
Appendix B: Technical Appendix on Hierarchical Linear Models (HLM)

Rationale

Multilevel modeling is a statistical approach used to analyze nested data, where

observations are embedded within different contexts or settings.  Observations that are

nested within the same setting are not statistically independent (i.e., all observations in

one setting are exposed to the same environmental influences). Multilevel modeling

techniques have been developed to address this lack of independence among observations

(Raudenbush & Bryk, 2002).

Data may be nested at several levels.  For example, individuals may be nested

within an organizational setting, and the organization itself may be nested within a

market. Most multilevel studies consider 2 or 3 levels. The first level in a multilevel

model is the level at which the dependent variable operates.  For example, in our study

our dependent variables were measures of physician satisfaction with the organizational

and managerial capabilities of the groups in which they work.  The level-1 model may

also incorporate independent variables, in this case individual physician characteristics.

In our study, the second level contains independent variables that operate at the medical

group level.  Individual physician respondents are not independent because they are

nested within medical groups. Multilevel models may also be used to estimate growth

curves, or time series analysis, where the first level would be time and the second level

could be individuals nested within particular time frames.

With nested data, clustering issues need to be addressed before performing

multivariate analyses examining the effects of characteristics of the setting on individual



level outcomes (e.g., in our study we examined the relationship between organizational

culture, a contextual or setting measure, on physician satisfaction with the managerial and

organizational capabilities of the groups in which they work, an individual outcome).

Ordinary least squares regression may produce inflated standard errors of the regression

coefficients. Resulting tests to assess whether the coefficients are significantly different

from zero may therefore be invalid, although the coefficients themselves will be correctly

estimated.

Traditionally, researchers have addressed clustering issues by: 1) aggregating

their data to the level of the setting (e.g., in our study we could have looked at average

physician satisfaction and related it to organizational culture), or 2) correcting the

standard errors, with an econometric adjustment like the Huber correction.  Multilevel

modeling techniques such as Hierarchical Linear Modeling (HLM) are designed to

preclude having to aggregate data to a higher level of analysis. Aggregation could

potentially decrease the variation in a dependent variable and may lead to Type II errors,

concluding that there is no statistically significant relationship when in fact there is.

Employing a standard econometric adjustment, like a Huber correction, does not address

the underlying structure of the data, or the degree to which particular levels of analysis

explain the variation in the dependent variable.  Multilevel modeling allows researchers

to structure their data in ways that are conceptually appropriate and allows assessment of

the contribution of each level of analysis to explaining variation in the dependent

variable.

In a multilevel analysis, variance in the dependent variable is decomposed into

within and between group components.  Two equations result; a within-unit model:



Yij = β0j + rij

and a between-unit model:

β0j=γ00 + u0j

Suppose Yij is the response variable, physician satisfaction.  The within-unit

model indicates that group member values on physician satisfaction vary around the unit

mean, β0j .   The level-1 random effect, rij is normally distributed with homogenous

variance across units, that is, rij ~ N(0, σ2).  The between-unit model indicates that unit

means on physician satisfaction vary around the grand mean, γ00.  The level-2 random

effect, u0j, is normally distributed with homogenous variance across units, that is, u0j ~

N(0, τ00).

The above models are then extended to incorporate individual- and unit-level

predictor variables as follows:

[1] Physician job satisfaction, Yij = β0j + β1j(perception of culture)ij + β2j(age)ij +

β3j(gender)ij + β4j(primary care)ij + β5j(%patients from HMOs & PPOs)ij + ri

Equation [1] illustrates that individual job satisfaction, occupational membership,

gender and professional tenure are expected to explain a portion of the variance in

individual staff member intention to quit within a unit.

Level-2 model

[2a]    β0j = y00 + y01(organizational culture)j + y02(group size)j + y03 (%male)j +

y04(specialty group)j + y05(multi-specialty group)j + u0j

where β1j = y10, β2j = y20, β3j = y30, β4j = y40, β5j = y50   for the ith physician in the jth group

Equation [2a] reflects the hypothesized model to explain the variance in the

intercept value (β0) produced in the level-1 model.



The full multilevel model can also be expressed as a simple algebraic combination

of the equations [1] and [2a].

Steps in Multilevel Modeling

The first step in performing multilevel modeling is to estimate the intra-class

correlation (ICC) in the dependent variable of interest across groups.  The ICC varies

from 0 to 1.  The closer the ICC is to 1, the greater the amount of between group

variation, or within group correlation, in the dependent variable.  A significant difference

between groups supports using a multilevel model that includes group level predictor

variables.  A significant difference between groups would suggest that it is reasonable to

continue building a multilevel model to explain between unit variation in physician

satisfaction.

After determining the ICC, the next step in multilevel modeling is to examine a

first level model, without group level predictor variables.  A first level model

incorporates predictor variables at the first level of analysis (the individual physician).

The results of the level-1 model are used to determine whether the relationship between

individual (i.e., physician) level variables and satisfaction vary by organizational unit

(i.e., medical group).  If the parameters do vary significantly by unit/organizational, the

corresponding parameter variance can be modeled using unit/organizational level

predictors.

Centering Decisions

The independent variables in multilevel models may be uncentered, centered

according to the group that a particular observation is in, or grand mean centered (i.e.,

according to the mean for the overall sample).  Hoffman (1998) outlines the three options



and the implications for each decision, and reviews the work of others in this regard.  In

his paper Hoffman cites how Kreft, et al. (1995) demonstrated that uncentered data and

grand mean centering “produced equivalent models” but that there may be slight

advantages of using grand mean centered data over uncentered data with respect to

limiting the possibility of multicollinearity.  In this analysis, we have chosen to grand

mean center all of the predictor variables.  This not only allows for a more interpretable

overall intercept term (the expected satisfaction of physicians with "average" level-1

predictors, like age, perception of culture, etc.), but also has implications for how the

level-2 coefficients are interpreted.  Grand mean centering allows us to examine the

group level relationships between the level-2 predictors and physician satisfaction while

controlling for the level-1 predictors.  Uncentered data or group centered data do not

allow for the adjustments of level-1 predictors when examining level-2 coefficients

(Hofmann 1997).

Fixed versus Random Effects

A second critical decision is whether the slopes of the independent variables will

be allowed to randomly vary across the higher order levels of analysis, or whether they

should be fixed effects and not allowed to randomly vary.  In HLM, modeling a slope is

similar to testing an interaction term in Ordinary Least Squares (OLS) regression

analysis.

 [2b] β1j = γ10 + γ11(organizational culture)j + γ12(group size)j + γ13(% male)j +

γ14(specialist group)j + γ15(multi-specialist group)j + u1j

[2c] β2j =γ20.....β7j =γ70



Equation [2b] reflects an example of a model to explain the variance in the slope

value (β1) produced in the level-1 model (equation [1] above).  In other words, the

variance in the relationship between, say, age and physician satisfaction (the β1 slope)

across units will be explained by level 2 variables – organizational culture, group size,

%male, specialist group and multi-specialty group. Finally, equation [2c] indicates that

the relationships between the remaining individual level variables (perception of culture,

gender, primary care, and % patients from HMOs & PPOs) in the model and the

dependent variable are not expected to vary significantly across units. Therefore the

slope, or β value, represents the average slope across units.

As in the intercept model, the full multilevel model can also be expressed as a

simple algebraic combination of the equations [1], [2a], [2b] and [2c].  The above

equations illustrate that the intercept (β0) and individual job satisfaction slope (β1) are

modeled as outcomes in the second level model.


