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Summary

The genomes of 

 

Treponema denticola

 

 and 

 

Treponema
pallidum

 

 contain a gene, 

 

licCA

 

, which is predicted to
encode a fusion protein containing choline kinase
and CTP:phosphocholine cytidylyltransferase activi-
ties. Because both organisms have been reported to
contain phosphatidylcholine, this raises the possibil-
ity that they use a CDP-choline pathway for the bio-
synthesis of phosphatidylcholine. This report shows
that phosphatidylcholine is a major phospholipid in 

 

T.
denticola

 

, accounting for 35–40% of total phospho-
lipid. This organism readily incorporated [

 

14

 

C]choline
into phosphatidylcholine, indicating the presence of
a choline-dependent biosynthetic pathway. The 

 

licCA

 

gene was cloned, and recombinant LicCA had choline
kinase and CTP:phosphocholine cytidylyltransferase
activity. The 

 

licCA

 

 gene was disrupted in 

 

T. denticola

 

by erythromycin cassette mutagenesis, resulting in a
viable mutant. This disruption completely blocked
incorporation of either [

 

14

 

C]choline or 

 

32

 

Pi into phos-
phatidylcholine. The rate of production of another
phospholipid in 

 

T. denticola

 

, phosphatidylethanola-
mine, was elevated considerably in the 

 

licCA

 

 mutant,
suggesting that the elevated level of this lipid com-
pensated for the loss of phosphatidylcholine in the
membranes. Thus it appears that 

 

T. denticola

 

 does
contain a 

 

licCA

 

-dependent CDP-choline pathway for
phosphatidylcholine biosynthesis.

Introduction

 

Phosphatidylcholine (PC) is a major lipid in eukaryotic
membranes, in which it accounts for 40–60% of the phos-

pholipids. Phosphatidylcholine is a major structural
component of membrane bilayers and lipoproteins, and
participates in several signal transduction pathways.
Phosphatidylcholine is also found in a wide variety of
bacteria, notably symbionts and pathogens (reviewed in
Sohlenkamp 

 

et al

 

., 2003), where it may constitute only a
few per cent of total lipids as in 

 

Pseudomonas aeruginosa

 

(Albelo and Domenech, 1997) or may be a major lipid
component as in 

 

Acetobacter aceti

 

 (Hanada 

 

et al

 

., 2001).
In eukaryotes, PC is made by either of two pathways:

the CDP-choline or Kennedy pathway (overview shown in
Fig. 1) consists of three enzymatic steps catalysed by
choline kinase, CTP:phosphocholine cytidylyltransferase
(CCT), and a CDP-choline:1,2-diacylglycerol choline
phosphotransferase. The phospholipid N-methyltrans-
ferase pathway consists of the stepwise methylation of
phosphatidylethanolamine (PE), with S-adenosylmethion-
ine as methyl donor. It has been long assumed that bac-
teria do not possess the CDP-choline pathway for PC
biosynthesis (Lopez-Lara and Geiger, 2001). To date
prokaryotes have been shown to make PC by either the
phospholipid N-methyltransferase pathway (Kaneshiro
and Law, 1964) or the phosphatidylcholine synthase path-
way, a pathway unique to bacteria in which choline reacts
with CDP-diacylglycerol to form PC (de Rudder 

 

et al

 

.,
1999). Most bacteria having PC as a membrane lipid
probably possess both currently known bacterial path-
ways for PC biosynthesis though some, including 

 

Borrelia

 

,

 

Pseudomonas

 

 and 

 

Burkholderia

 

 spp., possess only one
PC biosynthesis pathway (reviewed in Sohlenkamp 

 

et al

 

.,
2003)

Some bacteria do have a CDP-choline pathway for
attaching phosphocholine to complex, cell-surface oli-
gosaccharides (Fig. 1). The 

 

lic1

 

 operon in 

 

H. influenzae

 

and 

 

lic

 

 operon in 

 

S. pneumoniae

 

 have been identified as
being involved in this process (Weiser 

 

et al

 

., 1997; Zhang

 

et al

 

., 1999). Gene 

 

licA

 

 was proposed to be a choline
kinase (Weiser 

 

et al

 

., 1997) and this identity has recently
been confirmed by cloning, expressing, and characteriz-
ing the gene product (H. A. Campbell and C. Kent, unpubl.
data). The 

 

licC

 

 gene has been identified as the CCT of
this pathway, although its primary structure is not similar
to that of the eukaryotic CCTs (Campbell and Kent, 2001;
Rock 

 

et al

 

., 2001). The gene encoding the choline phos-
photransferase that donates phosphocholine to the oli-
gosaccharide has not been definitively identified, but it has
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been proposed to be 

 

licD

 

 (Zhang 

 

et al

 

., 1999; Lysenko

 

et al

 

., 2000).
Genomic analysis has revealed that several bacteria

appear to encode a fusion protein in which a 

 

licC

 

-encoded
CCT is the amino terminal half and a 

 

licA

 

-encoded choline
kinase is the carboxyl terminal half (Fig. 2). We refer to
this fusion gene as 

 

licCA

 

. The 

 

licCA

 

-containing organisms
include 

 

Treponema pallidum

 

, which causes syphilis, 

 

Fuso-
bacterium nucleatum

 

, which is involved in periodontal
disease, and 

 

Clostridium perfringens

 

, which causes gan-
grene. Although little information is available on phospho-
lipid synthesis and composition in fusobacteria and
clostridia, it is of interest that the treponemes have been
reported to contain PC as a major membrane phospho-
lipid (Livermore and Johnson, 1974; Matthews 

 

et al

 

.,
1979; Barbieri 

 

et al

 

., 1981; Belisle 

 

et al

 

., 1994). The pres-
ence of the 

 

licCA

 

 fusion gene in treponemes suggests that
they may utilize a CDP-choline pathway for biosynthesis
of PC. In this report we show that 

 

T. denticola

 

 possesses
a CDP-choline pathway for PC biosynthesis, and that a

 

licCA

 

 gene similar to that of 

 

T. pallidum

 

, encodes proteins
in that pathway. This is the first report of a CDP-choline
pathway for PC biosynthesis in bacteria.

 

Results

 

Phosphatidylcholine in 

 

T. denticola

Several species of 

 

Treponema

 

, including 

 

T. denticola

 

,
have been reported to contain PC and several other

phospholipids including PE and PG (Livermore and
Johnson, 1974; Smibert, 1976; Barbieri 

 

et al

 

., 1981), but
the amount of each phospholipid in 

 

T. denticola

 

 has not
previously been reported quantitatively. In order to con-
firm the presence of and measure the amount of PC in 

 

T.
denticola

 

, total lipids were extracted and chromato-
graphed by thin-layer chromatography in several different
solvent systems. The major phospholipids, PC, PE
and phosphatidylglycerol (PG) were identified by co-chro-
matography with known standards. Phosphatidylcholine
and PE were the most abundant phospholipids, each
accounting for about a third of total phospholipids, while
PG was about 10% (Fig. 3). Cardiolipin was a minor lipid
(not shown).

Although the choline-containing sphingolipid, sphingo-
myelin, has been reported to be a constituent of 

 

T.
pallidum

 

 (Matthews 

 

et al

 

., 1979), we found no evidence
for this lipid in 

 

T. denticola

 

, either by measuring lipid
phosphate or by incorporation of [

 

14

 

C]-choline or 

 

32

 

Pi
into a lipid that co-chromatographed with authentic
sphingomyelin.

If 

 

T. denticola

 

 were using a CDP-choline pathway for
PC biosynthesis, one would expect that this lipid would be
specifically labelled after incubating the bacteria with radi-
olabelled choline. Indeed, 

 

T. denticola

 

 had a robust sys-
tem for uptake and incorporation of either [

 

3

 

H]choline (not
shown) or [

 

14

 

C]choline (Fig. 4) into lipids. Separation by
thin-layer chromatography and quantification of the indi-
vidual lipids from such an experiment revealed that at
least 96% (

 

3

 

H) or 99% (

 

14

 

C) of the radioactivity in the total
lipid extract was in PC.

 

Cloning and expression of 

 

licCA

 

 and enzymatic activity of 
the recombinant protein

 

The 

 

licCA

 

 gene was identified in preliminary 

 

T. denticola

 

genome sequence contigs based on similarity to the pre-
dicted 

 

licCA

 

 gene of 

 

T. pallidum

 

 (Fraser 

 

et al

 

., 1998). The

 

T. denticola licCA

 

 DNA sequence was found to be identi-
cal to that shown in the preliminary genomic contigs (data
not shown). The original cloned fragment in pSY107 was
designed to contain about 1300 base pairs upstream of
the translation start site predicted from the 

 

T. pallidum
licCA

 

 sequence (

 

79

 

MAAGFGS…, Fig. 2). Recombinant
expression of a 

 

T. denticola

 

 construct that initiated at this
translation start site, however, resulted in a protein that
was insoluble and inactive. Inspection of the sequences
upstream of this predicted start site revealed another pos-
sible translation initiation site, which added 78 residues to
the protein sequence. The 

 

T. pallidum

 

 and 

 

T. denticola

 

sequences were 45% identical within this segment.
Expression of a construct designed to initiate at this new
site (

 

1

 

MKRRYF…, Fig. 2) resulted in a protein that was
soluble and active. The protein was purified to near homo-

 

Fig. 1.

 

 CDP-choline pathways for biosynthesis of phosphatidylcholine 
and glycoconjugate-linked phosphocholine. The CDP-choline path-
way for phosphatidylcholine biosynthesis is found in animals, plants, 
yeasts and other eukaryotes. The CDP-choline pathway for addition 
of phosphocholine to glycoconjugates has been demonstrated in 

 

H. 
influenzae

 

 and 

 

S. pneumoniae

 

 and is presumably present in other 
bacteria containing the 

 

lic

 

 genes. In organisms containing the 

 

lic

 

 
genes, choline kinase is the product of 

 

licA

 

, cholinephosphate cyti-
dylyltransferase is the product of 

 

licC

 

, and the cholinephosphotrans-
ferase that transfers phosphocholine to the complex oligosaccharide 
is the presumed product of 

 

licD

 

.
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geneity (Fig. 5) and was active in assays for both choline
kinase and CCT (Table 1).

Because the enzyme activities of the LicCA protein
were 50–200 times lower than the activities of the individ-
ual enzymes from 

 

S. pneumoniae

 

 (Campbell and Kent,

2001; Rock 

 

et al

 

., 2001; H. A. Campbell and C. Kent,
unpubl. data), we also constructed expression vectors that
would encode the individual enzymes. These were termed
C308 for the CCT from the 

 

licC

 

 portion and A317 for the
choline kinase from the 

 

licA

 

 portion. Residue 308 was the

 

Fig. 2.

 

 Alignment of LicC, LicA and LicCA gene products. The alignment was according to the 

 

CLUSTALW

 

 algorithm in the 

 

MEGALIGN

 

 program of 
the Lasergene package. Shaded residues are those that are conserved (identical or Y = F =W, I = L = V, K = R, E = D, and S = T) in all sequences. 
Boxed residues are the critical Arg and Lys active site residues (see 

 

Discussion

 

). Sequences, abbreviations and accession numbers are Td, 

 

Treponema denticola

 

 (AY322155); Tp, 

 

Treponema pallidum

 

 (NP_218547); Fn, 

 

Fusobacterium nucleatum

 

 (NP_602486 [FnA] and NP_604134 
[FnB]); Cp, 

 

Clostridium perfringens

 

 (NP_561543); Sp, 

 

Streptococcus pneumoniae

 

 (AAK94072 [LicC] and AAK94073 [LicA]); Hi, 

 

Haemophilus 
influenzae (NP_439688 [LicC] and P14181 [LicA]). The putative initiator methionine in the T. pallidum LicCA is encoded by GTG. The last six 
residues of the T. pallidum LicCA are not shown. Streptococcus pneumoniae LicA and H. influenzae LicA are aligned with the C-terminal regions 
of LicCA, such that the conserved Gly-Met-Thr-Asn motif near the N-terminus of the LicA region (330–333 in T. denticola) is aligned in all 
sequences. A series of 4-residue tandem repeats at the amino terminus of H. influenzae LicA is not shown, and is indicated by ‘/’.
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C-terminus of C308 and residue 317, preceded by an
initiator Met, was the N-terminus of A317. These proteins
were also purified to near homogeneity (Fig. 5) and
assayed for their activities. The A317 choline kinase activ-

ity was about fivefold greater than the choline kinase of
the fusion protein, but the C308 CCT activity was negligi-
ble (Table 1).

Allelic replacement mutagenesis of licCA

To determine whether LicCA was essential for phosphati-
dylcholine biosynthesis in T. denticola, licCA was dis-
rupted by allelic replacement mutagenesis. The strategy
for licCA mutagenesis is shown in Fig. 6. Briefly, a 693 bp
BstZ17I-BclI fragment including the 5¢ end of licCA in
pSY107 was replaced with a 2.1 kb ermF/ermB cassette.
The vector sequence was released by restriction enzyme
digestion and T. denticola was transformed by electropo-
ration with the linearized disrupted licCA. Six erythromy-
cin-resistant isolates were recovered, of which two had
the desired allelic replacement. Construction of the
isogenic mutant, designated T. denticola LBE3, was con-

Fig. 3. Phospholipid composition of parent and mutant T. denticola. 
Levels of major phospholipids were determined as indicated in Exper-
imental procedures. Data for T. denticola 35405 (open bars) and 
isogenic mutant LBE3 (shaded bars) are the averages and standard 
deviations from five samples. Phospholipids are phosphatidylcholine 
(PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and 
total phospholipids (TL).

Fig. 4. Incorporation of [14C]choline into lipids in parent and mutant 
T. denticola. Parent (35405, solid circles) and two clonal isolates of 
mutant (LBE, X¢s and solid triangles) cells were grown to log phase, 
then 2 mCi ml-1 [14C]choline were added to the culture medium. Cells 
were harvested at the indicated times and processed as described 
in Experimental procedures. Total radioactivity in the lipid extract, 
normalized for the total cellular protein, is reported.

Fig. 5. Analysis of purified recombinant proteins. Purified LicCA (lane 
2), C308 (lane 3), and A317 (lane 4) were subjected to SDS-PAGE. 
Lane 1 contained molecular weight standards.

Table 1. Enzymatic activities of LicCA and fragments.

Recombinant
protein

Cytidylyltransferase
activity (nmol min-1

mg protein-1)
Choline kinase Activity 
(nmol min-1 mg protein-1)

LicCA 813 ± 9 228 ± 6
C308 <1 NA
A317 NA 1100 ± 96

NA: not applicable.
Values are the averages and ranges of determinations from two
separate protein preparations.
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firmed by PCR analysis using oligonucleotide primers
CX226 and CX227. As expected, the amplicon from LBE3
was approximately 1.4 kb larger than that of the parent
strain, confirming the double crossover homologous
recombination event. Quantitative RT-PCR using a primer
set within licCA but downstream of the insertion site dem-
onstrated that licCA mRNA was present in 35405 and was
absent in LBE3. Similarly, QRT-PCR using a primer set
within the open reading frame directly downstream of
licCA in the T. denticola genome sequence showed that
this gene was transcribed in 35405, but was not tran-
scribed in LBE3. The polar effect of ermF/ermB insertion
in T. denticola is consistent with previous mutagenesis
studies (Lee et al., 2002). (data not shown).

The parent and mutant strains displayed no obvious
phenotypic differences. Growth rates and final densities
of broth cultures of the parent, 35405 and mutant LBE3
were not significantly different. Cell morphology and motil-
ity under phase-contrast microscopy were similar. Expres-
sion of membrane-associated proteins including Msp,
PrcA and OppA was not altered in LBE3 compared with
35405. Peptidase activities of T. denticola parent and
mutant strains as tested by hydrolysis of chromogenic
substrates SAAPFNA and BApNA were indistinguishable
(data not shown).

Lipid metabolism in the licCA mutant

Targeted disruption of the licCA gene completely elimi-
nated incorporation of [14C]choline into lipids and 32Pi into
phosphatidylcholine (Figs 4 and 7A). In addition, incorpo-
ration of [14C]choline into phosphocholine and CDP-
choline were also eliminated (Fig. 7B), as would be
expected for a licCA disruption. In the mutant, levels of
soluble [14C]choline were reduced by about 40% compared
to the parent strain. This may be due to absence of tran-
scription in LBE3 of the open reading frame downstream
of licCA, which has homology with predicted carnitine,
choline or glycine betaine transporters (data not shown).

Because T. denticola was grown in the presence of
serum, it was possible that the mutant was using serum
lipoproteins as a source for either PC or lysoPC, which
then might be acylated to form PC. Separation and quan-
tification of lipid mass, however, revealed that the mutant
contained little, if any, PC (Fig. 3).

To determine if the levels and biosynthetic rates of
other phospholipids were altered in the mutant, a time
course of 32Pi incorporation was carried out (Fig. 8). As
expected, essentially no 32Pi was incorporated into PC in
the mutant. The rate of incorporation of 32Pi into PG was
increased by about 50%, although there was not a signif-

Fig. 6. Strategy for mutagenesis of licCA. Plas-
mid pSY107, which contained the original licCA 
product plus 5¢ and 3¢ flanking sequences, was 
digested with BclI and BstZ17I to remove a 
693 bp fragment of licCA including the 5¢ end 
of the gene. The 2.1 kb ermF/ermB cassette 
was isolated from BamHI-PmlI digested 
pSY118 and ligated to the previously digested 
pSY107. In the resulting plasmid, pSY131, the 
ermF/ermB cassette is in opposite transcrip-
tional orientation to the disrupted licCA gene. 
pSY131 was digested to completion with SphI 
and PvuII to release the vector sequence. Tre-
ponema denticola 35405 was electroporated 
with the resulting linear DNA, resulting in allelic 
replacement of native licCA. Arrows show tran-
scriptional orientation of licCA (black), ermF/
ermB (hatched) and predicted open reading 
frames adjacent to licCA in T. denticola (grey).
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icant increase in the mass of PG (Fig. 3). The rate of
incorporation of 32Pi into PE in the mutant was increased
by 2.7-fold (Fig. 8), and the level of PE mass was
increased by twofold (Fig. 3). Thus it appears that the
mutant compensates for the lack of PC primarily by
increasing PE levels.

Discussion

The results presented here show that T. denticola con-
tains phosphatidylcholine as a major phospholipid and
has a choline-dependent mechanism for phosphatidyl-
choline biosynthesis. This mechanism is dependent on
an intact licCA gene, implying that the two enzymatic
functions of this gene, choline kinase and CCT, partici-
pate in the T. denticola pathway for phosphatidylcholine
biosynthesis. Thus it appears that this bacterium uses a
CDP-choline pathway for PC biosynthesis, which has not
previously been reported for bacteria. Although we can-
not definitively rule out the possibility that the LicCA
protein only indirectly governs PC biosynthesis in T. den-
ticola, it is much more likely that the LicCA choline kinase
and CCT activities directly participate in the CDP-choline
pathway. Strong evidence for these conclusions comes
from the disruption of licCA, which prevents conversion of
labelled precursors to phosphocholine and PC, and elim-
inates all detectable PC from this organism. Thus, there
is no evidence for PC biosynthesis by either sequential

methylation of PE or by a choline-dependent PC
synthase activity in the licCA mutant, and the preliminary
T. denticola genome sequence does not appear to con-
tain genes encoding key enzymes required for these
pathways.

The licC and licA genes were originally characterized
in H. influenza (Weiser et al., 1997) and S. pneumonia
(Zhang et al., 1999), where they are contained in an
operon as separate, non-contiguous genes. The two
genes are fused, however, in several organisms (Fig. 2).
The advantage of such a fusion is not clear. It is possible
that the proximity of the two active sites affords a more
efficient means of catalysis. The low activity of the fusion
protein as expressed heterogeneously was surprising,
considering the much higher activity of the recombinant
licC and licA gene products from S. pneumonia (Camp-
bell and Kent, 2001; Rock et al., 2001; H. A. Campbell
and C. Kent, unpubl. data) and eukaryotic choline
kinases (Porter and Kent, 1990; Kim et al., 1998; Gee
and Kent, 2003). Possibly the T. denticola licCA gene
product is post-translationally modified or cleaved in
vivo, leading to a higher level of activity in the native
form. Our attempts to produce ‘cleaved’ recombinant
proteins using molecular tools had mixed results. The
A317 fragment had higher choline kinase activity than
recombinant LicCA, but the CCT activity of the C308
fragment was much lower than that of recombinant
LicCA. Further studies are needed to quantify activity of
native LicCA.

Fig. 7. Chromatography of radiolabelled precursors and lipids.
A. Cells were labelled in 5 mCi ml-1 32Pi for 4 h, then 32P-labelled lipids 
from T. denticola LBE3 (M) and 35405 parent (P) were prepared and 
separated by TLC in solvent system I and visualized by autoradiog-
raphy. Phospholipids are phosphatidylcholine (PC), phosphatidyleth-
anolamine (PE) and phosphatidylglycerol (PG).
B. Cells were labelled in 2.5 mCi ml-1 [14C]choline for 6 h, then soluble 
metabolites were prepared and separated by TLC and visualized by 
autoradiography. Metabolites are choline (C), phosphocholine (P) and 
CDP-choline (Cc).

Fig. 8. Incorporation of 32Pi into lipids in parent and mutant T. denti-
cola. Parent and LBE3 were incubated with 5 mCi ml-1 32Pi for the 
indicated times in hours (h). Total lipids were prepared as described 
in Experimental procedures, and separated by TLC in solvent system 
I before scraping and counting. Closed symbols and solid lines, par-
ent; open symbols and dashed lines, LBE3. Circles are phosphatidyl-
choline, triangles are phosphatidylglycerol, and squares are 
phosphatidylethanolamine.
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In addition to the licCA genes in T. denticola and T.
pallidum, three other putative licCA genes have been
identified by genomic sequencing, one from Clostridium
perfringens and two from Fusobacterium nucleatum
(Fig. 2). LicCA from C. perfringens and one of the LicCA’s
from F. nucleatum are predicted to have the extended
amino terminal segment that we found necessary for sol-
ubility and activity of recombinant LicCA in T. denticola.
The other LicCA from F. nucleatum, however, does not
appear to have this extension. Also of interest is that the
two longer genes from C. perfringens and F. nucleatum
are altered in a region known to be important for activity
in the related GlmU/RmlA superfamily of nucleotidyltrans-
ferases (Brown et al., 1999; Blankenfeldt et al., 2000)
(Fig. 2). The alterations leave these two proteins without
the critical residues Arg-86 and Lys-96 (numbering for T.
denticola). In the crystal structures of these nucleotidyl-
transferases from E. coli and S. pneumoniae (Brown et al.,
1999; Kwak et al., 2002), these residues are found in a
loop which might be flexible enough to allow other resi-
dues in the altered, shorter loop to carry out their function.
Alternatively, the proteins with the altered catalytic loop
may not have active CCT activity, and there may be an
alternative function of this portion of the LicCA protein,
such as binding phosphocholine. Additional studies in
these organisms will be necessary to determine if this
region is part of the translated C. perfringens and F.
nucleatum LicCA proteins and whether they have these
potential activities.

A CDP-choline pathway for PC biosynthesis would also
necessitate the presence of a gene encoding a choline
phosphotransferase, which catalyses the last step in
which phosphocholine is transferred from CDP-choline to
diacylglycerol (Fig. 1). The TP0671 gene in T. pallidum is
quite similar to the choline- and ethanolaminephospho-
transferases of yeast and humans, with the highest simi-
larity in the CDP-alcohol phosphotransferase motif, known
to be part of the active site (Williams and McMaster,
1998). A sequence similar to TP0671 can be found in T.
denticola; the Treponema homologues are 49% identical
to each other in the amino terminal half, which contains
the active site (not shown). Thus, it is reasonable to pro-
pose that both of these treponemes encode a choline
phosphotransferase, and would have a complete CDP-
choline pathway for PC biosynthesis.

Of the relatively small number of prokaryotes that syn-
thesize PC, most have specific symbiotic or pathogenic
associations with eukaryotic hosts. In at least some of
these microbes, PC synthesized from host-derived cho-
line appears to be important in either bacterial growth or
for specific microbe–host interactions (Lopez-Lara and
Geiger, 2001). In T. denticola, PC does not appear to be
essential under in vitro culture conditions, and PC incor-
poration was not a result of the uptake of exogenous PC

from serum in the medium. In the absence of a functional
licCA gene, this organism appears to compensate for the
lack of PC by increasing its content of PE. It is possible
that this may be due a bias in nutrient availability in the
complex culture medium required for growth of this organ-
ism. Some other PC-producing bacteria have the ability
to modulate membrane phospholipid expression in
response to environmental conditions (Tang and Holling-
sworth, 1998; Hanada et al., 2001; Russell et al., 2002).
This phenomenon is distinct from the phase-variable
expression of phosphocholine in H. influenzae, which is
produced from the LicC and LicA activity of this organism
(Weiser et al., 1997) but is consistent with the hypothesis
that production of PC or phosphocholine in various
eukaryote-associated bacteria is important for bacterial
survival in these environments. Further studies are
required to understand the unique membrane physiology
of treponemes, as well as the potential role of choline
metabolites in the interaction between these organisms
and host cells.

Experimental procedures

Chemicals

Unless otherwise noted, chemicals were purchased at the
highest available purity from Sigma Chemical Co. (St
Louis, MO) or Fisher Scientific (Chicago, IL). [14C-methyl]-
choline, [3H-methyl]-choline, [14C-methyl]-phosphocholine,
[14C-methyl]-CDP-choline, and 32Pi were from Amersham.

Bacterial strains, plasmids and growth conditions

Treponema denticola ATCC 35405 and isogenic mutants
were grown and maintained under anaerobic conditions in
NOS broth medium as previously described (Haapasalo
et al., 1991), with erythromycin (40 mg ml-1) added as appro-
priate. For radiolabelling experiments, anaerobic pouches
(Mitsubishi Gas Chemical Company) were used. For allelic
replacement mutagenesis, mutants were selected on NOS/
GN plates (Chan et al., 1997) containing erythromycin
(40 mg ml-1) as described previously (Li et al., 1996; Fenno
et al., 1998). Cultures were examined by phase-contrast
microscopy for purity and typical strain morphology before
use.

Escherichia coli strains JM109 and JM110 (Yanisch-Perron
et al., 1985) were used for routine subcloning and plasmid
preparations, and E. coli BL21(DE3) was used for re-
combinant expression studies. Plasmid vector pSTBlue-1
(Novagen) was used for cloning of PCR fragments. Plasmid
vector pET21b (Novagen) was used for expression studies.
The ermF/ermB cassette from pVA2198 (Fletcher et al.,
1995) was PCR-amplified using oligonucleotide primers
CX247 and CX249 (Table 1) and ligated into the TA cloning
site of pSTBlue-1 to yield pSY118, which was used as the
source for ermF/ermB in constructing plasmids for allelic
replacement mutagenesis. E. coli strains were grown in
LB broth or agar medium supplemented with ampicillin
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(50 mg ml-1), kanamycin (50 mg ml-1), chloramphenicol
(34 mg ml-1) or erythromycin (200 mg ml-1), as appropriate.

Labelling and analysis of phospholipids

For radiolabelling experiments, the label was added at 1–
5 mCi ml-1 to log phase T. denticola cells, which were then
aliquoted, incubated in anaerobic pouches at 37∞C, and
harvested at the indicated times. At harvest, cells were cen-
trifuged at 4000 gmax for 15 min at 4∞C. The medium was
removed and the pellet was washed by addition of 1 ml of
phosphate-buffered saline followed by gentle resuspension,
and the centrifugation was repeated. The final cell pellet
was resuspended in 1.0 ml H2O and aliquots were taken for
lipid extraction and protein determination (Lowry et al.,
1951).

Lipids were extracted by the Bligh-Dyer method (Bligh and
Dyer, 1959). The aqueous fraction was evaporated to dryness
with air and the aqueous metabolites were separated by
thin-layer chromatography (TLC) on silica gel G plates in
methanol/0.5% NaCl/NH4OH, 50:50:1. 14C-Labelled stan-
dards were also chromatographed, and standards as well as
experimental samples were visualized by autoradiography.
Radioactive TLC spots were scraped into scintillation vials,
then suspended in 0.5 ml of H2O and 4.5 ml Ecolite (ICN)
scintillation fluid. Levels of radioactivity were determined in a
Beckman liquid scintillation counter.

The chloroform phase from the lipid extraction was washed
by re-extracting with methanol and saline, then evaporated
to dryness under N2. Lipids were dissolved in chloroform/
methanol, 2:1 and the lipid classes separated by TLC in three
systems: I, silica gel H plates developed in chloroform/
2-propanol/methyl acetate/methanol/0.25% KCl/acetic acid,
25:25:25:10:5:4; II, silica gel H plates developed in chloro-
form/methanol/NH4OH, 45:45:4; III, silica gel G plates in chlo-
roform/methanol/acetic acid/H2O, 50:30:8:4. Non-radioactive
standards were visualized by exposure to iodine vapour and
radioactive lipids were visualized by autoradiography.

For determination of phospholipid mass, organic phospho-
rus was assayed as described (Ames, 1967). Silica gel con-
taining lipids was scraped from TLC plates and the lipids were
eluted from the silica gel in chloroform/methanol/acetic acid/
H2O, 50:30:8:4 and methanol. The solvents were then evap-
orated before organic phosphorus determination.

Enzymatic activity assays

Choline kinase (Gee and Kent, 2003) and CCT (Morand and
Kent, 1989) were assayed as described. Peptidase activities
of T. denticola parent and mutant strains were tested by
hydrolysis of chromogenic substrates succinyl-L-alanyl-L-
alanyl-L-prolyl-L-phenylalanine-p-nitroanilide (SAAPFNA)
and N-a-benzoyl-L-arginine-p-nitroanilide (BApNA) as
described previously (Fenno et al., 2001).

Recombinant DNA methods

Unless stated otherwise, standard methods found in Ausubel
et al. (1995) or Sambrook et al. (1989) were followed. DNA
fragments were eluted from agarose gels using the Gene
Clean II kit (QBiogene, La Jolla, CA). Genomic DNA¢s and
plasmid DNA¢s were isolated using the Wizard Genomic DNA
Purification Kit and Wizard Plus SV Minipreps Kit (Promega,
Madison, WI) respectively. Oligonucleotide primers (Invitro-
gen, Carlsbad, CA) were designed using the GeneFisher
algorithm (Giegerich et al., 1996) or Primer Express software
(Perkin-Elmer Applied Biosystems).

Cloning of licCA

The licCA region identified in preliminary unannotated con-
tigs of the T. denticola genome sequence (http://
www.tigrblast.tigr.org/ufmg) was amplified from T. denticola
genomic DNA with oligonucleotide primers CX226 and
CX227 (Table 2). The 4.4 kb PCR product, including approx-
imately 1.3 kb upstream of licCA and 1.5 kb downstream of
the licCA stop codon, was cloned in pSTBlue-1, yielding
pSY107. For expression studies, DNA fragments of interest
were cloned by PCR with Vent polymerase, with pSY107 as
template. Fragments were cloned for optimal expression from
the T7 promoter in pET21b. Full-length licCA was cloned with
forward primer EX10 and reverse primer EX11 (Table 2). The
licC portion, C308, was cloned as the first 308 residues of
the licCA gene, with EX10 as forward primer and EX12 as
reverse primer. The licA portion, A317, was cloned with for-
ward primer EX13, which added an ATG codon in front of
codon 317, and was extended to the end of the licCA gene
with reverse primer EX11. For expression, plasmid-contain-
ing cells were grown in LB media to an optical density of 0.8,

Table 2. Oligonucleotide primers used in this study.

Primer Targeta Sequence

CX226 5¢ to licCA (F) 5¢ dACC CAT ACC TGC TTC ATT C 3¢
CX227 Beyond licCA 3¢end (R) 5¢ dCTA CCT ATA CCC TCC GTT ATG 3¢
CX247 ermF/ermB 5¢end (F) 5¢ dGGC ATA TGC GAT AGC TTC CGC TAT TG 3¢
CX249 ermF/ermB 3¢end (R) 5¢ dGGC ATA TGA GCT GTC AGT AGT ATA CC 3¢
CX329 licCA (F) 5¢ dGGA TGC CCG TAA TCC TGA AGA 3¢
CX330 licCA (R) 5¢ dCGT TCA CGT AGA TCA AAA GAA TGC 3¢
CX323 16S rRNA (F) 5¢ dAGG GAT ATG GCA GCG TAG CA 3¢
CX324 16S rRNA (R) 5¢ dTTG CGG GAC TTA ACC CAA CA 3¢
EX10 licCA (F) 5¢ dCG CGG ATC CAT ATG AAA AGA AGA TAT TTT CAA ATT ATA AAA CTT ATG
EX11 licCA (R) 5¢ dCCG CTC GAG TCA TAG ATT ACC TCC TAG TTC TTT TAT TTT TTT ATA ATA ATC c
EX12 C308 (R) 5¢ dCCG CTC GAG TCA CTC AAG CCA TTT ATC ATG GGA GG
EX13 A317 (F) 5¢ dcgc GGA TCC CAT ATG CCT GAG CAC AGC ATC

a. Orientation of the primer (F, forward; R, reverse) with respect to gene of interest.

http://
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then induced with 1 mM isopropylthiogalactopyranoside.
LicCA was induced for 3 h at 37∞C, and C308 and A317 were
induced for 20 h at 25∞C. Cell pellets were stored at -20∞C.

Quantitative RT-PCR

Total RNA was extracted from cultures harvested during
active growth (optical density at 600 nm of 0.2) using the
RNeasy Mini Kit (Qiagen). RNA samples were reversed tran-
scribed from random primers using SuperScriptTM First-
Strand Synthesis System (Invitrogen). One microlitre of the
resulting cDNA was amplified using QuantiTectTM SYBR
Green PCR (Qiagen) in a 25 ml reaction, using licCA primers
CX329 and 330. Amplification of 16SrRNA with primers
CX323 and 324 served as an internal control (Table 2). Ther-
mal cycling was performed in an iCycler iQTM Multi-Color Real
Time PCR Detection System (Bio-Rad) at 95∞C for 15 min,
and followed by 40 cycles of 94∞C for 30 s, 50∞C for 30 s, and
72∞C for 30 s.

DNA sequence analysis

DNA sequencing of expression plasmids was performed by
the Molecular Biology Core, University of Michigan Medical
Center. Analysis of DNA sequence data was performed using
SeqEd 1.0 (Applied Biosystems) and DNA Strider 1.3
(Service de Biochimie, Department de Biologie, Institut de
Recherche Fondamentale Commissariat a l’Energie
Atomique, Saclay, France). The non-redundant SWISS-
PROT, PIR, EMBL and GenBank databases were searched
for homologous peptide and nucleotide sequences using the
BLAST (Altschul et al., 1990) network service at the National
Center for Biotechnology Information, National Institutes of
Health, USA.

Allelic replacement mutagenesis

Isogenic defined mutants were constructed as described pre-
viously (Lee et al., 2002). Briefly, T. denticola was electropo-
rated with linear DNA consisting of the selectable ermF/ermB
gene cassette (Fletcher et al., 1995) cloned between frag-
ments of the target sequence. DNA fragments to be intro-
duced into T. denticola were UV-irradiated at 25 mJ/cm as
described by Picardeau et al. (2001) before electroporation.
Following 24 h recovery in NOS broth, mutants were selected
by growth in NOS/GN agar containing erythromycin
(40 mg ml-1).

Protein production and purification

All procedures were performed at 4∞C. Cell pellets from
250 ml cultures were resuspended in 2.0 ml of lysis buffer
(10 mM Tris-HCl, pH 7.5, 30 mM NaCl, 2 mM dithiothreitol,
0.2 mM EDTA, 2.5 mg ml-1 leupeptin, 2 mg ml-1 chymostatin,
2 mg ml-1 pepstatin, 1 mg ml-1 antipain, 10 mg ml-1 p-
aminobenzamidine, 10 mg ml-1 benzamidine, and 0.2 mM
phenylmethylsulphonylfluoride). The cells were disrupted by
three 30 s intervals of sonication. The cell lysate was centri-
fuged at 330 000 g for 25 min to produce a cleared lysate.

The LicCA cleared lysate was passed over a 2-ml
CM-Sepharose column (Pharmacia) equilibrated with buffer
D (20 mM Tris-HCl, pH 7.5, 2 mM EDTA, and 1 mM 2-
mercaptoethanol) and eluted with 0.5 M KCl in buffer D. The
protein was diluted 200-fold with buffer D, then passed over
a 1-ml Blue-Sepharose column equilibrated with buffer D and
eluted with 1 M KCl in buffer D. The C308 cleared lysate was
passed over a 0.5-ml TMAE column (EM Science) were equil-
ibrated with buffer D, The flow-through was collected and
saturated ammonium sulphate was added to 60% saturation.
The precipitate was removed by centrifugation for 10 min at
18 000 g, then the supernatant was brought to 75% satura-
tion and the precipitation repeated. The 75% pellet was dis-
solved in buffer D and the C308 protein was further purified
by gel filtration on Sephacryl-S100. The A317 cleared lysate
was passed over a 1-ml Decyl-Sepharose column (Pharma-
cia) equilibrated with buffer D containing 1 M KCl and eluted
in 100 ml buffer D. The eluate was passed over a 0.5-ml
TMAE column and eluted with 0.5 M KCl in buffer D. In initial
purification of each protein, fractions containing significant
protein peaks were assayed by SDS-PAGE and enzymatic
activity to identify the active enzyme peak. In subsequent
purifications, the corresponding protein peaks were identified
without assaying enzyme activity.

Nucleotide sequence accession number

The nucleotide sequence of T. denticola licCA has been
assigned GenBank accession number AY322155.
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