly been used to determine the lifetimes of the excited states of elements which have known vapor pressures (2). The method was first used for thermodynamic measurements in 1929 by Hirst and Olson (11), who measured the thermodynamic properties of certain mercury amalgams using mercury vapor as their absorbing species. In 1941, Herbenar, Siebert, and Duffendack (10), using zinc as the absorber, determined the thermodynamic properties of zinc in alpha brasses. Scatchard and Westland (21) in 1953, again using zinc as the absorbing species, measured the thermodynamic properties in alpha silver-zinc alloys. Scatchard and Boyd (22) in 1956, using cadmium as the absorber, determined the thermodynamic properties of alpha silver-cadmium alloys. In 1959, Cosgarea, Ragone, and Huckle (5) used the optical absorption of atomic and diatomic bismuth vapor to determine the thermodynamic properties of uranium-bismuth alloys. Finally, Vidale (25), in 1960 used optical absorption to determine the heat of formation of silicon carbide, the heat of vaporization of sodium in sodium silicate glass, and the f-value of copper 3247Å line. In all of these measurements, Beer's law was used to relate the ratio of the incident and transmitted intensities to the concentration of the absorbing species in the vapor. Except where zinc or diatomic bismuth had been used as the absorbing species, the absorption coefficient varied with the concentration of the absorbing species.

Until Vidale made his measurements in 1960, no one corrected their atomic absorption data for the line distortion of the spectrometer grating and slits, the hyperfine structure of the absorption line, and the total pressure in the absorption cell. Because these effects can greatly alter the absorption line size and shape, Beer's Law cannot reliably be directly applied to monatomic absorption data.
The atomic absorption measurements made in this study differ from those discussed above in that the measure of light absorption is the area of the absorption line divided by the incident intensity rather than the ratio of the incident intensity to the transmitted intensity. (See Figure 2.) This measure, called the total absorption, has the advantage of being relatively insensitive to the resolution of the spectral instrument. The diatomic bismuth absorption measurements of this study were correlated using Beer's Law since this relationship had been successfully applied previously and is predicted theoretically for absorption bands.
Figure 2. Representative Absorption Lines and Bands
CHAPTER IV
OPTICAL ABSORPTION THEORY

A. Introduction

Optical absorption theory describes the interaction of light quanta with atoms and molecules and relates the amount of light absorbed as a function of frequency to the concentration of the absorbing atoms or molecules. The bases of the description of this interaction are the electromagnetic theory of light and the quantum theory of matter. The first step in the description of light absorption by atoms or molecules is to calculate the probability of photons being absorbed at a wave number, \(\omega \), for light of intensity \(I_\omega \) incident on the absorbing atom or molecule. An absorption coefficient can be defined in terms of this probability. When the absorption coefficient is known as a function of the light frequency, the absorption line or band is then fully described. The absorption coefficients for the various processes contributing to light absorption by gaseous atoms and dimers have been derived for some time\(^{(9)}\), and the final forms of these coefficients are used without proof in this presentation.

B. Absorption by Atoms

General. The simplest case of light absorption is by gaseous atoms. If the absorbing atoms were motionless and the energy levels associated with these atoms were infinitely narrow, then light would be absorbed only at a particular set of frequencies. The energy change associated with one of these frequencies, corresponds to the energy of the photon absorbed, i.e., it equals Planck's constant, \(h \), times \(\nu \), the frequency of the light absorbed. Because of the thermal motion and the Heisenberg uncertainty in the energy levels, absorption takes place in a narrow frequency range about the characteristic frequency, \(\nu_0 \). If collisions also occur between the absorbing
atoms and other absorbing atoms or any other gaseous atoms which are present, the average uncertainty of the energy levels is increased and the permissible frequency range for absorption is broadened further. All of the above processes predict absorption lines which have a narrow frequency width. In practice the theoretical widths of these lines are ordinarily greatly increased by the distortion resulting from the finite slit widths and finite resolution of the recording spectrometer. Figure 2 shows several experimental absorption lines at 3067Å for atomic bismuth vapor. The widths of these experimental lines are approximately 65 times the theoretical widths calculated for the same lines.

Figure 1, the schematic diagram of the apparatus, shows light from a continuous-spectrum source passing through the absorption cell to a spectrometer where it is recorded as the ratio of I_ω (intensity at wave number ω out of the cell) to I_0 (the intensity incident on the cell).

The change of intensity of light at wave number, ω, as it passes through a medium of optical density X is given by Beer's Law:

$$\frac{dI_\omega}{I_\omega} = -P_\omega dX$$ \hspace{1cm} (1)

where:

I_ω = intensity at wave number ω

P_ω = absorption coefficient at wave number ω in cm2/atom

X = optical density in atoms/cm2 = Nl

N = concentration of absorbing atoms in atoms/cm3

l = length of the absorption path in cm

The amount of energy absorbed by the vapors divided by the incident intensity is given by β, the total absorption, as follows:
\[\beta = \int_0^\infty \frac{I_0 - I_\omega}{I_0} \, d\omega \] (2)
\[\beta = \int_0^\infty (1 - e^{-P\omega^4}) \, d\omega \] (3)

\(\beta \) is related to the number of atoms in the path of the light beam. If we assume an ideal gas, then the number of atoms is directly proportional to the pressure of the gaseous species through which the light is being passed.

If we define a parameter \(S \) (a constant for a given absorption species)* as:
\[S = \int_0^\infty P_\omega d\omega, \] (4)

the various contributions to absorption line width from Doppler broadening (due to thermal motion), natural broadening (Heisenberg uncertainty in energy levels), and collision broadening are expressed in terms of the absorption coefficient as follows:

For Doppler broadening:
\[P_\omega = \frac{S}{b_D} \sqrt{\ln 2} \exp\left(-\frac{\omega - \omega_0}{b_D \sqrt{\ln 2}}\right)^2 \] (5)

where:
\[b_D = \text{Doppler half-breadth} \]
\[\omega_0 = \text{wave number at center of line}. \]

For natural and collision broadening: (also called dispersion broadening):
\[P_\omega = \frac{Sb}{\pi} \frac{1}{(\omega - \omega_0)^2 + b^2} \] (6)

where:
\[b = b_N + b_C \]
\[b_N = \text{natural half-breadth} \]
\[b_C = \text{collision half-breadth} = \frac{\sigma_T^2}{\pi c} \frac{N_I}{[2\pi RT \left(1/M_1 + 1/M_2\right)]^{\frac{3}{2}}} \]
\[\sigma_T^2 = \text{optical collision cross section} \]
\[N_I = \text{concentration of broadening gas} \]
\[M_1 = \text{molecular weight of absorbing species} \]
\[M_2 = \text{molecular weight of the broadening gas} \]

*Appendix C
A total absorption coefficient, incorporating both Doppler and dispersion broadening, can be found by superimposing equations (5) and (6).* The resulting expression can then be substituted into equation (3) and the total absorption evaluated as a function of the optical density.

Two limiting cases result. When \(P_\omega X \) is small enough so that \(e \approx 1 - P_\omega X \), then

\[
\beta = \int_0^\infty P_\omega X d\omega = SX
\]

(7)

In this case the energy absorbed is proportional to the first power of the number of atoms present in the vapor. On the other hand, when \(P_\omega X \) is so large that the center of the line is completely absorbed, then:

\[
\beta = \sqrt{2} \, SX \sqrt{b_x}
\]

(8)

and the total absorption is proportional to the square root of the vapor concentration. This law is referred to as the square root absorption law.

The total absorption has also been evaluated for intermediate values of optical density.\(^{(23)}\), \(^{(24)}\) The results are presented in Figure 3 in the form of a plot of:

\[
\frac{\beta}{2b_D}\sqrt{\ln^2} \quad \text{vs.} \quad \frac{6 SX \sqrt{\ln^2}}{b_D}
\]

It can be seen from this figure that in the square root absorption law region the measured parameter, \(\beta \), for any optical density, \(X \), can be increased markedly by increasing \(\alpha \). In turn, \(\alpha \) can be increased by increasing \(b_c \), the collision half-breadth, which can be accomplished by introducing a foreign gas, such as helium. This property is often useful since it allows the amplification of weak absorption lines and also provides a means of identifying the particular absorption law to apply to a set of experimental data.

Note here also that the two limiting absorption laws can be predicted from dispersion (natural + collision) broadening alone. Examination of

*Appendix D
Figure 3. Van der Held Plot
Figure 3 shows that these two limiting cases account for all the portions of the graph except for the almost horizontal curves which appear at low α's and low optical densities. Only in this region is Doppler broadening an important factor in determining the integrated area of the absorption line.

Hyperfine Structure and Self-Broadening. In addition to Doppler, natural, and foreign gas collision broadening, two other phenomena often significantly influence the shape of the absorption line. They are the hyperfine structure of the absorption line and the collision broadening of the line resulting from the collisions between the absorbing atoms themselves (called self-broadening).

The hyperfine structure of the line results from various isotopes of an element or from the different nuclear spin states of a single isotope. This means that what is ordinarily seen as a single absorption line can really be a series of several lines very close together. When the total line width is so great that all the hyperfine components completely overlap, the hyperfine structure has no effect on the magnitude of the total absorption.* It can also be shown that the hyperfine structure has no effect, regardless of the component separation, when the total absorption is proportional to the first power of concentration of absorbing atoms since the contributions of the various hyperfine components add linearly.

Hyperfine structure has its maximum effect when the total absorption is not proportional to the first power of concentration and the hyperfine components are completely separate. For example, if the total absorption is proportional to the square root of the concentration, then, for n equally intense, completely separate components, the total absorption is increased by a factor, \sqrt{n}.* On the other hand, if the absorption line has a Doppler shape, the effect of the hyperfine components on the total absorption may

*Appendix F
be determined using the \(J \) factors calculated by Landenburg and Levy\(^{(13)}\) and tabulated by Mitchell and Zermansky\(^{(15)}\) and Penner\(^{(16)}\).

Important for this work is the case when the total absorption follows the square root law for any single hyperfine component and the various components are neither completely separated nor completely overlapped.

To evaluate the effect of hyperfine structure in this case, an expression for the absorption coefficient, which accounts for the absorption by each hyperfine component, must be substituted into the expression for the total absorption and the integral evaluated numerically. Of particular interest here is the effect of hyperfine structure on the Bi 3067Å line and the Pb 2835Å line. The bismuth line has six hyperfine components spread over a distance of 1.06 cm\(^{-1}\) and the lead line has a fine component structure spread over 0.54 cm\(^{-1}\). The spacings and relative strengths of the components of these two lines are shown in Figure 4.

The absorption coefficient for an absorption line made up of \(n \) hyperfine components, each of which follows the square root absorption law and has its center at a particular \(\omega_{01} \), is written as:

\[
P(\omega) = \frac{S_b}{\pi X} \sum_{i=1}^{n} \frac{X_i}{(\omega - \omega_{01})^2}
\]

Where \(X_i \) is the optical density of associated with component \(i \).

This coefficient can be introduced into the expression for the total absorption, \(\beta \), and the integral divided by the expression for the total absorption in the square root region if there were no hyperfine structure. The resultant expression, shown below, represents a correction factor which can be applied to absorption data taken in the square root region.

\[
F(\beta) = \frac{1}{P_{NH}} \int_{-\infty}^{\infty} \left[1 - \exp(-P_0X) \right] d\omega
\]

\[(10)\]
LEGEND:
\(F(\beta) \) – HYPERFINE CORRECTION FUNCTION
\(\beta \) – OBSERVED TOTAL ABSORPTION

Figure 4. Hyperfine Correction Function
where: \[\beta_{NH} = \text{the total absorption if no hyperfine structure were present} \]

The preceding integral was evaluated numerically as a function of \(\beta_{NH} \) for the hyperfine structures of the 3067Å line and the Pb 2833Å line using an IBM 709 digital computer. The resulting values of \(F(\beta) \) are plotted as a function of \(\beta \) (the observed total absorption) in Figure 4. The limits of complete separation and complete overlap of the hyperfine components can be calculated from

\[
\sum_{i=1}^{n} \sqrt{x_i} \left/ \sqrt{\sum_{i=1}^{n} x_i^2} \right.
\]

and are shown also on the graph. Note also that the hyperfine contribution to the total absorption decreases markedly with increasing optical density for the smaller hyperfine separation of the Pb 2833Å line.

The second broadening process to be considered in this section, self broadening, influences the line shape in the same way as collision broadening by a foreign gas. In this case, however, the concentration of broadening gas in the expression for the collision half-breadth is also the concentration of the absorbing gas. Thus, if self-broadening is significant, total absorption data, taken at concentrations where the center of the absorption line is totally absorbed, is no longer proportional to the square root of the concentration, but follows the relationship shown below:

\[
\beta = 2 \sqrt{b_b x + \frac{b_s}{b_x} x^2}
\] \hspace{1cm} (11)

where: \(b_s = \rho_s x \)

and: \(C_s = \frac{\alpha_s^2 \rho_s}{\pi c} \left(\frac{2 \pi RT}{2/M_l} \right)^{\frac{1}{2}} \)

Equation 11 also shows that, if self-broadening dominates \((C_s x^2 \gg b_x) \) over all other broadening effects, then the total absorption becomes directly proportional to the concentration of absorbing atoms.

* Appendix F
The ratio of the square of the observed total absorption (with self-broadening) to the square of the total absorption with no self-broadening can be used to directly calculate the self-collision cross-section if the lifetime of the excited state of the observed line and the number density of the absorbing atoms are known. In a system where the absorbing gas is in equilibrium with a condensed phase, the total absorption with no self-broadening and the self-collision cross-section can be calculated from the observed total absorption data using the lifetime of the excited state and the heat of vaporization of the absorbing gas. The method for doing this is discussed in Appendix G.

The effects of both hyperfine structure and self-broadening can be controlled to an extent by varying the amount of foreign gas collision broadening, since the introduction of a foreign gas can greatly increase the line size. In the case of hyperfine structure, this leads to a greater overlapping of the hyperfine components and consequently a reduced contribution to the total absorption. In the case of self-broadening, the foreign gas collision broadening can increase the line size to such an extent that the contribution from self-broadening can often be neglected.

The contribution to the total absorption data from natural and self-broadening can also be subtracted from total absorption measurements made at some inert gas pressure, \(p \). Subtracting the natural, and self-broadening contributions yields total absorption values which would result from foreign gas collision broadening alone. This is done for absorption data following the square root law in the following way:

\[
\beta^\prime_{\text{collision}} = \left(\beta^2_{\text{natural} + \text{self}} - \beta^2_{\text{natural} + \text{self}} \right)^{\frac{1}{2}} + \text{collision} \quad (12)
\]
Simultaneous Determination of τ and N. From a set of absorption measurements, the lifetime of an atom in the excited state corresponding to an absorption line can be determined directly if the concentration of atoms is known or the concentration can be determined directly if the lifetime is known. Both cannot be determined simultaneously, however, unless another independent relationship exists between the concentration (N) and the lifetime (τ). If the absorbing gas is in equilibrium with a condensed phase, the two limiting absorption laws which arise for high and low atomic concentrations, respectively, can be used as two independent relationships between N and τ. This is permitted because the absorption measurements made in the different concentration regions can be tied together with the Clapeyron Equation.* If absorption measurements are also made under an inert gas pressure, the optical collision cross-section between the absorbing and inert atoms may be calculated.

In order to carry out the above scheme, absorption data must be obtained as a function of temperature in both the temperature range where the total absorption is proportional to the first power of the optical density and in the temperature range where the total absorption is proportional to the square root of the optical density. The data following the square root absorption law is then extrapolated, using the Clapeyron Equation, to the temperature range where the total absorption is directly proportional to the concentration. Comparing the two absorption laws at constant temperature (constant number density) implies the following relationship:

$$ \tau = \frac{\beta_{\text{SQRT}}}{\beta_{\text{LIN}}} = \frac{4SbX}{SX} = 4b $$

(13)

If the square root data has not been significantly affected by collision broadening or the hyperfine structure of the absorption line, the dispersion

*See section on the Use of the Calpeyron Equation.
half-breadth, \(b \), is \(b_N \), the natural half-breadth. The lifetime, \(\tau \), and the integrated intensity, \(S \), can now be calculated since:

\[
b_N = \frac{1}{4\pi c t}
\]

and

\[
S = \frac{\lambda_0^2}{8nc} \frac{\varepsilon_2}{\varepsilon_1} \frac{1}{\tau}
\]

Once \(b_N \) and \(S \) are known, the density of absorbing atoms can be calculated either from Equation (8), using the data following the square root law, or from Equation (7), using the data following the linear absorption law.

The optical collision cross-section can also be determined if additional total absorption data following the square root law is taken under a particular inert gas pressure. From the ratio of the total absorption at pressure, \(P_I \), to the total absorption at zero inert gas pressure (at the same concentration of absorbing atoms), the collision half-breadth, \(b_C \), can be calculated since:

\[
\frac{\beta^2_{\text{SQR}}, P_I}{\beta^2_{\text{SQR}}, 0} = \frac{b_C + b_N}{b_N} = 1 + \frac{b_C}{b_N}
\]

Since the collision cross-section \(\sigma^2_I \) is related to \(b_C \) by:

\[
b_C = \frac{\sigma^2_I}{\pi c} N_I \times \left(2\pi RT \left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{\frac{1}{2}}\right)
\]

\(\sigma^2_I \) can also be calculated since all the other parameters in the above equation have been previously determined.

The accuracy of the above procedure depends largely on the accuracy of the extrapolation of the data following one absorption law to a concentration region where another absorption law holds. Consequently, it is important that the square root absorption data taken at zero inert gas pressure be corrected for self-broadening and hyperfine structure, when these effects are significant.
C. Absorption By Molecules

If the absorption species are molecules rather than atoms, then light is absorbed in frequency bands. These absorption bands are made up of very closely spaced absorption lines, which arise because the absorbing molecules not only change their electronic energy states but their vibrational and rotational energy states as well. Often associated with these bands are band heads. These occur at the maximum frequencies at which absorption takes place in a band and correspond to the frequencies where the absorption line density is the highest. While the individual lines which make up the band can be treated by the same theories which apply to atomic absorption lines, the situation is generally such that the individual lines of the band are so closely spaced that they are unresolved by the spectrometer or they are so broad as to completely overlap each other. The experimental result in either case is a continuous band of absorption such as is shown in Figure 1 for the \(2731 \text{\AA} \) absorption band of the bismuth dimer in the vapor.

The theoretical treatment for absorption lines has been extended by Klasser to an absorption band made up of an infinite number of equally spaced equally intense dispersion broadened absorption lines. For this kind of band, the absorption coefficient \(P_\omega \) is given by:

\[
P_\omega = \sum_{n=1}^{\infty} \frac{Sb}{\pi} \frac{1}{(\omega-nd)^2 + b^2} \tag{18}
\]

where:

\[d = \text{distance between lines in cm}^{-1}\]
\[b = \text{half-breadth of the individual lines in cm}^{-1}\]

An absorption coefficient of this form leads to a series of limiting cases* for the transmittance of the band as a function of the optical density, \(X \). The transmittance is the average ratio of the transmitted

*Appendix E
intensity to the incident intensity for the absorption band and is equal to
\[\frac{1}{\Delta \omega} \int_{\Delta \omega} \frac{I_{\omega}}{I_o} \ d\omega. \]

This absorption coefficient permits the transmittance of the absorption
band to be expressed in terms of the optical density. Three limiting
absorption laws* can be derived depending upon the magnitude of the optical
density and the ratio of the line breadth to the line spacing. Since the
transmittance is defined as:
\[T_R = \frac{1}{\Delta \omega} \int_{\Delta \omega} \frac{I_{\omega}}{I_o} \ d\omega, \quad (19) \]
then, if \(b < \ll d \)
\[T_R = 1 - \frac{S X}{d} \quad \text{when} \quad \frac{S X}{2\pi b} < \ll \frac{2}{\pi} \quad (20) \]
and
\[T_R = 1 - \text{erf} \left(\frac{\sqrt{\pi} S b X}{d} \right) \quad \text{when} \quad \frac{S X}{2\pi b} \gg \frac{2}{\pi} \quad (21) \]
On the other hand if \(b \gg d \),
\[T_R = \exp \left(- \frac{S X}{d} \right) \quad (22) \]

Since the second expression above depends on the half-breadth of the
absorption lines, and the half-breadth can be increased by collision broaden-
ing, the effect on the transmittance of an added inert gas indicates
whether \(b < \ll d \) or vice-versa.

When \(b \gg d \) in an Elasser band, Beer's law is predicted. Beer's
law is also predicted when \(b \gg d \) for an absorption band made up of a large
number of absorption lines which have completely random spacings and intensi-
ties\(^{17}\) (in direct contrast to the regularity of an Elasser band).
Therefore, it is reasonable to assume that Beer's law should also hold
for a real absorption band (which is neither completely regular or random)
whenever \(b \gg d \).

*Appendix E
D. Other Effects

Several other effects which may contribute to total absorption also deserve comment. Light absorption by adsorbed gases on the windows of the absorption cell has been suggested by Cosgarea (5) to explain the invalidity of Beer's law for atomic absorption. The basis of this suggestion was the non-zero intercept of a plot of $\log \frac{I_0}{I_t}$ vs l at constant number density for atomic absorption data. Two considerations make this theory suspect. In the first place, the adsorption bonds between the absorbing atoms and the atoms which make up the window material almost certainly would disturb the energy levels of the absorbing atoms to such an extent that absorption would no longer take place around the same characteristic frequency as before. The disturbances in the energy levels of the adsorbed atoms would have to be on the order of the disturbances which give rise to the hyperfine splitting if the adsorbed atoms were to absorb light in a frequency range indistinguishable from the frequency range of absorption for the gaseous atoms. Secondly, neglecting the effects of hyperfine structure and self-broadening as Cosgarea did, can lead to a non-zero intercept on a plot of light absorbed versus the absorption cell length since these effects become increasingly important as the size of the absorption line decreases. Thus, what has been interpreted as an effect due to adsorbed gases is probably entirely due to the neglected hyperfine structure and self-broadening effects.

The adsorbed gases on the absorption cell walls and the gases trapped in the alloy which are released as the absorption cell is heated can pressure broaden absorption lines, if a sufficient amount of gas is released. For a considerable period of time, variation in the values of the total absorption was noticed for runs made at zero inert gas pressure even though the concentration of absorbing atoms was the same. The results obtained when the absorption cell was evacuated at comparatively low
temperatures and closed off were always higher than those obtained when a dynamic vacuum was maintained across the quartz to quartz seal of the cell at each temperature where absorption data were taken. Also, runs with sealed cells, i.e. cells evacuated at room temperature and sealed off, gave high total absorption values, by a factor of 1.5 - 2.0, than all runs made with absorption cells closed off with the quartz to quartz seal. That this effect did not result from a non-equilibrium vapor concentration in the absorption cell was assured by a comparison of the rate of mass lost across the quartz to quartz seal to the rate of evaporation of mass in the cell. Measurement of the amount of mass lost during a run and an estimate of the rate of evaporation from kinetic theory indicated that the evaporation rate was more than 1000 times greater than the diffusion rate across the quartz to quartz seal. These results indicated that the increase in observed total absorption in the sealed cell was due to the collision broadening of the absorption line by the adsorbed gases on the quartz and the trapped gases in the alloy which were released as the absorption cell was heated. The total absorption data for the subsequently discussed thermodynamic measurements were taken from runs where a dynamic vacuum was maintained on the quartz to quartz seal of the absorption cell during the readings made at zero inert gas pressures. This procedure eliminated the previously observed run-to-run variation in the total absorption values.

Calculations of the effect of the slit width and the finite resolution of the spectrometer on the absorption line shape have been made by a number of investigators \(^{(4)}, (12)\). These workers have been concerned with the errors resulting in the observed line breadth, peak absorption coefficient,
and the integrated intensity of an emission line \(\int P X d\omega \). It is generally concluded that the errors increase as the resolution of the spectral instrument decreases and that the errors in line breadth and peak absorption coefficient are much greater than those in the integrated intensity. Minkowski (14) found that the resolution of the spectrometer had no effect on the total absorption measurements following the square root absorption law for a range of slit widths which varied by a factor of 10. Total absorption measurements at several spectrometer slit widths which were made for this work confirm Minkowski's results. These measurements were made in the concentration region where the total absorption is proportional to the square root of the concentration of absorbing atoms. No additional measurements of absorption line sizes as a function of spectrometer slit widths were made in the concentration region where the total absorption is proportional to the first power of the concentration. It was assumed that, in this case also, the slit width and spectrometer resolution do not affect the ratio of absorption line area to incident intensity.
CHAPTER V

THERMODYNAMIC MEASUREMENTS

A. Introduction

Optical absorption measurements of the Bi 3067Å line, the Pb 2833Å line, and the Bi₂ 2731Å band were made for Bi vapor pressures from 2x10⁻⁸ to 10⁻³ atm., Bi₂ vapor pressures from 10⁻⁵ to 10⁻³ atm, and Pb vapor pressures from 3x10⁻⁸ to 2x10⁻³ atm. Both the atomic and diatomic vapor species were measured in equilibrium with pure liquid bismuth, a 47.4 mole % Bi lead-bismuth alloy, and the two phases, uranium and UBi in a uranium-bismuth alloy. Lead vapor measurements were made for the vapor in equilibrium with pure liquid lead and the 47.4 mole % Bi lead-bismuth alloy mentioned above. From these optical absorption measurements, the heats of vaporization of atomic bismuth, diatomic bismuth, and lead, the activities of lead and bismuth in the lead-bismuth alloy, and the activity of bismuth in U-UBi were calculated. The activities of lead and bismuth in the lead-bismuth alloy and the heats of vaporization of lead, atomic bismuth, and diatomic bismuth were compared with previously measured values and the agreement obtained indicates the validity of the absorption laws which were used. The measurement of the activity of bismuth above U-UBi serves as an example of the way pressure broadening can be used to extend the range of applicability of the method.

For atomic absorption, the actual measure of the total absorption was the area of the absorption curve in square inches divided by the incident intensity in chart units (cu.). This is related to the total absorption in cm⁻¹ by an instrumental constant which depends upon the scanning rate of the spectrometer and the original units of the measurements. The constant for the spectrometer used in this work is 0.568 sq.in./cu./cm⁻¹.

The absorption measure for diatomic absorption is the ratio of the transmitted intensity, Iₜ, to the incident intensity, Iₒ, where both have
been extrapolated to the frequency where the absorption at the band head is half its maximum value. Since these values represent intensities averaged over the frequency range of the spectrometer resolution width,

$$\frac{I_t}{I_o} = \frac{1}{\Delta\omega} \int_{\Delta\omega} I_{\omega}/I_o \, d\omega = T_R$$ \hspace{1cm} (23)

B. The Use of the Clapeyron Equation and the Calculation of Activities

In the preceding section of this paper, the relationships between the amount of light absorbed and the concentration of the absorbing gas were discussed for atomic and diatomic gases. When the absorbing gas is in equilibrium with some condensed phase, another relationship between the condensed phase and the absorbing gas can be applied, namely the Clapeyron equation. It is through the Clapeyron equation that the absorption parameters can be expressed in terms of the temperature of the system instead of the vapor concentration.

Since in various concentration ranges different absorption laws apply, the relationship between the absorption parameters and the temperature, which can be derived by introducing the Clapeyron equation, will be different for each absorption law. Two examples of the results of the introduction of the Clapeyron equation are shown below. The first is for atomic absorption in the concentration range where β is proportional to the square root of X and the second is for molecular absorption which follows Beer's law.

Assuming that the vapor pressure is related to the vapor concentration by the ideal gas law, the total absorption in the square root region can be expressed as follows:

$$\beta = 2 \sqrt{\text{SbX}} = 2 \sqrt{\frac{\text{SbXRT}}{}}$$ \hspace{1cm} (24)
If the dispersion half-breadth, \(b \), is a constant

\[
\log_{10}(T^2 b) = \frac{1}{2} \log_{10} p + \frac{1}{2} \log_{10} \left(\frac{4Sbl_0}{R} \right)
\]

(25)

Introducing the Calpeyron Equation,

\[
\log_{10} p = \frac{-\Delta H_v}{2.303RT} + C_I \text{ yields }
\]

\[
\log_{10}(T^2 b) = \frac{-\Delta H_v}{2 \times 2.303RT} + \frac{C_I}{2} + \frac{1}{2} \log_{10} \left(\frac{4Sbl_0}{R} \right)
\]

(26)

If \(\Delta c_p \) is constant, \((\Delta H_v - \Delta c_p T) \) is constant, and

\[
\log_{10}(T^{1/2} - \frac{\Delta c_p}{2K} \beta) = \frac{-\text{SLOPE}}{T} + \frac{C_I}{2} + \frac{1}{2} \log_{10} \left(\frac{4Sbl_0}{R} \right)
\]

(27)

where:

\[
\text{SLOPE} = \frac{\Delta H_v - \Delta c_p T}{2 \times 2.303 \frac{R}{R}}
\]

\[
C_I = \text{ the integration constant for the Calpeyron Equation,}
\]

and

\[
c_p = c_p(v) - c_p(l)
\]

If \(b \) is inversely proportional to the square root of \(T \), (the case when foreign gas collision broadening dominates) and the foreign gas pressure is constant, data may be correlated by:

\[
\log_{10}(T^{3/4} - \frac{\Delta c_p}{2R} \beta) = \frac{-\text{SLOPE}}{T} + \frac{C_I}{2} + \frac{1}{2} \log_{10} \left(\frac{4SC_p p_I l_0}{R} \right)
\]

(28)

where the substitution \(b = \frac{p_I}{p} \sqrt{T} \) has been made and it has been assumed that \(p_I \), the inert gas pressure, is constant.

These equations allow simple linear correlations of the total absorption data following the square root law.

For molecular absorption following Beer's law,

\[
-\log_{10} \frac{T_R}{2.303} = \frac{S \ell p_a}{2.303 \ dR} = \frac{S \ell p_a}{2.303 \ dR} \frac{p}{dR}
\]

or

\[
T \log_{10} \left(\frac{I_0}{I_t} \right) = \frac{S \ell a}{2.303} \frac{dR}{dR} \ p
\]

(29)
Again introducing the Clapeyron equation and assuming Δc_p is constant yields:

$$\log_{10} T (1 - \frac{\Delta c_p}{R}) \log_{10} \left(\frac{I_0}{I_T} \right) = -\frac{(\Delta H_v - \Delta c_p T)}{2.303 R T} + C_m$$ \hspace{1cm} (30)$$

where C_m is the sum of the integration constant from the Clapeyron Equation and $\log_{10} \left(\frac{S l_n}{2.303 dR} \right)$.

Again a linear semi-log plot can be used to correlate the absorption data.

The relative thermodynamic properties of the element in the alloy can be calculated if the activity of the condensed phase is known as a function of temperature. The activity can be determined directly from optical absorption measurements of either the atomic or diatomic species in the vapor. When the equilibrium vapor is atomic:

$$A_{(\text{pure})} \rightarrow A_{(\text{alloy})}$$

$$a(c) = \frac{f(c)}{f(c)}^*$$

but since

$$A(c) \rightarrow A(v),$$

$$f(c) = p_1(v)$$

and it follows that

$$a(c) = \frac{p_1(v)}{p_1(v)}^*$$

Thus if the total absorption, β, is proportional to p_1

$$a(c) = (\beta/\beta^*)^2$$ \hspace{1cm} (31)$$

where $\beta = \text{the value of the total absorption measured above the alloy and } \beta^* = \text{the value of the total absorption measured above pure } A.$

When the equilibrium vapor is diatomic:

$$A_{(\text{pure})} \rightarrow A_{(\text{alloy})}$$

$$a(c) = \frac{f(c)}{f(c)}^*$$
but since
\[A(c) \rightarrow \frac{1}{2} A_2(v), \]
\[f(c) = \frac{1}{2}^\alpha(v) \]

it follows that
\[a(c) = \left(\frac{p_2(v)}{p_2(v)} \right)^{\frac{1}{2}} \]

Thus if $T \log_{10} (I_0/I_t)$ is proportional to p_2

\[a(c) = \left(\frac{\log_{10} (I_0/I_t)}{\log_{10} (I_0/I_t)} \right)^{\frac{1}{2}} \]

(32)

where I_0/I_t = the value of the transmittance measured above the alloy and $(I_0/I_t)^\ast$ = the value of the transmittance measured above pure A.

Since total absorption and transmittance measurements can be made at different temperatures, the activity of an element in an alloy can be determined as a function of temperature from optical absorption measurements. Thus, all the other relative thermodynamic properties of the element in the alloy can be determined.

C. Activity Measurements in a Lead-Bismuth Alloy

Optical absorption measurements of lead, atomic bismuth, and diatomic bismuth vapor in equilibrium with a 0.474 mole fraction Bi lead-bismuth alloy were taken under helium pressures of zero and 746 mm Hg. These measurements were used, in conjunction with measurements above pure lead and pure bismuth, to calculate the activity of lead and bismuth in the alloy. The activity of liquid bismuth was calculated four ways since both bismuth species were measured at two different helium pressures. The activity of lead was determined two ways since the measurements were made at the two helium pressures. All of the optical absorption data were taken in the concentration range where the total absorption follows the square root law if the amount of collision broadening is a constant. The atomic
bismuth data above pure bismuth and the lead-bismuth alloy taken at zero
and 746 mm Hg helium pressure are shown in Figures 5 and 6 respectively.
The corresponding diatomic bismuth data, taken at zero and 746 mm Hg helium
pressure, are shown in Figure 7.

Although the Bi₂ data taken at 746 mm Hg do not differ significantly
from the data taken at zero helium pressure, separate activity calculations
were made at each helium pressure. The lead data taken at 746 mm Hg helium
pressure above pure lead and the lead-bismuth alloy are shown in Figure 8
while similar data taken at zero helium pressure is shown in Figure 9.
Figures 10 and 11 show the activities of bismuth and lead in the lead- bismuth
alloy calculated from the data taken under 746 mm Hg of helium pressure.
At this helium pressure, the atomic absorption measurements above pure lead,
pure bismuth, and the lead-bismuth alloy were corrected for the effects of
hyperfine structure using the functions plotted in Figure 4. The effects
of self-broadening were also subtracted out using Equation (1.2). Least square
lines were calculated from the corrected pure atomic lead and bismuth data.
The activities of lead and bismuth in the lead-bismuth alloy were then cal-
culated from the corrected absorption data taken above the alloy and the
least-square lines through the corrected data for the pure elements.

The activities of bismuth calculated from the diatomic bismuth measure-
ments are shown in Figure 12. A single least-square line was calculated
from both the pure diatomic measurements at zero and at 746 mm Hg helium
pressure, using only that data which plotted linearly on a semi-log Clapeyron
plot (data shown on Figure 7 taken at temperatures below 1145° K). The
activities at zero and 746 mm Hg helium pressure were calculated from the
diatomic data taken above the alloy and the least-square line through data
for pure bismuth.
Figure 5. Bismuth Absorption Data, Helium Pressure = 0
Figure 6. Atomic Bismuth Absorption Data,
Helium Pressure = 746 mm Hg
Figure 7. Diatomic Bismuth Absorption Data
Figure 8. Atomic Lead Absorption Data,
Helium Pressure = 746 mm Hg
Figure 9. Lead Absorption Data, Helium Pressure = 0
Figure 10. Activity of Bismuth in Lead-Bismuth Alloy, Helium Pressure = 746 mm Hg, using Bi

Figure 11. Activity of Lead in Lead-Bismuth Alloy, Helium Pressure = 746 mm Hg
Figure 12. Activity of Bismuth in Lead Bismuth Alloy, Using Bi$_2$
The activities of lead and bismuth calculated from the data taken at zero helium pressure are shown in Figures 13 and 14. These activities were calculated directly from lines drawn by eye through the pure lead and bismuth data and the actual lead and bismuth data taken above the lead-bismuth alloy. With all these results are shown the activity versus $1/T$ lines predicted using Gonser's (8) and Wagner and Engelhardt's (26) emf data. All of activities of lead and bismuth were calculated in the manner described in a previous section, assuming the atomic absorption data followed the square root absorption law and the diatomic data followed Beer's law.

D. Discussion of Lead-Bismuth Activities

Figure 12 indicates that activities calculated from the diatomic bismuth absorption data agree well with the emf values. The activities calculated from the atomic bismuth and lead measurements made at 746 mm Hg helium pressure agree also with the emf values, although the precision of the data is not good. The atomic data taken under zero helium pressure, however, indicate a trend in the deviation of the calculated activities from those determined previously from emf measurements, the calculated activities being too low at the higher temperatures and too high at the lower temperatures.

For the atomic bismuth and lead data, taken at zero helium pressures, no corrections were made for the hyperfine structure and self-broadening contributions to the total absorption. The significance of self-broadening in both the lead and atomic bismuth zero helium pressure measurements is apparent from the non-linearity of the data on the semi-log Clapeyron plot and the fact that the slope of the zero helium pressure data is increasingly steeper than the slope of the 746 mm Hg helium pressure data.

Since the effect of self-broadening is directly proportional to the vapor density and the vapor density above the Pb-Bi alloy is less than the
Figure 13. Activity of Bismuth in Lead-Bismuth Alloy, Helium Pressure = 0

Figure 14. Activity of Lead in Lead-Bismuth Alloy, Helium Pressure = 0
vapor density above pure lead or bismuth, the effect of self-broadening on the total absorption data of the alloy is less than the effect on the total absorption data of pure lead and bismuth. This leads to the low activities calculated at the higher temperatures.

Hyperfine structure also affects the zero helium pressure atomic lead and bismuth data, increasing the observed total absorption as much as 48 per cent for the lead data and as much as 65 per cent for the bismuth data. Because the total absorption values above the alloy are smaller than those measured above pure lead and bismuth, neglecting hyperfine structure would lead to high than expected calculated activities. The high activities for the zero helium pressure measurements made at the lower temperatures result both from this hyperfine effect and the deviation of the total absorption data from the square root absorption law at the lower temperatures.

Self-broadening does not affect the activities calculated from the 746 mm Hg helium pressure data because the total absorption data taken under zero helium pressure was subtracted from the 746 mm Hg data according to Equation (12). Self-broadening was practically negligible anyway compared to the collision broadening from the 746 mm Hg helium pressure, since it contributed less than 1% to the total absorption. Hyperfine structure corrections were made for the 746 mm Hg helium pressure lead and bismuth data using the hyperfine correction function plotted in Figure 4. These corrections decreased the observed total absorption values, at most, 18 per cent for the bismuth data and 3.9 per cent for the atomic lead data.

The lead and bismuth activity determinations using the data taken at helium pressures of zero and 746 mm Hg contrast each other. The activities derived from the zero helium pressure measurements demonstrate the inaccuracies which can arise if the effects of hyperfine structure and self-broadening
are neglected while the activities determined from the data taken at 746 mm Hg show how correct activities may be measured if these effects are accounted for.

The insensitivity of the diatomic bismuth data to pressure broadening is predicted theoretically when the widths of the band's absorption lines are much greater than the line spacing. That this condition is met can be shown by calculating the rotational line spacing using an approximate atomic spacing estimated by Almy and Sparks (1) and the Doppler breadth of the line.

The 95% confidence limits of the activities calculated from the atomic lead and bismuth data taken at 746 mm Hg helium pressure and the diatomic bismuth data taken at zero and 746 mm Hg helium pressure are shown also in Figures 10, 11, and 12 along with the expected error of the values determined by Wagner and Engelhardt (26) and Gonser (8). No estimate of error was made for the activities calculated from the atomic zero helium pressure data since least square lines for this data were not computed. The error limits are such that the activities determined by optical absorption agree within the precision of the measurements with those of Gonser and Wagner and Engelhardt. Note that, if the precision of the absorption data is the same for the diatomic band measurements and the atomic line measurements following the square root law, the precision of the calculated activities is much greater for the diatomic measurements. The activity equals the square root of the ratio of the transmittances, in the diatomic instance, while it equals the square of the ratio of the total absorptions for atomic absorption. The smaller 95% confidence limits for the activities determined from the diatomic measurements indicate that this effect is observable for the absorption measurements of this work.
While diatomic activity measurements are inherently more precise, much lower activities can be measured using atomic absorption measurements which follow the square root law. The proportional decrease in the absorption parameter with vapor concentration is less for atomic absorption. The total absorption decreases only as the square root of the concentration decrease whereas the decrease in the transmittance is directly proportional to the decrease in vapor concentration. This advantage of atomic absorption is augmented by the shift in the equilibrium between the molecular and atomic species toward the atomic specie as the total pressure decreases.

E. The Activity of Bismuth in U-UBi

Cosgarea, Ragone, and Hucke (5) have recently reported the activity of bismuth across the uranium-bismuth phase diagram (Figure 15). These activities were calculated from diatomic bismuth absorption measurements made above the liquid, liquid-UBi₂, and UBi₂-U Bi₄ concentration regions. The diatomic specie was unobservale in the U₂Bi₄-UBi and U-UBi regions because of the decreased vapor pressure and the shift in the vapor equilibrium toward the atomic specie. To calculate the bismuth activity in these concentration regions, Cosgarea used an empirical correlation of his atomic absorption data which had been processed using Beer's law. Because of the lack of theoretical basis for the above correlation, the activity of bismuth in the U-UBi region was remeasured for this dissertation using atomic absorption lines which were broadened with 746 mm Hg helium pressure. These measurements serve also as an example of how pressure broadening can be used to amplify weak absorption lines to the point where accurate activity determinations can be made. The bismuth absorption data above U-UBi is shown in Figure 16. The activities of bismuth in U-UBi calculated from this data and the least square line through the pure bismuth data are
Figure 15. Uranium-Bismuth Phase Diagram
Figure 16. Bismuth Absorption Data Above U-ubi
plotted as a function of temperature in Figure 17. For these measurements as for the activity measurements for the lead-bismuth alloy, both the pure bismuth data and the bismuth data above the alloy were corrected for the hyperfine structure of the bismuth $3067\AA$ line. The corrections were much larger for the U-UBi data (as large as 60 per cent) than for the lead-bismuth data because the total absorption values are much smaller. An estimate of the 95% confidence limits for these activities values is also given in this figure.

The uranium-bismuth alloys were prepared by putting chunks of bismuth and very fine helical spirals of uranium into an alumina boat, inserting the boat into the absorption cell, heating the cell to temperature, and allowing the liquid bismuth to react with the solid uranium. The magnitude of the total absorption decreases stepwise with time as the bismuth diffuses into the uranium. Each step corresponds to one of the two-phase regions of the uranium-bismuth systems (see Figure 15). In this way one has an indication as to when the bismuth has diffused completely into the uranium and the U-UBi two phase equilibrium has been reached.

F. Discussion of U-UBi Measurements

From Figure 17, it is apparent that difficulty was experienced in attaining equilibrium above the U-UBi alloy. Small amounts of water vapor or oxygen would immediately cause a marked increase in the observed total absorption. This increase would be followed by a slow decrease in the total absorption if the precipitating condition was corrected and a hard vacuum was maintained on the absorption cell. Any oxygen present probably reacted to form small amounts of UO_2. This released bismuth from the UBi compound yielding the observed high bismuth pressures. As time passed, however, the free bismuth diffused through the alloy and reacted
Figure 17. Activity of Bismuth in U-UBi
with free uranium to again form the compound UBi. A liquid nitrogen
cold trap on the helium inlet line to the absorption cell and the presence
of titanium chips in the hot inlet portion of the cell (not in the absorp-
tion chamber proper) were used to control the oxygen level and consequently
eliminated the variation of the total absorption. Because of the possible
competing UO₂ reaction, only the lower data points were used to determine
the activity versus temperature lines shown in Figure 17.

The bismuth absorption data above U-UBi were also corrected for the
effect of hyperfine structure. This effect changes the bismuth activites
in U-UBi much more significantly than it changed the bismuth activities in
the lead-bismuth alloy. Correcting the U-UBi total absorption data for
hyperfine structure, using the hyperfine correction function yields the
second group of absorption data in Figure 16. It is from these corrected
data and the least square line through the corrected pure bismuth data
that the activities in Figure 17 were calculated.

G. Heats of Vaporization Measurements

Bismuth. Optical absorption measurements at helium pressures of
zero, 350, and 746 mm Hg were made for bismuth vapor above pure bismuth
and for lead vapor above pure lead. A plot of the data for atomic
bismuth over the entire temperature range of measurement is shown in
Figure 18. The two optical density regions in which the limiting
absorption laws hold are apparent for the data taken at each helium
pressure. The nearly horizontal transition region between the two limiting
absorption regions is also present for the absorption data taken at zero
helium pressure. The 746 mm Hg helium pressure data at the higher temper-
atures were corrected both for the hyperfine structure and for the self-
broadening contribution, and are shown in Figure 19. The contribution
from self-broadening was removed by subtracting out the zero helium
Figure 18. Bismuth Absorption Data
HELIUM PRESSURE = 746 mm Hg

$T \left(\frac{3}{4} - \frac{\Delta C_p}{2R} \right) A/A_0$

$3/4 - \frac{\Delta C_p}{2R} = 1.4115$

Figure 19. Corrected Bismuth Absorption Data
pressure contribution to the total absorption, using Equation (12) while the hyper-
fine structure correction was made using the hyperfine correction function
for the Bi \(3067^\text{A}\) line, plotted in Figure 4. As a result of these two
corrections, the data of Figure 19 follow the square root absorption law
exactly.

The heat of vaporization of bismuth was found by calculating the least
square line through this 746 mm Hg helium pressure data. The heat of vapor-
ization, obtained from the slope of the least square line, is given by the
equation:

\[
\Delta H_v, \text{Bi, } T = 48,100 - 2.63T + 1100* \text{ cal/mole} \quad (33)
\]

\[800 < T < 1250^\circ\text{K}\]

and \(\Delta H_v, \text{Bi, } 298^\circ\text{K}^{(3)}\) is compared to the recalculated value of Brackett and
Brewer \(\text{in Table I. The table shows that the values obtained from the}
optical absorption data agree within the experimental precision of the data
with the recalculated value obtained from effusion data.

\begin{center}
\textbf{TABLE I}
\end{center}

\begin{center}
\textbf{Heats of Vaporization}
\end{center}

<table>
<thead>
<tr>
<th>(\Delta H_v, \text{Bi, } 298^\circ\text{K})</th>
<th>OUR VALUE</th>
<th>RECALCULATED BY \text{BRACKETT AND BREWER}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(49,600 \pm 1100 \text{ cal/gm mole})</td>
<td>(49,500 \pm 1000 \text{ cal/gm mole})</td>
<td></td>
</tr>
<tr>
<td>(\Delta H_v, \text{Bi}_2, 298^\circ\text{K})</td>
<td>(49,430 \pm 2000 \text{ cal/gm mole})</td>
<td>(52,500 \pm 2000 \text{ cal/gm mole})</td>
</tr>
<tr>
<td>(\Delta H_v, \text{Pb, } 298^\circ\text{K})</td>
<td>(47,840 \pm 850 \text{ cal/gm mole})</td>
<td>(46,800 \pm 300 \text{ cal/gm mole})</td>
</tr>
</tbody>
</table>

A plot of the diatomic absorption data taken at zero and 746 mm Hg
helium pressure is shown in Figure 7. Only those data points which fell
on the straight line portion of Figure 7 were used to calculate the least
square line and the heat of vaporization of \(\text{Bi}_2\). The \(\Delta H_v, \text{Bi}_2, 298^\circ\text{K}\) obtained
from the least square slope is given by the equation below and is compared with
*95\% Confidence Limits
Brackett and Brewer's recalculated value in Table I.

\[\Delta H_{v, Bi_2}, T = 46,800 - 6.26 T + \frac{1}{2000*} \quad \text{cal/mole} \]

\(970 < T < 1150^\circ\text{K} \)

Discussion of Bismuth Heats of Vaporization Calculation. The contribution to the total absorption from the hyperfine structure was calculated from a knowledge of the hyperfine structure and the hyperfine correction function shown in Figure 4. The size of this correction varied from 18\% for the lowest temperature data point to 0.2\% for the highest temperature data point. The correction for self-broadening was less than 1\%.

The bending away of the diatomic absorption measurements at the higher temperatures was not expected and is not predicted by either Elasser's or Plass's theoretical models. This anomaly would be explained if the intensity of the re-emitted light which can be seen by the spectrometer became a significant percentage of the transmitted light or the number of excited molecules in the vapor became a significant proportion of the total number of molecules. Approximate calculations of the magnitude of either of the two above effects indicate that they are completely negligible. The anomaly could also result from the overlapping absorption of another nearby band, if this absorption caused the baseline of the measured absorption band to deviate from linearity. The data show some indication of this. The slope of the intensity versus frequency trace before absorption begins increases with the temperature over the whole temperature range of measurement. On the other hand, the slope of the intensity versus frequency plot during absorption increases with temperature only until that temperature is reached where the bending away of the absorption curve begins; then it begins to decrease. This

*95\% Confidence Limits
behavior indicates that the intensity versus frequency plot of the unabsorbed light is no longer a straight line, thus leading to errors in the computed value of the transmittance. Also it is important to realize, in this regard, that for larger absorption values small errors in the value of the transmitted intensity at the band head lead to considerable errors in the transmittance since \(I_t \) has such a small value (0.07 - 1.10 cu.).

Another possible source of error is the estimate of the average value of the transmittance used. Alternatively, the value of \(I_o \) could have been extrapolated to the frequency of maximum absorption and the values of \(I_o \) and \(I_t \) read there. The procedure used in this work was chosen because it gives the same value of \(I_o/I_t \) regardless of the slope of the baseline (assuming it is linear) while the above procedure does not.

Table I shows that the heat of vaporization values obtained from this work agree well within the limits of the precision of the data with the values recalculated by Brackett and Brewer. The only possible significant difference exists between the two values of the diatomic heat of vaporization.

This difference may result from discrepancies which exist in the earlier bismuth vapor pressure measurements. Brackett and Brewer's general success in making these earlier measurements consistent does not insure that the compiled result is not in error.

The third law of thermodynamics allows the calculation of the vapor pressure from the heat of vaporization using the entropy of vaporization. Heat capacity measurements for the condensed phase for temperatures from absolute zero to the temperature of interest determine the entropy of the liquid. Thus, if the vapor phase can be assumed an ideal gas, the entropy of vaporization can be calculated. This is the principle which Brackett and Brewer used to correlate the bismuth vapor pressure data which had been
obtained by that time. By using this technique, the vapor pressure of Bi and Bi₂ at 1000°K were predicted from the heats of vaporization determined in this work. By using the \(\Delta H_v \)'s and the \(\Delta c_p \)'s to extrapolate these pressures to higher temperatures, the boiling point of bismuth can also be predicted. The heat of vaporization values from this work, together with the entropies of vaporization from Stull and Sinke, were used to predict the boiling point of bismuth to be \(1830\pm 5 \)°K. This compares with \(1852\)°K predicted by Brackett and Brewer and \(1832\)°K predicted by Stull and Sinke.

Lead. Optical absorption measurements of the lead 2833Å absorption line were also taken for pure lead vapor in equilibrium with liquid lead at helium pressures of zero and 746 mm Hg. Figure 20 shows the lead data over the whole temperature range of measurements. The higher temperature lead data which follow the square root absorption law were corrected for hyperfine structure and self-broadening and plotted in figure 21. The \(\Delta H_{v,\text{Pb}} \) of lead was determined from the slope of the least square line through the data of Figure 21. For this calculation, \(\Delta c_p \) was assumed to be constant over the temperature range of measurement although in reality it decreases from 7.17 to 6.95 as the temperature changes from 800 to 1200°K. The results of the least square fit are given in the equation below and the \(\Delta H_{v,\text{Pb},298\text{°K}} \) is compared with that reported by Stull and Sinke\(^{(28)}\) in Table I.

\[
\Delta H_{v,\text{Pb},T} = 46,700 - 2.0 T^+ 850 \text{ cal/mole}
\] (35)

The two values agree well within their respective precision limits.

H. Discussion of Lead Heat of Vaporization Determination

All of the lead data at the higher temperatures were used to compute the least square line. The hyperfine correction involved for
Figure 20. Lead Absorption Data
HELIUM PRESSURE = 746 mm Hg

Figure 21. Corrected Lead Absorption Data
the experimental values of total absorption is practically negligible except for the data point taken at the lowest temperature. The correction for that point was 3.9%.

The optical absorption data for lead indicate the reliability of the method for the determination of heats of vaporization when hyperfine structure is not an important factor. The data also demonstrate the validity of the square root absorption law.
CHAPTER VI
SPECTROSCOPIC MEASUREMENTS

A. Introduction

The atomic optical absorption measurements of the lead 2833\(\AA\) and the bismuth 3067\(\AA\) lines were also used to calculate the vapor pressure of bismuth, the lifetimes of the excited states of the absorption lines, the collision cross-sections of the absorbing vapor with helium, and the self-collision cross sections. The vapor pressure of bismuth and the lifetime of the excited state of the bismuth 3067\(\AA\) line were determined simultaneously in the manner described in chapter IV, B. The resulting vapor pressures were compared with Brackett and Brewer's recalculated vapor pressure values. Sufficient data were not taken to simultaneously determine the vapor pressure of lead and the lifetime of the excited state of the Pb 2833\(\AA\) line. The lifetime of the lead line was calculated, however, from the absorption measurements using Stull and Sinke's compilation of lead vapor pressure based primarily on the data of Rodebush and Dixon (19), (20).

For both the Bi 3067\(\AA\) line and the Pb 2833\(\AA\) line, the self-collision cross-sections were determined from the zero helium pressure absorption data using the heat of vaporization values determined previously from the 746 mm Hg helium pressure data. This method was discussed earlier in the text of this report and described more fully in Appendix G. The helium collision cross-sections were obtained from the ratio of the total absorptions measured at 746 mm Hg helium pressure to those measured at zero helium pressure which were corrected for self-broadening and hyperfine structure.

B. Calculations for the Bi 3067\(\AA\) Line

Figure 18 shows the Bi 3067\(\AA\) absorption data over the whole range
of measurements. Data was taken in the linear absorption law region primarily under 746 mm Hg helium pressure while the data in the square root law region were taken at zero, 350, and 746 mm Hg helium pressure. As was pointed out earlier, the total absorption data at zero helium pressure are significantly affected by contributions from the hyperfine structure of the line and self-broadening resulting from the collisions between the absorbing atoms. To determine simultaneously the lifetime in the excited state and the vapor pressure the contributions of the hyperfine structure and self-broadening must be subtracted from the absorption data taken at zero helium pressure. These corrections are necessary for an accurate extrapolation of the square root absorption data to the linear absorption region. The data were corrected for hyperfine structure using the hyperfine correction function chart (Figure 4).

The self-broadening corrections for the zero helium pressure total absorption data were made using the slope of the Clapeyron plot of the total absorption data taken at 746 mm Hg helium pressure, \(\frac{\Delta H_v - \Delta c_p T}{2 \times 2.303 R}\). The proper corrections were determined by trying various intercept values for an assumed corrected zero helium pressure \(T^\frac{\Delta c_p}{2R} A/I_0\) versus \(1/T\) line, until the slope of the \(T^\frac{\Delta c_p}{R} (r_b - 1)\) versus \(1/T\) line equalled \(\frac{\Delta H_v - \Delta c_p T}{2.303 R}\). Once the line representing the corrected zero helium pressure total absorption data following the square root absorption law was determined it was extrapolated to the lower temperatures where the total absorption is proportional to the first power of the vapor concentration.

The natural breadth, \(b_N\), the lifetime, \(\tau\), and the integrated intensity, \(S\), were then calculated from Equations (13), (14), and (15). The intercept of the bismuth vapor pressure equation was also calculated using Equation (12) of Appendix G and the previously calculated intercept.

*See Appendix G
of the least square line through the corrected zero helium pressure total absorption data.

The self collision cross-section (bismuth atoms with both bismuth atoms and bismuth dimers) was determined from the intercept of Equation (8) in Appendix G, since the intercept for the bismuth Clapeyron equation, \(C_I \), and \(b_N \) have been previously determined. The collision cross-sections for bismuth by helium was calculated from Equations (16) and (17) of the text, using the corrected zero helium pressure absorption data.

The resulting vapor pressure equation is given below and a representative value of the vapor pressure at 1000°C is compared in Table II with corresponding values from Yoshimura, Brackett and Brewer, and a value obtained using the third law. The self-collision and helium collision cross-sections are listed together with the lifetime of the excited state of the 3067 Å bismuth line in Table III.

\[
\log_{10} p = \frac{-10521}{T} + 9.5380 - 1.323 \log_{10} T
\]

(36)

The estimated 95% confidence limits for the lifetime, collision cross-sections and vapor pressure values are also given in Tables II and III.

TABLE II

<table>
<thead>
<tr>
<th>Absorption Data Alone</th>
<th>Third Law Using (\Delta H_v) from Absorption Measurements</th>
<th>Brackett and Brewer</th>
<th>Yoshitama Using This (\Delta H_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi (1.1^{+0.7}_{-0.5} \times 10^{-5} \text{ atm})</td>
<td>(1.8^{+1.3}_{-0.7} \times 10^{-5} \text{ atm})</td>
<td>(2.07^{+1.3}_{-0.8} \times 10^{-5})</td>
<td>(1.35 \times 10^{-5})</td>
</tr>
<tr>
<td>Bi(_2) (----)</td>
<td>(1.1^{+2.0}_{-0.7} \times 10^{-4} \text{ atm})</td>
<td>(2.8^{+4.8}_{-1.8} \times 10^{-5} \text{ atm})</td>
<td>(----)</td>
</tr>
<tr>
<td>Pb (----)</td>
<td>(1.2^{+0.6}_{-0.4} \times 10^{-5} \text{ atm})</td>
<td>(1.51 \times 10^{-5} \text{ atm})</td>
<td>(STULL AND SINKE)</td>
</tr>
</tbody>
</table>
TABLE III

Spectral Constants

<table>
<thead>
<tr>
<th></th>
<th>(\tau(\text{sec}))</th>
<th>(\sigma_s^2 (\text{Å}^2))</th>
<th>(\sigma_{\text{He}}^2 (\text{Å}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi 3067Å line</td>
<td>5.4 ±1.7 x 10^{-9}</td>
<td>3100 ±3000 -1000</td>
<td>25.3 ±8.5</td>
</tr>
<tr>
<td>Pb 2833Å line</td>
<td>1.39 ±0.13 x 10^{-8}</td>
<td>626 ±320 -210</td>
<td>14.2 ±3.8</td>
</tr>
<tr>
<td>Engler</td>
<td>6 x 10^{-9}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\tau \) = lifetime in the excited state

\(\sigma_{\text{He}}^2 \) = optical collision cross-section for absorbing atoms with helium

\(\sigma_s^2 \) = optical collision cross-section for the absorbing atoms with other absorbing atoms (in the case of bismuth, collisions also occur with the diatomic species in the vapor).

C. Discussion of Bismuth Calculations

Brackett and Brewer's recalculated vapor pressures are 88% higher than the vapor pressures calculated from this optical absorption data. However, the uncertainty in both values is large enough so that they are not significantly different. The previous vapor pressure data which were taken in the temperature range most closely corresponding to the temperature range of these optical absorption measurements were the data of Yoshiyama (27). His bismuth vapor pressure measurements, using a torsion effusion cell in the temperature range, 912-962°K, agree very well with the vapor pressures calculated from the optical absorption data if the slope of the Clapeyron plot of Yoshiyama's data is made to agree with the heat of vaporization value obtained from this absorption data.

No previously measured values of the lifetime in the excited state and the self-broadening and helium collision cross-sections were found in the literature for the Bi 3067Å line so no comparison could be made for the values obtained in this work.
The 95% confidence limits for the lifetime, \(\tau \), and the vapor pressure were estimated from the confidence limits of the slope of the zero helium pressure total absorption data following the square root absorption law and the error limits of the total absorption values following the linear absorption law. These error limits amount to \(+39\% \) \(-29\% \) for the value of \(\tau \) and to \(+60\% \) \(-40\% \) for the vapor pressure of bismuth. These error limits reflect for the most part the uncertainties in the zero helium pressure total absorption data which are amplified by the extrapolation to the linear absorption region. The error limits for the helium collision cross-section, \(\sigma_1^2 \), were calculated from the 95% confidence limits of the 746 mm Hg and the zero helium pressure total absorption data and the previously calculated confidence limits of \(\tau \). The error limits on the self-broadening cross-sections, \(\sigma_2^2 \), were calculated from an estimated possible error in \((r_b - 1) \) line and the error limits in the lifetime, \(\tau \). All of these error calculations were made assuming that the logarithms of the total absorption data are normally distributed.

D. Calculations for the Lead 2833Å Line

An attempt was made to obtain lead absorption data in the linear absorption region in order to also determine simultaneously the vapor pressure of lead and the lifetime of the excited state of the 2833Å line of lead. Absorption data at 746 mm Hg helium pressure could not be taken at temperatures low enough so that the total absorption values varied with the first power of the concentration. This is indicated by the lead absorption data plotted in Figure 20. Consequently, the lifetime in the excited state was calculated from the zero helium pressure lead data taken in the concentration region where the total absorption
varies with the square root of the concentration. The atomic lead data were corrected for self-broadening in the same way as was the atomic bismuth data discussed earlier, using the heat of vaporization of lead determined from the 746 mm Hg helium pressure data. Corrections for hyperfine structure were also made using the hyperfine correction function, plot. Once the corrected total absorption is known for the hypothetical non-self-broadened absorption lines, \(\tau \), the lifetime in the excited state, can be calculated from
\[
\frac{A}{I_o} = 0.5686 = 1.136 \sqrt{\text{Sb}_N} X = 1.136 \sqrt{\frac{\lambda_0^2}{32\pi^2 c^2 q^2}} \frac{E_2}{g_1 X}.
\]
The self-broadening collision cross-section for helium on lead was calculated from Equation (8) of Appendix G using the value of \(\tau \) calculated above and the known intercept of the lead Clapeyron equation. The helium collision cross-section was calculated from Equations (16) and (17) of the text using the total absorption data taken at zero and 746 mm Hg helium pressure and the value of \(\tau \) calculated above. These values of \(\tau \), \(\sigma_e^2 \), and \(\sigma_I^2 \) are given in Table III with estimates of the 95\% confidence limits of the values.

E. Discussion of Lead Calculations

The lifetime of the excited state of the \(\text{Pb} \ 2853 \AA \) line has previously been measured by Engler\(^7\). His value, also given in Table III, is about half the value determined for this work. Neglecting the corrections for self-broadening and hyperfine structure would still yield a value for the lifetime which would be higher than that determined by Engler. One might suspect that vapor-liquid equilibrium was not attained within the cell because of the diffusion of lead atoms across the quartz to quartz seal. This possibility was checked, however, by calculating the diffusion rate across the quartz to quartz seal from the amount of lead condensed in the cold end of the absorption cell at the end of a run. This rate was calculated to be more than 1000 times less than the evaporation rate in the cell.
estimated from kinetic theory. On the other hand, Engler's value may be in error since he made measurements using a narrow emission line as the light source. Errors in the observed integrated absorption of this source, resulting from the distortion of the true line shape, would lead to a value of the lifetime which would be too low\(^{(12)}\).

The error limits of the lifetime in the excited state were calculated from the estimated uncertainty in the corrected zero helium pressure total absorption data which follow the square root absorption law. The error limits of the helium collision cross-section were determined from the above uncertainty and the 95% confidence limits of the 746 mm Hg helium pressure total absorption data. The uncertainties in the self-broadening cross-section were estimated from the error limits of \((r_b - 1)\) and those previously calculated for the lifetime. These error calculations are based on a log-normal distribution of the total absorption data.
CHAPTER VII

SUMMARY AND CONCLUSIONS

The avowed purpose of this work was to investigate optical absorption as a means of measuring the thermodynamic properties of metal alloys. The scope of the work was later expanded to include the calculation of vapor pressures and certain spectroscopic constants (lifetimes, cross-sections, etc.).

The heat of vaporization determinations made from the pure lead and pure bismuth optical absorption measurements demonstrate the validity of the square root law for atomic absorption measurements and Beer's law for diatomic absorption measurements. They also point out the necessity of taking into account the effects of the hyperfine structure and self-broadening on the atomic absorption lines.

The activity measurements in the lead-bismuth alloy demonstrate that optical absorption can be used to measure activities, again confirming the optical absorption laws and indicating the importance of correcting for or masking out the effects of hyperfine structure and self-broadening. These activity measurements also show the inherently lower statistical error of the diatomic measurements and, moreover, show how a number of species in the vapor above an alloy can be monitored independently.

The bismuth activity measurements in U-UBi point up the extended range of activity measurements available when atomic absorption following the square root absorption law is used. They also demonstrate the use of inert gas pressure broadening for amplifying absorption line size.

The calculation of the lifetimes of the excited state of the Pb 2833Å line and the collision cross-sections of this line between helium and lead and between lead and lead show how spectroscopic data can be obtained from
optical absorption measurements if the vapor concentration is already known.

Finally, the simultaneous determination of the vapor pressure of bismuth and the lifetime of the excited state of the Bi 3067\AA \ line demonstrate how the Clapeyron equation, derived from the conditions for liquid-vapor equilibrium, may be used to tie together two different absorption laws corresponding to two different vapor concentration regions. This technique provides a way of obtaining both the lifetime in the excited state and the vapor pressure exclusively from optical absorption measurements.

As a technique for measuring thermodynamic properties, optical absorption has the advantage over other vapor pressure measuring techniques of allowing the experimenter to observe any number of individual species in the vapor independently since the spectra of each species is independent. It is also a relatively quick method of measurement and can cover a considerable temperature range since data points over a 200 - 300°K temperature range may be obtained in a single run. The accuracy of the atomic absorption measurements is dependent largely upon the accuracy of the corrections for or the completeness of the masking out of unwanted contributions to the total absorption from hyperfine structure and self-broadening. Generally speaking diatomic absorption activity measurements are more precise, if they can be made, but the range of measurement is limited since \(\log_{10} \left(\frac{I_c}{I_t} \right) \) decreases as the square of the activity. On the other hand, atomic absorption offers more flexibility for activity determinations than diatomic absorption since the size of the total absorption can be regulated by orders of magnitudes through foreign gas collision
broadening and total absorption measurements following the square root absorption law decrease only as the square root of the activity.

The maximum temperature at which measurements can be made is determined by the absorption cell material. For quartz cells, such as those used for this work, the maximum working temperature was about 1000°C. If measurements at higher temperatures are desired, they can be made with a cell similar to the one used by Vidale\(^{(25)}\).

In general it can be concluded that optical absorption is most useful for measuring thermodynamic properties when there are multiple species in the vapor, the temperature of measurement is less than 1000°C, and the hyperfine and self-broadening contributions to atomic absorption are small.
APPENDIX A

EQUIPMENT

The light source used to supply a continuum in the desired frequency range was a high-pressure mercury lamp, H3FE, manufactured by General Electric. The lamp was contained in a water-cooled jacket and the power input was stabilized by two ballast transformers. The maximum fluctuation of the light intensity was not greater than 2%. The lamp emits an approximately continuous intensity over the wavelength region from 2600 to approximately 4000Å except in the vicinity of mercury emission lines. The cell used for the absorption measurements was made entirely of quartz with optically flat, polished windows. Quartz cells were procured from the Euclid Glass Engineering Laboratory, Cleveland, Ohio and the Superior Glass Apparatus Company, Ann Arbor, Michigan. The window spacing employed for this work was 4.6 cm.

The furnace used to heat the quartz cell was a split-wound, resistance furance. The furnace had two main windings and two end windings, separately controlled to offset the effect of end-cooling. By regulating the power input to the various windings, it was possible to control the temperature in the immediate vicinity of the cell to +2°C. The necessary isothermal volume in the furance was a cylinder 5 cm in diameter and 10 cm in length. A small crucile, containing absorbing material, and the absorption cell proper were located in the center of this isothermal range. Temperatures were measured in four different positions along the cylinder with calibrated chromel-alumel thermocouples. The thermocouples were placed in the immediate vicinity of the cell.

The total pressure in the absorption cell was regulated by a helium dispensing unit. High purity helium was slowly released from a
high pressure cylinder through a liquid nitrogen cold trap into the vacuum line. The quartz to quartz seal in the absorption cell served the dual purpose of containing the absorbing atoms while allowing the helium atoms to pass back and forth freely. The seal worked remarkably well, allowing almost instantaneous changes of helium pressure in the cell proper while keeping the diffusion rate of the absorbing atoms from the cell to less than one thousandth that of the evaporation rate calculated from kinetic theory. The helium pressure in the system was measured by a mercury manometer.

A plano-convex lens was placed at its focal distance from the mercury lamp source to give a parallel beam of light through the absorption cell. After passage through the cell, the light was condensed with another plano-convex lens before it reached the spectrometer. The mercury lamp source was not a point source and hence some divergence was still present. This did not affect the measurements, however, since the path length through the cell was less than 5 cm. In this length the beam of light was essentially parallel. The absorbed radiation was analyzed by means of a Leeds and Northrup spectrochemical analyzer. The unit contains a small plane grating monochromator. The spectrometer is 30 inches long and uses a 3 inch wide grating with 30,000 lines per inch. Spectra were obtained which demonstrate a second-order resolution of 0.1Å in the visible and ultraviolet region.

Approximately 1% of the light through the cell was reflected by a mirror in front of the entrance slit to a reference phototube called \(I_s \). The remaining radiation passed through the spectrograph and was recorded by the phototube marked \(I_x \) which was at the exit slit. The radiation striking the \(I_s \) tube has wavelengths from approximately 2500-4000Å. The light striking the \(I_x \) phototube corresponds to radiation in a small wavelength region.
The signals from the two phototubes were fed into a dual-channel amplifier. The power input to the phototubes could be adjusted so that at any particular reading the intensity of the two signals in the amplifier could be balanced. The output from the dual-channel amplifier was recorded on a ratio recorder, which displayed the intensity ratio I_x/I_0 as a function of wavelength. Splitting the radiation before it entered the monochromator helped stabilize the recorded intensity trace. The instrument was set to scan in a particular wavelength region at a speed of 2.9Å/min.
APPENDIX B

EXPERIMENTAL PROCEDURE

The general aspects of the experimental procedure are described below. In particular experimental instances, deviations from the general procedure were made. These deviations are discussed in the text of the report.

1. Two to six grams of the element or elements of interest were placed in an alumina boat and the boat placed inside the absorption cell in the position shown in Figure 2.

2. The absorption cell and the helium apparatus were evacuated to a pressure of less than three microns of mercury.

3. The furnace was turned on, the temperature controller set, and heating continued until the cell reached equilibrium at the desired temperature. The end windings were then adjusted so the four thermocouples butted against the cell read within 2°C of each other.

4. If the absorption measurements were to be taken under a particular helium pressure, the vacuum line was closed off and helium released slowly into the system until the desired pressure was reached. The absorption measurements were taken at this point.

5. After an absorption measurement had been taken, the cell was re-evacuated, the temperature controller reset, and the cell allowed to come to equilibrium at a different temperature.

Steps 4 and 5 are repeated until all the desired absorption data has been taken.

It was necessary to heat the absorption cell under vacuum in order to remove the outgas which was released from the walls of the quartz cell, the alumina boat, and the element or alloy in the boat. For experimental runs made with sealed cells which were evacuated at room temperature, the amount of pressure broadening resulting from the outgas caused increases in the size of the absorption lines of up to 100%.
APPENDIX C

THERMODYNAMIC ENERGY BALANCE

From Mitchell and Zermosky pp. 93-95

Consider a parallel beam of light of wave-number between ω and $\omega + d\omega$ at intensity I_ω, traveling in the positive x direction through a layer of atoms bounded by planes at x and $x + dx$. Suppose also that there are normal atoms of which the fraction $\frac{\delta N_\omega}{N}$ are capable of absorbing and N' excited atoms of which the fraction $\frac{\delta N'_\omega}{N'}$ are capable of emitting in this wave number range. Let:

$$B_{l \rightarrow 2} = \text{the probability per second that an atom in state 1 when exposed to parallel radiation traveling in a given direction x with wave number between } \omega \text{ and } \omega + d\omega \text{ and intensity } I_\omega \text{ will absorb a quantum } h\omega \text{ and pass to state 2.}$$

$$A = \text{the probability per second that an atom in state 2 will spontaneously emit in a random direction, a quantum } h\omega \text{ and pass to state 1 (} A = \frac{1}{T}).$$

$$B_{2 \rightarrow 1} = \text{the probability per second that an atom will when exposed to parallel radiation traveling in a given direction x with wave number between } \omega \text{ and } \omega + d\omega, \text{ and intensity } I_\omega \text{ will emit a quantum } h\omega \text{ in the same direction as the stimulating quantum.}$$

If the effects of spontaneous remission are neglected in view of the fact that they take place in all directions, then an energy balance written around the optical length increment dx yields:

$$-d \left[I_\omega d\omega \right] = \frac{\delta N_\omega}{\omega} dx h\omega B_{l \rightarrow 2} \frac{I_\omega}{4\pi} - \delta N'_\omega dx h\omega B_{2 \rightarrow 1} \frac{I_\omega}{4\pi}$$

(1)

Rewriting the above equation,

$$- \frac{1}{I_\omega N} d\omega \frac{dI_\omega}{dx} = -\frac{1}{I_\omega} d\omega \frac{dI_\omega}{dx} = \frac{h\omega}{4\pi N} (B_{l \rightarrow 2} \delta N_\omega - B_{2 \rightarrow 1} \delta N'_\omega)$$

(2)
where X is the optical density in atoms/cm2. Recognizing that the left hand member of the equation is P_ω, and integrating over all wave numbers, neglecting the slight variation of ω over the line,

$$\int_0^\infty P_\omega \, d\omega = \frac{\hbar \omega}{4\pi} \left(B_{1 \rightarrow 2} - B_{2 \rightarrow 1} \frac{N'}{N} \right)$$ \hspace{1cm} (3)

But from the thermodynamic equilibrium between the radiation and atoms, Einstein showed that:

$$\frac{A}{B_{1 \rightarrow 2}} = 2\hbar \omega^3 \frac{g_1}{g_2}$$ \hspace{1cm} (4)

$$\frac{B_{2 \rightarrow 1}}{B_{1 \rightarrow 2}} = \frac{g_1}{g_2}$$

Substituting these relations and the fact that $A = \frac{1}{\tau}$ into equation (3) yields

$$\int_0^\infty P_\omega \, d\omega = \frac{\Delta \sigma}{8\pi c} \frac{g_2}{g_1} \frac{1}{\tau} \left(1 - \frac{g_1}{g_2} \frac{N'}{N} \right)$$ \hspace{1cm} (5)
APPENDIX D

ATOMIC ABSORPTION THEORY

The absorption coefficient of a material is defined by the equation

$$\frac{dI_\omega}{I_\omega} = -P \frac{d\omega}{\omega}$$ \hspace{1cm} (1)

From the energy balance around a parallel beam of light traveling over length \(\lambda \) through \(N \) normal atoms and \(N' \) excited atoms, it can be shown (Appendix C) that regardless of the form of the absorption coefficient

$$\int_0^\infty P_\omega \ d\omega = \frac{\lambda_0^2}{8\pi c} \ \frac{\sigma_2}{\sigma_1} \ \frac{1}{\tau} \ \left(1 - \frac{\sigma_1}{\sigma_2} \ \frac{N'}{N} \right)$$ \hspace{1cm} (2)

If \(N'/N \ll 1 \), as in the case at normal temperatures when the gas is not electrically excited,

$$\int_0^\infty P_\omega \ d\omega = \frac{\lambda_0^2}{8\pi c} \ \frac{\sigma_2}{\sigma_1} \ \frac{1}{\tau} = S$$ \hspace{1cm} (3)

The shape of \(P_\omega \) is the result of the superposition of its possible functional forms. For the line broadening effect due to the motion of the atoms, Doppler broadening,

$$P_\omega = \frac{S}{b_D} \ \sqrt{\ln 2} \ \ e^{-\frac{(\omega - \omega_0 \ \sqrt{\ln 2})^2}{b_D^2}}$$ \hspace{1cm} (4)

For the broadening due to the inherent uncertainty in the energy levels (natural broadening) and the uncertainty in the energy levels resulting from interatomic collisions (collision broadening),

$$P_\omega = \frac{Sb}{\pi} \ \frac{1}{(\omega - \omega_0)^2 + b^2}$$ \hspace{1cm} (5)

The probability that an absorption will take place at \(\omega - \omega_0 \) for either broadening process is given by \(P_\omega/S \). If both broadening processes are present, the probability that an absorption will take place at \(\omega - \omega_0 \) is given by the superposition of the probabilities for each process. Consequently, if both broadening process are present the total probability
that an absorption will take place at $\omega - \omega_0$ is:

$$\frac{P_\omega}{S} = \frac{b}{\pi v_D} \sqrt{\frac{\ln 2}{\pi}} \int_{-\infty}^{\infty} \frac{e^{-\left(\frac{5}{b_D \sqrt{\ln 2}}\right)^2}}{(\omega - \omega_0 - \delta)^2 + b^2} \, d\delta$$

(6)

The above equation represents the sum of all the possible Doppler broadenings of an infinitesimal wave number band at a distance $\omega - \omega_0$ from the center of a line showing only dispersion broadening.

By considering the ratio of the dispersion absorption coefficient to the Doppler absorption coefficient, it can be shown that the dispersion absorption coefficient becomes much greater than the Doppler absorption coefficient if $(\omega - \omega_0)^2$ becomes large enough. Consequently, the shape of the edges of an absorption line are determined only by the dispersion absorption coefficient.

Now if X is large enough so the intensity of the absorption line in a region about its center is practically zero, i.e., the center region of the line is totally absorbed, then the entire shape of the line is determined by the dispersion absorption coefficient. Furthermore, if the width of this totally absorbed region is much greater than the dispersion half-breadth, b, then the absorption coefficient may be written as:

$$P_\omega = \frac{Sb}{\pi} \frac{1}{(\omega - \omega_0)^2}$$

(7)

Since absorption lines are generally very narrow, i.e., half-breadths are on the order of a few hundredths of an angstrom, the true shape of the absorption line is not seen with ordinary spectrometers. Consequently, a measure of absorption which does not depend strongly on the resolution of the instrument is needed. Such a quantity is the ratio of the total energy absorbed by the line to the incident intensity. It is represented by:

$$\beta = \int_{0}^{\infty} \frac{I_0 - I_\omega}{I_0} \, d\omega$$

(8)
or
\[\beta = \int_0^{\infty} (1 - e^{-P\omega X}) \, d\omega \] \hspace{1cm} (9)

If \(P\omega X \) is small, the exponential term can be replaced by \(1 - P\omega X \) and
\[\beta = \int_0^{\infty} P\omega X \, d\omega = SX \] \hspace{1cm} (10)
as a consequence of the energy balance discussed earlier.

In the case that \(P\omega X \) is large enough so that the center of the line is totally absorbed over a sufficiently wide region for Equation (7) to hold,
\[\beta = \int_0^{\infty} (1 - e^{-\frac{StX}{\pi}} - \frac{1}{(\omega - \omega_0)^2}) \, d\omega \] \hspace{1cm} (11)

By letting \(\mu = \omega - \omega_0 \) and introducing a multiplicative factor \(\lim_{q^2 \to 0} e^{-q^2\mu^2} \), Equation (11) becomes:
\[\beta = \lim_{q^2 \to 0} \int_0^\infty (e^{-q^2\mu^2} - e^{-q^2\mu^2} - \frac{StX}{\pi \mu^2}) \, d\mu \]

\[\beta = \lim_{q^2 \to 0} \sqrt{\frac{\pi}{q}} \left[1 - e^{-2q\sqrt{StX}} \right] \]

\[\beta = \lim_{q^2 \to 0} \sqrt{\frac{\pi}{q}} \left[1 + 2q\sqrt{StX} \right] \]

\[\beta = 2\sqrt{StX} \] \hspace{1cm} (12)

Thus, two limiting regions arise, one when \(P\omega X \) is small and \(\beta \) is independent of the broadening and is proportional to \(X \), and another when \(P\omega X \) is large and \(\beta \) is proportional to the square root of \(bX \).

If both sides of Equation (9) are divided by \(2b_D \), multiplied by \(\sqrt{\ln 2} \) and the logarithms of both sides are taken, the two limiting equations become:
\[\log \left(\frac{\beta}{2b_D \sqrt{\ln 2}} \right) = \log \left(\frac{SX}{2b_D \sqrt{\ln 2}} \right) \] \hspace{1cm} (13)
and
\[
\log \left(\frac{\beta}{2b_D} \sqrt{\ln 2} \right) = \frac{1}{2} \log \left(\frac{S_X}{2b_D} \sqrt{\ln 2} \right) + \frac{1}{2} \log \left(\frac{2b}{b_D} \sqrt{\ln 2} \right) \tag{14}
\]

In the first case a log-log plot of \(\frac{\beta}{2b_D} \sqrt{\ln 2} \) vs \(\frac{S_X}{2b_D} \sqrt{\ln 2} \) yields a single line for all dispersion broadenings. In the second case a similar plot yields a series of lines which depend on the ratio of dispersion to Doppler broadening. The traditional way of presenting Equation (9) is to present a series of calculated values of curves on a log-log plot (23), (24) of \(\frac{\beta}{2b_D} \sqrt{\ln 2} \) vs \(6 \frac{S_X}{b_D} \sqrt{\ln 2} \).

Such a set of curves is shown in Figure 3.
APPENDIX E

MOLECULAR ABSORPTION THEORY

From S. S. Penner, pp. 178-182

Consider a vibration-rotation band with equally spaced, equally intense spectral lines. The lines are a distance, $d \text{ cm}^{-1}$, apart with centers at $n \lambda$, where n is an integer. For lines which have a dispersion contour with half-breadth, b, it follows from Equation (5) of Appendix D that the absorption coefficient at wave number ω, is:

$$
P_\omega = \sum_{n=\infty}^{\infty} \frac{Sb}{\pi} \frac{1}{(\omega-n\lambda)^2 + b^2}
$$

(1)

P_ω is a periodic function and can be expressed in terms of trigonometric functions* as follows:

If $s = \frac{2\pi \omega}{d}$ and $\beta = \frac{2\pi b}{d}$

then Equation (1) becomes

$$
P_s = \frac{S}{d} \frac{\sinh \beta}{\cosh \beta - \cos s}
$$

(2)

Now let

$$
cos \phi = \frac{1-(\cos \beta) \cos s}{\cosh \beta - \cos s}
$$

From which it follows that

$$
\sin \phi = \frac{(\sinh \beta)(\sin s)}{\cosh \beta - \cos s},
$$

$$
\frac{\sinh \beta}{\cosh \beta - \cos s} = \frac{\sin \phi}{\sin s} = \frac{\cosh \beta - \cos \phi}{\sinh \beta}
$$

(3)

and

$$
\frac{d s}{d \phi} = \frac{\sinh \beta}{\cosh \beta - \cos \phi} d \phi
$$

(4)

The transmittance averaged over wave number interval, d, is given by:

$$
T_R = \frac{1}{d} \int_{-d/2}^{d/2} \left[\exp(-P_\omega \chi) \right] d\omega
$$

Since the absorption pattern is repetitive, the integration may be also performed over an integral multiple of \(d \).

Using the relation, \(s = \frac{2\pi \omega}{d} \),

\[
T_R = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\exp \left(-P_s X \right) \right] \, ds
\]

(5)

Substituting for \(P_s \) and expressing the result in terms of \(\phi \) from Equations (3) and (4) yields:

\[
T_R = \frac{\sinh \beta}{2\pi} \int_{-\pi}^{\pi} \frac{\exp(-y(\cosh \beta) + y(\cos \phi))}{\cosh \beta - \cos \phi} \, d\phi
\]

(6)

where:

\[
y = \frac{SX}{ds \sinh \beta}
\]

(7)

Differentiation of (6) with respect to \(y \) yields:

\[
\frac{dT_R}{dy} = \frac{\sinh \beta}{2\pi} \int_{-\pi}^{\pi} \exp \left[-y(\cosh \beta) + y(\cos \phi) \right] \, d\phi
\]

using the fact that \(\cos \phi \) is an even function of \(\phi \).

But

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\exp(y \cos \phi) \right] \, d\phi = J_0 (iy),
\]

the zeroth order Bessel function of \(iy \).

Therefore

\[
\frac{dT_R}{dy} = \sinh \beta \left[\exp(-y \cos \beta) \right] \, J_0 (iy)
\]

and

\[
T_R = \sinh \beta \int_{y}^{\infty} \left[\exp(-y \cosh \beta) \right] \, J_0 (iy) \, dy
\]

(8)

The limits of integration have been taken such that \(T_R \to 1 \) as \(y \to 0 \) or \(X \to 0 \), and \(T_R \to 0 \) as \(y \to \infty \) or \(X \to \infty \).
If \(b << d \), then \(\beta \) is \(<< 1 \), and \(\sinh \beta \approx \beta \). Then \(y = \frac{SX}{d\beta} = \frac{SX}{2\pi b} \).

If \(y \) is large, then the integration in Equation (8) is limited to large values of \(y \). Since \(\lim_{y \to \infty} \int_0^\infty \frac{e^y}{\sqrt{2\pi y}} \) and \(\sinh \beta \approx \beta \) and \(\cosh \beta - 1 \approx \beta^2/2 \) for small \(\beta \), Equation (8) becomes:

\[
T_{R_b} \propto d, \quad y \text{ large} \quad \approx \beta \int_0^\infty \exp(-\frac{y\beta^2}{2}) \frac{dy}{\sqrt{2\pi y}}
\]

Since the error integral is defined by

\[
\phi(z) = \frac{2}{\sqrt{\pi}} \int_0^z \exp(-t^2) \, dt, \quad \phi(\infty) = 1,
\]

\[
(T_{R_b}) \propto d, \quad y \text{ large} \quad \approx 1 - \phi\left(\frac{y\beta^2}{2}\right)
\] \hspace{1cm} (9)

If \(\frac{y\beta^2}{2} \) is also small,

\[
\phi\left(\frac{y\beta^2}{2}\right) = \frac{2}{\sqrt{\pi}} \left(\frac{y\beta^2}{2}\right)^{3/2} \left(1 - \frac{3}{1}\right) + \ldots
\]

and

\[
(T_{R_b}) \propto d, \quad y \text{ large}, \quad \frac{y\beta^2}{2} \ll 1 \quad \approx 1 - \frac{\sqrt{2y\beta^2}}{\pi} - \frac{\sqrt{2y\beta^2}}{3} + \ldots
\] \hspace{1cm} (10)

If \(b << d \) and \(X << 1 \), then \(y \) is not unusually large compared with \(1 \).

Now \(\beta >> 1 \), \(\cos \beta \approx 1 \), and \(\sinh \beta \approx \beta \), and Equation (8) reduces to:

\[
(T_{R_b}) \propto d, \quad X << 1 \quad \approx \int_0^\infty e^{-y} J_0(iy) \, dy
\]

But:

\[
\frac{dJ_0(z)}{dz} = -J_1(z), \quad \frac{dJ_1(z)}{dz} = -\frac{J_1(z)}{z} + J_0(z)
\]

whence:

\[
\left[\exp(-y)\right] J_0(iy) = \frac{d}{dy} \left[y \left[\exp(-y)\right] \left[J_0(iy) - i J_1(iy)\right]\right]
\]

and

\[
(T_{R_b}) \propto d, \quad X << 1 \quad \approx 1 - \frac{2\pi b}{d} \times y \times \left[\exp(-y)\right] \left[J_0(iy) - i J_1(iy)\right]
\]
For small \(y \ll \frac{2}{\pi} \),
\[
\left(\frac{T_R}{R_b} \right)_{b \ll d, \ X \ll l} \to 1 - \frac{2\pi b}{d} \quad y = 1 - \frac{S X}{d} \quad (11)
\]

For large \(y \gg \frac{2}{\pi} \),
\[
\left(\frac{T_R}{R_b} \right)_{b \ll d, \ X \ll l} \to 1 - \frac{2\pi b}{d} \quad \sqrt{\frac{2y}{\pi}} = 1 - \sqrt{\frac{S b X}{d}} \quad (12)
\]

Note that Equations (10) and (12) are equivalent. This results since the condition that \(X \) must necessarily be less than one for Equations (11) and (12) to be valid, assures that \(\sqrt{\frac{y^2}{2}} \) will be \(\ll 1 \) as long as \(b \ll d \) in equation (10).

For \(b \gg d \), \(\beta \gg l \), \(\sinh \beta \approx \cosh \beta \), and \(\cosh \beta \gg l \). Hence, the exponential in Equation (8) decreases more rapidly with increasing \(y \) than \(J_0(iy) \) increases. The transmittance,
\[
T_R = 1 - \sinh \beta \int \left[\exp(-y \cosh \beta) \right] J_0(iy) \, dy,
\]
is now determined by contributions to the integrand from small values of \(y \). Using the approximation, \(J_0(iy) \approx J_0(0) = 1 \), the transmittance becomes:
\[
\left(\frac{T_R}{R_b} \right)_{b \gg d} = 1 - \cosh \beta \int \left[\exp(-y \cosh \beta) \right] \, dy = \exp \left(-\frac{S X}{d} \right) \quad (13)
\]

The relation:
\[
P_{\omega b} = \frac{S}{d}
\]
follows more directly from Equation (2), for \(\cosh \beta \approx \sinh \beta \gg 1 \gg \cos s \) and constitutes a reasonable approximation for \(\beta \geq 2 \).
EFFECT OF HYPERFINE STRUCTURE ON ABSORPTION LINES

Consider an absorption line which is made up of \(n \) hyperfine components. Each of these components arises from a group of atoms, \(N_i \), having a particular nuclear spin or isotopic structure. If the absorption coefficient for the \(i \)-th hyperfine component is given by \(P_{\omega_i} \), and \(P_{\omega} \) represents the overall absorption coefficient, then the total diminution in light intensity over a path length \(dl \) is given by:

\[
\frac{dI(\omega)}{I(\omega)} = P_{\omega} \, dX = \sum_{i=1}^{n} R_{\omega_i} \, dX_i
\]

or when \(N \) is constant along \(l \),

\[
P_{\omega} X = \sum_{i=1}^{n} R_{\omega_i} \, X_i
\]

(2)

If the optical density, \(X = Nl \) is small enough so that

\[
\exp(-P_{\omega} X) \approx 1 - P_{\omega} X
\]

(3)

Then the total absorption, \(\beta \), is given by:

\[
\beta = \int_0^\infty P_{\omega} X \, d\omega = \sum_{i=1}^{n} \int_0^\infty P_{\omega_i} X_i \, d\omega = \sum_{i=1}^{n} X_i \int_0^\infty P_{\omega_i} \, d\omega
\]

By assuming that all the hyperfine components have the same lifetimes in their excited states, it follows that:

\[
\int_{0}^{\infty} P_{\omega_1} \, d\omega = \int_{0}^{\infty} P_{\omega_2} \, d\omega = \cdots = \int_{0}^{\infty} P_{\omega_n} \, d\omega = \int_{0}^{\infty} P_{\omega} \, d\omega = S
\]

and

\[
\beta = SX,
\]

(4)

the result expected for a line with no hyperfine splitting.

If the center of the line is totally absorbed, the absorption coefficient is written as:

\[
P_{\omega} X = \sum_{i=1}^{n} \frac{Sb}{\pi} \frac{X_i}{(\omega - \omega_i)^2}
\]

(5)
Again assuming that the integrated absorption, \(S \), and the line half-breadth, \(b \), are the same for every hyperfine component, the total absorption, \(\beta \), becomes:

\[
\beta = \int_0^\infty \left[1 - \exp\left(- \sum_{i=1}^n \frac{S b X_i}{\pi} \left(\frac{1}{\omega - \omega_{0i}} \right)^2 \right) \right] \, d\omega \quad (6)
\]

If \(X \) is so large that the exponential term is approximately zero except for wave numbers much different than any \(\omega_{0i} \), then negligible error is introduced by setting

\[
\omega_{01} = \omega_{02} = \cdots = \omega_{0n} = \omega_0
\]

When the above conditions hold, the \(n \) hyperfine components of the absorption completely overlap and Equation (6) reduces to:

\[
\beta = \int_0^\infty \left[1 - \exp\left(- \frac{S b X}{\pi} \left(\frac{\sum X_i}{\omega - \omega_0} \right)^2 \right) \right] \, d\omega \quad (7)
\]

This is exactly the integral which yields the square root absorption law for a single absorption line since \(X = \sum_{i=1}^n X_i \). Therefore:

\[
\beta = 2 \sqrt{S b X} \quad (8)
\]

when the hyperfine components completely overlap.

If the \(n \) hyperfine components are entirely separated and the center of the line is totally absorbed, then Equation (6) can be replaced by the sum of \(n \) separate integrals. Each of these integrals represents the total absorption of a particular hyperfine line with its center at a particular \(\omega_{0i} \). The total absorption now can be written as:

\[
\beta = \sum_{i=1}^n \int_0^\infty \left[1 - \exp\left(- \frac{S b X_i}{\pi} \left(\frac{1}{\omega - \omega_{0i}} \right)^2 \right) \right] \, d\omega
\]

which reduces to

\[
\beta = \sum_{i=1}^n 2 \sqrt{S b X_i} \quad (9)
\]

where again it has been assumed that \(S \) and \(b \) are the same for each hyperfine line.
In the case that the components are equally intense, $X_1 = X/n$, and the total absorption reduces to:

$$\beta = 2 \sqrt{n S_b X}$$ \hspace{1cm} (10)

If the components are not equally intense, the total absorption for an absorption line made up of n completely separated hyperfine components is larger than the total absorption of an absorption line with no hyperfine splitting by the factor, $\sum_{i=1}^{n} \sqrt{X_1} / \sum_{i=1}^{n} X_1$.
APPENDIX G

DETERMINATION OF SELF-BROADENING EFFECTS IN AN EQUILIBRIUM LIQUID-VAPOR SYSTEM

Consider an atomic gas absorbing at wave number \(\omega \), whose concentration is such that the center of the absorption line is totally absorbed.

Assume there is no foreign gas present. Moreover, consider the ratio, \(r_b \), the square of the total absorption with self-broadening divided by the square of the total absorption without self-broadening. Since the center of the absorption line is totally absorbed,

\[
r_b = \frac{\beta^2_{\text{self}}}{\beta^2_{\text{no self}}} = \frac{\frac{1}{4} S \left(b_N + b_S \right) X}{\frac{1}{4} S b_N X}
\]

At a particular optical density, \(X \),

\[
r_b = 1 + \frac{b_S}{b_N}
\]

since \(b_S = \frac{C_s}{T^\frac{3}{2}} \)

when \(C_s = \frac{a^2_s}{\pi c} \left(\frac{2\pi}{R} x \frac{2}{M_1} \right)^{\frac{1}{2}} \)

It follows that:

\[
r_b - 1 = \frac{C_s}{b_N} \frac{p}{T^2}
\]

\[
\frac{1}{T^2} (r_b - 1) = \frac{C_s}{b_N} p
\]

\[
\log_{10} \left(\frac{1}{T^2} (r_b - 1) \right) = \log_{10} \left(\frac{C_s}{b_N} \right) + \log_{10} p
\]

If the absorbing gas is in equilibrium with a condensed phase and \(\Delta c_p \) is constant \(\log_{10} p = -\frac{2 \times \text{SLOPE}}{T} + \frac{\Delta c_p}{R} (\log_{10} T) + C_I \)

and \(\log_{10} \left(\frac{1}{T^2} (r_b - 1) \right) = -\frac{2 \times \text{SLOPE}}{T} + \frac{\Delta c_p}{R} \log_{10} T \)

\[
+ C_I + \log_{10} \left(\frac{C_s}{b_N} \right)
\]

or \(\log_{10} \left(\frac{1}{T^2} - \frac{\Delta c_p}{R} (r_b - 1) \right) = -\frac{2 \times \text{SLOPE}}{T} + C_I + \log_{10} \left(\frac{C_s}{b_N} \right) \)
but \[T^2 \beta_{\text{no self}} = 2 \sqrt{Sb_N \frac{pl \alpha}{R}} \] (9)

and since \[S = \frac{\lambda_0^2}{8\pi c^2} \frac{g_2}{g_1} \quad \text{and} \quad b_N = \frac{1}{4\pi c} \] (10)(11)

it follows that:

\[\log_{10} T^\frac{1}{2} \left(\frac{\Delta c}{R} \right) \beta_{\text{no self}} = -\frac{\text{SLOPE}}{T} + \frac{C_I}{2} \]

\[+ \frac{1}{2} \log_{10} \frac{a_l \lambda_0^2}{8\pi c^2 \tau^2} \frac{g_2}{g_1} \frac{1}{R} \] (12)

By choosing the proper value for the intercept,

\[\frac{C_I}{2} + \frac{1}{2} \log_{10} \frac{a_l \lambda_0^2}{8\pi c^2 \tau^2} \frac{g_2}{g_1} \frac{1}{R} \]

of the line representing the hypothetical zero helium pressure total absorption data showing no self-broadening, the slope of the line, \(\log_{10} \left(T^{\frac{1}{2}} - \frac{\Delta c}{R} (r_b - 1) \right) \) versus \(1/T \) can be made equal to \(-2\times\text{SLOPE}\).

Thus the procedure involves choosing various intercepts for the \(\beta_{\text{no self}} \) equation until one has been found which makes the slope of the \(\log_{10} \left(T^{\frac{1}{2}} - \frac{\Delta c}{R} (r_b - 1) \right) \) line equal to \(-2\times\text{SLOPE}\).

Equation (12) now gives the correct values for the total absorption without self-broadening, \(\beta_{\text{no self}} \). If the lifetime of the excited state, \(\tau \), is also known, \(C_I \) can be evaluated from the intercept of Equation (12), \(C_s \) from Equation (8), and \(\sigma_s^2 \) from Equation (4).
APPENDIX H

SAMPLE CALCULATIONS

1. Reduction of the 746 mm Hg Helium Pressure Data

Consider a data point from Run 69 taken at $T = 1088^\circ$K and $P_{He} = 746$ mm Hg. Three measurements of the absorption line were made. The observed value of A/I_0, $(A/I_0)_t$, equals:

$$(A/I_0)_t = \frac{1}{9} \left(\frac{14.85}{1.000} + \frac{15.10}{0.994} + \frac{14.67}{0.999} \right) = 4.970 \text{ in.}^2/\text{cu.}$$

The above expression is divided by 3×3 because the numbers tabulated in Appendix I are 3 times the area of the absorption line.

The hyperfine correction factor for this value was found to be 1.027 from Figure 4, using:

$$\beta = \frac{(A/I_0)_t \text{ in.}^2/\text{cu.}}{0.568 \text{ in.}^2/\text{cu. cm}^{-1}} = 8.75 \text{ cm}^{-1}.$$

The corrected value for $(A/I_0)_t$ is:

$$(A/I_0)_t = \frac{(A/I_0)_t}{1.027} = 4.84 \text{ in.}^2/\text{cu.}$$

To correct for self-broadening, $(A/I_0)_0$, the observed value of A/I_0 at $T = 1090^\circ$K and $P_{He} = 0$ is calculated to be:

$$(A/I_0)_0 = \frac{1}{12} \left(\frac{1.87}{1.023} + \frac{2.11}{1.067} + \frac{1.90}{1.058} + \frac{2.10}{1.012} \right) = 0.640 \text{ in.}^2/\text{cu.}$$

The hyperfine correction factor is found from Figure 4 to be 1.54.

Therefore the corrected value of $(A/I_0)_0$ is:

$$(A/I_0)_0 = \frac{0.640}{1.54} = 0.416 \text{ in.}^2/\text{cu.}$$

The value of A/I_0 representing collision broadening alone, $(A/I_0)_c$, is now calculated from Equation (12). Using the corrected values of $(A/I_0)_t$ and $(A/I_0)_0$,

$$(A/I_0)_c^2 = \left((A/I_0)_t^2 - (A/I_0)_0^2 \right)^{1/2} = 4.82 \text{ in.}^2/\text{cu.}$$

2. Calculation of ΔH_V, Bi

It is shown in the text that the following equation represents total absorption values resulting from collision broadening alone:
\[
\log_{10} T \left(\frac{\Delta c_p}{2R} \right) \beta = -\text{SLOPE} \frac{C_I}{T} + \frac{C_I}{2} + \frac{1}{2} \log_{10} \left(\frac{4\pi c_p P_{\text{f}} a l}{R} \right)
\]

Therefore:
\[
\log_{10} T \left(\frac{\Delta c_p}{2R} \right) \left(\frac{A}{I_0} \right)_{\text{f}} = -\text{SLOPE} \frac{C_I}{T} + \frac{C_I}{2} + \frac{1}{2} \log_{10} \left(\frac{4\pi (0.568)^2 c_p P_{\text{f}} a l}{R} \right)
\]

Every corrected data point at \(P_{\text{He}} = 746 \text{ mm Hg} \) taken above \(T = 972^\circ \text{K} \)
was used to calculate the least square line relating \(\log_{10} T \left(\frac{\Delta c_p}{2R} \right) \left(\frac{A}{I_0} \right)_{\text{f}} \)
and \(\frac{1}{T} \). For the data point discussed above;
\[
\log_{10} T \left(\frac{\Delta c_p}{2R} \right) \left(\frac{A}{I_0} \right)_{\text{f}} = \log_{10} \left(1088 \left(1.4115 \right) 4.810 \right)
\]
\[
= 4.9659
\]

and \(\frac{1}{T} = 0.9191 \times 10^{-3} \ \text{K}^{-1} \)

The least square line through the corrected \(P_{\text{He}} = 746 \text{ mm Hg} \) data,
was found to be
\[
\log_{10} T^{1.4115} \left(\frac{A}{I_0} \right)_{\text{f}} = -\frac{5260.62}{T} + 9.8041
\]

since \(5260.62 = \text{SLOPE} = \frac{\Delta H_v - \Delta c_p T}{2 \times 2.303 \times R} \)

The heat of vaporization is calculated to be:
\[
\Delta H_v = 2 \times 2.303 \times R \times \text{SLOPE} - \Delta c_p T
\]
\[
= 9.14 \times 5260.62 - 2.63T \ \text{cal/gm mole} \ \text{K}
\]
\[
= 48,100 - 2.63T,
\]

where: \(\Delta c_p = c_p(v) - c_p(l) = 4.97 - 7.60 = -2.63 \)

3. Calculation of Activities

Consider anatomic bismuth data point taken above the 47.4 mole \% Bi
lead-bismuth alloy at \(T = 1041^\circ \text{K} \), \(P_{\text{He}} = 746 \text{ mm Hg} \).

In the same manner as for the \(P_{\text{He}} = 746 \text{ mm Hg} \) data point for pure bismuth,
it was found that: \(\left(\frac{A}{I_0} \right)_{\text{f}} = 1.945 \) using the observed data points,
\(\left(\frac{A}{I_0} \right)_0 = 2.206 \), \(\left(\frac{A}{I_0} \right)_0 = 0.357 \) and the corresponding hyperfine correction
factors, 1.130 and 1.75.
To calculate the activity of bismuth, \((A/I_o)_T^*\) at \(T = 1041^\circ\)K must be calculated from the least square line for the pure bismuth data,

\[
\log_{10} T^{1.4115} (A/I_o)_T^* = \frac{-5260.62}{T} + 9.8041
\]

At \(T = 1041^\circ\)K, \((A/I_o)_T^* = 3.12

Now from Equation (31) the activity of Bi,

\[
a_{Bi} = \left(\frac{(A/I_o)/(A/I_o)^*}{2}\right)^2
\]

\[= \left(\frac{1.945/3.12}{0.390} \right)^2 = 0.390
\]

4. Correction of the Zero Helium Pressure Data for Self-Broadening

Before the zero helium pressure data is corrected for self-broadening it must first be corrected for hyperfine structure. Again consider a data point from Run 69, the one taken at \(T = 1187^\circ\)K, \(P_{He} = 0\).

\[
(A/I_o)_t = 1.663
\]

\[
\beta = \frac{(A/I_o)_t}{0.568} = 2.93
\]

Therefore the hyperfine correction function, \(F = 1.200\)

and \((A/I_o)_{\text{self}} = \frac{1.663}{1.200} = 1.386 = 0.568 \times 2 \sqrt{S(b_N + b_S)x} \]

since self-broadening affects the value of this data point.

If no self-broadening were present

\[(A/I_o)_{\text{no self}} \text{ would equal } 0.568 \times 2 \sqrt{S(b_N)x},\]

and

\[
\log T^{(\frac{1}{2} - \frac{\Delta c}{2R})} (A/I_o)_{\text{no self}} \text{ would equal } -\text{SLOPE} \frac{T}{2} + \frac{C_I}{2} + \frac{1}{2} \log_{10} \left(\frac{4SbMa}{R}(0.568)^2\right),
\]

Also since

\[
r_b = \left(\frac{(A/I_o)_{\text{self}}/(A/I_o)_{\text{no self}}}\right)^2 = 1 + \frac{b_S}{b_N} = 1 + \frac{C_s}{b_N^2},
\]
\[
\log_{10} T \left(\frac{1}{2} - \frac{4cP}{R} \right) (r_b - 1) \text{ should equal } \frac{2 \times \text{SLOPE}}{T} + C_I + \log_{10} C_S
\]

Therefore, by trial and error, a value of
\[
\frac{C_I}{2} + \frac{1}{2} \log_{10} \left(\frac{4SbNla}{R} (0.568)^2 \right)
\]
is chosen so that the \(r_b \)'s calculated from the \(\frac{A/I_o}{\text{self}} \)'s and the \(\frac{A/I_o}{\text{no self}} \)'s yield a line with slope \(-2 \times \text{SLOPE when } \log_{10} T \left(\frac{1}{2} - \frac{4cP}{R} \right) (r_b - 1) \) is plotted against \(1/T \).

For example, assuming
\[
\frac{C_I}{2} + \frac{1}{2} \log_{10} \left(\frac{4SbNla}{R} (0.568)^2 \right) = 7.969
\]
yields for the data point at \(T = 1187^\circ K \), \(\frac{A/I_o}{\text{no self}} = 0.898 \) and \(r_b = 2.384 \).

This data point with the others taken at \(P_{He} = 0 \) and the above assumed intercept yields a value for the slope of
\[
T(1.823) (r_b - 1) \text{ vs } 1/T \text{ of } -10,576 \text{ whereas } -2 \times \text{SLOPE} = 10,521.
\]

This agreement was considered sufficient and the equation for the non-self-broadened bismuth data at \(P_{He} = 0 \) were represented by the equation:
\[
\log_{10} T \left(\frac{1.1615}{A/I_o} \right)_{\text{no self}} = \frac{-5260.62}{T} + 7.969
\]

The MAD computer program for performing this trial and error calculation is the first program listed at the end of this appendix.

5. The Calculation of the Bismuth Vapor Pressure and the Lifetime of the Excited State for the 3067Å Line

The simultaneous calculation of \(\tau \) and the vapor pressure depends on knowledge of the corrected zero helium pressure total absorption values. The equation representing these values is used to find an extrapolated value of the total absorption which obeys the square root absorption
law at a temperature where absorption data have been taken which are proportional to the first power of the vapor concentration.

Data taken in the temperature range 770 - 870°K, at \(P_{\text{He}} = 746 \) mm Hg, \((A/I_0)_{\text{LIN}}\), indicate that \(A/I_0 \) is proportional to the first power of the concentration.

At \(T = 796^\circ\text{K} \) a representative value of \((A/I_0)_{\text{LIN}}\) is 0.0861 in²/cu.

Extrapolation using the equation for \((A/I_0)_{\text{no self}}\) obtained in section 4 yields a value at \(T = 796^\circ\text{K} \) of:

\[
\log_{10} (A/I_0)_{\text{no self}} = \frac{-5260.62}{796} + 7.969 - 1.1615 \log_{10} (796)
\]

\[
(A/I_0)_{\text{no self}} = 0.00980
\]

This is the extrapolated value of \(A/I_0 \) which obeys the square root absorption law.

Thus:

\[
hb_N = \frac{\beta^2_{\text{LIN}} \text{cm}^{-2}}{Sx} = \frac{4s_iX}{\left(\frac{(A/I_0)_{\text{no self}} \text{ in}^2/\text{cu}}{0.568 \text{ in}^2/\text{cu/cm}^{-1}}\right)^2}
\]

\[
= \frac{(0.00980)^2}{(0.568)(0.0568)} = 1.96 \times 10^{-3} \text{ cm}^{-1}
\]

Since \(b_N = \frac{1}{4\pi c_t} \):

\[
\tau = \frac{1}{\pi c b_N} = \frac{1}{1.96 \times 10^{-3} \text{ cm}^{-1} \times \pi \times 3 \times 10^{10} \text{ cm/sec}}
\]

\[
= 5.4 \times 10^{-9} \text{ sec}
\]

Also \(b_N = 4.91 \times 10^{-4} \text{ cm}^{-1} \)

and

\[
S = \frac{\lambda \beta_i}{s \pi c} \frac{g_2}{g_1} = \left(\frac{3.067 \times 10^{-5} \text{ cm}}{8\pi \times 3 \times 10^{10} \text{ cm/sec} \times 5.4 \times 10^{-9} \text{ sec}}\right)^{\frac{1}{2}}
\]

\[
= 1.15 \times 10^{-13} \text{ cm}
\]

Now the intercept of the vapor pressure equation \(C_T \), can be calculated since it is known that the intercept of the equation for \((A/I_0)_{\text{no self}}\) equals

\[
\frac{C_T}{2} + \frac{1}{2} \log_{10} \left(\frac{4s_i f_N a}{R} (0.568)^2\right).
\]
Therefore

\[C_I = 2 \times \left[7.969 - \frac{1}{2} \log_{10} \left(\frac{4 \times \text{Sb} \times a}{R} \times (0.568)^2 \right) \right] \]

\[= 15.938 - \log_{10} \left[\frac{4 \times 1.15 \times 10^{-13} \text{cm} \times 4.91 \times 10^{-4} \text{cm}^{-1} \times 4.6 \text{cm} \times 6.02 \times 10^{-13} \text{gm mole}^{-1} \times \left(\frac{\text{in}^{2}}{\text{cu/cm}^2} \right)^2}{82.05 \text{ cm atm/gm mole} \cdot \text{K}} \right] \]

\[= 15.938 - 6.400 = 9.538 \]

And the equation for the vapor pressure of atomic bismuth is:

\[\log_{10} p_{\text{Bi}} = -\frac{5260.62}{T} + 9.538 - 1.323 \log_{10} T \]

where: \(-1.323 = \frac{c_p(v) - c_p(i)}{R}\)

This calculation was also performed by the 709 computer using the first MAD program listed at the end of this appendix.

6. Calculation of \(\tau \) For the Pb 2833Å Line

The lead total absorption data at \(P_{\text{He}} = 0 \) following the square root absorption law were corrected for hyperfine structure and self-broadening using the hyperfine correction function and the self-broadening correction method discussed in Appendix G. These corrections were illustrated in section 4 of this appendix. \(\tau \) was then calculated directly from the equation for the total absorption, using the vapor pressures of lead tabulated in Stull and Sinke.

\[\left(\frac{A}{I_0} \right)_{\text{no self}} = 0.568 \text{ in}^2/\text{cu/cm}^{-1} \times 2 \sqrt{\text{Sb} \cdot X} + 0.568 \times 2 \left(\frac{\lambda_0^2}{\Delta \nu} \times \frac{g_2}{g_1} \times \frac{1}{4 \pi c \tau} \frac{\text{pal}}{RT} \right) \]

\[\tau = \frac{1.136}{\left(\frac{A}{I_0} \right)_{\text{no self}}} \left(\frac{\lambda_0^2}{32 \pi^2 c^2} \times \frac{g_2}{g_1} \frac{\text{pal}}{RT} \right)^{\frac{1}{2}} \]

The corrected \(A/I_0 \) values are given by the equation

\[\log_{10} T \left(1.003 \right) \left(\frac{A}{I_0} \right)_{\text{no self}} = -\frac{5109.61}{T} + 7.356 \]

where: \(1.003 + \left(\frac{1}{2} - \frac{4c_p}{2R} \right) \)
Therefore at $T = 1200^\circ K$, $p_{Pb} = 6.60 \times 10^{-4}$ atm, \(\frac{A}{I_0} \) no self

\[
\tau = \frac{1.136}{1.02 \text{ in}./\text{cu/cm}^2} \left[\frac{(2.833 \times 10^{-5})^2 \text{cm}^2 \times 3 \times 6.60 \times 10^{23} \text{ gm mole}^{-1} \times 4.6 \text{ cm}}{32\pi^2 \times (3 \times 10^5)^2 \text{ cm}^2/\text{sec}^2 \times 82.05 \text{ cc atm} \times 1200^\circ K} \right]^{\frac{1}{2}}
\]

\[
= 1.39 \times 10^{-8} \text{ sec.}
\]

7. Calculation of σ^2_I and σ^2_s for Bi 3067 Line

In making the correction for self-broadening the equation

\[
\log_{10} \left(T \left(\frac{1}{2} - \frac{\Delta c_p}{R} \right) (r_b - 1) \right) = \frac{-2 x \text{ SLOPE}}{T} + C_I + \log_{10} \frac{C_s}{b_N}
\]

was calculated to be

\[
\log_{10} \left(T \left(1.823 \right) (r_b - 1) \right) = \frac{-10576}{T} + 14.5812
\]

therefore:

\[
C_I + \log_{10} \frac{C_s}{b_N} = 14.5812
\]

and since

\[
C_s = \frac{\sigma^2_s}{\pi c} \left(\frac{2\pi}{R} \times \frac{2}{M} \right)^{\frac{1}{2}}
\]

\[
\sigma^2_s = b_N \frac{\pi c}{a} \left(\frac{2\pi}{R} \times \frac{2}{M} \right)^{\frac{1}{2}} \times 10 (14.5812 - C_I)
\]

\[
\sigma^2_s = \frac{1}{4\pi c \alpha} \frac{\pi c}{\left(\frac{2\pi}{R} \times \frac{2}{M} \right)^{\frac{1}{2}}} \times 10 (14.5812 - C_I)
\]

Therefore since

\[
\tau = 5.4 \times 10^{-9} \text{ sec}
\]

and $C_I = 9.538$

\[
\sigma^2_s = \frac{10(5.0432)}{4\pi} \text{ atm}^{-1} \cdot K^2 \times 9.87 \times 10^{-7} \text{ atm/dyne/cm}^2
\]

\[
\left(\frac{8.3144 \times 10^7 \text{ gm cm}^2}{\text{sec}^2 \text{gm mole}^2 \cdot K} \times 207.4 \text{ gm \frac{gm}{gm mole}} \right)^{\frac{1}{2}}
\]

\[
\times \frac{10^{16} \alpha^2}{A^2/\text{cm}^2}
\]

\[
= 3100 A^2
\]
To calculate the helium collision cross-section, a corrected value of \((A/I_0)_{\text{r}}\), taken at 746 mm Hg must also be known as well as a corrected value for \((A/I_0)_{\text{no self}}\), taken at \(P_{\text{He}} = 0\).

Consider a data point taken at \(P_{\text{He}} = 746\) mm Hg taken at \(T = 1239^\circ\text{K}\).

\[(A/I_0)_{\text{r}} = 15.42 \text{ in}^2/\text{cm} \]

At \(T = 1239^\circ\text{K}\), from the equation for \((A/I_0)_{\text{no self}}\), the value at \(P_{\text{He}} = 0\) is

\[(A/I_0)_{\text{no self}} = 1.34 \text{ in}^2/\text{cu} \]

But

\[
\left(\frac{(A/I_0)_{\text{r}}}{(A/I_0)_{\text{no self}}} \right)^2 = \frac{Sb_c X}{Sb_N X} = \frac{b_c}{b_N}
\]

\[
= \left(\frac{15.42}{1.34} \right)^2 = 132
\]

Therefore

\[b_c = b_N (132) \]

and since

\[b_c = \frac{\sigma_I}{\pi c} \times N_I \times \left(\frac{2\pi RT}{\left(\frac{1}{M_1} + \frac{1}{M_2} \right)} \right)^{\frac{1}{2}} \]

and

\[b_N = \frac{1}{4\pi ct} \]

\[\sigma_I = \frac{132}{4\pi ct} \times \frac{\pi c}{N_I} \times \left[\frac{1}{2\pi RT \left(\frac{1}{M_1} + \frac{1}{M_2} \right)} \right]^{\frac{1}{2}} \]

For \(T = 1239^\circ\text{K}\) and \(P_{\text{He}} = 0.982\) atm = 746 mm Hg.

\[N_I = \frac{P_{\text{He}} a}{RT} = \frac{0.982\ \text{atm} \times 6.02 \times 10^{23} \text{g mole}^{-1}}{\frac{82.05\ \text{cc atm}}{\text{g mole} \cdot \text{K}}} \times 1239^\circ\text{K} \]

\[N_I = 5.82 \times 10^{18} \text{ atoms/cc} \]

Thus

\[\sigma_I^2 = \frac{1}{4 \times 5.4 \times 10^{-9} \text{ sec}} \times \frac{1}{5.82 \times 10^{18} \text{ cm}^{-3}} \times 10^{16} \text{ A}^2/\text{cm}^2 \times 132 \]

\[\times \left[\frac{1}{2\pi \times 8.3144 \times 10^7 \text{ gm cm}^2}{\text{ sec}^2 \text{ gm mole} \cdot \text{K}} \times 1239^\circ\text{K} \times 1/209 + 1/4 \text{ gm mole} \cdot \text{K} \right]^{\frac{1}{2}} \]

\[\sigma_I^2 = 25.3 A^2 \]
8. Sample Error Calculations

Error in τ for Bi 3067Å line

From section 5,

$$4 \cdot b_N = \frac{1}{\pi c} = \frac{\beta_{\text{SQRT}}^2}{\beta_{\text{LIN}}} = \frac{(A/I_0)_{\text{no self}}}{(0.568)(A/I_0)_{\text{LIN}}}$$

Therefore

$$\tau = \frac{1}{\pi c} \times 0.568 \times \frac{(A/I_0)_{\text{LIN}}}{(A/I_0)_{\text{no self}}}$$

Since a least square line has been calculated for $\log_{10}\left(\frac{1}{2} - \frac{Ae_P}{2R}\right)$, $(A/I_0)_{\text{no self}}$ vs $1/T$, it has been assumed that $\log_{10}(A/I_0)_{\text{no self}}$ is normally distributed. Therefore, the error in $\log \tau$ was assumed to be normally distributed. Assuming this kind of distribution assures that the error limits on τ will never be negative. Taking the logarithm of the above equation yields:

$$\log_{10}\tau = \log_{10} \frac{0.568}{\pi c} + \log_{10}(A/I_0)_{\text{LIN}} - 2 \log_{10}(A/I_0)_{\text{no self}}$$

Since this is a linear equation, the estimated variance of $\log_{10}\tau$, $s_{\log \tau}^2$, is given by:

$$s_{\log_{10}\tau}^2 = s_{\log_{10}(A/I_0)_{\text{LIN}}}^2 + 4 \cdot s_{\log_{10}(A/I_0)_{\text{no self}}}^2$$

$s_{\log_{10}(A/I_0)_{\text{LIN}}}$ was estimated from the data scatter to be ± 0.033.

$s_{\log_{10}(A/I_0)_{\text{no self}}}$ was calculated from the equation for the estimated standard deviation of a point from the least square line determined for the corrected zero helium pressure data.
\[s_{\text{point}}^2 = s_{\text{yr}}^2 \left[1 + \frac{1}{n} + \frac{x - \bar{x}}{s(x^2)} \right] \]

where: \(s^2 \) is the variance of a point, \(\log_{10}^{T.1.615}(A/I_o)_{\text{no self}} \),

\(s_{\text{yr}}^2 \) is the residual variance of \(\log_{10}^{T.1.615}(A/I_o)_{\text{no self}} \),

\(x \) is \(1/T \), \(\bar{x} \) is the mean \(1/T \), and \(s(x^2) = \frac{\sum(x - \bar{x})^2}{n} \).

For the line \(T^{1.615}(A/I_o)_{\text{no self}} \) vs \(1/T \), it was found that:

\[s_{\text{point}}^2 = 0.000514 + 4.12 \left(\frac{1}{T} - \frac{0.890}{1000} \right)^2. \]

But \(s_{\log_{10}(A/I_o)_{\text{no self}}}^2 = s_{\log_{10}(T^{1.615}(A/I_o)_{\text{no self}})}^2 \)

Therefore since \(\tau \) was calculated using linear data taken at

\(T = 796^\circ K \), the variance of \(\log_{10}(A/I_o)_{\text{no self}} \) at that temperature is:

\[s_{\log_{10}(A/I_o)_{\text{no self}}}^2 = 0.000514 + \frac{4.12}{1000} (1.256 - 0.890)^2 \]

\[= 0.000514 + 0.000552 \]

\[= 0.001066 \]

Now the variance of the \(\log_{10}\tau \) can be calculated

\[s_{\log_{10}\tau}^2 = (0.0053)^2 + 4 \times 0.001066 \]

\[= 1.09 \times 10^{-3} + 4.26 \times 10^{-3} \]

\[= 5.35 \times 10^{-3} \]

therefore \(s_{\log_{10}\tau} = \pm 0.073 \) and the 95% confidence limits are given by:

\[\pm 2s = \pm 0.146 \]

Consequently \(\log_{10}\tau = \log_{10} 5.4 \times 10^{-9} = -8.268 \pm 0.146 \)

From the uncertainty in the logarithm, the limits on \(\tau \) were calculated to be:

\[\tau = 5.4^{+2.3}_{-1.7} \times 10^{-9} \text{ sec.} \]
MAD(MICHIGAN ALGORITHM DECODER) PROGRAM FOR SELF-BROADENING CORRECTIONS

DIMENSION X(50), Y(50)
DIMENSION T(50), BETA(50), RECIPT(50), LINVAR(50), LOOP2(3)
INTEGER NPOINT, N, J, N, RUN, JMAX

BEGIN
READ DATA, NPOINT, H, HEXP
READ FORMAT DATA1, BETA(1)***BETA(N)
READ FORMAT DATA2, T(1)***T(N)
PRINT FORMAT TOP, RUN
PRINT COMMENT "$A" AREA/ZERO DATA$
PRINT RESULTS BETA(1)***BETA(N)
PRINT FORMAT CHECK2, T(1)***T(N)
PRINT FORMAT CHECK3, SLOPE, INCEPT, DLCPOR, INCREM, JMAX, N
PRINT RESULTS NPOINT, H, HEXP
K=1
L=1
INCEP1=INCEPT
THROUGH LOOP2, FOR J=1***J<=JMAX
PRINT FORMAT HEAD
THROUGH LOOP1, FOR T=1***T<=N
BETANC=10**P*1+SLOPE/T(1)+INCEPT+(DLCPOR/2-0.5)/2*30259*ELOG2
L(T(1))
BRDRAT=1/(BETA(I)/BETANC)*P*2
WHENEVER BRDRAT*LE1+BRDRAT=1+0.01
LINEP=T(I)*P*(0.5-DLCPOR)/(BRDRAT-1)
LINVAR(I)=ELOG2(LINEP)/2*30259
RECIPT(I)=1/T(I)

END LOOP1
PRINT FORMAT TABL, T(1)**T(N), RECIPT(I), BETA, BETANC, BRDRAT, LINEP, LINVAR(I)

THROUGH END1, FOR I=1***I<=N
NPOINT
PRINT X(I)=RECIPT(I)
R BEGINNING OF LEAST SQUARES PROGRAM

SUMX = 0.0
SUMY = 0.0
SUMX2 = 0.0
SUMY2 = 0.0
THROUGH END4, FOR I=1***I<=N

SUMX = SUMX + X(I)
SUMY = SUMY + Y(I)
SUMX2 = SUMX2 + X(I)*X(I)
SUMY2 = SUMY2 + Y(I)*Y(I)

MEANX = SUMX/NPOINT
MEANY = SUMY/NPOINT
SOSX = SUMX2-SUMX*P*2/NPOINT
SOSY = SUMY2 - SUMY*P*2/NPOINT
SOSXY = SUMXY-SUMX*SUMY/NPOINT
R = SOSXY/SGRT((SOSX*SOSY))
B = SOSXY/SOSX
A = MEANY-B*MEANX
VARYR = (SOSY-B*SOSXY)/(NPOINT-2)
VARB = VARYR/SOSX
SELF-BROADENING PROGRAM CONTINUED

STDDV = SORT(VARB)
MAXDEV = 0.0
MSD = 0.0
PRINT "FORMAT TITLE"
THROUGH END7 FOR I=1,1,1,1,1,1,NPOINT
DEV = Y(I)-(A+B*X(I))
MSD = MSD+DEV^2/NPOINT
WHENEVER I=1
HIX = X(I)
LOWX = X(I)
OR WHENEVER X(I)<HIX
HIX = X(I)
OR WHENEVER X(I)>LOWX
LOWX = X(I)
END OF CONDITIONAL
WHENEVER A*ABS(DEV)+G*ABS(MAXDEV)
MAXDEV = DEV
END7
END OF CONDITIONAL
CAL = 0.0
VARLIN = VARYR+(1/NPOINT+(CAL-MEANX)*P/SOSX)
VARPT = VARYR+VARLIN
STDDVP = SORT(VARPT)
PRINT "FORMAT TABLE", CAL, VARLIN, VARPT, STDDVP
THROUGH END8 FOR CAL = LOWX+(1-HIX-LOWX)*CAL*G*HIX
VARLIN = VARYR+(1/NPOINT+(CAL-MEANX)*P/SOSX)
VARPT = VARYR+VARLIN
STDDVP = SORT(VARPT)
END8
PRINT "FORMAT TABLE", CAL, VARLIN, VARPT, STDDVP
PRINT "FORMAT FIT", A, B, VARB, STDDVB = VARYR, MSD, MAXDEV, R

VECTOR VALUES FIT = $S40,11HINTERCEP3 = F35.6/S40,7HSLOPE = F39
1.6/S40,19HVARIANCE OF SLOPE = F27.6/S40,26HSTANDARD DEVIATION
2SLOPE = F17.6/S40.27HVAR YR (RESIDUAL VARIANCE) = F19.6/S40
32HMEAN SQUARE DEVIATION = F23.6/S40.19HMAX DEVIATION = F27.4/S40.25HCORRELATION COEFFICIENT = F21.6$$
VECTOR VALUES TITLE = $S1H4.3S35.48HRESULTS OF REGRESSION ANALYSIS
$S1IS-LEAST SQUARES FIT//S15.1HXS12.16HVARIANCE OF LINE=S12.
2.13HVARIANCE OF Y=S12.27HSTANDARD DEVIATION OF POINT$$
VECTOR VALUES TABLE = $SF22.6,SF20.6,SF27.6,SF33.6$$
R END OF LEAST SQUARES PROGRAM
PRINT "RESULTS INCEPT"
WHENEVER B <= 0.99SLOPE=2
WHENEVER INCEP1<=INCEP+K=2.1*L
INCEP1=INCEP
INCEP=INCEP+INCREM/K
OR WHENEVER B=0.1 SLOPE=2
WHENEVER INCEP1<=INCEP+L=2.1*K
INCEP1=INCEP
INCEP=INCEP+INCREM/L
OTHERWISE
READ "FORMAT SPECTR", BETA+1,BETAP1,TLOW,THIGH,LAMBDAS,20G1,1
LENGTH,PINERT,MM1,MM2,CINSTR
PRINT COMMENT $S1$
R SELF-BROADENING PROGRAM CONTINUED

R

PRINT RESULTS BETAPL,BETAPH,YLOW,THIGH,LAMBDA,G20G1,
1 LENGTH,MW1,MW2,CINSTR,PINERT
RTO=10,P=r,-2#SLOPE,YLOW,+2#INCEPT+(DLCPOR=1*0772*30259
1#ELOG(YLOW)/BETAPL
PINCEP=-2#INCEPT=ELOG(RTO=RTO*LAMBDA*LAMBDA/8##G20G1*LENGTH
1 #7*34E05)/2*30259

TAU=CINSTR/(3*4159*3*UE10*RTO)
KCOL=1*074*3*4159*TAU)*10*P,(A-PINCEP)/3*0E10
SSSELF=KCOL*5*3*14159/3*37*(MW1/2+1)*P=0*5
RATSR=BETAPH/(10*P,-SLOPE/THIGH+INCEPT+(DLCPOR/2=0*5)/
1 2*30259#ELOG(THIGH))
SSPRES = 1/4/TAU[2+/3*37*SORT{THIGH/(1+/MW1+1/MW2)/
1 PINERT=(RATSR+P,2-1*0)/1*UE10
PRINT FORMAT DATE SLOPE,PINCEP,DLCPOR,TAU,SSSELF,SSPRES
TRANSFER TO BEGIN
END OF CONDITIONAL

VECTOR VALUES CONST=54F15;6;315##
R SLOPE,PINCEP,DLCPOR,INCREM,JMAX,N,RUN
R

VECTOR VALUES DATA1=57F10;7##
R BETAIL###BETAIN
R

VECTOR VALUES DATA2=57F10;11##
R T(1)###T(N)
R

VECTOR VALUES CHECK2=51H4;16HTEMPERATURE DATA/(TS10*10F10=1)
1 *S

VECTOR VALUES TOP=51H1+525*65HTHE TREATMENT OF ZERO INERT GAS
1 PRESSURE DATA FOR SELF BROADENING/555*3HRUN=13##
R

VECTOR VALUES CHECK3=51H4;510*6HSLOPE=5F16*6;510*10HINTERCEPT
1*F10*6;510*10HDELTA CP/R=5F9*4;510*10HINCREMENT=5F8*3/520*
1 5HJMAX=5135520#2MN=13##

VECTOR VALUES HEAD=51H1+539RTemp DEG K+S7*6HTEMPS9*7/AREA
1/125S7*59A/I NO BD*57*8HRDRTIO*56*8HT (BR-1) s5*
1 13HLOG(Y BR-1)##
R

VECTOR VALUES TABL =57F10;11E20=6;2E15=6;2E15=6;5F15=6##
R T(1)###RECIPT(I),BETA(I),BETANC,BRDAT,LINEXP,LINVAR(I)
R

VECTOR VALUES SPECTR =57F10;6/3F10=6;5E15=6##
R BETAPL,BETAPH,YLOW,THIGH,LAMBDA,G20G1,LENGTH,PINERT,MW1,
R MW2,CINSTR
R

VECTOR VALUES RESULT=51H4;510*11HLOG P =-2*51F15=5*3H/T
0 2H*5F10=6;51
1 F10=6;6HLOG T/// S45*4HTAU=5S11*E15=6/S35*30HSGM SQUARED
2 SELF BROADENING=51S10;5F10*47S30*35HSIGMA SQUARED COLLISION BR
30ADENING=5S10*F10=4##
END OF PROGRAM
MAD PROGRAM TO CALCULATE THE HYPERFINE CORRECTION FUNCTION

DIMENSION BETA(30), DELTA(10), G(10)= GR(10)
INTEGER I,J,MAX,NHFC

START
READ DATA*, I MAX, NHFC, MUMAX, DMUMIN, BETA(I),..., BETA(MAX)*
R, DELTA(I), DELTAINHFC(I), G(I),..., G(NHFC)

PRINT COMMENT "$1"

1 HYPERFINE CORRECTION FUNCTIONS
PRINT COMMENT "$2"
PRINT RESULTS IMAX*NHFC, MUMAX, DMUMIN, DELTA(I),..., DELTAINHFC(*
1 G(I),..., G(NHFC)
THROUGH LOOP6 FOR J=1,...,I*G*I MAX

LOOP6
GR(J)=SQRT((G(J))

THROUGH LOOP5 FOR I=1,...,I*G*I MAX
FD=0.3
H=3.0
Y=BETA(I)/P2/4.0/3.*14159
THROUGH LOOP4 FOR DELMU=UZ*BETA(I),-DELMU/2, DELMU=DMUMIN
1 OR*(FD/H*0.995*AND*FD/H*0.1*0.05)
H=FD
GE = 0.8
THROUGH LOOP4 FOR MU=DELMU, MU+MUMAX*OR, MU+G=0.0005
EXPEN=0.0
EXP=0.0
EXP=0.0
GO=0.0
GEN=0.0

THROUGH LOOP5 FOR J=1,...,J*G*NHFC
WHENEVER ABS(0.0-DELTA(J))/BETA(J)*GR(J)) = 0.0006
GE = 1.0
OTHERWISE
EXPEN=EXPEN*G(J)/((MUMU-DELTA(J))/P2)
END OF CONDITIONAL
WHENEVER ABS(0.0-DELTA(J))/BETA(J)*GR(J)) = 0.0006

GEN = 1.0
OTHERWISE
EXPEN=EXPEN*G(J)/((MUMU-DELTA(J))/P2)
END OF CONDITIONAL
WHENEVER ABS(0.0-DELTA(J))/BETA(J)*GR(J)) = 0.0006

GE = 1.0
OTHERWISE
EXPEN=EXPEN*G(J)/((MUMU-DELTA(J))/P2)
END OF CONDITIONAL
WHENEVER ABS(0.0-DELTA(J))/BETA(J)*GR(J)) = 0.0006

GO = 1.0
OTHERWISE
EXPEN=EXPEN*G(J)/((MUMU-DELTA(J))/P2)
END OF CONDITIONAL

WHENEVER GE = 1.0, GO = 1.0,EXPEN*Y*EXPEN
WHENEVER MUE = 0.0

R HYPERFINE CORRECTION PROGRAM CONTINUED

R

GENO = 1.0
OTHERWISE
GENO=1.0-EXP(-Y/MU/MU)
END OF CONDITIONAL
GONO=1.0-EXP(-Y/MU/DELMU/MU+DELMU)
WHENEVER MUX = 0.0
FD=(GE*GENO)**(GO+GON)/T3/0
FZ=(1/3)*GENO/4/3*GONO
OTHERWISE
FD=FZ+((1/2)**(GENO)**(GO+GON))/T3/0
FZ=FZ+(2*GENO)**(GO+GON)/T3/0
END OF CONDITIONAL

FD=FD+(0.1**GENO)**(GO+GON)*BETA(J)*DELMU
FD=(FZ-1/3)*GENO**4/3*GONO/(BETA(J)*DELMU+2)
FC=FD/FZ
AOIC=FCL1.76*BETA(J)

LOOP3
PRINT RESULTS MU+DELMU, FD*FZ*FC*BETA(J)*AOIC
TRANSFER TO START
END OF PROGRAM
APPENDIX I

RAW DATA
<table>
<thead>
<tr>
<th>RUN</th>
<th>SET</th>
<th>HEL PRESS (MM)</th>
<th>TEMPERATURE (°C)</th>
<th>5X AREA</th>
<th>1/ZERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>2000-1</td>
<td>748</td>
<td>1265</td>
<td>3.480000</td>
<td>.928000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.460000</td>
<td>.923000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.440000</td>
<td>.929000</td>
</tr>
<tr>
<td>61</td>
<td>2000-2</td>
<td>745</td>
<td>1266</td>
<td>3.320000</td>
<td>.943000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.310000</td>
<td>.948000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.300000</td>
<td>.940000</td>
</tr>
<tr>
<td>61</td>
<td>1950-1</td>
<td>746</td>
<td>1261</td>
<td>2.860000</td>
<td>.958000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.890000</td>
<td>.949000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.920000</td>
<td>.955000</td>
</tr>
<tr>
<td>61</td>
<td>1950-2</td>
<td>745</td>
<td>1240</td>
<td>2.650000</td>
<td>.963000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.650000</td>
<td>.963000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.660000</td>
<td>.962000</td>
</tr>
<tr>
<td>61</td>
<td>1950-3</td>
<td>745</td>
<td>1255</td>
<td>3.210000</td>
<td>.970000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.290000</td>
<td>.970000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.310000</td>
<td>.978000</td>
</tr>
<tr>
<td>61</td>
<td>1850-1</td>
<td>745</td>
<td>1206</td>
<td>2.330000</td>
<td>1.012000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.340000</td>
<td>1.020000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.180000</td>
<td>1.018000</td>
</tr>
<tr>
<td>61</td>
<td>1850-2</td>
<td>746</td>
<td>1224</td>
<td>2.580000</td>
<td>.974000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.490000</td>
<td>.975000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.300000</td>
<td>.954000</td>
</tr>
<tr>
<td>61</td>
<td>1850-3</td>
<td>746</td>
<td>1222</td>
<td>2.570000</td>
<td>.995000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.620000</td>
<td>1.003000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.540000</td>
<td>1.010000</td>
</tr>
<tr>
<td>61</td>
<td>1800-1</td>
<td>746</td>
<td>1193</td>
<td>1.720000</td>
<td>.966000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.670000</td>
<td>.974000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.760000</td>
<td>.973000</td>
</tr>
<tr>
<td>61</td>
<td>1800-2</td>
<td>749</td>
<td>1190</td>
<td>1.750000</td>
<td>1.022000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.780000</td>
<td>1.020000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.620000</td>
<td>1.012000</td>
</tr>
<tr>
<td>61</td>
<td>1850-4</td>
<td>747</td>
<td>1211</td>
<td>2.090000</td>
<td>.999000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.050000</td>
<td>.999000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.290000</td>
<td>1.002000</td>
</tr>
<tr>
<td>61</td>
<td>1850-5</td>
<td>745</td>
<td>1212</td>
<td>2.200000</td>
<td>1.007000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.060000</td>
<td>1.007000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.070000</td>
<td>1.024000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.010000</td>
<td>.990000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.210000</td>
<td>.993000</td>
</tr>
<tr>
<td>Run 61, 62, U-UB1, Cont'd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1900-4</td>
<td>745</td>
<td>1244</td>
<td>3.130000</td>
<td>.986000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.980000</td>
<td>.9780000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.990000</td>
<td>.9680000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.090000</td>
<td>1.0090000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.040000</td>
<td>.9700000</td>
</tr>
<tr>
<td>61</td>
<td>1750-1</td>
<td>747</td>
<td>1167</td>
<td>1.360000</td>
<td>.9930000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.170000</td>
<td>.9930000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.220000</td>
<td>.9950000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.300000</td>
<td>.9870000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.140000</td>
<td>.9860000</td>
</tr>
<tr>
<td>62</td>
<td>2000-1</td>
<td>765</td>
<td>1282</td>
<td>4.180000</td>
<td>.9880000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.290000</td>
<td>.9820000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.270000</td>
<td>.9950000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.220000</td>
<td>.9820000</td>
</tr>
<tr>
<td>62</td>
<td>1900-1</td>
<td>766</td>
<td>1232</td>
<td>2.410000</td>
<td>.9420000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.040000</td>
<td>.9460000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.710000</td>
<td>.9420000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.490000</td>
<td>.9400000</td>
</tr>
<tr>
<td>62</td>
<td>1900-2</td>
<td>765</td>
<td>1231</td>
<td>2.580000</td>
<td>.9900000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.580000</td>
<td>.9370000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.570000</td>
<td>.9900000</td>
</tr>
<tr>
<td>62</td>
<td>1600-1</td>
<td>766</td>
<td>1131</td>
<td>1.800000</td>
<td>.9370000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.520000</td>
<td>.9200000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.720000</td>
<td>.9270000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.620000</td>
<td>.9280000</td>
</tr>
<tr>
<td>62</td>
<td>1800-2</td>
<td>745</td>
<td>1178</td>
<td>1.460000</td>
<td>.9380000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.550000</td>
<td>.9230000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.630000</td>
<td>.9320000</td>
</tr>
<tr>
<td>62</td>
<td>1825-1</td>
<td>745</td>
<td>1181</td>
<td>1.600000</td>
<td>.9310000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.470000</td>
<td>.9480000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.540000</td>
<td>.9600000</td>
</tr>
<tr>
<td>62</td>
<td>1825-2</td>
<td>745</td>
<td>1184</td>
<td>1.430000</td>
<td>.9680000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.360000</td>
<td>.9630000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.520000</td>
<td>.9680000</td>
</tr>
<tr>
<td>62</td>
<td>1825-3</td>
<td>745</td>
<td>1184</td>
<td>1.530000</td>
<td>.9460000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.390000</td>
<td>.9430000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.470000</td>
<td>.9440000</td>
</tr>
<tr>
<td>62</td>
<td>1950-3</td>
<td>746</td>
<td>1237</td>
<td>2.540000</td>
<td>.9300000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.680000</td>
<td>.9510000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.540000</td>
<td>.9300000</td>
</tr>
<tr>
<td>62</td>
<td>1750-1</td>
<td>746</td>
<td>1146</td>
<td>.620000</td>
<td>.9620000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.790000</td>
<td>.9680000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.960000</td>
<td>.9910000</td>
</tr>
<tr>
<td>62</td>
<td>1950-1</td>
<td>747</td>
<td>1236</td>
<td>4.580000</td>
<td>.9610000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.660000</td>
<td>.9640000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.560000</td>
<td>.9570000</td>
</tr>
<tr>
<td>62</td>
<td>1950-2</td>
<td>746</td>
<td>1236</td>
<td>.930000</td>
<td>.9900000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.940000</td>
<td>.9200000</td>
</tr>
<tr>
<td>RUN</td>
<td>SET</td>
<td>HE PRESS (mm)</td>
<td>TEMP (°K)</td>
<td>3% AREA</td>
<td>I25EU</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>64</td>
<td>2000AS</td>
<td>0</td>
<td>1213</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1950A</td>
<td>0</td>
<td>1275</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1950AR</td>
<td>0</td>
<td>1230</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1850A</td>
<td>0</td>
<td>1721</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1850AR</td>
<td>0</td>
<td>1171</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1750A</td>
<td>0</td>
<td>1136</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1650A</td>
<td>0</td>
<td>1191</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1600A</td>
<td>0</td>
<td>1550</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1500A</td>
<td>0</td>
<td>1361</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
INPUT DATA FOR RUN

<table>
<thead>
<tr>
<th>RUN</th>
<th>SET</th>
<th>PRESS (MM)</th>
<th>TEMP (°K)</th>
<th>AREA</th>
<th>IZERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>2000C</td>
<td>350</td>
<td>1283</td>
<td>46.740000</td>
<td>1.033000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.040000</td>
<td>0.973000</td>
</tr>
<tr>
<td>69</td>
<td>1950R</td>
<td>350</td>
<td>1273</td>
<td>35.500000</td>
<td>0.961000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.510000</td>
<td>0.970000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.540000</td>
<td>0.994000</td>
</tr>
<tr>
<td>69</td>
<td>1900C</td>
<td>350</td>
<td>1239</td>
<td>30.830000</td>
<td>0.914000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.140000</td>
<td>0.923000</td>
</tr>
<tr>
<td>69</td>
<td>1850R</td>
<td>350</td>
<td>1223</td>
<td>27.700000</td>
<td>1.021000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.570000</td>
<td>1.042000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.050000</td>
<td>1.020000</td>
</tr>
<tr>
<td>69</td>
<td>1800C</td>
<td>350</td>
<td>1187</td>
<td>24.130000</td>
<td>0.960000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.170000</td>
<td>0.970000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.300000</td>
<td>0.962000</td>
</tr>
<tr>
<td>69</td>
<td>1750R</td>
<td>350</td>
<td>1172</td>
<td>19.700000</td>
<td>1.017000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.520000</td>
<td>0.980000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.940000</td>
<td>0.981000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.880000</td>
<td>0.975000</td>
</tr>
<tr>
<td>69</td>
<td>1700R</td>
<td>350</td>
<td>1136</td>
<td>14.230000</td>
<td>0.955000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.620000</td>
<td>0.928000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.000000</td>
<td>0.930000</td>
</tr>
<tr>
<td>69</td>
<td>1650R</td>
<td>350</td>
<td>1125</td>
<td>15.420000</td>
<td>1.072000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.960000</td>
<td>1.020000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.700000</td>
<td>0.982000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.430000</td>
<td>1.013000</td>
</tr>
<tr>
<td>69</td>
<td>1600R</td>
<td>350</td>
<td>1088</td>
<td>10.890000</td>
<td>0.997000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.870000</td>
<td>0.999000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.590000</td>
<td>0.998000</td>
</tr>
<tr>
<td>69</td>
<td>1550R</td>
<td>350</td>
<td>1062</td>
<td>8.430000</td>
<td>1.003000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.230000</td>
<td>1.000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.300000</td>
<td>1.000000</td>
</tr>
<tr>
<td>69</td>
<td>1500R</td>
<td>350</td>
<td>1033</td>
<td>6.650000</td>
<td>0.977000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.720000</td>
<td>0.988000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.730000</td>
<td>0.983000</td>
</tr>
<tr>
<td>69</td>
<td>1450R</td>
<td>350</td>
<td>1009</td>
<td>5.060000</td>
<td>0.908000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.970000</td>
<td>0.908000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.240000</td>
<td>0.910000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.230000</td>
<td>0.910000</td>
</tr>
<tr>
<td>69</td>
<td>1400R</td>
<td>350</td>
<td>981</td>
<td>4.540000</td>
<td>1.004000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.740000</td>
<td>1.010000</td>
</tr>
</tbody>
</table>

106
<table>
<thead>
<tr>
<th>Run 69, ATOMIC BISMUTH, Cont</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RUN</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RUN</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>69</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RUN</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RUN</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>70</td>
</tr>
</tbody>
</table>

Atomic Lead, Cont'd
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>10508</td>
<td>745.</td>
<td>809.</td>
<td>0.530000</td>
<td>1.223000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.556000</td>
<td>1.329000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.568000</td>
<td>1.313000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.530000</td>
<td>1.015000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.500000</td>
<td>1.313000</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>10000</td>
<td>746.</td>
<td>781.</td>
<td>0.250000</td>
<td>1.328000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.260000</td>
<td>1.325000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.300000</td>
<td>1.330000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.310000</td>
<td>1.327000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.310000</td>
<td>1.328000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.260000</td>
<td>1.322000</td>
<td></td>
</tr>
<tr>
<td>RUN</td>
<td>SET</td>
<td>He PRESS (MM)</td>
<td>TEMP (°F)</td>
<td>S2o4Eq</td>
<td>I2EPO</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>2000</td>
<td>0</td>
<td>1243</td>
<td>3.830000</td>
<td>.990000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.410000</td>
<td>.395000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1850</td>
<td>0</td>
<td>1122</td>
<td>2.200000</td>
<td>.869000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.390000</td>
<td>.370000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.450000</td>
<td>.547000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1775</td>
<td>0</td>
<td>1150</td>
<td>2.080000</td>
<td>.956000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.590000</td>
<td>.263000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.640000</td>
<td>.965000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1700</td>
<td>0</td>
<td>1109</td>
<td>1.290000</td>
<td>1.033000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.790000</td>
<td>1.022000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.340000</td>
<td>1.015000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1625</td>
<td>0</td>
<td>1070</td>
<td>.940000</td>
<td>.928000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.840000</td>
<td>.870000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.900000</td>
<td>.980000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.300000</td>
<td>.284000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1550</td>
<td>0</td>
<td>1040</td>
<td>.940000</td>
<td>.955000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.220000</td>
<td>1.006000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.520000</td>
<td>.558000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.870000</td>
<td>.997000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1475</td>
<td>0</td>
<td>1007</td>
<td>.550000</td>
<td>.995000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.850000</td>
<td>.977000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.810000</td>
<td>.983000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1400</td>
<td>0</td>
<td>967</td>
<td>.400000</td>
<td>.919000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.580000</td>
<td>.911000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.690000</td>
<td>.912000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.530000</td>
<td>.911000</td>
<td></td>
</tr>
<tr>
<td>RUN</td>
<td>SET</td>
<td>HB PRESS (mm)</td>
<td>TEMP (°C)</td>
<td>3x AREA</td>
<td>12 ERO</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>20000</td>
<td>746</td>
<td>1230</td>
<td>34.460000</td>
<td>.975000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>18500</td>
<td>746</td>
<td>1132</td>
<td>26.120000</td>
<td>.962000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>17758</td>
<td>746</td>
<td>1145</td>
<td>18.600000</td>
<td>1.034000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>17008</td>
<td>746</td>
<td>1108</td>
<td>13.000000</td>
<td>.970000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>16258</td>
<td>746</td>
<td>1070</td>
<td>9.470000</td>
<td>.974000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>15958</td>
<td>746</td>
<td>1041</td>
<td>7.200000</td>
<td>.996000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>14758</td>
<td>746</td>
<td>1005</td>
<td>5.230000</td>
<td>1.010000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>14008</td>
<td>746</td>
<td>967</td>
<td>3.850000</td>
<td>.950000</td>
<td></td>
</tr>
</tbody>
</table>

RUN 71 PB IN BI-PB HELIUM PRESSURE = 746 MM HG CELL LENGTH 46 MM

INPUT DATA FOR RUN
<table>
<thead>
<tr>
<th>RUN</th>
<th>SET</th>
<th>HB PRESS (mm)</th>
<th>TEMP (°C)</th>
<th>X6REA</th>
<th>12RE0</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>2000A</td>
<td>0</td>
<td>1542</td>
<td>4.070000</td>
<td>0.991000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.210000</td>
<td>0.992000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.960000</td>
<td>0.995000</td>
</tr>
<tr>
<td>71</td>
<td>1850A</td>
<td>0</td>
<td>1492</td>
<td>2.780000</td>
<td>0.943000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.280000</td>
<td>0.942000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.400000</td>
<td>0.940000</td>
</tr>
<tr>
<td>71</td>
<td>1725A</td>
<td>0</td>
<td>1550</td>
<td>2.050000</td>
<td>0.928000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.150000</td>
<td>0.920000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.100000</td>
<td>0.920000</td>
</tr>
<tr>
<td>71</td>
<td>1700A</td>
<td>0</td>
<td>1100</td>
<td>1.520000</td>
<td>0.957000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.420000</td>
<td>0.961000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.310000</td>
<td>0.962000</td>
</tr>
<tr>
<td>71</td>
<td>1625A</td>
<td>0</td>
<td>1470</td>
<td>1.300000</td>
<td>1.010000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.240000</td>
<td>1.012000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.300000</td>
<td>1.024000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.220000</td>
<td>0.999000</td>
</tr>
<tr>
<td>71</td>
<td>1550A</td>
<td>0</td>
<td>1040</td>
<td>1.090000</td>
<td>1.009000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.140000</td>
<td>1.000800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.050000</td>
<td>1.012000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.050000</td>
<td>1.012000</td>
</tr>
<tr>
<td>71</td>
<td>1475A</td>
<td>0</td>
<td>1007</td>
<td>0.770000</td>
<td>1.019000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.940000</td>
<td>1.022000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.010000</td>
<td>1.025000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.050000</td>
<td>1.026000</td>
</tr>
<tr>
<td>71</td>
<td>1400A</td>
<td>0</td>
<td>570</td>
<td>0.940000</td>
<td>1.030000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.840000</td>
<td>1.027000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.900000</td>
<td>1.024000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.700000</td>
<td>1.015000</td>
</tr>
<tr>
<td>RUN</td>
<td>SET</td>
<td>PRESS (MM)</td>
<td>TEMP (°C)</td>
<td>SX AREA</td>
<td>1ZERO</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>71</td>
<td>2600E</td>
<td>749</td>
<td>1236</td>
<td>25.69000</td>
<td>1.00800</td>
</tr>
<tr>
<td>71</td>
<td>1850E</td>
<td>749</td>
<td>1132</td>
<td>25.90000</td>
<td>1.00700</td>
</tr>
<tr>
<td>71</td>
<td>1775E</td>
<td>746</td>
<td>1145</td>
<td>20.90000</td>
<td>1.00700</td>
</tr>
<tr>
<td>71</td>
<td>1700E</td>
<td>746</td>
<td>1162</td>
<td>14.24000</td>
<td>0.96300</td>
</tr>
<tr>
<td>71</td>
<td>1625B</td>
<td>746</td>
<td>1070</td>
<td>10.50000</td>
<td>0.98000</td>
</tr>
<tr>
<td>71</td>
<td>1550B</td>
<td>746</td>
<td>1041</td>
<td>6.690000</td>
<td>1.01000</td>
</tr>
<tr>
<td>71</td>
<td>1475B</td>
<td>746</td>
<td>1005</td>
<td>5.470000</td>
<td>0.99500</td>
</tr>
<tr>
<td>71</td>
<td>1400E</td>
<td>746</td>
<td>987</td>
<td>3.590000</td>
<td>1.02100</td>
</tr>
<tr>
<td>71</td>
<td>1325E</td>
<td>746</td>
<td>967</td>
<td>3.820000</td>
<td>1.02200</td>
</tr>
<tr>
<td>71</td>
<td>1250E</td>
<td>746</td>
<td>947</td>
<td>3.860000</td>
<td>1.02000</td>
</tr>
<tr>
<td>71</td>
<td>1175E</td>
<td>746</td>
<td>927</td>
<td>3.540000</td>
<td>1.01800</td>
</tr>
<tr>
<td>RUN</td>
<td>SET</td>
<td>PRESS (kN)</td>
<td>TEMP (°C)</td>
<td>1 ZERO</td>
<td>1 MU</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>71</td>
<td>20006</td>
<td>0</td>
<td>1243</td>
<td>1.606000</td>
<td>.616000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.026000</td>
<td>.522000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.031000</td>
<td>.646000</td>
</tr>
<tr>
<td>71</td>
<td>18504</td>
<td>0</td>
<td>1192</td>
<td>.797000</td>
<td>.616000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.664000</td>
<td>.525000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.605000</td>
<td>.629000</td>
</tr>
<tr>
<td>71</td>
<td>17754</td>
<td>0</td>
<td>1150</td>
<td>.632000</td>
<td>.533000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.642000</td>
<td>.545000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.687000</td>
<td>.516000</td>
</tr>
<tr>
<td>71</td>
<td>17604</td>
<td>0</td>
<td>1103</td>
<td>.622000</td>
<td>.848000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.728000</td>
<td>.850000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.740000</td>
<td>.829000</td>
</tr>
<tr>
<td>71</td>
<td>16256</td>
<td>0</td>
<td>1070</td>
<td>.633000</td>
<td>.805000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.637000</td>
<td>.804000</td>
</tr>
<tr>
<td>RUN</td>
<td>SET</td>
<td>PRESS (MM)</td>
<td>TEMP (°C)</td>
<td>12e50</td>
<td>1 HU</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>71</td>
<td>2000E</td>
<td>748</td>
<td>122</td>
<td>762000</td>
<td>52000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>235000</td>
<td>433000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147000</td>
<td>443000</td>
</tr>
<tr>
<td>71</td>
<td>12008</td>
<td>748</td>
<td>118</td>
<td>795000</td>
<td>63800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>740000</td>
<td>582000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>715000</td>
<td>565000</td>
</tr>
<tr>
<td>71</td>
<td>1775B</td>
<td>746</td>
<td>115</td>
<td>881000</td>
<td>775000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>680000</td>
<td>770000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>680000</td>
<td>790000</td>
</tr>
<tr>
<td>71</td>
<td>17008</td>
<td>746</td>
<td>110</td>
<td>946000</td>
<td>815000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>988000</td>
<td>808000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>948000</td>
<td>808000</td>
</tr>
<tr>
<td>71</td>
<td>1625B</td>
<td>746</td>
<td>1070</td>
<td>946000</td>
<td>79600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>820000</td>
<td>808000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>800000</td>
<td>812000</td>
</tr>
<tr>
<td>RUN</td>
<td>SET</td>
<td>HE PRESS UNNO</td>
<td>TEMP (°C)</td>
<td>x AREA</td>
<td>1ZER0</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>---------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>72</td>
<td>1725F</td>
<td>748</td>
<td>1235</td>
<td>43.970000</td>
<td>.960000</td>
</tr>
<tr>
<td></td>
<td>17000</td>
<td>748</td>
<td>1235</td>
<td>37.160000</td>
<td>.954000</td>
</tr>
<tr>
<td></td>
<td>71.200000</td>
<td>.975000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1750E</td>
<td>747</td>
<td>1252</td>
<td>40.340000</td>
<td>1.073000</td>
</tr>
<tr>
<td></td>
<td>26.000000</td>
<td>1.072000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.150000</td>
<td>1.070000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1775F</td>
<td>747</td>
<td>1160</td>
<td>27.440000</td>
<td>.930000</td>
</tr>
<tr>
<td></td>
<td>27.210000</td>
<td>.935000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.000000</td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1700E</td>
<td>747</td>
<td>1145</td>
<td>18.680000</td>
<td>.977000</td>
</tr>
<tr>
<td></td>
<td>18.210000</td>
<td>.980000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1725F</td>
<td>748</td>
<td>1063</td>
<td>14.020000</td>
<td>.940000</td>
</tr>
<tr>
<td></td>
<td>12.000000</td>
<td>.998000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.200000</td>
<td>1.001000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1750E</td>
<td>748</td>
<td>1042</td>
<td>9.620000</td>
<td>1.002000</td>
</tr>
<tr>
<td></td>
<td>5.690000</td>
<td>1.002000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.330000</td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1775B</td>
<td>748</td>
<td>1005</td>
<td>7.640000</td>
<td>1.011000</td>
</tr>
<tr>
<td></td>
<td>7.600000</td>
<td>1.012000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.170000</td>
<td>1.009000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.130000</td>
<td>1.013000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1400E</td>
<td>748</td>
<td>972</td>
<td>5.400000</td>
<td>1.021000</td>
</tr>
<tr>
<td></td>
<td>5.400000</td>
<td>1.020000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.500000</td>
<td>1.021000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUN</td>
<td>SET</td>
<td>PRESS (MM)</td>
<td>TEMP (°C)</td>
<td>I ZERO</td>
<td>I MU</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>72</td>
<td>1500F</td>
<td>748</td>
<td>1235</td>
<td>0.96000</td>
<td>0.21800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99500</td>
<td>0.24800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99500</td>
<td>0.24800</td>
</tr>
<tr>
<td>72</td>
<td>1500E</td>
<td>748</td>
<td>1262</td>
<td>0.83000</td>
<td>0.21900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.88300</td>
<td>0.25500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.89500</td>
<td>0.23700</td>
</tr>
<tr>
<td>72</td>
<td>1500F</td>
<td>747</td>
<td>1175</td>
<td>0.97300</td>
<td>0.29500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.97900</td>
<td>0.29900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.96600</td>
<td>0.29700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00200</td>
<td>0.39800</td>
</tr>
<tr>
<td>72</td>
<td>1500E</td>
<td>747</td>
<td>1145</td>
<td>0.96000</td>
<td>0.20200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99600</td>
<td>0.20300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99500</td>
<td>0.20400</td>
</tr>
<tr>
<td>72</td>
<td>1625F</td>
<td>749</td>
<td>1359</td>
<td>0.25400</td>
<td>0.62402</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.26300</td>
<td>0.62200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25000</td>
<td>0.62000</td>
</tr>
<tr>
<td>72</td>
<td>1500E</td>
<td>746</td>
<td>1042</td>
<td>0.68000</td>
<td>0.93300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.67000</td>
<td>0.90000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68000</td>
<td>0.90000</td>
</tr>
<tr>
<td>72</td>
<td>1795E</td>
<td>748</td>
<td>1009</td>
<td>0.35000</td>
<td>0.15500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.33000</td>
<td>0.15900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35000</td>
<td>0.15900</td>
</tr>
<tr>
<td>72</td>
<td>1400E</td>
<td>745</td>
<td>972</td>
<td>0.35800</td>
<td>0.68000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35800</td>
<td>0.68000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35800</td>
<td>0.68000</td>
</tr>
<tr>
<td>RUN</td>
<td>SET</td>
<td>IS PRESS (MM)</td>
<td>TEMP (°K)</td>
<td>% AREA</td>
<td>IZERO</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>---------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>73</td>
<td>1850</td>
<td>749</td>
<td>1216</td>
<td>42.260000</td>
<td>1.000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43.990000</td>
<td>1.001000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.040000</td>
<td>1.002000</td>
</tr>
<tr>
<td>73</td>
<td>1775</td>
<td>746</td>
<td>1179</td>
<td>32.210000</td>
<td>0.986000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.940000</td>
<td>0.983000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.690000</td>
<td>0.982000</td>
</tr>
<tr>
<td>73</td>
<td>1700</td>
<td>747</td>
<td>1144</td>
<td>23.250000</td>
<td>0.990000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.990000</td>
<td>0.984000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.510000</td>
<td>0.983000</td>
</tr>
<tr>
<td>73</td>
<td>1625</td>
<td>745</td>
<td>1104</td>
<td>16.390000</td>
<td>1.002000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.010000</td>
<td>0.995000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.050000</td>
<td>0.987000</td>
</tr>
<tr>
<td>73</td>
<td>1550</td>
<td>749</td>
<td>1067</td>
<td>11.710000</td>
<td>0.995000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.710000</td>
<td>0.999000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.270000</td>
<td>0.998000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.830000</td>
<td>0.998000</td>
</tr>
<tr>
<td>RUN</td>
<td>SET</td>
<td>PRESS (MM)</td>
<td>TEMP (°C)</td>
<td>IZERO</td>
<td>I MU</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>73</td>
<td>19250</td>
<td>751</td>
<td>1231</td>
<td>.758000</td>
<td>173000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.770000</td>
<td>185000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.715000</td>
<td>180000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>185000</td>
<td>183000</td>
</tr>
<tr>
<td>73</td>
<td>16150</td>
<td>740</td>
<td>1214</td>
<td>.400000</td>
<td>123000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.498000</td>
<td>121600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.391000</td>
<td>113000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.493000</td>
<td>122000</td>
</tr>
<tr>
<td>73</td>
<td>17790</td>
<td>746</td>
<td>1175</td>
<td>.631000</td>
<td>223000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.629000</td>
<td>222000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.646000</td>
<td>231000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.628000</td>
<td>221000</td>
</tr>
<tr>
<td>73</td>
<td>1700</td>
<td>747</td>
<td>1154</td>
<td>.767000</td>
<td>393000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.739000</td>
<td>388000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.777000</td>
<td>397000</td>
</tr>
</tbody>
</table>

