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INTRODUCTION

A comprehensive series of tests of model footings subjected to
vibratory loads has been described by A. A. Maxwell, Z. B. Fry, and
R. F. Ballard, Jr.l and by Fryg. It is the objective of this paper to
compare the results of these tests with the theoretical solutions now
available and to evaluate the applicability of the theoretical methods
for design purposes.

In the test program all of the footings were set into steady-
state vibration by a rotating-mass mechanical vibrator. The modes of
vibration developed by each footing, shown in Figure 1, consist of vertical
translation, torsional oscillation, and rocking about a horizontal axis.

In the rocking mode, it is possible for the footing to rotate about an
axis located below its center of gravity (first mode - Figure lc) or

about an axis above its center of gravity (second mode - Figure 1d). The
rocking mode which was actually developed by a particular footing depended
upon the weight and geometry of the footing and upon the limitations in the
frequency range of the mechanical oscillator.

The test program was designed to produce motions of the footings
comparable to permissible motions of prototype footings. These were of the
order of a few thousandths of an inch in linear translation, or a few hun-
dredths of a radian in rotational oscillation. For this magnitude of foot-
ing motion, the soil response was approximately elastic, consequently the
theories used for comparison with the test results were based upon the sub-

stitution of an elastic medium for the supporting soil.
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SIMPLE MECHANICAL VIBRATIONS
An elementary concept of mechanical vibrations considers a system
which can be represented by a concentrated mass, m, a linear spring with a
spring constant k, and a dashpot having a coefficient of viscous damping c.
This system i1s arranged as shown in Figure 2 to permit motion of the mass

in one direction only, or the system has one-degree-of-freedom. Oscilla-

tions of the mass occur after some external force Q(t) acts on the system.
With these elements, the differential equation of equilibrium at any in-

stant of time is given by
mz + cz + kz = Q(t) (1)

in which z, %, and Z represent the displacement, velocity and acceleration,
respectively, of the mass, m, in the vertical direction.
For steady-state forced - wvibrations, an appropriate form of the

external time-dependent force is
Q(t) = Q sin wt (2)

in which Qo may be either a constant or a function of the exciting fre-
quency (radians/sec)o Families of curves representing the response of
this system to steady-state excitation are shown on Figures 3a and 3b.
Figure 3a represents the response to an excitation having a constant force
amplitude, QO , and Figure 3b represents the response for the conditions

imposed by a rotating mass exciter for which the force is

2 22
Q = m e(w) = m, ebg £ (3)
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in which
"
m  1is the mass ( = ) of the rotating weight,
e is the eccentricity, or the radius from the center of rota-
tion to the center of gravity of the rotating mass,
w is the angular frequency (radians/sec),
and
f is the frequency of rotation (cycles/sec).

The ordinate of Figure 3a represents a magnification factor ex-
pressed as the ratio of the actual amplitude of motion, Z s ? to the dis-
placement, zS swhich would occur if the force Q, was applied statically.

The static displacement

is equal to the dynamic displacement, Z oy ? when the applied frequency is
equal to zero, as shown at the point of zero abscissa on Figure 3a. The
abscissa 1s represented as the ratio of the exciting frequency, f , to the

undamped natural frequency

f, = 5% % (cycles/sec)

The ordinate of Figure 3b represents the ratio of the ampli-

m e

tude of motion Zyax to the term —%~w, Thus for very high values of the

frequency of excitation, the amplitude of motion approaches a constant
value,
1 (%)

Zmax
f-—)OO



~T-=
The response curves on Figure 3b can be obtained from the ones on Figure
3a, for each value of D, by multiplying the amplitude at each value of
frequency ratio by the factor (f/fo)E. This process defines a response
curve which indicates zero amplitude at zero frequency, which corresponds
to zero force input.

Damping affects the magnitude of the peak and the frequency at
which this peak occurs. The damping ratio, D , relates the coefficient

of viscous damping, ¢ , to the critical damping

CC = 2 Vkm (5)
by the ratio,

D = o (6)

In Figure 3a, the frequency for maximum amplitude of oscillation is re-
duced as the damping ratio is increased, in accordance with the expres-

sion
f = f 1-2D (7)

In Figure 3b, which corresponds to the conditions developed by the ro-
tating mass exciter, the frequency corresponding to maximum amplitude

of motion is given by

£ - o (8)
gl J1-202

and it is seen that increased damping moves this peak to the right. Thus
the frequency corresponding to the maximum amplitude of motion is not a
property just of the system, but is a function of the way in which the

system is loaded.
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For low values of the damping ratio (i.e. D < 0.2) the maximum ampli-
tude of vibration is very close to the value occurring at the frequency ratio

f/f  of 1.0 . The latter amplitude is determined as

“max ii “max
% |£/£,=1.0 2D S hE [ g/e =10 (9)
m

For larger values of D, the maximum amplitude of motion differs from that given
by Equation (9). However, as D increases, the response curves become flatter
and indicate amplitudes of the same order of magnitude as the '"peak" value

over a relatively wide range of frequencies. Therefore the "resonant frequency"
is reduced in importance.

The simple mass-spring-dashpot system may be used to represent any one
of the three modes of translational vibration or any one of the three modes of
rotational vibration. These models may also be combined to illustrate the re-
sponse of coupled systems and this procedure will be illustrated in the section
concerned with the coupled rocking and sliding oscillations of the WES footings.

THEORY OF VIBRATING FOOTING
SUPPORTED BY ELASTIC SEMI-INFINITE BODY

The simple mass-spring-dashpot system described in the preceding sec-
tion may be used to describe the motion of a vibrating footing if reasonable
values of the mass, spring constant, and damping coefficient can be obtained.
Because a considerable amount of difficulty has been developed in the past in
obtaining numerical values of these quantities for use in design, further
analytical work has been pursued. One model which has been studied for about
three decades considers the soll supporting a vibrating footing to be repre-
sented by a homogeneous, isotropic, elastic semi~infinite body. This section

describes the elements of this theoretical approach to the problem.
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The papers by Reissner(B)’<u) established the theoretical basis
for studying the response of a footing supported by an elastic semi-infi-
nite body. He considered the contact pressure to be uniformly distributed
beneath the circular footing subjected to vertical oscillation, and the
shearing stress to vary linearly from the center of the footing for the
case of torsional oscillation. The torsional response of a footing for
which the contact shearing stress corresponded to that developed by a
rigid footing was later evaluated by Reissner and Sagoci(5>. The effects
of variation in the contact pressure beneath the footing oscillating ver-
tically was studied by Sung(6) and Quinlan(7), and the case of the rocking
mode was treated by Arnold, Bycroft and W’arburrton(8)o The use of the elas-
tic half-space theories for analysis and design of vibrating footings has

(lO)’ and Whitman(ll)°

been described by Richart(9), Hsieh

The theory of footings vibrating on the surface of the elastic
semi-infinite body is based upon the assumption that the body is both
homogeneous and isotropic. Thus only two elastic constants are required
and the shearing modulus of elasticity, G , and Poisson's ratio p , are
chosen. 1In most of the solutions, the footing is assumed to be circular
(as shown in Figure 1) of radius r, » and has a weight, Wy. For trans-
lational modes of oscillation, the mass of the footing, m, ( = Yéd) enters
the problem, whereas for rotational modes the mass moment of inertia, I, ,
about the axis of rotation is considered.

In developing the solutions, Reissner found it convenient to
establish two dimensionless parameters which relate the physical quantities
involved. The first of these has been described as a "dimensionless fre-

quency factor" and is expressed as

5 2xfro
ao = Q)I‘OQ\/; = T (lO)
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in which
w : is the circular frequency of vibration
roo is the radius of the footing
p(=aé) , is the mass density of the elastic body
G is the shearing modulus of elasticity
f - 1s the frequency of vibration
and
vs(9$§) : is the velocity of propagation of the shear wave in the

elastic body.

The right hand expression of Equation (10) can be interpreted as the ratio

of the applied frequency of oscillation, f-cycles/sec, to the number of

v
—5 ) the shear wave travels a
2nro

times each second (frequency, determined
distance of Qnro.

The second parameter has the form

b o= —5 = 3 (11)

for the translational modes of vibration and b has been termed the '"mass

ratio" inasmuch as it represents the ratio of the mass of the footing,

mo o to some mass of the elastic body described by pro5 . For the rota-

tional modes, the corresponding term is called the "inertia ratio" and is

expressed by

Vertical oscillation.

Figure 4 shows typical response curves as computed from the

theory for the case of vertical motion caused by a rotating mass exciter.
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These plots of dimensionless amplitude of motion vs. dimensionless fre-
quency are very similar to those in Figure 3b. Although the elastic half
space model assumes perfectly elastic behavior of the material, the re-
sponse curves in Figure L have peaks of finite amplitude. The effect of
damping is introduced through the loss of wave energy radiated from the
footing throughout the semi-infinite bedy.

The shape of the response curves is related mainly to the param-
eter b. As will be seen in later sections, an increase in b leads to
sharper peaks with greater maximum motions. Other factors also influence.
the response curves. Figure 4a shows the influence on the theoretical
response curves for vertical oscillation of a change in pressure distri-
bution and Figure 4b shows the influence of a change in Poisson's ratio.
It is important to note that a change in the pressure distribution from
that corresponding to a rigid base, where the major portion of the reac-
tion is concentrated near the periphery, to a distribution where the load
is carried nearer the center, causes an increase in amplitude of oscilla-
tion and reduces the frequency at which maximum amplitude occurs. Thus,
for a given footing-soil system, the shape and position of the response
curve can be changed if the pressure distribution on the base of the

footing is a function of the frequency and amplitude of motion.

Coupled rocking and sliding.

When the excitation is a rocking couple, a footing responds by
rocking about a horizontal axis. However, because the center of gravity
of the footing and oscillator generally is not coincident with the center

of sliding resistance, a coupled motion develops. To describe the motion



-13-

it is convenient to use the horizontal motion of the center of gravity of
the footing and oscillator as one coordinate and the rotation of the foot-
ing and oscillator about their combined center of gravity as the second co-

ordinate to describe the two degrees of freedom of motion.,

Resistance to the input rocking couple is developed by the iner-
tia of the mass of the footing and by the soil resistance acting on the
base of the footing (Figure 5). The horizontal resistance to sliding is

a force PX 5 expressed by

=-R & - Kx (13)

X = x = hy (14)
b g
where
Xg is the horizontal displacement of the center of gravity,
¢ is the angular rotation of the footing about the center
of gravity,
and
h : is the distance from the center of gravity to the

center of the base.

The quantity R represents a damping coefficient and K represents a
spring reaction coefficient. The soll resistance to rotational motion

of the footing is described by a restraining moment

Cy =-HP-5 (15)
in which H is a damping coefficient in rotation and S 1is a rotational

spring reaction coefficient.
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Figure 5. Notation for Rocking and Sliding Mode of Vibration.
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For the conditions indicated on Figure 5a, the equation of

motion for horizontal translation is
mX, = P, = ~Rzxp - Kzxp (16)

After substituting Equation (14) and rearranging terms, Equation (16)

becomes

m %é + R ig + Kx - hR p - nkg

I
o
N
l..___l
—
"

The equation of motion for rotation about the center of gravity is

I, g = M+ Cf = b Py (18)
or
L) 2 ., 2
I + (H+h R) P+ (S+h K) § - hRify - hKxg = M (19)
with the substitution of
X = x sinwt + x _coswt , (20)
g 1 2
6 = ﬁlsinwm + ﬁgcosam , (21)
and
M = M sinwt (22)

1

into Equations (17) and (19), four equations in four unknowns are estab-
lished. When the vibrating system is represented by a mass, spring, and
dashpot, the spring and damping coefficients are constants and the solu-
tion of the four simultaneous equations at each value of frequency pro-
vide evaluation of the response. When the footing is supported by an
elastic semi-finite body, the damping and spring coefficients are fre-

quency dependent (Reissner(B), Hsieh(lo)), which requires a change in the



-16-

coefficients for the four simultaneous equations to be solved at each
value of frequency. The latter method was followed utilizing the IBM
7090 high speed computer to obtain results corresponding to the WES

tests (Hall and Richart(lg)).

VIBRATIONS FOR SYSTEMS HAVING NONLINEAR RESPONSE

The early test results by Hertwig, Frih and Lorenz(l5)

3 and
other tests by the DEGEBO group indicated test curves corresponding to
those which might be developed by a nonlinear spring support. Subse-
quently, Lorenz(lu)’(l5) described procedures which might explain the
appearance of the DEGEBO response curves through the use of a graphical

16)

method developed by Den Hartog( This method is based on a force-
displacement curve similar to curve A (stiffening spring), or curve C
(softening spring) on Figure 6a. The usual elastic spring is represent -
ed by the straight line, curve B. For undamped, single-degree-of-free-
dom forced vibrations, the amplitude-frequency response curves correspond-
ing to these nonlinear spring supports are shown in Figure 6b. Note that
for the usual case of a softening spring, C , the peak of the response
curve is tipped to the left, or the peak frequency decreases as the
amplitude increases.

In tests of bearing capacity of an individual footing, the
usual type of load-settlement curve obtained is nonlinear and is of the
softening type. Consequently, it might be expected that in studies of
vibrations of footings a softening spring would be encountered. The

probable load-settlement relations for a footing undergoing vertical

vibration is illustrated in Figure 7. Under the static weight of the
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(b) DYNAMIC RESPONSE CURVES

Figure 6. Nonlinear Springs and Response Curves.



AXIAL LOAD

-18-

rrorrrrirrrrryrrrriirrIirr7rririy

Figure 7.

SETTLEMENT

Static Load-Settlement Curve for Footing.
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footing, the settlement curve OA is developed. When a small dynamic
oscillating load is added, the load-displacement curve BC develops, and
for an increase in dynamic load a curve similar to DE is followed.

This change in modulus with amount of deformation of footings has been
described by Terzaghi(l7), Tschebotarioff(l8), and Richart<9), for
example. Thus, whenever the footing is undergoing vibrations of suffi-
cient magnitude to develop a nonlinear softening response of the sup-
porting soil, the amplitude-frequency curves would be expected to ex-
hibit a shape similar to that shown as curve C on Figure 6b.

The response curves for the DEGEBO tests indicated this soften-
ing spring type of nonlinear response, However, the peak amplitude of
vertical oscillation of the smallest of the several curves usually shown
to indicate this effect is about 1.3 mm (0,05 in.) at 20 cycles/sec.
which is on the order of six times the allowable amplitude of vibration
for machines or machine foundations. A similar type of response was
observed in the program of vibration tests on model footings(l>’(2)o
Again the nonlinear effect was of importance only when the amplitudes
of motion exceeded those generally considered as allowable.

While the theory described in section 3 does not specifically
consider non-linear effects, the theory can be modified by considering
possible changes in the distribution of contact stresses between the
soil and the base.

3),(4),(5),(6),(7),(8)

The theoretical solutions include the

assumption that the pressure distribution at the base of the footing
remains constant regardless of the frequency of oscillation or of the

(19)

magnitude of the contact stresses. However, Lysmer has shown

theoretically that the frequency of oscillation does have an effect on
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the pressure distribution. Furthermore, from the knowledge of soil be-
havior, it is evident that soils may be considered to behave elastically
only for very small strains. For larger strains, inelastic behavior oc-
curs and at large strains the material fails.

Figure 8 illustrates possible distributions of pressure at the
contact between a rigid circular footing and the soil surface. If the
soil behaved as a theoretical elastic body, the "rigid base" distribu-
tion would exist. It is probable that cohesive soils would permit a
distribution similar to this one to develop, but only finite pressures
could develop near the periphery of the footing instead of the theoreti-
cally infinite values. At the other extreme, if the soil is cohesion-
less the limiting pressure at any point beneath the footing depends
upon the confining pressure at that point. The envelope OABC shown on
Figure 8a represents a possible pressure distribution at total static
bearing failure of the footing. At lesser loads, failure occurs local-
ly at points near the periphery with the failure zone progressing to-
ward the center as the load increases. If a distribution similar to
curve B-A in Figure 8b is assumed to represent the static pressure
distribution beneath a rigid footing resting on sand, then adding an
increment of load should produce a distribution of pressure similar
to C-A., The resulting distribution C-A shifts the centroid of each
half of the pressure diagram nearer the axis of the footing, thereby
reducing the "effective radius" of the footing (Richart(go)) and alter-
ing its dynamic behavior.

As the total load (static plus dynamic) upon a base increases,

the amplitude of motion increases, and the response curve begins to be
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more like that for a uniform or parabolic stress distribution rather than
for a rigid base distribution. As may be seen from Figure l4a, this
change of pressure distribution causes a decrease in the frequency of
vibration at which the maximum amplitude of motion occurs, even in an
elastic system. Thus, the localized failures of the soil beneath a

rigid footing contribute directly to a change in the pressure distribu-
tion at the contact zone, and the change in pressure distribution is
exhibited by a modification of the dynamic response of the footing.
Further information is needed on the pressure distributions developed
beneath vibrating footings throughout practical ranges of amplitude and

frequencies of vibration.

DISCUSSION OF TEST RESULTS

Vertical oscillation.

In the program of vibration tests on model footings(l)’<2> one
series of tests was conducted at the U. S. Army Waterways Experiment
Station, Vicksburg, Mississippi, and the second series was conducted at
Eglin Field, Florida. At the Vicksburg site the soil is a loess and is
classified as a silty clay (CL). At the Eglin Field site the soil is a
nonplastic uniform fine sand (SP). A total of 55 tests were run on the
five footings varying from about 5 feet to 16 feet in diameter at the
Vicksburg site and 39 tests were run on the five footings varying
from 5 feet to 10 feet diameter at the Eglin Field site. In each series
of tests, four positions of the eccentric weights of the mechanical vi-
brator were used to produce four different intensities of force appli-
cation. Thus four response curves were developed for each footing
tested under a given static loading condition. Typical amplitude-

frequency response curves are illustrated in Figure 9, and curves for
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each of the 94 tests are given in Reference 1. 1In each series of tests
it was Ilndicated that a slight lowering of the frequency accompanied
the higher force amplitude. It should be noted that the amplitudes of
motion developed under the higher input forces are considerably above
the values which would normally be tolerated for machine foundations.
In general, only the curve associated with the lowest force amplitude
input produced amplitudes in the allowable range.

Figure 10 illustrates a comparison between the theoretical
amplitude-frequency curves and the test curves for two bases at the
Vicksburg site. The designation as WES Base 2-7 indicates a test at
the Vicksburg site using Base No., 2 - test No. 7. For this test con-
dition the value of b computed from Equation (2) is 5.2. Theoretical
curves for b = 5 are also shown by solid lines for the two assumptions
of Poisson's ratio of l/h and 1/2. These two theoretical curves brack-
et the test curve. A similar comparison for WES Base L4-5 shows the test
curve to be nearly identical with the theoretical curve for b = 3.8,
o= 1/2,

In order to summarize comparisons of the type indicated on
Figure 10, the test results have been converted into dimensionless form
as shown on Figures 11 and 12. On Figure 11 the dimensionless maximum
amplitude of vertical motion is shown as ordinate with the mass ratio,
b , as abscissa. Only those test results with a maximum acceleration
less than 1/5 of gravity are shown. From Figure 11 1t is seen that the
test results obtained at the Vicksburg site generally follow the trends
indicated by the theoretical curves. However, for the tests on the
Eglin Field site there is considerably more scatter of the experimen-

tal points. This might be anticipated to some extent, because the clean
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fine sand beneath the footings at the Eglin Field site exhibits a stiff-
ness (or shear modulus) which depends upon the confining pressure, con-
sequently, the behavior of the sand beneath the footings should be sig-
nificantly different from that of a homogeneous, isotropic elastic body.
However, even with the considerable scatter involved, the amplitude of

motion is generally less than a factor of 2 from the value indicated by
the theoretical curve (assuming the curve for u = 1/4 as a reference).

On Figure 12 the comparisons are shown for the dimensionless
frequency - mass ratio relationships. Again, the results from the
Vicksburg site agree well with the theoretical curves based on the rigid
base pressure distribution. The results for the tests at Eglin Field
indicate a better agreement with the theoretical curves based on the
parabolic distribution of pressure on the base of the oscillator than
with the curve for the rigid base distribution.

Finally, Figure 13 is a summary of all the vertical oscil-
lation tests with the results from the Vicksburg site shown as solid
black dots and those from the Eglin field site shown as open circles.
The ordinate represents the ratio of maximum amplitude of vibration com-
puted to maximum amplitude of vibration measured and the abscissa rep-
resents the ratio of maximum vertical acceleration of the footing to the
acceleration of gravity. When this acceleration ratio reaches about
1.0 it is probable that the footing begins to leave the ground on the
upswing and acts as a hammer on the downswing. In practical applica-
tions it is unusual to permit the vertical acceleration of a machine
foundation to exceed about 0.3 g and the design 1limit established by
Rausch(gl) for damage to machines and machine foundations corresponds

to 0.5 g. The trend in the data from the Vicksburg site is definitely
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Figure 13. Vertical Oscillation - Summary (94 tests).
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Z

to lower the ratio _max(comp) ¢ the acceleration ratio increases. At the
ax(comp)

lower values of the acceleration ratio, the agreement between test and
theory is quite good. For the Eglin Field data, the scatter is such that
no trend of the results is clear. However, Figure 13 again illustrates
that for the entire program of vertical oscillation tests, the theoreti-
cal prediction of the maximum amplitude of oscillation is within a factor

of 2 of the measured amplitude. For most design purposes this is quite

satisfactory.

Torsional oscillation.

In order to excite the footing into a torsional oscillation
about a vertical axis through the center of the footing, the mechanical
vibrator was set to produce a pure torque in a horizontal plane. The
amplitude~frequency response curves are similar in appearance to those
for the vertical oscillation and two typical curves are shown in Figure 1k,
The response curve on Figure lha indicates o nonlinear response corre-
sponding to a softening spring (see also curve C, Figure 6b), which prob-
ably indicates slippage between the footing and the soil near the peri-
phery of the footing. When studying the response curves for the 52 tests
run in torsional oscillation it should be noted that only six of these
tests developed rotational motions of less than O.1 mils. Consequently,
L6 of these tests produced oscillations that were appreciably greater
than that usually permitted in design.

Figure 15 is u summary of the dimensionless amplitude plotted
against the inertia ratio for the tests corresponding to the lowest set-
ting of the eccentric masses on the oscillator, Also shown in the dia-
gram is the theoretical curve. It is evident that the test results
agree rather well with the theoretical prediction when the amplitude

of motion is small. Because the limiting torsional motions are usually
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(from Ref. ).
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less than 0.10 mils, the results of Figure 15 support the applicability of

the theoretical prediction for design purposes.

Rocking and sliding.

The design restrictions of small amplitudes of motion within the
limiting range of frequencies to be applied by the oscillator determined
geometrical configurations of the WES model footings which affected the per-
formance in the rocking and sliding mode of oscillation. Only Base No. 1
developed Mode II in the rocking and sliding oscillation within the availa-
ble frequency range.

The theoretical solution available for rocking of a rigid cylin-
drical footing about a horizontal axis through the center of the base is
restricted to the case of Poisson's ratio equal to zero, although the so-
lution for horizontal sliding applies for u = 0, 0.25, and 0.50 (Arnolad,
et. alo<8))° As a result, the solution for the eoupled motion was pre-
pared for the case of p = 0. From examination of Figure 4b it could be
estimated that motions for u > O would exhibit slightly lower maximum am-
plitudes at somewhat higher frequencies. Because we are usually concerned
with the lowest frequency at which a peak amplitude of motion will occur,
and the numerical value of this amplitude of motion, the theoretical solu-
tion for the case p = O should give a conservative estimate of both.

The solid curve on Figure l6a represents the theoretical response
curve for the rotational motion of the footing about its center of gravity
and the dashed curve represents the test values obtained for Base 1, test 30,
at the Vicksburg site. The maximum amplitude for Mode II motion was 0,31
mils at about 18.6 cps. The peak amplitude for Mode I motion was not re-
corded because it was below 8 cps which was the lower limit for smooth opera-

tion of the mechanical oscillator. However the curve does indicate that
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there must be a peak Mode I response amplitude, and the theoretical value
suggests that it must have been at least 1.0 mils, which is on the order
of 10 to 20 times design allowable rotation.

A partial explanation of the reason for the test peak amplitude
of Mode II motion being larger and at a lower frequency than the theoreti-
cal value is given by the diagram shown as Figure l6c. For pure rocking,
the distribution of vertical pressure on the base, along a diameter in the
plane of rocking, of a rigid circular footing is represented by the solid
curve on Figure 1l6c. This distribution is superimposed on the static dis-
tribution (as shown on Figure 8a) with the result that the zone of soil
beneath the extreme edges of the footing undergoes a shear failure and
transmits its load to zones nearer the axis of rotation. The shaded zone
indicates a probable distribution of the dynamic pressure actually trans-
mitted to the soil surface at the maximum angle of oscillation. This dis-
tribution of pressure would lead to a higher amplitude of motion at a
lower frequency (which could be interpreted as a lower value of geometri-
cal damping) than would be developed for the theoretical distribution.
This reasoning is consistent with the theoretical results obtained for
vertical oscillation asshown in Figure ba.

Generally, the amplitudes of rotational motion developed by the
WES test footings were relatively large, Table 1 includes pertinent data
from rocking and sliding tests of the WES model footings which were excited
by the lowest force input (i.e.eccentricity 0.105 in). From this data it
is seen that the computed amplitude of motion varied from O0.72 to 3.94
times the measured value and the computed value of frequency at maximum
amplitude varied from 0.70 to 1.27 times the test values. Only for the

Mode II vibration was the computed amplitude lower than the measured value.
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A possible explanation for these results was discussed in the preceding
paragraph., For the Mode I vibrations, which are most likely to occur in
prototype footings, the theoretical amplitude was larger than measured,
and the frequency for maximum amplitude was generally lower. Except for
WES Test 3-26, the computed amplitudes of motion were within a factor of
two of the measured value. For some reason, WES Test 3-26 developed a
lower amplitude of motion than did WES Test 4-18A. Base 3 was 9' dia-
meter, weighed 24,315 1b, , and Base 4 was 10.33' diameter and weighed
304970 1lb. Both bases were subjected to the same rocking couple by the
mechanical oscillator,

In addition to the comparisons of peak values indicated in
Table I, a more complete study of the shapes of the amplitude-frequen-
cy response curves from both test and theory (Hall and Richart(lg)) has
indicated that in all but a few cases, the agreement throughout the range
of" frequency was within a factor of two. For the exceptions, the theoret-

ical values were higher, as for WES Test 3-26.

SUmmary.
The foregoing comparisons, and those by Whitman(ll> and

Weissmann(22>

, have shown the essential correctness of the theory for a
rigid base resting upon an elastic half-space,

In the case of bases upon the cohesive soil at the Vicksburg
site, the trends in the data for small amplitudes of motion were closely
predicted by the theory. The theory also provided for good predictions
of amplitudes of motion at resonance and resonant frequencies, after estab-

lishing values of v, from laboratory tests. The theory also provided sat -

S
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isfactory predictions for the behavior of the bases at the Eglin site,
although it was necessary to use the theory with judgement in order to
account for the variation of the soil modulus with depth and to account
for the pressure distributions to be expected for bases resting upon
sand.

Non-linear effects were evident in the test results, but were
signigicant only for large motions which would generally be unacceptable
in practice. These non-linear effects can also be accounted for by
using the theory with judgement.

At a minimum, it has been confirmed that the theory for a rigid
base resting upon an elastic half-space correctly takes into account the
effects of the inertia of the soil and the loss of energy through radia-

tion of elastic waves from the base.

USE OF LUMPED SYSTEMS FOR
DYNAMIC RESPONSE OF FOUNDATIONS
In the preceding section it has been demonstrated that the theory

for a footing resting on an elastic half-space provides satisfactory pre-
dictions for the dynamic behavior of rigid circular model footings from

5' to 16' diameter which rested upon a horizontal surface of a relatively
uniform soil mass. However, it is seldom that such simple and idealized
geometries and soil conditions are encountered in the design of dynamical-
ly loaded foundations. Usual variables include different sizes and shapes
of the foundation, the depth of embedment below the ground surface, varia-
tions of soil stiffnesses with depth or the presence of layers of soil

with different dynamic characteristics, the water table, and the variation



-38-

of the stiffness of the soil with stress level, for example. It is often
more convenient to consider the effects of these variables as they affect
the behavior of a simple mass-spring-dashpot system, rather than to attempt
to modify the elastic half-space theory to accommodate these variables.

The basic elements of the simple mechanical system were de-
¢ ribed at the beginning of the paper and the use of this system to describe
vibration problems is well known. Even for problems involving several de-
grees of freedom, the dynamic behavior of the mass-spring-dashpot system
may be described by relatively simple expressions. Because the quantities
involved in the inertia forces are described as a single mass, those gov-
erning the damping forces are described by a damping constant, and those
relating to thé elastic restoring forces are described by a spring con-
stant, the entire system is often called a "lumped" system. That is, these
quantities are lumped together in each category in order to simplify the
basic equations of dynamic equilibrium.

Throughout the past several decades there have been numerous
attempts to fit theoretical curves to the test data from vibrating foot-
ing tests by appropriate choices of the lumped parameters. Hertwig, Frﬁh,

(13)

and Lorenz demonstrated that this fit was possible for individusl

tests, but different values of the lumped parameters were required for

(3)

different test conditions on the same soil. Reissner compared his

theoretical results from the half-space theory with those resulting from

the lumped system and found that the lumped parameters should be fre-

(10)

quency dependent for good agreement between these two methods. Hsieh

described this frequency derendence of the lumped parameters in more de-

(23)

tail. Recently, Lysmer(lg), and Lysmer and Richart have shown that



for vertical vibration of a rigid circular footing a lumped system "analog"
can be developed which provides close agreement with the response curves
from the elastic half-space theory in the Ifrequency range near resonance
where significant amplitudes are developed. The equation of motion for
+this lumped system representation of the vertical motion of the rigid cir-

cular footing 1is

3 2 Lar ’
my 2t e "G e —S 2 o Qe '23)
O .
1-p -y

in which

z is the vertical displacement,

z  1s the velocity,

Z is the acceleration,
and

Qt) is the time-dependent exciting force.

Note that Fquation '23) has a form similar to that of Equation ‘1), The
coefficient of z in the first term on the left hand side of Eguation (2%)

is Jjus®t the mass of the rigid base. The coefficient of z in the third term
is the force-deflection ratioc [i.e. the spring constart for static load -
ing. The second term represents the damping which results from radia-

tion of wave energy from the base. Thus, a single degres of freedcm sys-
tem can be made approximately equivalent to an actual foundation by

using three constant factors (a) a mass just equal to that of the foundation
(without requiring any "effective mass" of the soil). {b) a spring constant
chosen as it would be for static loads, and {c! a suitable damping coef-
ficient which includes both soil properties and footing geometry. To re-

late the geometrical damping through radiation to the conventional "damp-

ing ratio", D [Equation {6)], the damping coefficient from Equation |23)
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and the equivalent

lead to the expression

D = — =
C

¢ Jip Vb

which applies to vertical motion of the rigid footing.

Procedures similar to that described above may be used to estab-
lish damping and spring factors for other modes of vibration. Awojobi and

(2k) (10) (22)

Grootenhuis , and Hsieh and Weissman have used slightly different
approaches to obtain comparable factors. These equivalent factors and their
applications are described in the companion paper by Whitman and Richart<25>.
The points discussed in this section may be summarized briefly.
First, it has been demonstrated that the elastic half-space theory pro-
vides solutions which agree well with test data obtained from conditions
similar to those upon which the theory was based. Next, it has also been
established that the nalf-space thecry -2 provide information from whicn
the mass, spring, and damping terms can be ¢stablished for use in tne
lumped parameter method of analysis. Thus the elastic half-space theory
provides a bridge between the simple mass-spring-dashpot system and the
analysis of actual foundation response to dynamic loads. Because the
practicing engineer is more likely to be acquainted with the use of the
lumped systems, and because of the availlability of information expressed
in this terminology, it is probable that the most effective application of
the half-space theory lies in evaluation of the lumped parameters. This

will be particularly true in the study of multi-degree of freedom motions

of foundations.
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CONCLUSIONS

This study was directed toward a comparison of the model footing
test results obtained by personnel at the U. 5. Army Engineer Waterways
Experiment Station with theoretical solutions. The theoretical proce-
dures selected for this comparison employed a footing resting on a semi-
infinite elastic body to represent the real footing resting on soll.
Recently, it has been demonstrated that the theory for footings on the
semi-infinite elastic body leads to solutions which may be interpreted as
from a mass-spring-dashpot system. That is, it provides expressions for
spring and damping constants. Consequently, if the elastic semi-infinite
body theory compares well with test results, the mass-spring-dashpot or
"lumped parameter” system can be used equally well.

From comparisons of the test results for vertical, torsional and
coupled rocking and sliding oscillations of rigid circular footings, 1t
appears that the elastic semi-infinite body theory gives good estimates
of the amplitudes of motion .hen the vertical cscillation produces a
linear acceleration of the footing of less than about 1/2 g and when rota-
tional oscillations are less than about 0.10 mil. For larger motions norn-
linear effects may introduce important differences between the theory and
test results. However, for machine foundations, these limiting motions
are usually not exceeded and the theoretical solutions, either used di-
rectly or converted into the form of the lumped parameter system, should

provide useful guldes for design purposes.
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TABLE 1

ROCKING AND SLIDING - COMPARISON

OF TEST AND THEORETICAL RESULTS

FOR LOWEST EXCITING FORCE.

¢Vert ﬁv comp. comp. ﬁhoriz. ﬁh comp. fcomp.
ng? xgﬁﬁ ?;?i;) vV meas. fmeas. ?Z?i;) féh meas. fmeas.
WES
1-36 I -- -- -- -- -- --
1-36 II 0.315 0.73 1.27 0.095 1.2k 1.17
2-23 I 0.28 1.04 0.70 0.2k 1.96 0.99
3-26 I - - - 0.047 3.9k 0.83
L-184 I -—% -- -- 0.055 1.96 1.09
EGLIN
2-13 I 0.185 1.62 0.85 0.335 1.49 0.78
3-13 I 0.1k2 1.06 0.9k 0.193 1.02 0.91
h-13 I 0.110 -—% -- 0.156 0.72 0.94

¥ No peak of amplitude-frequency

available.

curve reached within frequency range
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