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ABSTRACT

Part I is an organized presentation of the theoretical advantages and disadvan-
tages of alternative modulation and coding methods for digital communications. White
Gaussian noise with optimum receivers is assumed. The signals considered are: simplex,
bi-orthogonal, coherent-orthogonal, incoherent-orthogonal, and M-phase. The probability
of error and bandwidths for existing and contemplated signals of these types are compared.
Both a constant and a variable data rate comparison are made.

The data for these comparisons were obtained from the literature and from cal-
culations. Graphs and tables are used to depict the comparisons.

M-ary bi-orthogonal signals are deemed best for low signal-to-noise ratios if
probability of error is stringent. Binary and M-phase signals appear best for medium and
large signal-to-noise ratios.

This treatment should help structure the selection of modulation and coding
methods for proposed communication systems. Also, since many signalling methods are
considered, some fundamental principles, terminology, and methods of comparing are
suggested.

Part II is an analytical evaluation of asynchronous time-multiplexing for multi-
channel speech signals. This asynchronous system applies where a number of speech
sources participate in a common channel or trunk, and it is proposed that the source-to-
channel sample assignment be asynchronous. The analysis here includes the performance
of the buffer and a predicted digit rate for the asynchronous operation.

The buffer analysis was accomplished by using a specialized probabilistic ap-
proach, which may be regarded as a special case of the more general queuing theory. The
digit rate analysis assumes the use of extremal coding on the speech source. Based on the
parameters assumed for the proposed asynchronous system, it is predicted that a multi-
channel situation consisting of 100 channels will use only one third of the digit rate of syn-
chronously multiplexed PCM, and about 5 db loss in quantization signal-to-noise ratio can
be expected.

Successful operation of this system would mean a more efficient use of the chan-
nel and possibility of temporary overloads. Based on the analysis here it is felt that the
theoretical advantages of asynchronous time-multiplexing are sufficiently profitable to war-
rant a serious feasibility demonstration of this technique.

xi






PART I. COMPARATIVE PROBABILITY OF ERROR AND CHANNEL
CAPACITY OF DIGITAL COMMUNICATIONS SYSTEMS

In order to choose or design a communication system sensibly it is necessary o
know the advantages and disadvantages of the alternatives which are available. It will be the
objective in this first section to present both existing knowledge and proposed comparative
methods in the selection of digital communication system modulation and coding methods.
Attention has been paid to sensibly organizing the material, and it is presented as briefly as
possible. It is the intention that with the knowledge to be summarized below, one might sensi-
bly proceed toward selecting methods for fulfilling a given communication system's require-
ments.

It should be stressed that the emphasis in this report will be overwhelmingly on
theory. The state of the art, and the practical considerations which may or may not make
certain systems possible will receive cursory mention as these were not seriously studied
under this work.

Because of the fact that new comparative calculations are published almost weekly
in this communications area, it serves a very useful purpose to take cognizance of these re-
sults and to attempt to assay their significance. Hence some of the material in this section
will naturally be reporting on published work, while other material will be original with the
authors.

In many cases, statements will be made without proof since derivations may be
followed in the pertinent reference. This section is undertaken only because we feel that it
serves a very necessary function before getting into more detailed and original contributions.

After discussing the general considerations for digital communication systems,
the detection picture will be presented. The two major topics then are: (1) probability of
error calculations for various conditions and (2) channel capacity relations. A good deal will

be said about channel capcity for digital systems.



1. GENERAL CONSIDERATIONS

Under "General Considerations' we will depict the general block diagram for
digital communications systems and discuss generally the possibilities (and trades) for im-
proving the performance in each of the "box'" areas. In addition to quantitative analysis,

there will be a collection of comparisons and qualitative conclusions.

1.1 General Block Diagram

The block diagram for a digital communication system can be depicted as shown
in Fig. 1.

By "'source coding'' we refer to those operations which convert the actual message
source into a sequence of symbols. A common example is the sampling, quantizing, and sub-
sequent encoding (PCM) of any analog voltage. "Error coding'" refers to putting some con-
straints between the symbols so that certain combinations of errors can be detected (and possi-
bly corrected) in the receiver. This is a form of using intentional redundancy to protect
against channel noise. '""Modulation' is concerned with the actual choice of waveform for a
particular symbol, and the RF transmission of the symbol. In the receiver, of course, the

mirror image of each of the above functions occurs.

MESSAGE SOURCE ERROR MODU-
SOURCE CODING CODING LATION
DEMODU- ERROR MESSAGE MESSAGE
LATION DECODING DECODER SINK

Fig. 1. General block diagram of digital communication system.



In this report we will regard the modulation-channel-demodulation complex as the
detection situation. This is sensible since it is impossible to separate the effects of signal
selection, power, etc., on the channel probability of error.

We wish, then, to consider the alternatives in digital communication system de-
sign as being separable into the three areas of: (1) message (or source) coding; (2) error-
correcting (detecting) coding; and (3) detection improvement. In any system design concen-
tration on one or on another of these areas will probably be most profitable to improve the
system. The "trades'" involved and the costs of each improvement are the subject of the en-

suing material.

1.2 Source Coding

The standard method of source coding (for digital communications) is to sample
an analog signal at the Nyquist rate (2W samples per second), quantize the resultant samples,
and digitally encode them in some fashion. With such a method it is clear that one is attempt-
ing to reproduce (in the receiver) nearly the exact original waveform.

For many analog signals (in particular, speech) one can reduce the apparent in-
formation content of the source by removing redundancies. For example, it is well known
that good quality speech should require only about 50 bits/ sec., but the sarﬁpling method
above results in 30, 000 bits/sec. The discrepancy may be interpreted as due to redundancy
of the (source) speech signal, and bandspreading involved with digital encoding.

Clearly, if the redundancies can be reduced, a speech source will require less
communication facility. Using the Vocoder principle, one can reduce the requirement to
2,000 bits/sec.

An approach different from the Vocoder method is to operate on Shannon samples
in some fashion. '"Delta modulation'" schemes do this by sending only the "'difference between
present and integrated past samples.” An extension of this is to use a number of past samples
and predict the next sample value. Then the difference between the actual and the predicted
sample value is sent. Experimental resultsusing suchpredictionsarereported ina companion
report,"Some Computer Experiments Using Predictive Coding On Speech,'" TR-132.

Another source coding situation arises when the source information occurs in
bursts. If delays are tolerable, one can try to smooth out the data so that a transmitter can
operate closer to the average rate of the source. This aspect will appear in Part II with con-

siderations of "asynchronous time-multiplexing" where a number of sources must be multi-



plexed.

1.3 Error Correcting and Detecting

In error coding the general objective is to introduce constraints between the sym-
bols at the transmitter so that channel errors may be detected and possibly corrected in the
receiver. It is useful to consider that error codes include both error-correcting and error-
detecting (without correcting) situations.

Probably the earliest work on error codes was by Hamming (Ref. 1) who dealt
with three codes: the parity check code, a single error correcting (which later became known
as the Hamming code), and a single error correcting-double error detecting code. Such
early codes were devised under the assumption that the occurrence of a single error was most
likely and that the errors occurred at random and were independent of one another.

For the more realistic situation where errors occur in bursts (in adjacent digits)
a new series of codes, called "cyclic codes," was devised. This includes the Fire codes and
the Bose-Chaudhuri codes. The name "cyclic" comes from the fact that the code words can
be generated in a cyclic fashion by feedback shift registers.

The present status of error codes is that a number of codes have been mathemati-
cally demonstrated, but that the application art lags somewhat behind this. Recently there

have been profitable applications using shift-register encoding (Ref. 2) to implement error
detecting .

By the use of such modern codes one can obtain efficient codes (high ratio of in-
formation-to-check digits for a given error rate) while at the same time providing for practi-
cal operating equipment (shift-register methods).

A summary of probability of error calculations with error codes will be given in
Section 3. 2. 1. The most authoritative (recent) description of codes is Ref. 8.

One firm conclusion about error codes is that they are definitely profitable in situ-
ations where a feedback facility exists, that is, where one can ask for repeats. Then one can
use a maximum of error detecting and a minimum of correcting. A large body of work has
been published investigating this situation (Ref. 9).

Such feedback situations are clearly applicable to thetransmissionof non-real-time
digital source data. However, no methods have been found to exploit the feedback-error-
coding situation when the digital data stem from real-time sampledanalog data (such as speech).

The difficulty lies in dealing with the delays.



1.4 General Detection Considerations

Referring to Fig. 1, the "detection situation" is characterized by the modulation
technique, the channel, and the demodulation. Each of these three items is concerned with
identifying the right signal after reception. Since the effect of channel noise on probability of
error is dependent on signal selection and receiver decision method, one should not separate
these three items.

In general, the two things that can be done to improve error-rate performance in
the detection area are:

1) Use proper detectors for the chosen signal whenever possible. (When the
channel disturbance is additive Gaussian noise these will be optimum. )

2) Use as much "energy per decision' as necessary. Since the probability of
error (with white Gaussian noise, using optimum detection) depends only on signal energy
and channel noise (and not on signal time characteristics), one should integrate as much
"energy per decision" as necessary. In other words, the greater the energy per decision,
the lower the probability of error (Pe).

There are basically two ways to increase energy per decision in a digital system:
(1) narrow-banding, and (2) increasing alphabet size.

In narrow-banding, one simply spends more time per symbol to obtain the in-
creased energy. This of course means that the data rate is decreased accordingly.

One can increase energy per decision without decreasing the data rate by increas-
ing alphabet size. Two ways of increasing the alphabet size are: (1) use M-ary basic sym-
bols instead of binary, or (2) use "grouped" binary symbols. Ineither case the energy per de-
cision is increased.

Although it will be found in Section 3. 3. 4 that such increasing of alphabet size may
not be efficient, it may nevertheless be necessary if one has a given S/N, Pe and required
data rate. When increasing alphabet this way, one is in effect trading S/N with increased
complexity.

The detection situation will be discussed in more detail in Section 2.



2. DETECTION CONSIDERATIONS

Although the general conclusions about detection were summarized in Section 1,
we now treat this in more detail. First, optimum receivers are discussed, then signal se-

lection, and finally, the very important binary case is used as an example.

2.1 Optimum Receivers

In a digital communication system various alternative signals are sent at the
transmitter in intervals of T seconds. Hence, for each interval, the receiver detector must

decide which signal was sent. Receiver detectors will be either coherent or incoherent, de-

pending upon whether propagation and equipment conditions are stable enough to use RF phase

in the decision process.

2.1.1 Optimum Coherent Receivers. It has been shown (Ref. 38, etc.) that, if

the channel noise is white Gaussian noise, the optimum method to perform the digital detec-
tion process is the crosscorrelator or matched filter detector. If one does not choose to in-
corporate a priori knowledge of the occurrence of the symbols, then it can be shown that this
type of detector is the best that one can do, either on a signal-to-noise ratio criterion or an
a posteriori probability criterion (Ref. 3). Thus in general the receiver will take the form

shown in Fig. 2.

x(t) x(t)

T
fo x (1) s/(1) =y(T)

—— oo || saueue 17
) to s,(t) .
5,1 - =
f x(t)s,_(ﬂ:yzm o =
FILTER M
—(‘) ) E o |—{ MATCHED |— SAMPLE %0 & o
l/ : to s,(t) )
L 5 ! | s
l | S I | S
I | & I | 4
I | | |

Fig. 2. Optimum coherent receivers for signals known
exactly in white Gaussian noise.



Since these are coherent receivers, it is implied that one knows the phase and
frequency of the RF carrier, and one is truly operating with the exact s(t).

In Fig. 2(a) the incoming signal is first multiplied by the coherent local replicas.
Then each product goes through an "integrate-and-dump' operation. In Fig. 2(b) the matched
filter and sampler perform the identical function.

After the integration,the decision device (called the ""comparer") specifies the out-
put on the basis of which signal is greatest at t = T (end of each symbol). Such receivers are
called "maximum likelihood receivers."

It should be emphasized that the receivers of Fig. 2 are optimum, regardless of
the choice of signals. However, one affects the detection situation by the choice of signals
{considered below in Section 2.2).

2. 1.2 Optimum Incoherent Receivers. The incoherent case refers to the situa-

tion where one does not know the RF phase sufficiently, and hence can work only with the video.
Two types of optimum incoherent receivers are shown in Fig. 3---both involving matched fil-
ters. In (a)the carrier-band matched filter is followed by an envelope detector and sampler.
The outputs of the sampler are then compared. This receiver is "optimum'" for incoherent
operation in white Gaussian noise (Ref. 18).

An alternative (but equivalent) incoherent method, shown in Fig. 3(b), is to multi-
ply each alternative signal by both a sine and cosine function of the exact carrier frequency,
and put both of these through a baseband matched filter (or correlator). Then one takes the
square root of the sums of the squares, and compares these for the difference signals. This
method requires knowledge of the exact carrier frequency, and is equivalent to the carrier-
band matched filter receiver (Ref. 22).

Both of these receivers work on the envelope of the received signal, and hence all
considerations depend on energy alone, since phase cannot be utilized. Also, the decision de-
vice (called the comparer) decides on the basis of which signal is greatest att =T. Sucha

receiver is also a maximum likelihood receiver.

It should be emphasized that the receivers of Fig. 3, like those of Fig. 2, can be
shown to be optimum regardless of the choice of signals. However, one can improve the de-

tection by choosing the signals properly.

2.2 Signal Choice

We now deal with the question of what signals are best for use in conjunction with
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the receivers of Figs. 2 and 3. First the coherent case is treated.

2.2.1 Coherent Operation. ''Coherent operation' implies that propagation and

equipment conditions are stable enough to use RF phase in the receiver "decision" -- even
at low signal-to-noise ratios. For such coherent operation, it is sensible to regard the
possible signals as belonging to one of two classes: (1) "far-apart" or 'distinguishable"

signals, or (2) "close-packed' signals.

Such signals as "orthogonal" signalsare considered '"far-apart' becausethe major ob-
jective is to have the symbols as distinguishable as possible in the presence of noise. These
signals are of interest when probability of error is a significant problem. In "close-packed"
signals (such as M- phase with M > 8, or "phase-plus-amplitude'" modulation)the major objec-
tive is to obtain efficient information transmission; here it is implied that S/N is high enough
so that Pe is within requirements.

In this report we are concerned mainly with the far-apart signals. Hence we are
concerned with those cases where probability of error is a significant problem. The following
far-apart signals will be considered: (1) simplex, (2) bi-orthogonal, and (3) orthogonal.

That set of signalswhich areas "far-apart' aspossibleareusuallytermed "sim-
plex'' because of their analogy with vectors Qf a geometrical simplex.

Simplex signals (Ref. 3), viewed as points in signal space, correspond to a geo-
metrical regular simplex where every vertex is equally distant from every other vertex. Of
these, there are M signals, the geometrical simplex appears in an M-1 dimensional space.
Two simple examples of such simplex signals are: (1) two binary signals, whose vettors are
180° out of phase—--sl(t) = -sz(t), and {2) a ternary signal, where the vectors are at 120°
phase with each other. Another simplex (baseband) signal set is a maximal (pseudo-random)
sequence and its time translates (by one clock pulse).

Since simplex signals are the "farthest apart," such signals are optimum for co-
herent operation.

Although simplex signals appear optimum, orthogonal signals are near-optimum
[and approach the optimum (simplex) for large alphabet M]. Signals are orthogonal, over an

interval T, if: T
f 5,(t) s].(t) dt

¢)

I
(=
-

1N
—

where: Ei = total "symbol' energy of signal si(t) .



If the signals all have equal energy (a common assumption) then:

T
f siz(t) dt = E for any i (2)
o]

Signals may also be orthogonal in the frequency sense, and this would be given by

0
f 8,(f) Sj(f) d = 0 i#]
-0
= E i=] (3)
T -jontt
where: Si(f) = f si(t)e dt

o)

Thus it is seen that signals can be orthogonal in two senses: time or frequency.
A common example of "'signals orthogonal intime' is simply time waveforms which do not over-
lap. Signals which do overlap in time can also be made orthogonal. The most common ex-
amples of "signals orthogonal in frequency' are FSK signals. Herethe frequenciesof the dif-
ferent signals are chosen to be effectively nonoverlapping.

Consider for a moment the role that orthogonality plays in affecting the probabil -
ity of error for a digital system. Equation 1 says that, when signals are orthogonal, the
time correlation or pairwise correlation coefficient between signals is zero. In general one
writes the correlation coefficient as simply:

1 T
+ fo 5,(t) sj(t) &t = p (4)

One can see why the simplex signals mentioned above are superior to orthogonal
signals for small M. Consider the binary case: if sl(t) is orthogonal to sz(t), the P19 = 0,
but if sl(t) = —sz(t), the P1g = -1. Clearly a ""pairwise' correlation coefficient of -1isbetter
than 0.

Consider now an M-signal simplex alphabet. To calculate the total Pe is exceed-
ingly complex, and has not been done directly. However, one can find the simplex Pe from
the coherent orthogonal Pe by considering an énergy increase (see Section 3. 2.2.1). Of
course, the more negative the pairwise correlation, the better.

It can be shown (Ref. 3) that the most negative value that can be obtained for the

10



pairwise correlation coefficient between members of an M-signal alphabet (where all pij's are
equal) is given by:
Py = " FLT (5)

Here is the reason, then, that as M grows large, the simplex signals approach
the orthogonal ones in detection effectiveness---since, as M increases, pij approaches 0.

Concerning the comparison between simplex and orthogonal signals, another point
should be made. From an engineering viewpoint a very effective set of signals consists of
using orthogonal signals and their negatives, called "bi-orthogonal' signals. For an M-signal
alphabet one needs only M/2 correlators or matched filters. Also, the bandwidth is reduced,
since now one has only M/2 "different" signal constructions.

The above signals have been based on the idea of being quite distinct or far apart,
for purposes of distinguishing them in noise. Such signals are necessary when the S/N ratio
is such that a significant probability of error (Pe) occurs.

If the S/N ratio is high enough so that Pe requirements are easily met, then sig-
nals other than far-apart signals may be desirable. One common signal which is partially
correlated (for M > 4) is the coherent M-phase signal. Because of the increasing correlation
between signals as M increases, M = 8 is probably the maximum which one would consider
(Ref. 19) for intermediate S/N.

In addition to coherent M-phase signals, one canoperate "differentially-coherent"
where one requires coherence only over a symbol length. These signals will be discussed
further in Section 3. 2. 2.

In conclusion, for coherent operation where Pe is significant, simplex signalsare
best, bi-orthogonal next, and finally orthogonal signals. When Pe is within requirements,
signals other than the above far-apart signals become valuable; i. e., M-phase signals and
others.

2.2.2 Incoherent Operation. For any incoherent operation there is no possibility

of using phase information (by definition). Hence neither simplexnor bi-orthogonal (nor M-
phase signals) are possible. This leaves orthogonal signals as the optimum signals for inco-

herent operation.

11



2.3 Example of Signal Selection in Binary Case

Since the binary case is the most frequently-used case, and its Pe curves are
well known, we will note the results here to serve as an example of the above discussion.
For the coherent binary case, it is well known that the probability of error (in

white Gaussian noise with optimum receivers) is given (Ref. 17) by:

1

P, = Py = @((1-p,) E/N_]2) (6)
0 2
1 -£%/2
where: ®(X) = == e d¢
i fx
E = signal energy
NO = single-sided white noise power per
unit bandwidth
Prg = correlation coefficient between
sl(t) and sz(t)
PB = bit error rate .
Note that for binary the simplex signal [sl(t) = —sz(t)] is identical to the bi-

orthogonal signal. Curve (a) of Fig. 4 shows PB versus Eb/NO for the simplex signal Sl(t) =
—sz(t), where Py = ~1.

If one were to use orthogonal signals in this binary coherent case ( 0), one

Pig =
would obtain curve (b) of Fig. 4.

Finally, in the incoherent case, where one should use orthogonal signals, the PB
curve is shown in curve (c¢). The basis for these curves will be exhibited in Section 3. 1.

In conclusion, we have noted that, for optimum detection situations, the Pe de-
pends only on the energy (E) and the noise power density (NO). It does not depend on other
characteristics of the signal, such as BW, etc.

For coherent signals itw was noted that (for a given M) simplex signals have the
best Pe behavior, bi-orthogonal next, and then orthogonal. For incoherent operation ortho-.

gonal signals are best. Note that, for the coherent case, orthogonal signals become nearly

as effective as simplex ones, as M increases.
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Fig. 4. Probability of error vs. Eb/N0 for binary signals.
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3. PROBABILITY OF ERROR CALCULATIONS AND
RESULTS FOR DIGITAL SYSTEMS

For digital systems, the probability of error is the measure of effectiveness re-
garding channel noise. Of course there may be other sources of noise, such as‘quantization
noise, timing errors, etc. However, to begin any realistic comparison, the channel noise
probability-of-error is most basic.

In this section we will exhibit briefly the mathematical calculation for the prob-
ability of error and compare the results for various conditions of opération. The first sec-
tion will be devoted to binary systems and the second section to nonbinary systems.

There are three types of error probabilities in digital systems, depending upon
the original data and the size of alphabet: bit error probabilities, word error probabilities,
character error probabilities. If the original data are bits (such as a series of binary num-
bers) then the bit error rate (PB) is the pertinent criterion. If the information is sent by
means of characters (M-ary basic symbol or block binary), the character error probability
(P

) should be converted back to equivalent bit-error (P On the other hand, if the orig-

ch B) )

inal data are words (such as teletype or sampled analog signals) then the word error prob-
ability (PW) is the pertinent criterion. If the information is sent by bits, the equivalent PW
should be calculated. If M-ary characters are used to transmit the words, the PCh may or
may not be equal to Pw , depending on the value of M.

In this report the symbol "Pe" will be a general term (which includes all the
others) to denote "probability of error.'" Depending upon ‘the case, it will be either a bit, a
word, or a character error rate. It will always be marked accordingly.

A system will be called''binary' or "nonbinary' according to the "order of the de-
cision process." If a decision is made at the end of every bit, and isnotlater revised (based
on an error correcting code, for example), the system is considered "binary." With this def-
inition, the nonbinary systems can be of two types: (1) error (correcting) coded binary signal,
where intersymbol constraints are evaluated after the first binary decisions; and (2) M-ary

symbol alphabet, where basic symbols (characters) other than binary (ternary, quarternary,

14



etc.) are used, and a decision is made on each of the M-ary characters. Inturn there are
two ways to realize an M-ary symbol alphabet: basic M-ary symbols and block coded binary.
We feel this categorization is sensible, and has the most consensus in this field. (See Table
1)

The above items can be regarded as alternatives available to a system designer.
Of course, within these alternatives there are still a number of further choices. For example,
if binary, one can operate either coherently or noncoherently. If coherent, one can use PSK,
or coherent FSK; if noncoherent, one can use noncoherent FSK or AM. 1 Because of all
these permutations it is difficult to set up a consistent and sensible categorization. However,
the chart in Table I attempts to do this, along withproviding informationto be discussed later.

In general the''practical" signals whichare optimum in some senseare (see Section

2.2): (1) simplex, (2) bi-orthogonal,(3) orthogonal, and (4) M-phase. We will consider the

Pe relations for digital systems in terms of these categories.

One can reach a general Pe equation for both the bi-orthogonal and the orthogonal
set of signals. However, for the simplex set, no equation has been found so far, but the Pe
can be related to the coherent orthogonal case. For the binary signal, however, the PSK
signal is the simplex signal, and this Pe can of course be calculated. For this reason, we
will first depict the Pe calculations for binary, treating it as a sole case. Remember that,
for the bi-orthogonal and orthogonal cases, the binary Pe could be obtained as a special case
of the M-symbol general relations of Section 3. 2. 2.

Another justification for proceeding in this way is that the binary case is the most

common in practice, and therefore deserves special attention.

3.1 Binary Systems

As mentioned, binary systems are taken to include all those systems in which a
binary decision is made at the end of each received bit, -and is not changed thereafter (i. e.,
by a correcting code). In the following the symbols 1 and 0 will represent the two binary
states (a +1 and -1 would be better for coherent situations, but this is clumsy to write).

For binary cases there are three different signals: (1) Simplex---PSK, where
sl(t) = —sz(t); (2) Coherent-orthogonal---coherent FSK, and (3) Incoherent-orthogonal---In-
coherent FSK and AM. To depict the Pe calculation, we will consider each of these three

cases.

1Incoherent AM will mean carrier ""off-on" operation in this report.
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Theoretical Constant Channel Capacity
DECISION . . P Bandwidth . Comments
Signals in Use Signal e ndwidths Digit Rate Minimum Max C in
LEVEL (or contemplated) Type Eg. No. |Controlled Uncontrolled Bandwidth Signal Dimen- | terms of
Environment | Environment (in terms of Tb) sions D w
e +
CPSK* Simplex (6) & (13) T, Z/Tb X/Tb 1 P
coH 1
< DCPSK** Simplex - T Z/Tb 1/Tb 1 2w
b
2
Coh. FSK Coh. --Ortho; 16 —_— 3/T 2/T, 2 w
BINARY | g| (8 T, b b
Incoh. FSK |Incoh. --Orthog |  (25) TA 3/T, 2/T, 4 w/2
- b
tpcol Incoh. AM | Incoh.--Orthog |  (25) 2 3T, 2/T, 4 w/2
T,
b
Error- Incoh. AM Incoh. --Orthog
Coded Incoh. AM Incoh. --Orthog
1
CPSK M-phase (52) 1/T 2/T Tylog, M 2 W log,M
1
DCPSK M-phase - 1/T 2/T T 2 W log,M
M-ary Tb XogZM 2
. ) . M+2 M [
Basic Kinoplex Bi-orthogonal (45) M/2T 5T 2Tb log2M M/2
Symbol M+1 M 2W
Coh. FSK Coh--Orthog (35) M/T - W M ' logZM
NONBINARY
M+1 M w
M-symbol Incoh. FSK Incoh--Orthog (40) M/T T W 2M 1 logM
Alphabet Shift-reg. - _ M-1 2M-2 M-1 1 2W
encoded Simplex T T Tb logzM M-1 M-1 k’gZM
R Reed-Muller : M+2 M __ _—
Block o codod Bi-orthogonal (45) M/2T ST 2T, log,M M/2
Coded
M+1 M 2w
. . 2 log M
Binary Coh-orthog (35) M/T T Tb logzM M M 8y
M+1 M w
Incoh-orthog (40) M/T T T—b—IBEZTd 2M M logZM
L.

*CPSK-Coherent phase shift keying

Table I

Although the items appearing in this table will be
dealt with in the following material, it is profitable to
explain terms here.

Controlled Environment Bandwidth -- The bandwidths
here refer to the bandwidth occupancy of a signal, if the
adjacent communicators use the same signal and if their
frequencies are controlled (and integrally related) with
respect to the given signal. (Note that phases need not
be integral). The bandwidths here state how close sig-
nals can be placed and not (theoretically) interfere with
each other, under the stated conditions. The ideal sig-
nals take more bandwidth, but nevertheless they do not
interfere.

Uncontrolled Environment h -- The bandwidths

Depiction of various digital signals

**DCPSK-Differentially coherent phase shift keying

here assume that the spectrum of the ideal signal will be
cut off at some point. With a "square-wave' signal
pulse, the numbers here assume that only the main lobe
of the (sin x)/x spectrum is passed. Such spectrum
limiting will of course alter the square-wave signal
pulse. This is called "uncontrolled environment" because
now there need be no relation between communicator's
signals.

Considering the spectrum of M-ary coherent cases,
the bandwidth here includes the main lobe of the outer-
most (in frequency) signals. For coherent FSK there are
M lobes; for block coded binary there is only one major
lobe.

Constant Digit Rate Bandwidth -- This bandwidth is sim-

and their parameters.

ply the controlled-environment W written in terms of T,.
For constant rate, Tb is constant. Hence, these band-
widths are convenient for constant rate comparisons.
Signal Dimensions (D) -- D specifies the minimum di-
mensions (in a signal space representation) per symbol
time for a given signalling method. Section 4.1,2 re-
lates this minimum dimension to a minimum TW product
(per symbol time) for a given signalling method. This
in turn is used to find a capacity associted with each
signalling method.

Maximum C -- Since the C for a given signalling method
varies with E /N , the maximum C here is the highest
(or asymptotic) value of C. For these values the P,'s

of the symbols approach zero.




For binary signalling the following probability equation for probability of erro.

can always be written:

P =Py = P(1]0) P(0) + P(0]1) P(1) (7
where: PB = probability of a bit error
P(1|0) = probability of specifying a 1 when a

0 is present.

If one assumes that the a priori probability of a 1 equals the probability of a 0, then P(0) and
P(1) = % Furthermore it will be assumed that the penalty for either wrong decision is equal,

so that P(1]0) = P(0|1). Then the probability of error is given by

g
I

P(10) 5 + P(0]1)

I

P(1|0) = P(0[1) for symmetric, (&)
binary situation
The major issue then, for all such symmetric binary systems, is to evaluate
either P(1/0) or P(0|1). In general, this can be done by considering the a posteriori prob-
ability distributions. Consider that one is using two correlators or matched filters, as

shown in Fig. 2. Then let:

po(yl—yo) = prob. density of the output (yl-—yo) if symbol 0 is sent

pl(yl-yo) = prob. density of the output (yl-yo) if symbol 1 is sent (9)

These a posteriori distributions, for a symmetric case, are shown sketched in Fig. 6. For
all symmetric cases (and if the two distributions are of the same shape), the cut-point "x'" of
Fig. 6 will occur where the two curves are equal. The cut-point is the threshold, above which

one always decides 1, and below which one decides 0.
Thus the "area of confusion,' givenby Eq. 8, is shown by thetwo marked areas of

Fig. 6. One can evaluate either of these areas in the symmetric case. From these curves

it can be seen that the PB of Eq. 8 can be evaluated by:

[let y = (v4-v,)]
X el

Pp = P(10) = PO[1) = [ py»dy = [ »p (¥ dy (10)
-0 X
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Fig. 6. General depiction of probability of error calculation for binary,
symmetric decisions in terms of probability densities.

In general, for binary situations in white Gaussian noise, the Pe calculation in-
volves the procedure just described. For each special situation the cut-point may vary, and
the distributions may vary. With this general procedure we now show the relations for sim-

plex, coherent orthogonal, and incoherent orthogonal.

3. 1.1 Binary Simplex. In binary simplex, sl(t) = —sz(t). Two basic receivers

for such signals are shown in Fig. 2. In addition, for coherent binary cases, one can reduce
the number of correlators (or matched filters) by a factor of two. One does this by correlating
(or match-filtering)tothe "difference of signals." Figure 7 shows the correlator version:

(a) is repeat of Fig. 2(a), and (b) shows multiplication by sl(t) - sz(t). Note that the decision
device in Fig. T(a) is "choose greatest," while in Fig. 7(b) it is ""check polarity.' Although
correlators are shown here, matched filter versions may also be used. For purposes of cal-
culating Pe we willusethe one-correlator receiver of Fig. T(b), although one could use either.

The objective is to obtain pl(y) and pz(y) (see Fig. 6). First note that if s,(t) is

2
sent:

T
y(T) = fo [sz(t) + n(t)] [sz(t) - sl(t)] dt
T T T
=/ s;(t)dt -/ s, (t)sy(t)dt + [ n(t) [sz(t) - sl(t)]dt
0] (o] (o]
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Sir.ce, in binary simplex, sl(t) = - sz(t):

T
y(T) = 2E+ [ n(t) [sz(t) - sl(t)]dt (11)

(o)

S.(4) f CHOOSE
! GREATEST [ °

s, (1)

. 0
YT check

IPOLARITY

S [s,1-5,1)]

Fig. 7. Two basic receivers for binary coherent operation.

Looking at the "statistical" effect of y(T), itis seenthat the first term contibutes
a mean (2E), but no variance (since it is a constant). The second term will have a variance,
and a zero-mean [assuming n(t) has zero-mean] . If n(t) is Gaussian, the second integral will
be Gaussian since the integral of a Gaussian process is Gaussian (Ref. 10). By a variety of
means, one can show that the ¢ of this second integral is ZEN0 (Ref. 20).

I Sl(t) were sent the mean would be -2E with the same variance (2ENO). Before
depicting these curves, it is convenient to normalize for purposes of comparison and ease of
writing equations. Consider that the mean is normalized to + E. Then the variance will be

EN_ /2.

Since the cut-point of this binary symmetric situation will be at zero, the normal-

YooV
ized distribution diagram will-appear as in Fig. 8 (where y* = —22—1)
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P (¥ P2 (Y

Fig. 8.

The equation for either of the curves will be:

* + 2 * 2
Bly®) = — exp['l (Y _EE) ] - — exp [-(y .l
Vor o 2 o TEN ENO
ENO
where: o = 5
Then, using Eq. 10:
*
(lety =y )
© 0 (y + E )®
1 b
P =P = [ pydy, = [ eXp[-——-—~ dy
€ B o] 1 1 0 TIEbN ENo
o 2
1 j y
= — exp (- %) dy
Van f2E, 2
N
0

This is the equation that was plotted in curve (a) of Fig. 4 (Section 2. 3).
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PSK. A direct way to obtain sl(t) = —sz(t) is to use phase-shift keying (PSK).

For this case, the received signals can be written:

Sl(t) = +A V2 sin wt

so(t) = - A V2 sin wt (14)
Then, the following are true:
_ 2
Eb = A Tb
A*T N
g% = ——7b~—o (15)

This elementry calculation for energy per symbol (and the ones to follow) must
be regarded with caution. Such square wave calculations would be precise only if an infinite
BW were available (although signals may be relatively closely spaced in frequency; see Sec-
tion 3. 3 for discussion of BW). The amplitude of the waveforms over a symbol will usually
be an A(t) rather than a constant A. The energy calculation would then be based on this A(t).

We will plot most curves of this report in terms of Eb/No, where Elv)/N0 = the
signal energy per bit divided by the noise power per cycle.

3. 1.2 Coherent Orthogonal. For the orthogonal case the relations of either Eq.

1 or 3 must be fulfilled; i. e., the correlation between signals is zero.

For this case, one can again have the two basic receivers shown in F1g T or
their matched-filter versions. Because the signals are now orthogonal (instead of having a
negative correlation as in the above simplex case) the p(y)'s have the same shape, but are
now "closer together.' Using thereceiver of Fig. 7(b), the mean of the output distributions
ply) will be + Eb, and the variance EbNo' The p(y) diagrams for this case are shown in Fig.

9. Using Fig. 8, it is seen that here the variance is twice that of the simplex case.

Bused on this p(y), and using Eq. 10, the Pe is given by:

0 2
P, = Pp = L eV 2y (16)
Vr
b
N
o

This equation was plotted in (b) of Fig. 4 (Section 2. 3).
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b

Fig. 9. Distribution diagram for the coherent-orthogonal,
binary symmetric situation.

Coherent FSK. A way to obtain coherent-orthogonal signals would be to use co-

herent FSK. The signals for this case can be written:

s4(t) = V2 A sinw.t

1
sz(t) = V2 Asin [w2t+9] = V2 A sin [(w1+Aw)t+6] (17)
where: 6 is kept constant

In order for these waveforms to be orthogonal it is necessary that the following

equation be fulfilled:

T T
J sy syt) dt = 2A° J sinwtsin((w; +sw)t+6]d =0 (18)

o} 0

.his equaticn is zero if:
Aw = % 27
where M, N are integers

N .

and (2w1+Aw) = T 27 (19)

These conditions are independent of 6. I 2@1 >> Aw and 2w 1T = K27, only the first condi-

tion of Eq. 18a need be considered. For such usual cases, then:
M
Wy = W +TF 27 M =123, ... (20)

Thus the coherent frequencies can be spaced 1/T apart, under the usual conditions, for ortho-

gonality.

The E for this case would be the same as that of Eq. 15.
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3. 1.3 Incoherent Orthogonal. For the incoherent-orthogonal case the signalsare

orthogonal, but incoherent operation of the receiver is used. The two possible optimum re-
ceivers are shown in Fig. 3.

Above, the Pe was investigated by finding the p(y)'s, and (using symmetry) one
needed only to evaluate one "tail" of a Gaussian distribution, since there was symmetry about
the cut-point. For the incoherent case the distributions are not symmetrical about the cut-
point, as will be seen.

For incoherent orthogonal the two distributions of interest concern the envelopes.
The distribution of the filter output\avhi'ch is not matched to the signal is given by the distri-
bution of the envelope of narrowband, white Gaussian noise (i. e., the Rayleigh distribution).

Thus, (Ref. 5):

where: p.(y,) = probability density of output y, if
0“1 ! 1
symbol 0 is sent.
The distribution of the output whose filter is matched to the signal is given by the distribution
for the envelope of a sine wave plus noise, sometimes referred to as the Rice distribution.
Again, using Ref. 5, this is:
ylz + A2

2

Py =y e I.(y,A) (22)

where: pl(yl) = probability density of output ¥y if
symbol 1 is sent

A = peak-signal-to-rms-noise voltage
ratio =
2Eb/ N0

I (z) = Bessel function with imaginary
argument

o0
= 3 _ 22
n=0 92m

Equations 21 and 22 are the densities of interest for both incoherent AM and FSK.

However, the two cases are different because of cut-point considerations.
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Incoherent AM. For incoherent AM (or "off-on") there is only one matched filter
[a single one of Fig. 3(a), or a single pair of Fig. 3(b)] , and the distributions appear as in
Fig. 10. Note that the abscissa Y4 in this diagram is the output of the single matched filter,
and not the difference (yz—yl) as in Figs. 8 and 9.

If symmetric errors are desired, one sets the point x so that the two areas shown
are equal. If one chooses symmetric operation, the proper x can be found by the use of
tables, and the following procedure:

Find x such that:

2
1- Q0,0 = 172 = qa,x) (23)
0 -y/2 _-A%/2
where: Q(A,x) = f ye e IO(Ay)dy
X
Then:
2
P =Py =e /2 (24)
ply) Po(¥,)

Fig. 10. Sketch of probability distributions for the
incoherent, orthogonal AM case.

Incoherent FSK. For incoherent FSK the distributions of Egs. 21 and 22 hold,

but it is difficult to sketch the distributions in the fashion of Figs. 8 and 9. The Pe calcula-
tion will be shown in Section 3. 2. 2. 1; we simply note the result here.

For symmetric errors, incoherent (orthogonal) FSK results in:
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E

2N
© (25)

This was the graph plotted in (c) of Fig. 4 (Section 2. 3). One will obtain this Pe

if one uses incoherent FSK, which is an incoherent-orthogonal case.

3.2 Nonbinary Systems

By the earlier definition a system is nonbinary if the decision process involves
more than one "bit." Thus, there are two nonbinary situations: (1) intersymbol constraints
are imposed on the original binary decisions~--called "error-coded binary signals,' and
(2) M-ary signals are used (see Table I).

Suppose that, with a given S/N ratio, the Pe is unacceptable. One can then con-
sider remaining binary and increasing the symbol time (which decreases the data rate), or
going to a nonbinary situation. Suppose it is necessary to keep the information rate constant;
then it is necessary to go to the nonbinary systems. Of the two possibilities, error-coded

binary and M-symbol alphabet, we consider first the error-coded binary.

3.2.1 Error-Coded Binary Signals. Since error-coded binary signals involve

groups of binary digits, the first probability calculation that can be made will be a word prob-
ability (PW)-—-that is, the probability tﬁat an error-coded word is incorrect. This result is
immediately applicable if the original data are words of the same length as the "'number of in-
formation digits' in the error-coded signai.

If the original data are independent bits, one would like to find the equivalent in-
formation-bit error-rate from the Pw' Unfortunately this is exceedingly difficult and we are
not aware of any such calculations. Consequently we will be restricted here to a calculation
for the PW in an error-coded situation.

In error-coded binary, a message word of m information bits is encoded into an
n-bit code word, containing k = n-m redundant digits. Clearly, with this increase in numbers
of transmitted bits, the net information rate must decrease, or conversely, the bit trans-
mission rate must be increased, with consequent increase in bandwidth needed if information
rate must be held constant.

After the coding, the binary code words are then transmitted by one of the schemes

already discussed in Section 3. 1. Thus, the bit-error probabilities P are determined by the

B

modulation-detection method, while the word-error probabilities PW are determined by the
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error-encoding and decoding scheme used. Therefore, the relations below are given in terms
of bit-error probability, which have already been described.

As a comparison, the word-error probability for an n-bit uncoded word is simply:

P (n) = 1-(1-pP_)"

w B (26)

where: PB is the bit-error probability.

The word-error probability (PW) for a general error-coded word (where the errors
are assumed independent) has been worked out (Ref. 11). The assumption is made that the
bit-error probability PB is known and is independent for each digit. This is the case for a
channel perturbed by white Gaussian noise, but does not necessarily hold for cases when the
channel is disturbed by impulse noise.

The word-error probability is given for a code word of n bits, containing m in-
formation bits and k check digits---denoted as (n, m). Thus, there is a total of 2™ information

n .
words and 2 message words, leaving r redundant words, where

r redundant words

2m information word

or 2 -1 =

Therefore, the code should be able to correct at most gl errors, since each
information word can have a total of 2™ message words associated with it.
The best code will correct all combinations of errars up to s-tuple, plus some
of (s+1)-tuple errors, where

]s+l

n ) _ oh-m
'E() (i) gy T 2 (28)

The total probability of correctly receiving the word, or receiving a word with

correctable errors, is:

Q,  + g Pg  Q (29)
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So the probability of a word received in error is:

B S n i n-i . s+1 n-s-1
P (n,m) =1 [150 (;) Pg Qg + ig,q Pp Qg ] (30)

This expression can be evaluated for a particular code and modulation scheme.

Figure 11 shows the word probability of error (PW) for a (16, 5) and a (32, 5) code.
Both incoherent (orthogonal) and coherent (simplex) binary detection are shown. These curves
were calculated using -Eq. 30 with the PB's given in Fig. 4. Also, the information data rate
and the average power of the transmitter are kept the same as for the uncoded transmission.
This is necessary to make a sensible constant data rate comparison. This means that, as
is increased, the Eb per bit decreases.

As seen in Fig. 11, there is relatively little advantage in this type of error code
(for constant data rate and average power) for m = 5.

It must be emphasized that Eq. 30 is for codes where the errors are assumed in-
dependent. For more modern '"burst correcting codes," we know of no equivalent relation,
and no basic work was done on this in this contract. The reason for this, as mentioned in
Section 1. 3, is that the real power of error codes lies where feedback may be utilized. Since
speech channels do not usually adapt themselves to such cases, error-coded signals are not

of greatest importance to us.

3.2.2 M-Symbol Alphabet. The other general way to obtain better Pe's, in con-
trast to the error-coding schemes described above, is to use communication signals which
are M-ary rather than binary. Again, referring to Table I, there are two cases: (1) M-ary
basic symbols and (2) block coded binary symbols. Although, from the theoretical error
point of view these two cases are the same, there is good reason, from the equipment point
of view, to separate the cases.

The essential profit of going to M-ary symbols lies in achieving the "integration
of more energy per decision' (see Section 1. 4).

In this section we will consider the probability-of—errdri“ calculations for M-ary
signals in general; then the different ways to implement the M-ary basic symbol and block
coded binary signal will be noted.

3.2.2.1 General Pch Calculations. ¥ one calculates the error-probability for an

M-ary signal, the result is a character error rate rather than a bit error rate (PB)—--hence
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the use of the symbol Pch' This is reasonable since an M-ary symbol can be viewed as
equivalent to a "group of bits. "
If the original data are words, one should convert the PCh to a Pw’ if they are

not already equal. If the data are bits, one should convert the Pch to equivalent bit-error-

rate (PB) .
In this section, then, we will be dealing with the Pch' For the comparisons of

Section 3. 3.1, the Pch’s will be converted to equivalent P_, and PW.

B
For M-ary symbols, the 4 types of signals to be studied are:
1. Orthogonal---coherent and incoherent.
2. Bi-orthogonal signals (require coherence).

3. M-phases---coherent or differentially coherent.

4. Simplex signals (see Section 2. 2).

We now discuss Pch calculations for these four cases.

Orthogonal Signals. The various types of orthogonal signals were described in

Sections 3. 1.2 and 3.1.3. We will first note the Pch calculation for the coherent orthogonal
case.

The receiver used for all of the signals below will be the "optimum' receiver, as
discussed in Section 2. 1. For M-ary signals, optimum receiversusethe'"maximum likeli-
hood detector;" that is, one chosses the greatest correlator output out of the M possible out-
puts. The Pch calculation then proceeds as follows.

Consider that signal M is sent. Then a certain voltage M (determined partly by
noise) occurs at the output of the Mth filter. The probability of a correct decision P(c) for
that M isthen determined by the probability "that atl other yi's areless than Y " Then, if

one integrates over all Y the result is P(c).

Let: pM(yM) = the probability density of the output of the
correct Mth filter when signal M is sent

P(yl, Voo +++ Vo1 < yM) = the probability that the
outputs of all the other filters are less than VM- (31)

Then P(c) can be written:

o]

Pc) = [ pyy) PO Vg o Yygoq < V) ¥y (32)

=00
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where: P(c) = probability of correct decision =1 - Pch

Now, since signals sj are orthogonal, the corresponding noise outputs y]. are independent, and

hence:

B( _ M-1
M-1
= [B(y; < yyy)] (33)
If white Gaussian noise is assumed,

2

M ™Moy - YN]—
P(y; < vy = f_oo Py(y)) dyp) = f e 0 dy) (34)

-0 71N0

where: PM(yj) is the probability distribution of the output of
filter j, which is not matched to the incoming signal,

when signal M is sent

Now substituting the Gaussian expression for pM(yM) and P(yj < yM), and writing

P . = 1-P(c), the PC for orthogonal-coherent cases is given by the following (for simplifi-

ch h
cation let y = M = output of desired matched filter):

y.2 M-1
_(y-E)® 2
0 N y N
1 o 1 o
P, =1- [ e f dy
ch N - o VAN © d(y]) (35)

where: E = energy per character or symbol.
N0 = single sided noise power density

In general this integral cannot be evaluated in closed form. However, computer
calculations have been published (Refs. 36, 37 and 12). It should also be noted, for M=2, that
this equation provides the same result as the binary coherent, orthogonal case treated in

Sections 2. 3 and 3. 1. 2 (for M=2, Pch:PB). In Section 3. 1. 2 a slightly different Pe deriva-

tion is referred to.

To find the appropriate E for the sine wave signal, Eq. 15 of Section 3. 1.2, may

be used. Note that this E is now energy per character (as opposed to energy per bit Eb).
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Incoherent Orthogonal. For the M-signal incoherent system (for example, a

multiple-FSK system using M incoherent frequencies), filters matched to the carrier pulse
shape may be used (see Fig. 3), followed by envelope detectors and a decision device which
chooses the filter having the greatest output at the end of the transmisstion interval. Because
of the envelope detectors, the probability distributions at the outputs will be those of either a
noise envelope, or a signal-and-noise envelope.

Assuming a maximum likelihood detection, the general equation (32) still holds.
But now, using the distribution for the envelope of "noise alone" (Ref. 5) the probability of

M exceeding any yj is given by:

P(y. < yM) = f y. e ) dy. = 1-e (36)

]

Also, the distribution pM(yM) for "envelope of signal plus noise" is given by (Ref. 5):

y2 + 2E/N0
Py = Py(y) = ¥ e 2 L[y -ZN% (37)
where: E = energy per character or symbol
NO = single-side noise power density
Using these relations in Eq. 32, the Pch is given by (Ref. 11):
y? + 2E > 2M-1

The term inside the bracket may be integrated and expanded into the binomial

series:
[ ] L oy’
1-¢ 2 =y ()F ML e 2 (39)
r=0 r
Then one can complete the second integration, and the result is:
_E E
N M Nr
1 0 r M o]
- . = - 40
Incoh-Orthog: Pch M€ rz:z (-1) (r) e (40)



where: E = energy per character or symbol

Z
I

single-side noise power density

-E /2N
B° 1/2 e , the expression

For M=2, ordinary FSK, this reduces to P
previously derived for uncoded binary signalling.

The above expression (40) holds for any orthogonal system employing envelope
detectors, since only the assumptions needed are that the M signals are orthogonal, envelope-

detected, and perturbed by white Gaussian noise.

Again, the proper expression for the E of the sine wave signal is as given in Eq.

Bi-Orthogonal Signals. A signal which is better than coherent orthogonal signals

(for Pe purposes) is a set of M-ary orthogonal signals and their negatives called, "bi-ortho-
gonal signals.” For example, Kineplex can be considered as using such a set, along with
differentially-coherent detection. Such signals require coherence since one must be able to

distinguish between a signal and its negative.

Two ""natural" examples of bi-orthogonal signals are:

1. The Kineplex signal, where the cosine and sine of a single fre-
quency are orthogonal, and two phases of each wave are avail-
able (a signal and its negative)---natural in frequency.

2. A block coded binary (see below, and Ref. 12), where coded
blocks of binary digits are made orthogonal to each other
(natural in time), and the two phases are available so that a

negative for each signal is available.

We now show the calculation of PC for this case. The basic idea is similar to

h
that of the orthogonal case (Eq. 32), except that now one must specify that Yy/g have the
proper sign (since there will be a signal which is the negative of the M/2th signal that pro-
duced Yy /9).

Thus the basic equation for PCh is the following (for simplification let y = yM/2 =

output of desired matched filter):

for i =1,2,...(M/2 -1)
Pch = 1 - Prob [HyJI < ly}} and y o O] (41)
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(0]

+y
Now:  P(ly;| < |v]) = f_y NS (43)

Using this, the Pch can be shown to be (Ref. 12):

2 -1
_ =) i ?
© N +y N
Py =1-—— [ e ° L 17 ©gy. dy  (44)
aN_ o TN -y )
‘/ ) 0
e e R 3l

Bi-Orthogonal: PCh =1-— f e [ert (y)] dy (45)

Vi o

energy per character or symbol

where: E

N
o

single-side noise power density

This expression has also to be evaluated on a computer; curves have been pub-
lished for block coded binary cases, and these are immediately convertible into the general
cases.

It may be noted that the binary simplex signal [sl(t) = -sz(t)] is also a bi-

orthogonal case. Hence, when M=2, the above expression is equivalent to:

_y
1 foo 2
P. =P, = e dy (46)
ch B ‘/—2_77 -
b
N
o}

which is the equation used in Section 2. 3 and 3. 1. 1.

Bi-orthogonal signalling requires only half the bandwidth and half the correlators
(or matched filters) required by orthogonal coherent signalling. For these reasons, such
signals have great attractiveness from the engineering standpoint.

Comparative curves will be given later.
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Simplex Signals. From the purely theoretical standpoint, the best set of signals

when considering Pe are the simplex signals (Section 2. 2).

It is remembered that (Ref. 3) simplex signals, viewed as points in signal space,
correspond to a geometrical regular simplex where every vertex is equally distant from
every other vertex. If there are M signals, the geometrical simplex appears in an M-1-di-
mensional space. In one-dimensional space the signal is a binary PSK wave; in two-dimen-
sional space, a 3-phase wave at 1200; in 3-dimensional space (M=4) no signal is easily de-
scribable, but the simplex is easily constructed (Ref. 21).

However, the Pe calculation for M-ary simplex signals is difficult to achieve in
closed form. This is because the noise outputs of the unmatched filters (see Fig. 2) are not

independent. However, one can obtain the Pc 's from the coherent orthogonal case since one

h
can show (Ref. 16) that use of a simplex set instead of an orthogonal set is equivalent to an
increase in energy of M/M-1. Hence, if one has the curves for coherent orthogonal, one can
immediately plot them for simplex signals.

Remember that, for the binary case, sl(t) = —sz(t) is a simplex signal.

3.2.2.2 Basic M-ary Symbols. The general Pc relations for M-ary signals

h

were given above. As mentioned before, two ways of obtaining the M-ary signals are: (1)

basic M-ary symbols, and (2) block-coded binary. First we consider basic M-ary symbols.
For M-ary basic symbols one can have:
1. Simplex signals, constructed generally so that the M points
correspond to a geometrical simplex.
2. Bi-orthogonal, sine and cosine of given frequency orthogonal,
and negative of each frequency.
3. Orthogonal Coherent (M-ary, coherent FSK).
4. Orthogonal Incoherent (M-ary, incoherent FSK).

5. M-phases, coherent or differentially coherent (see below).

The M-phase signal is included here because we will later use this signal as an
example of a close-packed signal, (see Section 2.2). For the other signals, the PCh equa-
tions given above can be used directly, by determining the proper E for each situation.

3.2.2.3 Block-Coded Binary Signals. Block-coded binary signals represent a

very practical waytoimplement ""more energy per decision.” The practicality comes from

the fact that binary operations are involved, both in the transmitter and the receiver.
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Also, it is possible to get the ""best" signals rather easily this way, as we now

note.

M-ary simplex signals can be obtained by using linear shift register sequences

(Ref. 14) to form the binary block. For this, one uses (withan L = 2"-1 long sequence) the
entire length of the sequence, and the L signals are obtained from using the sequences one

clock step delayed from each other. It is well known that the correlation between such sig-

1

nals is -1/L-1 = - VEs)

(Ref. 14).

Orthogonal block codes can be generated in a number of ways, and shift-register
implementations are also possible (Ref. 12).

Bi-orthogonal signals (discovered by Muller and Reed, Ref. 15) also can be
readily generated by shift-register means (Ref. 12). The Digilock communications system
uses such bi-orthogonal codes. It is a telemetry data link where 5-bit words are shift-
register encoded into (16, 5) bi-orthogonal codes (32 possible words).

To obtain the PCh for any binary block-coded symbol one uses the appropriate
equation, 35, 40, or 45. Again it is necessary to find the appropriate E. It must be stressed
that the E in each of these equations refers to the energy per complete character. Hence the
energy per bit Eb must be multiplied by the "number of bits per character."

3.2.2.4 M-Phases. A set of M-ary signals, somewhat different from those con-

sidered above, is the use of M-phases in coherent situations. For our purposes, these sig-
nals represent one example of a "close-packed signal” (if M > 8). These signals are unique
in that they only require 2 dimensions, no matter what the level of M (see Table I). One

significance of this lies in the ultimate capacity that one can achieve when S/N is very high.

A comment on M-phase signals, relative to the '"'simplex, bi-orthogonal, and
orthogonal" category, is pertinent here. Each of these three signals (treated above) is
essentially based on the idea of being relatively far apart, so that a certain degree of immuni-
ty to noise is achieved by sacrificing bandwidth. The basic worth of these signals is thus in-
tuitively obvious, when conditions are such that one must resort to an M-ary signalling situa-

tion.

M-phase signals, on the other hand (for M > 2), are based primarily on the idea
of conserving bandwidth at the cost of some S/N ratio (i. e., poorer Pch); also, when E/No

is high (so that Pch requirements can be met), the M-phase signal is a better signal (BW-
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wise) than uncoded binary.

Two methods of operation are possible with M-phase signals: coherent (CPSK)
and differentially coherent (DCPSK). In coherent operation the receiver must have a phase
coherent signal (phase coherent with the transmitted signal). The receiver then appears
exactly as in Fig. 2, where the sj(t) are gated sinusoids at the various phases.

For differentially coherent (DCPSK) operation, the information is extracted from
""phase now relativetophase inprior symbol." Here it is only necessary that phase coherence
be held over one symbol length. This operation (used by Kineplex) is more easily realized in
practice than strictly coherent receivers. One result of this operation is that errors tend to
occeur in pairs.

For calculating Pch of M-phase signals a different procedure from those above
must be considered, since now the noise outputs of the "unmatched" filters are not independ-
ent (the "simplex" outputs are also not quite independent). For this reason it is of interest

to note the PCh calculation for M-phase. A brief sketch of a Pc calculation for M-phases

h

(taken from Ref. 13) will now be given.

Coherent M-Phases. Again we are interested in the Pch for a "maximum likeli-

hood receiver.' Such a receiver would be as shown in Fig. 2, where the correlator or
matched filter is matched to each phase.

Each signal of an M-phase system can be written as
s(t) = V28 cos (wot +6) (47)

where: S is the received signal power,
w  is the angular center frequency, and

6 is chosen from a discrete set 27k/M,
for 0=k = M-1.

The detection problem amounts to deciding which of the M possible transmitted phases is the
received phase. Assuming the M phases to be equiprobable, the receiver chooses the 8
which has the maximum a posteriori probability at the detector. This can be calculated

(Ref. 13) by determining the probability that the received signal phase falls within the section
T

o
M

36



Assuming that the received signal is narrowband, perturbed by additive Gaussian

noise, the interfering noise can be written:
n(t) = Ic cos wot + Is sin w t (47a)
where: Ic and IS are low-frequency random variables with zero mean.

The total received signal is then

x(t) = s(t) + n(t)

(V28 + I.) cos wt + I sin w t (48)

assuming that the desired phase 6 is zero. The probability density of the phase of x(t) can

then be written, using the method of Rice (see also Ref. 10, p. 166):

S ) S 2
N ﬁcos 0

p(6) = %e 1+ V47 S/N cos 6 e - (V2 S/N cos 9) (49)

where Y(x) is the cumulative Gaussian function:

XZ
1 x T
Y(x) = e dx
=

Because the S/N ratio here is an input S/N, the conversion to E/No is given by:

Then p(#) appears as:

E E =
N - — cos“ 0
0] o)

p(g) = l-ve 1+ 477-E cos 0 e i 2—E~ cos 6 (51)
21 NO o

which is the probability density of the phase of the received signal. Integrating this density

over - %f < 6 < % gives the probability that the received signal phase falls within the

sector bounded by the decision levels *+ e., the probability of error for an M-phase

T,
b

syslem is
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7/M

P =1- p(8) da (52)
ch f-w/M

This can be integrated by numerical or graphical means to give curves or error probability
versus E/N0 for given M (see Ref. 13).

For reasonably large x, the integral y/(x) can be approximated by the first terms

of an asymtotic expansion; thus

_xt
2
Yx) = 1-2 (53)
Vor x
is
= (54)
- — sin?6
© (55)

Curves based on previous integrations of Eq. 52 (Ref. 24), which show PCh VSs.
E/NO , are given by dashed lines in Fig. 12 (taken from Fig. 3, Ref. 13). Note that the or-
dinate is Pch; if bit error rate is desired, the Pch must be converted to PB' Also, the
abscissa is in terms of E, where E = log2 M Eb.
Differentially Coherent M-Phase (DCPSK). For differentially coherent systems,

the Pe calculation is quite involved. Here we will present only the results (Ref. 21 p. II-23)

for comparison with the CPSK case above. The PCh vS. E/NO curves are shown by the solid

4

lines in Fig. 12. Comparing DCPSK with CPSK, it is seen that, for a Pc of 10 7, the db

h
loss is 3.6 db for M = 16, and drops to 1 db for M = 2,

3.3 Comparative Results and Conclusions

Since the various signals and operation methods dealt with above represent alter-
natives available to a system designer, we wish here to draw sensible comparative graphs

showing the relative advantage of the alternatives wherever possible. Note that in some cases

38



Fig. 12. P} versus E/N0 for M-phase CPSK and DCPSK.
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this is too laborious and so desired comparisons cannot be made without further research.
The objective in the following graphs is to show the Pe versus Eb/No for the vari-
ous types of signalling. . Also, the "theoretical" bandwidth for each case will be noted. The
viewpoint will be that there is a certain power, S, available, and that this cannot be increased.
The other three variables then are Pe’ data rate, and bandwidth. In all cases we will make
essentially ""constant data rate'' comparisons; this is occasioned by plotting all curves in
terms of "energy per bit/noise power per unit bandwidth. " If the energy per bit is constant

(a vertical line on the graphs), and power is constant, then a constant data rate will result.

The comparisons that one makes depend somewhat on the priority of Pe versus
bandwidth, assuming a constant data rate. In Sections 3.3.1 and 3. 3. 2 it is implied that Pe
is more critical than BW, and the Pe's of the signals are compared. Section 3. 3.3 compares
signals in terms of conserving BW at the expense of Pe's.

When comparing the advantages of the previous alternative signals, where Pe is
deemed essential, it is sensible to consider two separate cases: (1) bit-error comparisons,
and (2) word-error comparisons. If the basic information is a sequence of independent binary
bits, (or if one is comparing different types of systems) the proper criterion is the probability
of error of the bits, and one is interested in how the various alternatives described above
affect this bit probability of error. On the other hand, if the basic information consists of
such things as teletype or any sampled analog data, where the basic information is already
groups of binary bits, then the important criterion (and the criterion which the user will want
to talk about) is the Pw of the "word. "

Consequently, the following comparisons will be made on these two separate
bases. We begin with the bit-error comparison.

3.3.1 Bit-Error Comparison. The first item of interest is to consider the alter-

native types of signals when one is transmitting straight binary. The possible signals are:

simplex, coherent orthogonal, and incoherent orthogonal. A graph of PB vs. Eb/NO for each

of these three types of signals was shown in Fig. 4 of Section 2. 3. One can find, for a given

No’ what PB can be obtained for a given energy if one uses either of the three types of signals.

Error-Coded vs. Binary Signals. We simply wish to note here that the prob-

ability of bit-error comparison between error-coded and binary signals is not yet possible.
Quite laborious calculations would be involved in attaining this. It will be remembered that

in Eq. 30 of Section 3. 2. 1 the item discussed was the probability of a word error--- that is,
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the probability that the amount of digits in error is greater than the correcting capability of
the error code. In order to convert this PW to a bit Pe it is necessary to know the "average
number of information digit errors per error-coded word error." This is quite a laborious
calculation and requires effort devoted singly to it. This calculation was not deemed of
sufficient worth to the goals of the contract to warrant the necessary effort.

M-Symbol Alphabet vs. Binary. The first graphical comparison will compare the

bit Pe for M-symbol alphabet vs. binary.

As mentioned previously, the chief occasion for considering M-ary signalling as
opposed to binary is when the Pe is not good enough (for binary) with the given Eb/No and data
rate. If one uses M-ary symbols (M > 2) one is in effect increasing the energy per decision.
If one keeps the data rate and the energy per bit constant, one can obtain improved Pe's at
the sacrifice of a slight delay (until decision on M-ary symbol is possible), some equipment
complexity, and increased bandwidth.

Figure 13 shows the comparison of binary versus M-ary for coherent, bi-ortho-
gonal signalling. The basic data were obtained from the computer calculations of Eq. 45 as
reported in Ref. 12. Since the basic data are character probabilities, these data were con-
verted to bit errors by multiplying by % (where n = logzM). This factor is approximately
"the average number of bit errors per word error.'" The reasons for choosing bi-orthogonal
cases as the coherent comparison (instead of orthogonal or simplex) are: (1) if one can use
coherence, the bi-orthogonal signalling gives better Pe's than orthogonal signals; and (2) the
bi-orthogonal signalling is ""more practical" than e.ither orthogonal or simplex, since only

M/2 correlators and half the bandwidth are required.

Figure 14 shows thebinary-M-ary comparisonfor incoherent orthogonal signalling.
n-1

These data were obtained from Eq. 40, again multiplying the character error-rate by o1
to obtain PB.

Figure 15 compares binary-M-ary for coherent M-phases. The data here were

of Fig. 12 by 2 to obtain the approximate P and con-

h on_1 B’
verting the E to Eb by using E = logzM Eb‘

obtained by multiplying the PC

The "theoretical BW's'" shown on each of the above curves are taken from the
values in Table I, and deserve comment here. These BW's would be realistic under the

following conditions: if a large number of communicators all used the same signalling meth-
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od, and controlled their frequencies with respect to each other, each channel would consume
the BW shown. We might call this the "controlled-environment' BW. These BW's are estab-
lished by writing an orthogonality integral, to make "crosstalk" between channels theoretic-
ally zero. Note that, while adjacent channels may be noninterfering with this BW, each
channel actually uses a much larger spectrum (although the major energy is in the central
lobe), so that, for example, square-wave video is attainable. Although the practical use of
these BW's is limited, they do serve well for comparison purposes.

A more practical BW for each signal is also given in Table I. Here the criterion
is that the main lobe of each signal is used, and everything outside filtered severely. Note

that, if one uses these BW's in practice, previous theoretical calculations must be altered.

sin X
X

For example, orthogonal signals will not be quite orthogonal; video pulses will be type,
rather than square-wave; and simple energy calculations for signals (Eq. 15) will have to be
altered. The actual practical BW's of the various signals in an '""uncontrolled environment™

require substantial work, and must be tailored to the situation since results depend upon the

assumptions.

3.3.2 Word-Error Comparisons. If the original data are words, it is the word-

error probability which is of interest. We wish to compare the PW'S of M-symbol alphabet
versus binary.

In order to compare word errors sensibly, one needs "equivalent words." That
is, it makes little sense to compare the error-rate of an n-bit word with that of an m-bit one.
Therefore all the comparisons below are made in terms of a 12-bit word. As suggested in
Ref. 22, the 12-bit word is good for M-ary comparisons because 212 = 46 = 84 = 163 = 642 =
4096.

In the following curves the Pw for a 12-bit word is plotted vs. Eb/NO-——the
"energy per bit" over N0 . If the data rate is assumed constant, and a maximum power S
assumed, then the energy per bit remains constant.

Figure 16 shows the 12-bit PW for the three types of binary operation. The Pw

is related to the PB by:

12

=1-(1-P (55a)

B)

The PB'S for these curves were taken from Fig. 4.
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Figure 17 shows the binary-M-ary comparisons for a 12-bit word using bi-ortho-
gonal signalling. This would be the coherent comparison. For these curves the PCh is calcu-

lated from Eq. 45, and Pw obtained by using:

N
P = 1-[1-P_ (M) (56)

where: 212 = MN

The curves of Fig. 17 were taken from Ref. 22, Fig. 3.

Figure 18 is the incoherent (orthogonal) comparison. The Pc are calculated

h
using Eq. 40, and then Eq. 56 is used to obtain PW. The data plotted in Fig. 18 were not re-

calculated, but were taken from Ref. 22, Fig. 4 after due checking.

Figure 19 shows the 12-bit PW vs. Eb/No for M-phase signals. This curve was
found by using Eq. 56 and obtaining the Pch from Fig. 15. Since the M-phase signal requires
coherence, it is sensible to compare Fig. 19 with Fig. 17.

A remaining comparison is error-coded versus binary. Since a calculation for a
12-bit word was too laborious, only a 5-bit word was used. Curves for a (16,5) and a (32, 5)
error code, both coherent and incoherent, were shown in Fig. 11. Note that, in this com-
parison, the bandwidths are not the same. The bandwidth expansion for error-coding for the
same data rate is equal to the digit expansion (16/5 and 32/5) of the code.

3.3.3 Information-Rate Comparison. The curves of the above two sections are

most directly useful where Pe is the essential consideration, and where BW is more or less
flexible. Those curves suggest what one must do if a given Eb/No and given data rate do not
provide a suitable Pe; also, the curves depict the cost in bandwidth as M increases.

If the major consideration is conservation of bandwidth, and Pe is somewhat
flexible, then the quantity of interest is the "informat'ion—rate per BW" vs. Eb/No . Such
curves would depict how to get a given information-rate through a specified BW, but the high
information rate may have a great many errors. Figures 20 and 21 show "information-rate/
BE" vs. Eb/No for the two cases shown before (bi-orthogonal, incoherent orthogonal).

The information rate (I), as opposed to data rate (R), is a measure of the aver-
age number of correct symbols (or bits) per unit time in a noisy situation. If there is no
noise, the information rate equals the data rate.

For the orthogonal cases, the information rate is given by (Ref. 6):
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P
S S _ch gl _ : |
I = logzM < Tb l:logzM + PCh 10g2 o1t (1 Pch) log2 (1 Pch)] bits/sec (57)

where: I = information rate = average number of
correct symbols

1og2M X Tb =T =length of general M-ary symbol
Tb = length of equivalent bit
PCh = probability of an M-ary character error.

For the binary (orthogonal) case, this reduces to the well-known equation:

21 i '
I = Tk—) [1 + Py log, P+ (1- PB) log, (1 PB):l bits/sec (58)

The value of I was divided by the "theoretical controlled-environment BW's"
shown in Table I (and on the previous curves) to obtain the data for Fig. 21, the incoherent
orthogonal case. The Pch(M) for each curve was obtained from Eq. 40 of Section 3. 2. 2.

For the bi-orthogonal case, available data in tabular form from Ref. 12 was used
to obtain the I. Again the BW's shown in Table I were used.

3.3.4 Comparison Conclusions. To review, curves have been plotted of PB’ Pw’

and I/BW vs. Eb/N0 for bi-orthogonal, incoherent orthogonal, and M-phase cases. Since

the abscissa is always Eb/NO, it is implied that one is making a constant data rate compari-

son. This follows if one assumes that the power S is constant; then, for a constant data rate

(constant Tb), the Eb will be constant. We will be making variable rate comparisons in
Section 4. 3, when discussing "'capacities. "

For a constant rate comparison, it is sensible to think of two regions, low Eb/ o
and high Eb/N0 . If the Eb/No is high, the problems are fewer; that is, one can meet the P
requirements with a bandwidth efficient signal (such as M-phase). If the Eb/No is low (but
greater than 1), then one must emphasize either Pe or W. Hence we will consider two cases
for low Eb/NO: (1) Pe is most important, and W relatively expendable; and (2) W most im-
portant, and Pe relatively expendable.

If Pe is most important (for low Eb/N0 where 1 < Eb/NO < 20), and one is re-
stricted to a given power S, then it is clear that one must use an M-ary orthogonal signal

sufficient to give the desired Pe' From Figs. 15 and 19 it is seen that M-phase signals

where M > 8 do not provide suitable Pe's. From Figs. 13, 14, 17 and 18 it is seen that,
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for a constant Eb/No, increasing M with orthogonal signals improves Pe substantially. How-
ever, Figs. 20 and 21 give a measure of the cost in bandwidth of increasing M.

If one can consider increases in S (for a constant data rate), the steepness of the
curves in the figures shows that this is more profitable than increasing M. For example, in
the coherent case (Fig. 13), going from M = 2,4to M = 4096 is equivalent to a 3. 5 db increase
in power (8) for Pe = 10_5. In the incoherent case (Fig. 14), going from M=2 to M=64 is about
equivalent-to increasing S by 6.8 db. Thus, to improve Pe for a constant data rate, increases

in S (if possible) are more profitable than increasing M; and this is more true for coherent

than for incoherent operation.

If the bandwidth W is most important (for low Eb/ No) then one must emphasize
Figs. 20 and 21. Here the cost of using large M probably becomes prohibitive. From the
figures, it appears that an M of 2 or 4 is suitable for coherent operation, and an M of 4 or
8 for incoherent operation. If W is crucial, one should probably avoid going beyond M=8,

even for the incoherent case.

. . - Rn
= i [LogM +(1-RLOG, I B+ By LOG, 321 ]

L 1 L i
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.1
[}
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Fig. 21. Information rate/bandwidth for M-ary in-
coherent orthogonal signals.
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Finally, if E /N, > 20, so that P_ of the order of 10”° can be obtained with
""correlated signals," it appears clear that one should use signals that stress "high informa-
tion/W" rather than "distinctness' (simplex, orthogonal, etc.). The signals of interest then
are ''close-packed," of which M-phase with M > 8 is one example. Figures 15 and 19 show
the Pe's for M-phase signals. Considering that M-phase signals become increasingly cor-
related with M > 8, the M = 8 signal appears profitable for "intermediate" Eb/NO (20 to 50).

I Eb/NO > 50, one should consider, in addition to increasing M of M-phase, the
signals which encode both amplitude and phase. Also, other close-packed signals may be
considered.

These are the conclusions, then, for a constant data rate comparison of some
common (and feasible) signalling methods. Many design situations will not be clearly separ-
able into the regions treated above; for all such cases one must balance the advantages and

disadvantages.
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4. CHANNEL CAPACITIES AND MAXIMUM RATES

Although the Pe calculations treated before are probably the most basic evalua-
tor for a digital communications system, there may be cases where bandwidth conservation
is more essential; for such cases the curves of Figs. 20 and 21, showing "information-rate
per W' are of interest. Any consideration of information-rate per W is related to '"channel
capacity,' which is now familiar to all communications engineers. This section might well
then be considered an extension of the ideas in Figs. 20 and 21.

Channel capacity (C) is the maximun} rate at which one can send information over
a channel, and still (theoretically) reduce the Pe to zero (by external coding means).
Although there is general agreement on this concept, there is much disagreement on the way
in which C is calculated, as we shall note below.

The practical significance of C is that it should provide a sensible upper bound
for comparing various practical signalling alternatives, especially with respect to utilization
of W. In a sense, Pe considerations are outside the sphere of C, since the theory holds that
"it is possible' to reduce the error towards zero at the rate C by external means.

In Section 4. 1 a channel capacity for digital systems is portrayed. In Section 4.2
we suggest a "practical” method of viewing "maximum rates' (related to channel capacity) in

digital systems.

4.1 Capacity Relations for Digital Systems

In general, when beginning consideration of channel capacity, one considers vari-
ous types of possible channels (Ref. 6). Thus there may be discrete channels or continuous
channels. In a discrete channel it is assumed that the input and the output can be represented
by some discrete number of events. For a continuous channel it is assumed that the output
and input can take on a continuum of values. There also may be mixed systems such as
discrete-to-continuous or continuous-to-discrete. There is also the element of discrete time
or continuous time. Although most physical channels may be time-continuous, they can often

be satisfactorily represented by means of discrete time models (which is our case).

(9]
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The basic calculation used to find the channel capacity for a given assumed model
consists of evaluating the "average mutual information' between input and output sequences of
events. This average mutual information depends on the probability distribution of the input
sequence of events as well as the conditional probability distribution which characterizes the
noise properties of the channel. For any given channel, then, the channel capacity (giventhe
channel probability characteristics) is defined as the "maximum average mutual information
which would result if one maximized over the possible probability distributions of the input"

(Ref. 6).

4.1.1 Continuous Channels. One of the most familiar capacity formulas deals

with a bandlimited continuous channel in which there is additive white Gaussian noise. The
restrictions are that the input be a bandlimited time function and that its average power not

exceed a given value S. For this situation, the channel capacity is given by the familiar re-

lation:
C = Wlog(l + <) bits/sec (57)
NOW «
where: C = channel capacity, when input is a band-

limited time function with average power S

w signal (and hence channel) bandwidth.

This equation means that if one has a given average signal power S, if the
channel noise is flat and white Gaussian of power NO per unit bandwidth, if a bandwidth W is
available, and if one agrees to use as input a time function limited to bandwidth W, then the
maximum rate at which one can possibly send information with practically zero error is
given by the C of Eq. 57.

This equation can be applied to a given channel if the channel gain is reasonably
controllable or constant (or slowly varying), and if one is going to use continuous input wave-
forms. One of the bounding conclusions concerned with the proof of this equation is that only
with the use of signals having the statistics of white noise could one possibly hope to achieve
this channel rate; this is how the probability distribution of the input enters the capacity re-
lation.

Even if the actual channel being dealt with is discrete, Eq. 57 serves as the ulti-
mate capacity, since the capacity for a given continuous channel will always be equal to or

greater than the capacity for a corresponding discrete channel (where bandwidth, etc., are
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considered equal). Consequently it is sensible to use Eq. 57 as the ultimate comparison even
though discrete signals are used.

4.1.2 Discrete Channels. For the discrete case, the channel capacity is deter-

mined by the particular situation. A common case is "uniform' channels. A channel is uni-

form if:

Pij all equal (for i #j)
Pii all equal (58)
where: P.. = transitionprobabilities of signals between

input and output of channel, due to noise.

It may be noted that orthogonal signals and simplex signals in a discrete channel result in a
uniform channel, but bi-orthogonal signals do not strictly do so.

The channel capacity, in bits/symbol, for such uniform channels (Ref. 6) is
given by:

Pen bits

1 -— — - - —_—
I' = logzM + Pch log2 o1t (1 Pch) log2 (1 Pch) symbol (59)

where: p = uniform probability of error for each
ch i
of the M-ary decisions.
M = alphabet size.

It is very important to note that Eq. 59 lists the capacity in bits/symbol, whereas Eq. 57,
for the continuous channel, lists the capacity in bits/second.

To convert the "bits/symbol'" capacity of Eq. 59 to a "bits/second" capacity com-
parable to Eq. 57, (and this appears desirable) it is necessary to incorporate W and symbol
time in a sensible fashion. Since we are interested in a capacity relation, we desire to use
a minimum TW product in any calculation.

Immediately below, a minimum TW product for various signals is used which is
related to the '"dimensions' of the signals (see Table I). The capacity of discrete (digital)
systems in bits/second is then found, using the minimum TW product (in terms of dimensions).

The final objective will be to compare various signals in terms of their capacity/
bandwidth. Thus, we will plot C/W vs. Eb/NO for the various signals. This is the practical

interpretation of the theoretical statement that "an infinite number of dimensions is necessary
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to specify a signal at a 'time' density of 2W per second." This gives a measure of the ""best

one can do" in terms of utilizing bandwidth, given a type of signalling.

Although we feel this is a sensible way to use a capacity relation, there are cer-
tainly other ways, and the general disagreement has led to some confusion about "capacity. "
One common capacity comparison treats the capacity as a single number consisting of the
value of C when W approaches « (Coo)' This usage has value for ultimate comparisons and
concepts, but it is difficult to derive conclusions about any ''real world'" choices. Another
capacity comparison (for discrete systems) uses theoretical W's (as in Table I) of signals in
the continuous capacity relation of Eq. 57. We feel somewhat dubious about this, since the
theoretical BW's specify "how close one can put controlled signals,' and not "how much W is
used by each signal.' However, this usage does provide comparisons for controlled environ-
ments (each communicator using same type of signal, and coherent with respect to each other),
even though this is somewhat unrealistic.

As mentioned, we propose here a digital capacity (C) in bits per second which is
arrived at by using minimum TW products. Although time-bandwidth products of general
signals are somewhat arbitrary (see Ref. 23), there is good reason for relating minimum
TW products to the dimensions of any given signalling method. By "dimensions," of course,
we refer to the signal space representation of the signals.

The signal space representation of signals is based on the Shannon Sampling
Theorem, which says that, in an interval T, there are 2TW numbers required to specify the
signal (if the signal is limited to W). These numbers can be considered as coordinates in a
D-dimensional space (where D = 2TW).

Consider now the vector space for a large ensemble of successive symbols; this

space will have dimensions D', and D' 1is given by:

D' = 2WT' = 2WT x N (60)
where: T' = NT =time length of ensemble of successive
(possibly overlapping) symbols
T = time length of one symbol
N = number of symbols in T'
D' = dimensions of total space corresponding

to T'.

If one uses the criterion that succeeding symbols have no intersymbol interference, the vec-
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tor space representation for a given symbol time is an orthogonal subspace within the total

space of D' dimensions. The number of signals which can possibly be sent in time T' is then

given by:
_ D' _ 2WT' _ 2WNT
N=% =" =71 (61)
where: D = dimensions per symbol time T, called '"'signal
dimensions. "

The minimum TW for a given signalling method is then given by:
min {TW} = = (62)

It now remains to find the signal dimensions D for various signalling methods.

An M-ary coherent-orthogonal signal requires M dimensions per subspace, since this opera-
tion can be viewed as orthogonal subspaces within the symbol subspaces of dimension D.
Therefore, D=M for coherent-orthogonal.

For incoherent-orthogonal operation, each symbol subspace requires 2M dimen-
sions since the fact that phase information is not useful means that each "element' requires
2 orthogonal dimensions. Since there are 2 dimensions per symbol, there are 2M dimen-
sions per subspace. Hence D = 2M.

Simplex operation has a signal dimension of D = M-1, For M-phase signalling
(M > 2) the dimensions D remain 2, no matter what M is. For convenience, Table II shows

the signal dimensions for the various methods (also listed in Table I).

M-ary Signal Type Dimensions
‘ D
M-phase (M>2) 2
Bi-orthogonal (Coh. ) M/2
Simplex (Coh.) M-1
Coherent-Orthogonal M
Incoherent-Orthogonal 2M

Table II. Minimum Signal Dimensions.
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It should be noted that using minimum TW products based on signal dimensions
as in Eq. 62 1is a theoretical ""capacity' type of calculation. If one is precise, one can never
put absolute bounds on W and also on T. However, if one puts ""practical” bounds on W (say

-50 db on a filter response) one can in principle approach Eq. 62 if one allows overlapping

signals (but nevertheless practically non-interfering). The above material is more fully ex-
plained in Appendix A, and practical realization problems are discussed.
There are the following three implications as one tries to achieve the TW pro-
ducts of Eq. 62 and Table II (see Appendix A):
(1) The signals must overlap.

(2) The signals have an envelope which

sin x

approaches a curve.

(3) If min {TW} were to be realized, a
correlating receiver is no longer neces-
sary; if M = 2, a precise sampler is re-

quired, and if M > 2 a combination (or

block-coded) sampler is sufficient.

It is of interest to compare the minimum TW products here with the theoreiical
TW products of existing signals as given in Table I. For this purpose the uncontrolled en-
vironment bandwidths of Table I should be used, since these are the "limited" bandwidths.
For coherent bi-orthogonal and orthogonal, the signal TW's are about twice the capacity TW's.
For incoherent orthogonal the ratio of signal TW to capacity TW is M+1/M. Consequently,
the ""capacity" proposed here is a relatively realistic bound for a given signalling method.

We now use the minimum TW product of Eq. 62, along with the signal dimensions
of Table I or II, to obtain the capacity of discrete systems in bits/second, given the signal-

ling method. Using Eq. 59, and the minimum T for a given W, the result for coherent sim-

plex is:

P
. . I _ 2w ch
Coherent Simplex: C = DT - M-1 { 1og2M + PCh log2 M-1
+ (1—Pch) log2 (l-Pch)} bits/sec (63)
where: W = bandwidth as determined by response being about

(-50 db)
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=
il

alphabet level or number of symbols

C = capacity in bits/ second.

For general M-ary coherent orthogonal:

_ 2W ch _ .
C = v {logzM + Pchlogz Vo1t (1 Pch) log2 (1—Pch)} bits/sec (64:
For M-ary incoherent orthogonal:
c =L . W Jig.M+P 1 Pen (1-P ) log, (1-F
TTT M &9 ch 198 §-1 * (17Pp) logy (1-F )

It should be emphasized that, since we have used the limiting TW product, the equations
above should truly represent capacities for the discrete cases.

Using Egs. 63, 64, and 65, the capacities of the various alternative signals,
starting with binary simplex and going up to the M-ary signals, have been plotted in Fig. 2%
Since the ordinate is chosen to be C/W, the plot actually shows capacity per bandwidth for
each type of signalling. An important difference between the C/W curves here and the /W
curves of Figs. 20 and 21 should be noted: in Figs. 20 and 21 the W was based on occupancy
---that is, on how closely similar signals can be placed. Here the W is strictly limited
(-50 db). Hence the W here would be comparable to the uncontrolled environment W's of
Table I. Also, Fig. 20 and Fig. 21 refer to actual signals, while here a bound is being used
with no particular signal being specified.

To emphasize, the curves here deal with the capacity per limited bandwidth if one
is operating a discrete system with the given signal type and Eb/No ratio. The cases of
Figs. 20 and 21 essentially show "what the information rate is if one agrees to operate dis-
cretely and has a bandwidth occupancy and an Eb/No ratio. "

Although there is about a factor of two Letween information rate/W and capacity/ W
for coherent signalling methods, we feel the term '"capacity' is justified because of the mini-
mum {TW} concept. Thus this capacity may be regarded as a relatively practical bound.
There are two important features to C as used here: (1) it is a bound based on a minimum
TW product; (2) it is a single channel concept, so does not depend on the environment of <! ie:
channels (as do the controlled W values in Table I).

From the figures, it is seen that binary simplex affords the largest C/W---the

limiting value is 2. For coherent orthogonal the limiting value is 1.0, and the curve for
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Fig. 23. C/W versus Ep/No for binary simplex, coherent
orthogonal, and incoherent orthogonal signals.

M=4 stays above all others for the entire range of Eb/NO. It is seen that, as M increases,
C/W becomes very restricted.
For the incoherent case, M=8 is as good as M=4, in the low range. Again, as M

continues increasing, the C/W becomes restircted.

4.2 Maximum Information Rates if Data Rate is Variable

All the preceding material plotted either Pe or I/W vs. Eb/NO. The various

curves can be used to find either the Pe or the information rate per W for the various condi-
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tions. Under each signal type, one specific objective was to compare binary versus M-ary
operation.

Constant rate comparisons can be made by reading vertically at any Eb/NO point.
For constant Eb/No, the data rate R is constant if the power S is constant, since R = l/Tb.
Consequently, assuming that S is always fixed, all the preceding curves make '"comparison
sense' for constant data rates.

We now consider the case where S is still fixed, but R is variable. The objective
is to sensibly compare the various signal types for R variable. The first significant change
is that we now plot curves versus S/N, rather than Eb/No, since S is fixed, but Eb is not.

For the variable R case, the general aspects are as follows. Improved Pe's can
be obtained by slowing the data rate (longer Tb), and consequently reducing bandwidth. The
cost, of course, is the slower data rate. The alternative is to use M-ary signals. The choice
between these two alternatives depends on the "economics' involved.

Here we will adopt the criterion that "one should use as fast a data rate (low Tb)
as possible, commensurate with Pe and W.'" Thus we assume that one is given Pe and W, and
adjusts the R to as high a value as possible. We would then plot maximum information rate
per W versus S/N.

In order to do this, it is necessary to break the S/N axis, in any plot, into two
regions: (1) the low signal-to-noise ratio case, and (2) the high signal-to-noise ratio case.

In the low signal-to-noise ratio case the minimum Tb chosen, under a given S limitation, is
determined by the probability of error allowable. For the high signal-to-noise ratio case,

the Tb is limited and determined by the minimum TW product (Section 4. 1.2). In other words
the P_ is constricting for low S/N, and TW product is constricting for large S/N. For low
signal-to-noise ratio cases, the probability of error as depicted by the capacities in Fig. 23
above become so0 high as to be of little practical worth; hence it is sensible to put a probability
of error limitation on the low signal-to-noise ratio cases. For the high signal-to-noise ratio
cases the probability of error becomes increasingly better and hence minimum Tb (for maxi-
mum rate) will be restricted by the TW product (discussed in Section 4. 1. 2).

The objective here will be first to present maximum rates for binary simplex and

incoherent orthogonal under average power restriction. M-ary coherent and incoherent or-

thogonal will then be treated. In the curves of this section we plot "maximum rate' per band-

width versus signal-to-noise ratio: the maximum rate is given in bits/second. The direct
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import of this is that one can evaluate how efficiently one utilizes the bandwidth under the
given P(1 and W restrictions.

4.2.1 The Small S/N Region. As mentioned above, when the signal-to-noise

ratio is small, the duration Tb must be made long enough to meet the acceptable error cri-
terion or probability of error. Thus in this region the error rate will be constant with ener-
gy-to-noise ratio and hence the energy, the No and the I' of Eq. 59, is a constant. This can
be written:

I'N

- = ——_—_I' = ——-—0
IM = Max Rate = MinT - B W(S/N) (66)
where: IM = information rate in bits/second when taking

both Pe and W into account.

Curves of IM/W can be found as follows: using previous curves, choose a Pch; find T' corre-

sponding to that P ; then evaluate Eb/N

ch’

0" l_oﬁg_zMW; from previous graphs. With this equa-

tion, and plotting IM/W vs. S/N, one obtains the const'a.nt—Pe portions of the curves shown in
Figs. 24, 25, and 26.

4.2.2 Large Signal-to-Noise Ratio. As the signal-to-noise ratio is increased,

one arrives at the p.ace where the acceptable probability of error is met, and now the maxj-
mum rate is deterrained by Egs. 63, 64, and 65 given before. Hence the right sides of the
curves in Figs. 24, 25, and 26 correspond to the same information plotted in Fig. 23, except

that now we plot IM/W vs. S/N rather than C/W vs. Eb/NO. Note that C and I, differ only in

M

=C. From thereon, I,, =C.

that I, is constrained by Pe until I M

M M

To plot IM/W, one first assumes a given value of S/N. Convert this to E/NO by

multiplying by min {TW} = D/2. With the resulting E/NO , find the P, from previous
_ E
o logzMNo‘

It should be noted that a low signal-to-noise region for one Pe criterion is differ-

graphs, using Eb/N Then one can use Eqgs. 63, 64, and 65 to find I'/T.
ent from that for another Pe criterion. Also, for M-ary, one sees that a low signal-to-noise
ratio for binary may be a high signal-to-noise ratio for M-ary.

To emphasize, we have divided the maximum-rate situation into two areas:
small signal-to-noise region and large signal-to-noise region. These regions are dependent
upon the probability of error which must be met. The status or comparison between the
small and large signal-to-noise regions is depicted in Table III. We contend that this depic-

tion of maximum rates is sensible in terms of practical meaning for "maximum rate."
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2.8

2.6

24

2.2

S/N increasing —>

Small S/N

Large S/N

Error rate constant

T just long enough to
give error rate

Little penalty for re-
stricting to binary

Error rate begins to drop

I' (no. of correct) increases
as S/N increases

Maximum rate limited by
TW product of signal.
Can do much better by
going to M-ary (especial-
ly close-packed signals)

Table III. Conclusions about small and large S/N regions.

Fig. 24. Maximum information rate per bandwidth for binary signals.
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Fig. 25, Maximum information rate per bandwidth for M-ary
coherent orthogonal signals.

In comparing these results to the Pe calculations in the previous section (Section
3) one should remember that there Pe was plotted vs. Eb/No . Here we are interested in
maximum rates, and we ask the question, "How well are we doing in terms of what one could
do?'" Also, in this comparison we are assuming a power limitation.

The variable rate conclusions from Figs. 25 and 26 are similar to the constant
rate conclusions. If S/N for a given Pe is low (S/N < 1), M-ary operation becomes desir-
able (practically necessary). However, if S/N > 10, either M = 2 or a more closely-packed
signal becomes desirable.

These figures should serve the purpose of depicting ""how well one is doing" with

respect to "how well one could do, " taking both Pe and W restrictions into account.

4. 3 Conclusions

In Section 4. 1, the capacity relations for digital systems were considered, where

a capacity for a given signalling method was studied. The viewpoint taken was that a certain
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Fig. 26. Maximum information rate per bandwidth for M-ary
incoherent orthogonal signals.

effective W was available, and the capacity was determined by using the minimum T for that
W. The minimum {TW} was related to the signal dimensions. The resulting capacity re-
lations are a measure of the bandwidth utilization, irrespective of the channel Pe. However,
the capacity concept implies that the Pe can be reduced towards zero (by external means),
and the rate still maintained.

It was seen, in Fig. 23, that binary simplex offers the highest capacity (for far-
apart signals). For coherent orthogonal signals, M=4 is slightly better than M=2 for the low
Eb/NO; but both approach the same value at high Eb/NO. For incoherent operation, M=4, 8,
or 16 is preferable to M=2 for low Eb/NO, but M=2 or 4 is best for high Eb/NO.

The above ordering is under the criterion of bandwidth utilization, given a con-
stant rate comparison.

For a '"'variable data rate comparison,' the curves of Section 4. 2 are applicable.

Since a communicator is always faced with both a Pe and a W restriction, it is proposed that
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the maximum rate plot be divided into two regions: (1) low S/N region, where Pe is constrain-
ing; and {2} high S/N where minimum {TW} is constraining. Such curves appear in Fig. 24
for binary simplex, and in Figs. 25 and 26 for M-ary coherent and incoherent orthogonal.
Givena W, a Pe, and S/N, and the signalling method, one can use these curves to establish
thie maximum rate (IM) for that set of conditions. We feel this approach is a sensible way to
view maximum rates; furthermore, the concept of maximum rate implies a variable data rate.
In other words, if one chooses the highest IM/W for a given Pe’ W, and S/N constraint, one
also chooses the ""best' data rate.

To summarize, then, one can make two comparisons, depending on the design
s:iuation: (1) a constant rate comparison, and (2) a variable rate comparison.

A constant rate comparison is implied if both S and data rate (R) are specified.
If 50, the next step is to decide whether Pe or W is most important. The conclusions for
these conditions were given in Section 3. 3. 4. In general, "far-apart'" M-ary signals are re-
quired it Eb/NO is low for a given necessary Pe. Since increasing M increases the W, it
appears desirable (considering both Pe and W) to use an M of 2 or 4 for coherent operation,
and an M of 4 or 8 for incoherent uperation. Also, the benefits of any increase in 8 should
be emphasized, due to the steepness of all the Pe curves.

If Eb/NO is high for a given Pe 1.“equirement, one should use M-phase (M > 8) or
some other close-p.acked signal.

A variable data rate comparison is implied if one is free to choose the data rate.
In this case, one can stay within both Pe and W requirement. Here it is sensible to choose
that data rate which gives the highest "information-rate per bandwidth'" for the given Pe .
The proper M is determined by the S/N, Pe and W conditions, as depicted in Figs. 25 and 26.
Pe":s of about 10_5 and S/N < 1 specify an M > 2. Of S/N > 10, either M = 2 or a more

closely-packed signal is desirable.
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PART II: ASYNCHRONOUS TIME-MULTIPLEXING OF
MULTICHANNEL SPEECH SOURCES

1. INTRODUCTION

The material of Part I essentially concerned the evaluation and comparison of
different signalling methods in digital channel transmissions. In Section 1.2 of Part I, it
was noted that source coding is a potential area for improving the transmission of speech
signals.

The problem of interest here is how can one improve the transmission of multi-
channel speech signals, assuming that the information is to be transmitted digitally. Of
course all the previous material still applies to the various possible methods of sending the
information across the channel, so that this material is complementary to the previous ma-
terial, and not an alternative to it.

If the information to be communicated is speech, then an area of immediate in-
terest is the ""source coding" of such speech to improve the information efficiency. For ex-
ample, speech compression methods can be interpreted as a source coding method. (The
relation of this to our topic will be discussed below.) Whenever the speech information comes
from telephone communicators, source coding can effect improvements in two respects:

(1) by reducing the redundancy in the speech signal itself, and (2) by altering the fact that,
since each talker is part of a two-way conversation, each communicator is using this allotted
part of the total facility only one half the time (for radio and cable links).

Since various speech codings for reducing redundancy have been proposed and
investigated by others, our main interest here will be in the second aspect mentioned---im-
proving the ""channel utilization'" when speech sources are part of a two-way conversation.
This aspect can realistically be improved only when the facility is handling a number of
speech sources so that one can take advantage of a "'statistical effect"” among them. In the
material to follow we will assume use of an existing proposed speech encoding method, and

then analytically evaluate the buffer situation and the use of this system in a multichannel
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speech situation. The pertinent aspect is that each speech source will seek access to the
channel only when it is "on'" and when it has information (a sample) to transmit. Such opera-

tion will be referred to as asynchronous time-multiplexing. 2

The objective of this material will be to provide analytic evidence of the fact that
it is both profitable and (at least analytically) feasible to perform the coding and multiplexing
function in an asynchronous manner---that is, by adopting the principle of allowing each
source to seek access to the channel only when it has information to transmit. Although this
idea is not new, it is only relatively recently that codings have been tested which make it

possible to run a system asynchronously.

1.1 Background and Previous Work

For cases where multichannel speech is to be sent digitally, a familiar method
is to use time-multiplexed PCM. Considering only the multiplexing function, we regard this
as synchronous multiplexing since a given ""slot" in the channel-time assignment is always
given to a particular speech source (once it is connected by the ""central). In asynchronous
time multiplexing the '"'source-channel time' relation is not fixed, but depends on the instan-
taneous conditions.

A good example of an operational, asynchronously multiplexed system is the

"Time Assignment Speech Interpolation" (TASI) system, which is used by the Bell Telephone
System on the Atlantic Oceanic cable (Refs. 26 and 27). In this system the asynchronous
multiplexing is effected by a "fast-switching' of the source-to-line connection; during a
given connection, conventional, regularly-spaced samples are sent. Consider that a talker's
time axis is divided into "talk bursts." Whenever a talker is silent in excess of a stated
time, an end of talk burst is assumed and the talker's line is switched to another (momen-
tarily) waiting party. The original talker will get another line when he begins talking again.
Thus the asynchronous multiplexing is effected by this fast-switching means, and the effect-
ive capacity of the oceanic cable has been about doubled. Although some "freezeout' inevit-

ably occurs, this sytem is working successfully and the tolerable freezeout fraction designed

2The reader is cautioned that the term "asynchronous multiplexing' is used by some authors
to denote ""co-channel net operation.” There the objective is to allow a "net" of communi-
cators to contact one another at will. The "asynchronous' aspect, then, lies in enabling any
communicator to contact any other over a common channel. In the problem here, a number
of sources (after going through a "'central') share a common (trunk) facility. The asynchr-
onous aspect here lies in the assignment of channel time slots to any given source; hence it
is called "asynchronous time-multiplexing. " T
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into the system is about 0. 5 percent. It is found that the speakers are not aware of the
freeze out when it is kept to this fraction.

The speech coding method to be used in our analysis of the feasibility of asyn-
chronous multiplexing is the "extremal coding'" method (Ref. 28), also called "selective
amplitude sampling' (SAS, Ref. 29). Both extremal coding and selective amplitude sampling
refer to a sampling procedure wherein one samples irregularly, at the "extremum' of the
speech signal. Thus one sends only the values of the relative maxima and minima of the
waveform. It is necessary then both to send the value of this extreme and in some way note
the time of occurrence of the extreme. In the receiver either an interpolation function, or a
"boxcar' detector followed by a filter, may be used to reconstruct a good approximation of
the actual speech signal. Before evaluating this coding procedure in the multichannel situa-
tion, it will be necessary to analyze the action of the buffer which is a required part of any
practical asynchronous system.

It is also of interest to note that the ideas behind asynchronous multiplexing
treated here are very much related to the ideas of '"demand matching" which have been
espoused in concept a number of times (Refs. 30, 31, and 32). The general idea in demand
matching is that a source have access to the channel only when it has information to transmit.
This is meant to incorporate removal of both redundancy and the nonuniform flow of informa-
tion from the sources. In an ideal multichannel case, demand matching would result in all
the information from all of the sources being handled by the channel; further, all the informa-
tion from the multiple sources would be statistically stable enough that the channel could op-
erate at a uniform rate (without a buffer) even though the individual sources were creating
information at a sporadic random rate. In practice one cannot realize this ideal, and hence
two difficulties arise: first, not all of the information can be transmitted (a situation usually
called "freezeout" for each individual source), and second, the information rate of the total
ensemble of sources will not be uniform, so that some buffering will be required. Neverthe-
less, the advantages to be gained with a tolerable freezeout fraction and a somewhat varying
channel rate are sufficient to allow serious exploration of various implementations of demand
matching.

Finally, it is of interest to note the comparison between speech compression
methods and the extremal coding or selective amplitude sampling method to be used here.

Speech compression techniques are a very profitable way to encode speech signals, but do
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not derive any additional profit by being multichannel. In speech compression techniques one
studies seriously the mechanism which creates speech and than attempts to encode efficiently.
In our case, we consider a multichannel case of some time waveform with a given frequency
spectrum. One resulting difference is that the more general coding techniques offer at least
a possibility of being applicable to analog waveforms in general (which have the same fre-
quency spectrum, etc.), whereas the speech compression method is rather strictly limited

to speech itself. This is not to say that the coding methods studied here will necessarily work
for signals other than speech, but they nevertheless have the possibility of doing so, and this
should be kept in mind. Another aspect is that speech compression methods may be consid-
ered as an ideal realization which may still require a great deal of equipment before being
used on a multichannel system. On the other hand, the techniques of interest here may be
considered as intermediate coding where the encoding is not as efficient but has more hope

of being realized practically.

In the material that follows we will first describe qualitatively the asynchronous
multiplexing scheme with the use of a block diagram. Then the performance of the buffer
will be mathematically analyzed, since this is the most crucial aspect for the multichannel
case. It should be noted that the performance of the buffer is relatively independent of the
actual coding scheme, except that the coding scheme must sensibly fulfill the "model" used
in the analyzing of the buffer action. We conclude with comments on reconstruction of the

waveforms and the performance of system comparisons.
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2. DESCRIPTION OF ASYNCHRONOUS TIME-MULTIPLEXING SCHEME

Although one can describe asynchronous time-multiplexing schemes in general
terms of demand matching, here we will (for concreteness) portray a system which involves
extremal coding (also called SAS). It should be remembered, however, that the buffer ana-
lysis of Section 3 applies to any encoding which reasonably fits the model used in that analy-
sis. Extremal coding is a suitable choice since it reasonably fits that model. Figure 27 de-
picts extremal coding, where a time waveform is sampled at the occurrence of relative maxi-

ma or minima. It may be noted that these maxima and minima occur quite irregularly. For

PEECH WAVE
o S

./
\1/ LV

Fig. 27. Depiction of sampling for extremal coding.

a multichannel system, it will be seen that the following information would have to be trans-
mitted: (1) amplitude of the extremum, (2) time of occurrence (in some fashion), and (3)
source identification number.

If one wishes to encode a number of multichannel speech sources with extremal
coding, and then send them asynchronously---that is, let the sources seek access to the
channel only when they have an extremum to send---it is seen that a buffer will be required
to smooth out the inevitable variations in arrival of information. If a buffer were not used,

a great many extrema would be rejected or "frozen out." A block diagram of a system which

can be allowed to run asynchronously is shown in Fig. 28.
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Fig. 28. Block diagram of transmitter for asynchronous multiplexing
of multichannel speech using extremal coding.

In Fig. 28 it is seen that only the amplitude at an extremum is allowed to pass
through the gate.. This amplitude is then quantized and digitally encoded. Source number
should be added at this point. Since the information (extremum) occurs at random, the essen-
tial idea is to allow the buffer to accept extrema from the individual sources whenever they
occur with no prior ordering. Outputs will be taken from the buffer (if any are present) at a
regular clocked interval---every 7 seconds. (Hence, the multiplexing is asynchronous but
the channel transmission is synchronous.) It is seen that, for some fraction of time, the
channel will have nothing to transmit (buffer empty). The percent of time in which this
happens is called "channel idle time."

On the other hand, the M-long buffer may be full when '"a sample'” arrives from a
source. In this case the sample is rejected, and the total percent of such samples (from all
sources) is called the "freeze out fraction" (FOF). Clearly the FOF will depend upon both the

buffer length {M) and the operating parameter u (the ratio of average number of buffer input
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samples to average number of output samples per unit time). The evaluation of FOF as a
function of these two parameters will be the most important objective of Section 3. For ac-
ceptable operation, the FOF must be kept to a very low level.

Since each "'sink' at the receiver end must know the time of occurrence of the
sample, it is necessary to insert the "buffer delay time' onto the other information. This
can be done at the buffer, as shown in Fig. 28. The accuracy of the ""time'" information must
be commensurate with the encoding method used (see Section 5). For extremal coding it
should be sufficient to send the buffer delay time in integers of 7 (for a sufficiently large num-
ber of channels).

As mentioned, the essential problem in dealing with the feasibility of any such
system lies in analyzing the action of the buffer. It is quite necessary to assure that only an
acceptably small fraction of the information samples be frozen out. In addition, a number of
other properties of such asynchronous operation can be analyzed by considering the perform-

ance of the buffer.
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3. PERFORMANCE OF THE BUFFER

As noted above, the buffer will accept samples from any of the sources, so long
as it is not "full." Samples are removed from the buffer at regular intervals---every 7 sec-
onds.

In order to do any analysis of the buffer operation it is necessary to have avail-
able the probability distribution for the number of samples going into the buffer. A sample
is a quantized (and digitized) amplitude of the extremum with source number added (time in-
formation must be added later; see Fig. 28).

Since the output time axis of the buffer is divided into intervals of 7 seconds, it
is useful to consider the input time axis as also divided into 7 intervals. Then, the question
of interest is, '"What is the probability of k units occurring (from all of N sources) within an
interval 772"

The analysis of the buffering situation below will assume that the probability dis-
tribution for k events of the equivalent source (of all the N sources) occurring in a time in-
terval 7 is given by the Poisson relation:

k
-uE_

pl,u) = et (67)

where:  p(k, u) prob. of k extrema among the N sources

in a time interval 7

u = average rate (taken across sources) of
occurrence of extrema in time 7.

It may be noted that u can be interpreted as the ratio of the average buffer input rate to the
average output rate (since the output clock rate is one, in terms of 7).

This probability distribution results if one assumes a Bernoulli model for the
group of N sources divided into 7 intervals. That is, assume that (1) the occurrence of a
sample in one source is independent of all other sources, and (2) the probability of occur-
rence of a sample in a time interval 7 (for any given source) is constant; under these condi-

tions a Poisson distribution, as in Eq. 67, will result for a number of sources taken to-

76



gether. Certainly the first assumption is justified, as is the second one if 7 is sufficiently
small. (7 is inversely proportional to N, the number of sources.) Nevertheless, it should
be remembered that all results of the following analysis apply so long as the probability dis-
tribution of Eq. 67 holds.

A study of the range of applicability of Eq. 67 for cases relative to this problem
was made, and reported in Appendix B. The study was made in terms of the "distribution of
intervals between zero-crossings" of the individual sources. It was found that, if the interval
distribution is exponential [f(u) = e_u], the Poisson relation of Eq. 67 holds for N multiple

is assumed to be Erlang type-1 [f(u) = Aue MY

], it was necessary to allow N ~ w to show
that N multiple sources have a "unit" distribution of Eq. 67. It will be the goal of further
work to continue the study of the relation of N to the Poisson distribution assumed in Eq. 67.
Although experimental evidence would be very helpful here, it is exceedingly difficult to ob-
tain.

In any event the distribution of events for the equivalent source which feeds the

buffer will be taken to be Eq. 67.

3.1 Queueing-Theory Approach

The analysis of any buffering situation can usually be interpreted as a basic
queueing-theory problem. We will present briefly the basic ideas associated with this.
However, it will be found that in this case results are found much more easily by consider-
ing a special case of a queueing problem, which neglects transients and is relatively
simple. Therefore the bulk of the material will be devoted to this special analysis.

Consider for a moment the buffering problem as a queueing-theory problem;then
one speaks in terms of ''state probabilities.' That is, the buffer is said to be in the nth state
when n samples are in storage. Thus the nth state probability (Pn) is the probability of
exactly n samples in the buffer. Thus if one evaluates PM (where M = stages of buffer), one
can find the average freezeout fraction-~-that is, the average number of samples from the
equivalent source which will be turned away. The probability Po’ which is the probability
that the buffer is empty, is related to the channel idle time, that is, the fraction of the total
time that the transmitter is idle.

If one is interested only in steady-state conditions, then the following equations

must be solved, to get any Pn (written in matrix form):
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P (s7)] = [T] P (s-1)7] (68)

where: Pn(ST] = probability of n items in buffer
at time s7 (column matrix)
Pn(s-l)T] = probability of n items in buffer
at time (s-1)7 (column matrix)
[T] = matrix of transitional prob-

abilities, which can be found
using a state diagram and Eq. 67.

For any steady-state buffer operation of the type here, the state probabilities
(P_) are cyclo-stationary in time; that is, the P_'s are cyclic with the time intervals 7.
n n

Therefore:

Pn(ST)] = Pn(s—I)T] = Pn(s-m)T] for m=0,1,2, ... (68a)

Consequently Eq. 68 appears as:

Pl =(T] P (68b)

In addition, for an M-long buffer, one has the equation:

M
z P =1 (69)
n=0 0D

Equations 68a and 68b result in a set of M+2 equations in M+l unknowns. Selecting any M
equations from the matrix of (68b) and using Eq. 69, one can solve directly for the state prob-
abilities as indicated in the appendix. This is the queueing-theory approach, then, to the
steady-state buffer situation.

It should also be noted that use of the queueing-theory approach above allows one
to solve for transients in the buffering situation, i.e., the probabilities of given states after
s intervals, assuming that one started with a buffer of given state probabilities. In this case

the more general equation is:

P (s7)] = [T]° P(0)] (70)
where: P(s7)] = a column vector of state probabilities
after s intervals
P(0)] = a column vector of initial state prob-

abilities

the transition matrix.

[T)

78



3.2 Specialized Approach

Although the queueing theory just described is more general, it is simpler to ob-
tain the steady-state buffer conditions (which are of interest here) by a more specialized
approach. Consider that a clock pulse occurs at every 7 interval, at which time an output is
taken from the buffer. The technique used will be to write a recursion relation between state
probabilities just after the clock pulse to determine the state probabilities prior to the clock
pulse. The quantities of interest can then be related to these state probabilities.

We will now portray this more specialized analysis of the buffering situation.

The quantities of interest will be the freeze out fraction, analysis of freeze out runs, channel
idle time, and the wait time distribution of the input samples.

The state probabilities describing the occupancy of the storage stages cannot
approach stationarity after long operation, but will approach "cyclo-stationarity" (mentioned
earlier). That is, the probability of a given state will be a function of the time that has
elapsed since the last clock pulse. A way to analyze this queueing problem is to single out

two sets of state probabilities. Let:

a = probability that exactly k buffer stages are occupied, just after
a clock pulse; in other words, after one sample has been re-
moved, if it was available;

*jk = probability that exactly k buffer stages are occupied just before

a clock pulse ({3k = Pk of Eqs. 68 and 69).

The definitions of these two particular distributions are illustrated in Fig. 29
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Note that cyclo-stationarity means that the probability distribution of queue lengths for any
instant of time within a clock interval will be the same from clock interval to clock interval
(since there is no reason to favor a particular clock interval). Since one sample is removed

from the buffer at each clock pulse, the following relations are valid:
a = BO + Bl
k z1 (71)

k = Prer

With the help of the Poisson distribution of Eq. 67, it can be shown (see Appendix B) that:

- 3N
BO =e o
- -u
By =ue a +e a, 4
112 -u - ~u
Bz——z—e a,tue "a e oa,
J
etc. (72)
_ - = - -u
Then Bl =a, Bo (1-e )ao
-u -u -u -u u
a; = e[By-ue "a ] =e [ao—e a, - ue ao] = a [e-u-1]
8 —ﬁe—ua +ue a,+e
2 T 2 1 %2
u u? -u -u u?
a, = e[Bz—Te @, - ue al] = [e -u] ;-5 (73)
In general, by continuing this iteration,
a, = [e"-u-8. ] a, , - £ o a 1=k=M-1 (74)
k Lk’ "k-1 29 n! k_nMék
=0
where: ) = the Kronecker delta.

1,k

Thus, for a given input rate, u samples per clock interval, one can find the prob-
ability of any queue length (or state) at the beginning of a sampling interval in terms of the
probability a (of zero length).

If the queue length at the beginning of a clock interval is not permitted to exceed

M-1 (implying that the buffer has a capacity of M samples), and since all ak's can be re-
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lated to ag by Eq. 74, a, can be determined from the following equation:

M-1
2«

=1 (75)
k=0 X ’

since the sum of the ak's encompasses all possibilities for queue length at that time. Each
ay is a simple multiple of ags and is found by multiplying a, by the appropriate factor. The

distribution for queue lengths at the beginning of a clock interval is then determined.

3.3 Freeze Out Fraction (FOF)

The values of a, found through use of the above procedures are substituted into a
simple equation for freeze out fraction. As previously explained, freeze out occurs when
there are M pieces in storage and more pieces arrive before one is '"dumped' at the next

clock pulse. The freeze out fraction is written as:

B av. no. of samples emerging from buffer each clock interval
FOF =1 - 2 -
av. no. of samples entering buffer each clock interval

l-e-uao u-1+e-uoz0
1| —2% - ——° (76)

This expression leads to relations with FOF as a function of u and buffer capacity
M, plotted as the family of curves of Fig. 30. In the design of a nonsynchronous multiplexed
system the curves can be used to find the best compromise among the three parameters u
(input rate), M (buffer capacity), and FOF (freeze out fraction).

It is seen that, as M increases, the FOF drops appreciably as u is decreased. A
u of 0.8 is chosen as a suitable calculation point for the system evaluation (Section 5). Also,

in that section a tolerable FOF of . 05 percent (. 0005) will be selected.

3.4 Freeze Out Runs

Figure 30 evaluates the expected fraction of total samples (from all the sources)
which will be frozen out. In addition to this number it is of interest to have some information
on the distribution of rejected samples from a given (single) source. This is a difficult prob-
lem and has not been solved completely. However, the following probabilities have been
solved, and bear on this problem.

First, consider the distribution of freeze out "runs:"
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let: Pr(c) = probability of a run of exactly c clock intervals
(during which one or more samples from some

source are frozen out during each interval).

It can be shown (see Appendix C) that:

P(c) = (Lrwe Y1-e1+w®!, cz1. (17)

Next, consider the probability of a given number of units frozen out, provided

that ""one or more'" was frozen out in the previous interval.

Let: P(d f 2 1) = probability that exactly d units are
frozen out, in a given interval,
provided that one or more was frozen
out in previous interval; i. e., the in-

terval of interest is within a run.

Then it is shown in Appendix C that:

N e—u ud+1
Pdlfz1) = CTS (77a)

Table IV presents evaluations of Pr(c) and P(d|f 2 1) for c=1 through 5 and d=1

through 5, for u = 0. 8.

cord P (c) P(djf =z 1)
1 80.9 % 80.88 %
2 15.4 % 14.38 9
3 3.0% 3.539
4 0.6 9% 0.719
5 0.1% 0.50 %

Table IV. Evaluations of Pr(c) and P(d f =z 1).

The Pr(c) results indicate that samples arriving at least 5 intervals apart will be

very unlikely to be members of the same freezeout run. With 10 or more channels partici-
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pating, the probability of two consecutive freeze outs from the same channel becomes very
small. There are other possibilities for consecutive freeze out besides a single freeze out
run---for example, two freeze out runs separated by a moderate number of "no-freeze out"
intervals. However, the rapid fall in Pr(c) for increasing c is indicative of the trend for
other possible realizations of two or more consecutive freeze outs from a given channel, so
that for u = 0. 8 and M > 10, little deviation from average FOF rate is expected.

The significance of the P(d) results is that the number of lost samples during a
freeze out run can be expected to be somewhat more than the number of clock intervals

constituting the run, as is expected. One may expect that the ratio of frozen out pieces to

clock intervals in the freeze out run will be less than 1. 5.

3.5 Starting Transients

When the system begins operation, the buffer will be empty and thus a starting
transient can be expected. The most significant aspect of this transient would be the lack of
any freeze out for a period of time. No detailed analysis has been made of starting trans-
ients because such transients would enhance rather than degrade the freeze out situation.

Transients can be calculated using the matrix equation (70).

3.6 Channel Idle Time

The objective of '"channel idle time' is to estimate the fraction of clock intervals
during which no samples are transmitted. Since the normalized average rate of entry of
samples into the buffer is usually less than 1 (u = 0. 8 is suggested), and since some samples
are lost through freeze out, there will be a number of clock pulses occurring when the buffer
is empty and nothing can be transmitted. The fractional quantity of such pulses is just BO ,

the probability of the buffer being empty at the end of a clock interval. Thus:

Fraction of unused channel slots = BO = e « (78)

Channel idle time is plotted in Fig. 31 as a fraction Bo vs. M. The plot shows
that minimization of channel idle time requires a high input rate, large buffer capacity, and
consequently longer delays. These results are not unexpected; information theory has always
recognized, particularly in the method of coding by large blocks, that the attainment of a
smooth flow of information from a system whose input is irregular requires considerable

delay and storage.
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Fig.. 31, Channel idle time versus buffer length.

In Fig. 31 it is seen that, for a u of 0. 8, the idle time is about 20 percent for
buffer lengths > 10. Although this may seem inefficient, it must be remembered that in
synchronous multiplexing the idle time is greater than 50 percent for telephone communica-
tors (over radio and cable links). It will be seen, in Section 5, that asynchronous multiplex-
ing combined with a speech coding (such as extremal coding) provides a more efficient mult1-
channel system.

Also, consideration should be given to the possibility of sending low-priority non-

real time data during such idle times.

3.7 Wait Time Distribution

For the buffered system it is of interest to examine the distribution of waiting
times for samples entering the buffer. Because of the cyclo-stationary pattern of buffer
occupancy, this distribution will not be a smooth function. A figure is also provided in which
the variation of waiting times from the expected values is plotted. The most important con-

sideration, as far as time placement of samples is concerned, is not the average delay of a
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message, but rather the unpredictable perturbation of individual samples from their correct
relative positions in time. The noise thus generated must not be excessive.
Figure 32 clarifies the measurement of waiting time for a sample entering at a

fraction 6 of a time interval 7 and encountering k pieces already in the buffer.

Derivation of Distribution

Consider the following notation:

P(A,B) = joint probability of the events A and B.

Il

P(A|B) probability of A conditional on B.

In the discussion of freeze out fraction, the following distribution for samples

entering the buffer was used:
u
p(k,u) = € F (79)

where:  p(k,u) = probability of k samples arriving during
the interval 7, when the average rate of
arrival is u.
When considering '"waiting times,' it is necessary to break the time axis into in-
tervals smaller than 7. Assume 6 is the fraction of 7 at which a particular sample enters,

so that § varies trom 0 to 1. Assume further that the distribution of samples entering

during a period 87 remains Poisson. Then the following equation is applicable:

k
- e-Bu (6u) (80)

p(k, ) i

where:  p(k, fu) = probability of k samples arriving during
the interval 6r.

It is desired to find the waiting time probability density vs. waiting time, with
the rate u and the buffer capacity M as parameters. To do this it is first necessary to find
the (discrete) probability of waiting time with u regarded as a constant. Then ¢ will be
allowed to vary continuously (from 0 to 1) and a probability density will be defined.

The technique used is to evaluate the probability of waiting time for tﬁe (k+1)th

sample, assuming that it arrives at a time 67. First,

(uf )ne-uf)
T
n=0 n ul

M=

Pylk) = (81)
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where: Pg(k) = the probability that k samples are in the
buffer immediately before the arrival of
the (k+1)th sample.

= the probability that (k-n) samples are in
the buffer at the very beginning of the 7
interval.

It may be noted that the wait time w for the (k+1)th sample, arriving at time 8,

will be:
w = k +(1-8) clock intervals (7's) (82)

In order to find the probability of waiting time, it only remains to note that k may
not exceed M, since additional arrivals (k 2 M) will be frozen out. Thus one needs to evalu-
ate a conditional probability---the probability of waiting time conditional on '""no freeze out,"
i. e., conditional on our test sample getting into the buffer. This is given by the usual equa-
tion:

Pg(k, get in)

Pe(klget il’l) = W

where: Pe(kl get in) probability of a sample encounter-
ing k samples already in the buffer
when it enters at time 6, if it en-

ters at time 6

1]

the joint probability of getting into
the buffer and encountering k sam-
ples already there, at time 8, and
is equal to Py) since only those
values of k permitting entry into
the buffer by a new arrival will be
considered (k £ M-1).

PG (k, get in)

kZ—O P, (k) = sum of probabilities (84)
of all possible values of k (at time

9) that do not prevent entry of a

new sample.

Pg (get in)

Since Pg(k) has been defined in Eq. 81, a simple substitution of Eqs. 81, 82 and

84 into Eq. 83 yields the desired ""wait time" distribution:

-ué
K (ug)e™
nio k-n n!
PG(W—1+0,get in) = Pe(klget in) = 7% (ue)ne_ug (85)
z z 0 o
k=0 n=0
where: k = w-1+8 = an integer.
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Fig. 32. Probability density curves of waiting time in buffer.

The distribution can be evaluated for one 6 and all k's < M-1, yielding the prob-
ability of M discrete waiting times. A probability density for continuous 6 is, however, the
physical problem. If the interval 7 in which 6 is defined is considered to be of unit length
(i. e., we measure time in 7's), the formula (85) will give the probability density for the
value of 6 specified. If several sets of calculations for different values of 6 are made, smooth
curves may be drawn through the resulting points to give the smooth probability density curves.
Figure 32 is a plot of these curves for M =1, 2, 3, 5, and 10, and input rate 0. 8 pieces/clock
interval. Figure 33 presents the same curves, but with each shifted by an amount equal to
its mean waiting time. Means were graphically computed from Fig. 32. Since perturbation
of waiting time from the mean value is of principal importance, Fig. 33 will be the more
valuable.

For buffers with capacity greater than 1, the most likely range of waiting times

remains between 0 and 1, with emphasis toward 1. This situation is strongly implied by the
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Fig. 33. Probability density curves of deviation of waiting
time in buffer from its mean value.

physical picture, in which a sample arriving just after a clock pulse is likely to encounter no
samples at all in the buffer and can thus expect to wait almost 1 clock interval.
The above graphs depicting the buffer performance will be referred to when evalu-

ating system performance in Section 5.
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4. RECONSTRUCTION OF WAVEFORMS

Before proceeding to evaluate the asynchronous system performance, using the
above buffer analysis, we consider here the reconstruction of waveforms when the samples
are irregular. It is noted that, with the extremal coding being considered here, one must
reconstruct the waveform from extremely irregular samples for each source. First the
theory for regular and irregular sampling is reviewed, and then comments about practical

reconstructions will be given.

4.1 Theoretical Sampling Relations

The theory for uniform sampling is based on the familiar Shannon Sampling
Theorem for bandlimited waveforms, where the waveform can be theoretically reconstructed

using the relation:

() = » f2) ¢ (1) (86)
T opneee  2W T

where: ¢n(t) sin x/x type composing function

w bandwidth of the bandlimited waveform.

fl

Here the uniform samples are taken at timest =n/2W (n=0, + 1, + 2, ...). The composing
function is given by:

. n
sin 27W(t - —2—“7)

¢n(t) = 27W(t - n/2W)

For uniform sampling, the same composing function (except for a delay time) multiplies
every sample. An ideal low-pass filter (with an © delay) would reconstruct the f(t) from the
uniform samples.

There is similar theory available for nonuniform sampling (Ref. 33). One im-
portant difference for this nonuniform sampling theory is that one considers "energy-limited"
signals, rather than "time-limited'" signals (as is done in the Sampling Theorem). Noting

this difference, the following theorem is stated in Ref. 33: "If the sample values at a finite
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set of arbitrarily distributed sample points t = Tp (p=1, 2, ..., N), are given, a signal f(t)
with no frequency component above W cps is defined uniquely under the condition that the

o0
'energy' of the signal f £2(t)dt is a minimum." Note that the exact duration of the waveform
-0
is not required. The reconstruction of the signal is given by:

f(t) =

o f(Tp) wp(t) (88)

Iz

N sin 27 W(t—‘rq)
where: ¥ = 5 Pe TEWET)

The coefficients aqp are obtained from the inverse of a matrix, where the matrix has ele-

ments given by:

sin 27 W(T_-
in 27 ('rp Tq)
2 W(r -7)
P q

p,g = 1,2,..., N. (89)

Although such nonuniform sampling theory is of potential interest for codings like
extremal coding, it is not clear how it may be applied to extremal coding. We have no con-
clusions as to the application of this nonuniform theory (for our purposes), but simply note

its existence here for future study.

4.2 Reconstruction Methods

Here we wish to note two methods for reconstructing speech waveforms from the
nonuniform samples of extremal coding. They are: (1) inset a standard interpolation function
between samples, and (2) low-pass filter the ""boxcarred" samples. Both of these have been

experimentally tested, and shown to yield acceptable quality.

Interpolation Function Method

In general, the waveform between two arbitrary samples (ai and ai+1), using an

interpolation function F(X), can be written:

SX) = a,+(a,, -a)FX X <X <X (90)

where: F(X) interpolation function

F(Xa.) = 0 F(Xa. Yy = 1.
i i+1
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Writing in terms of time:

) F

T i< i1

S(t) = a; + (ai+1 -2

where: F(ti) = 0;F(t, ,) = 1.

i+1

A particular interpolation function experimented with extensively (Ref. 28) for extremal

coding is of the type:
F(X) = X?(3-2X) (92)

This function provides a continuous first derivative at the sample points {extremum), and is
found to produce good speech. Inthe work of Ref. 28 the experiments were done with a com-
puter; in practice, one may have to devise an analog "inserter' to use the interpolation func-

tion approach.

Filtered Boxcar Method

A second method of reconstruction shown to give acceptable speech (Ref. 29) is
to low-pass filter the "boxcarred" samples. This is certainly a relatively simple method.
Its significance for our purposes is that the reconstruction of the waveform should not be a

serious obstacle to implementing an asynchronous system with extremal coding.
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5. PERFORMANCE OF SYSTEM

It will be the objective here to choose sensible parameters and then evaluate the
digit rate for asynchronous multiplexing when extremal coding is used on the individual speech
sources. This rate will then be compared both to standard companded PCM, and to another
efficient multichannel method.

It should be remembered that the qualitative system operation was described in

Section 2, and that Fig. 28 shows a block diagram of the transmitter side.

5.1 Choice of Parameters

In the following calculations we will assume that the number of sources (N) to be
handled by the multichannel system is 100. This number if chosen for the following reasons:
(1) With N of the order of 100 we are certain that the Poisson
distribution (Eq. 67) is a good approximation for the
"equivalent source' provided by the 100 sources (even con-
sidering that sources are active only half the time).
(2) Wwith N > 100, the 7 interval is sufficiently small that one
need only send "time" information specifying the "number
of buffer intervals (7) delayed.'" Also, the fixed delay, MT y
improves as 7 is made smaller.
(3) An N of 100 is physically reasonable, since present Signal

Corps capabilities go up to 96.

From the buffer analysis of Section 3, a u of 0. 8 is chosen. This was chosen so
as to incur a reasonable idle time (see Fig. 30) while at the same time getting very small
FOF for reasonable sized buffers. For buffer length, an M of 16 was chosen. This requires
4 binary digits to specify the buffer delay time, and the corresponding FOF is less than . 05
percent. Considering that the freeze out runs are distributed among the 100 sources, we
feel that this parameter choice (M =16, u = 0. 8) is conservative.

The remaining parameters are selected with reference to the experimental tests
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of extremal coding in Refs. 28 and 29.

listed as follows:

1) Q
(2) R’
(3) R"
(4) Aty

64 = quantizing levels for the extremum samples.

It was found that, with this number of levels, the
decoded speech was definitely comparable to 40,000
bits/second companded PCM.

1500 samples/second = average rate of occurrence
of extremum from an "on'" source. Although Ref. 28
finds an R' of 1400, Ref. 29 uses 1600. We have

chosen the compromise.

750 samples/second = average rate of extremum,
considering that each source if "off" 50 percent of
the time. This is the rate we shall use in the
following calculations. This factor should still
allow us to envisage a Bernoulli model so that Eq.
67 is valid.

125 x 10_4 seconds = necessary accuracy of loca-
tion (in time) of the extremum. It was found that,
when this was exceeded, a quaver occurred in the

decoded speech (Ref. 28).

The parameters and explanatory comments are

These parameters, and the preceding ones, will be used to calculate the digit

rate.

5.2 Digit Rate

Before calculating the digit rate it is necessary to determine the extent of time

information required to stay within Aty (above). This is done by evaluating 7, the length of

buffer output intervals (see Section 2). The 7 can be found using:

T =

where the parameter values described above have been used. Thus T is less than At

the given parameters.

u

- 0.8 - .107 x 10”4 seconds

R"N

7.50 x 102 x 1 x 102

M

(93)

for

Consequently, one need only identify the number of 7 intervals by
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which the sample was delayed (in the buffer). Thus, the time information requires only M
levels (logzM bits).

Note also, with an M of 16, that the steady-state delay (M7) is only 171 micro-
seconds. In a two-way speech conversation, this delay can be as great as half a second with-
out discomfort.

We can now evaluate the digit rate for the proposed parameters. First, the fol-

lowing bits are required per sample:

Quantity Bits Required
Amplitude of Extremum 6
Source Number (N=100) 7
Time information 4
17 bits/sample (94)

To convert this to digit rate in bits/second, one divides Eq. 91 by Eq. 93. The result is:

R = digit rate = ————1—7—-—— = 1.69 x 106 bits/second (95)

1.07x 107°
It may appear that 17 bits/sample is large since a synchronous multiplex (PCM
with uniform sampling) requires only 6. However, it must be remembered that the extre-
mum samples have an average rate of only one fifth of uniform sampling, and that the extre-
ma occur only when a source is active. It will be seen that the balance of these items lies in

favor of the asynchronous method.

5.3 Comparisons

It is now of interest to estimate the quality associated with the asynchronous
operation, and to compare the digit rate with existing and proposed alternative methods.
Table V depicts the comparison of extremal coding for N=100 with time-multiplexed, com-
panded PCM (and with log-differential PCM). We now discuss this comparison.

Based on the extremal coding listening tests of Ref. 28, it is concluded that the
quality obtained with the digit rate of Eq. 95 is comparable to 40,000 bits/second, com-
panded PCM. Using some curves in Ref. 34 (also reported in Ref. 35), 40,000 bits/second

companded PCM results in about 21 db of quantization signal-to-noise ratio. 3 (Note that this

3ThlS quantization signal-to-noise ratio (S/N should not be confused with the channel S/N
ratio of Part 1, Section 4.2. The channel S/I(\} (related to E/N,) is a measure of the channel
disturbances, whereas (s/ N) is a measure of the disturbance due to digital modulation
(quantization).
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value is an estimated average over a 25-db signal level range.) The (S/N)(l for a present
military system (6 bits at 8 kc) is about 26 db (from the same curves). Consequently, it
appears that the reduced digit rate of asynchronous multiplexing (Eq. 92) may incur about a
5 db reduction in (S/N)q; we feel this is quite acceptable. The digit rate is reduced by a fac-
tor of 3.

In Table V, the time-multiplexed, companded PCM (at a 48, 000 bit/second rate
per source) is used as the reference. It may be suggested that one might use "time assign-
ment" (such as in TASI---see Section 1. 1) on the time-multiplexed PCM signal and decrease
the multichannel digit rate by a factor of 2. On the basis of a brief study of this, we con-
cluded that the equipment complexity of this is much too great for radio or cable links (i. e.,
economic factors for radio links are not comparable to those for oceanic cables).

Another possibility for handling multichannel speech digitally consists of using a
speech coding of the ""delta-modulation’ type (with uniform sampling). It is of interest to
compare the asynchronous case with this type. One of the most efficient methods tested thus
far (Ref. 35) is "Log-Differential PCM." Although this log-differential scheme was not tried
on speech itself, experimental results using sine waves are reported in Ref. 35, in which it
is essentially concluded that four-digit log-differential PCM sampled at 9600 cycles per sec-
ond is about equivalent to six digits companded PCM. Thus one can regard the four-digit
PCM as effecting a saving of two digits per sample. Thus, for N=100, the digit rate would
be 3. 84 x 106 bits/second. This would provide an estimated (S/N)q of 26 db, as in the six-bit
PCM case. Another case would be to use a three-bit log differential case. Here the esti-

mated (S/N)q is about 17 db. Each of these cases is noted in Table V.
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6. CONCLUSIONS

A comparison for the three systems---time-multiplex PCM, asynchronously time-
multiplexed extremal coding, and time-multiplexed log-differential PCM---is shown in Table
V. It is seen that the asynchronous system offers a substantial bit-rate improvement over
that of time-multiplex PCM and log-differential PCM. The asynchronous system would con-
sume only one third of the bandwidth (or corresponding improvement in channel S/N) of that
of PCM. One cost of this improvement is about a 5-db loss in quantizing S/N ratio. It should
be remembered that conservative figures were used throughout to obtain the estimated values.
Further, extremal coding has been investigated by twogroups and found to produce good quali-
ty speech.

For a number of reasons we conclude that asynchronous multiplexing has great
potential. We note the following:

(1) Automatic use is made of the fact that the speech sources are

"off'" half the time. In other words, since the channel is only
being used when an extreme occurs, it naturally follows that
one automatically obtains the advantages of time assignment.

(2) The extremal coding should not be as seriously disrupted by
channel noise as the delta-modulation methods.

(3) Nonreal time data may be conveniently sent during the idle
time of the asynchronous system. Thus, with the system
parameters used for Table V, one obtains a potential data cap-
ability of 20 percent of the total channel capability. Thus one
obtains not only a more efficient multichannel speech system,
but also the capability of sending irregular data.

(4) The asynchronous method allows one to temporarily add more
sources than designed for. The degradation in performance
would be gradual (or "elastic'). This is not possible for any

synchronous multiplexing system.
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Probably the main obstacles to actual implementation of this asynchronous method
are: (1) guaranteeing that the designed freeze out fraction is not noticeable; (2) assuring that
time jitter of the extremal samples is kept within tolerance; and (3) developing suitable coding
detectors if boxcarring-plus-filtering does not give sufficient quality. We feel that each of
these obstacles can be handled with reasonable effort.

In conclusion, it is believed that the advantage of (3) above over PCM, which
appears from conservative calculations, and the other advantages listed above, are sufficient
to justify serious feasibility studies of the asynchronous method. The next step could be
either a simulation investigation, or an actual experimental set-up. Each of these appears
to be quite extensive. The main objective of the above work has been to establish that a

sufficient gain is available, so as to warrant extensive further efforts.
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APPENDIX A: DETERMINATION OF THE MAXIMUM NUMBER OF
BINARY DIGITS PER SECOND THAT CAN BE TRANSMITTED
OVER A CHANNEL OF BANDWIDTH W

(T. G. Birdsall)

A.1 Introduction

There are several studies in the literature of minimum time bandwidth products
which can be achieved for various waveforms. This discussion considers what appears to
be the same problem of minimum time bandwidth product, but it differs from other studies
sufficiently to justify performing the detailed work here explicitly, without reference to other
material. Previous studies typically take two forms: (1) determining the minimum time
bandwidth product for the duration of the signal when the bandwidth of the signal is measured
on specific points of the waveform and spectrum (such as the 3-db points or the 6-db points
of the spectrum); (2) placing very stringent conditions on one or the other. That is, the dura-
tion may be measured from the very start to the very end of the waveform but the bandwidth
measured at some moderate point such as the 6-db point, or conversely, the spectrum may
be limited stringently and the duration of the waveform measured at some moderate point.
This is a reflection of the relationship between time and bandwidth for a single waveform.
The spectrum of a definitely time-limited waveform is itself unlimited, and conversely a
strictly bandlimited waveform cannot be strictly time-limited.

The purpose of this section is to determine the limitations on the time rate of
signalling for block codes such that there is no interblock interference in the demodulation
process. The logic of the analysis is based on the assumption that the bandwidth limitation
placed upon the communication system is very stringent, like that laid down by the FCC in an
assignment of the channel. It is assumed that the communicator does not have control of the
adjacent channel transmission; therefore, it is assumed that the bandwidth limitation is of
the type that assumes that the energy spilled out of the band, if any, is some low figure like
40 db or 60 db. For this reason the calculation will be based on the mathematical assump-
tion that the band is absolutely limited, and in practice the only energy spilled out of the band

will be the result of the practical generation of signals which approximate to a high degree
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the mathematically bandlimited signals (but this approximation is only good to 1 percent or
1/10 percent in the rms spectrum). The second assumption is that the reception will be
sufficiently well-controlled that, in determination of the rate of signalling, we may consider
the effective duration of a signal to be the quotient of the number of signals that are sent over
some long time, divided by that long time; that is, the duration of the signal is the average
amount of time that is assigned to any single signal. Specifically, this is shown in Eq. 96.

T = lim duration O%N symbols (96)
N~ ©

The following three sections will deal with three specific cases of signalling. All of these
assume that the transmission and reception are time synchronous. The first two will deal

with RF phase coherent reception for two-polarity transmission, and orthogonal transmissions,
and a third section will deal with phase incoherent reception and orthogonal transmission. In
each section a maximum signalling rate, the maximum number of digits per second, will be
determined under the given transmission and reception limitations, using the criterion that
there will be no interblock interference caused by spillover of energy of one block of symbols
to the next. This is important because the basic assumption in computations of information
rate and error probabilities made in the analysis of block codes is that each block can be con-

sidered as an entity, without regard to previous or subsequent transmissions.

A.2 Time Synchronous Block Codes, Phase Coherent Reception, Two-Polarity Transmission

The analysis in this section is the direct application of Shannon sampling theo-
rems, Ref. 10, for strictly bandlimited waveforms. If we consider any waveform, x(t), which
is strictly bandlimited, this theorem tells us that, if the values of the waveform are specified
at instants of time separated by equal intervals of 1/2W seconds apart, then the entire wave-

form has been specified. This is shown in Eq. 97.

- k |, sin 7(2Wt - k)
x(t) = k:E—oo X(—Z—W) “T(OWt - k) (97)
) - N y 1 Sinm(2Wt - k) (98)

ki:l k 7T(2Wt - k)
The sampling functions, or ''reconstruction functions' as they are often called, are commonly
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known familiarly as Our interest here is in binary transmissions which can take on
either polarity, plus or minus. Let us assume that the amplitude has been specified at the
fixed level v. We could consider transmitting a waveform I(t) such as shown in Eq. 98, com-
posed of N information digits, with no transmission preceding or following it. Since each of
the reconstruction fqnctions is itself strictly bandlimited to the band W, and in fact, uniform-

ly occupying the entire bandwidth, then the transmitted waveform I(t) is also strictly band-

limited. In a strict sense the duration of this information waveform is infinite; however, if

we specify some small amplitude and measure the duration out to the occurrence of this

small amplitude, we will find that it occupies a duration somewhat longer than 2—NW As we

increase the number of information digits that we consider to be transmitted, then the frac-

tion of the duration that exceeds zi becomes vanishingly small and the time duration that can

W
be assigned to each single binary symbol is 51\7&7
lim effective duration of I(t) .1 (99)
N — N 2W

We have thus demonstrated theoretically a form of signalling for which the 2WT product is
unity. We must check to see that there is no interblock interference in the demodulation
period. If one were to sample the received waveform composed of the attenuated transmitted
waveform, plus added noise, at the synchronous times corresponding to the sampling points
as they were impressed on the signal, one would recover the information digit. The pre-
ceding and subsequent information digits would have no effect on this sampled value, since
their reconstruction functions are going through zeros at this instant of time. In addition,
one would have added to the information digit the instantaneous value of noise occurring at
that time. Since the 2WT product of the information waveform is unity, no advantage is avail-
able by the use of crosscorrelators or matched filters, since the signal-to-noise ratio im-
provement factor for such devices is simply the 2WT product, here unity.

It is obvious that such a signalling system could not, in practice, use the Sin X

functions, but as a limitation it is still valid, since one could use actual functions close to the
s_in}z_x which would spill energy outside of the bandwidth to as small a degree as necessary.

The price that would be paid is complexity of the modulation equipment and the delay incurred
(which typically might be 10 or 20 signal durations). In most communication applications such

delays are insignificant.. This unity 2WT product might also be accomplished by other tech-
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niques than using transmissions and encodement in time. However, if one attempts to
get a smaller 2WT product than unity, an analysis of the sampling theorem demonstrates that
intersymbol interference must occur and no filtering technique will be available to remove
such interference, since the waveform can contain at/most 2W independent bits of information
per second if this is going to be impressed on it by binary techniques.

A more general but more abstract consideration of this limitation can be obtained
by viewing the vector space representation of a transmitted waveform. Let us consider a
sufficiently long duration, 2WT, which is much larger than one. This is the signal space
which is available for the transmission of information. We would like to find subspaces in
this space, each subspace corresponding to a specific bit of information, such that these sub-
spaces are mutually orthogonal, i.e., every vector in a subspace is orthogonal to any vector
outside of the subspace. When we have the freedom to use two-polarity transmissions, since
the information is binary, we can look for orthogonal co-ordinate systems in this large di-
mensional space and use each axis of the co-ordinate system for one bit of information. The
value of the co-ordinate on each individual axis is chosen either plus or minus a specific
quantity. There are an infinite variety of co-ordinate systems that one could lay down in the
space, but by pure counting of the dimensionality of the space, any given orthogonal co-ordi-
nate system contains exactly 2WT vectors. Thus the amount of information that can be trans-
mitted is 2WT bits using a total duration of T seconds, and therefore one can transmit 2W
binary symbols pervv’seﬂgﬂ_fmq_r an average duration of 1/2W for each symbol.

Figure 34 shows the central portion of a sin x/x reconstruction function which
might be used for maximum rate transmission. Figure 35 shows a pulse function which is
four times as long, that is, a 2WT product of 4, with the energy just over 50 db outside of the
2/W duration of the pulse. These are included to show that the prime engineering problems
will be encountered in attempting to get short duration signals which are individually time-
concentrated only in the last factor of about four, in attempting to get short, effective dura-
tion symbols.

A.3 Time Synchronous Blocks, Phase Coherent Reception with Orthogonal Transmission

We can attack the study of orthogonal transmissions in two ways: first by de-
monstrating a possible transmission method very similar to that of Section A. 2, and second,
by establishing a definite proof of maximum signalling rate by using the vector space repre-

sentation. It is obvious that if one considers a form of binary pulse position modulation
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Fig. 34. Portion of curve suitable for maximum rate transmission.

wherein the time axis is considered in pairs of points, all points separated 1/2W seconds
apart and each pair therefore occupying 1/W secdnds, the orthogonal binary encodement can
be accomplished by sending a (sin x)/X pulse centered either at the first time of the pair or
at the second time of the pair. These two possible waveforms are orthogonal to each other,
as are all (sin x)/x waveforms separated by integral multiples of 1/twice their bandwidth.
Thus it is seen that it is possible to transmit orthogonal signals at a rate of W digits per
second.

In order to see that this is the maximum rate possiblea we appeal to the vector
space representation. Here a long duration, T, of transmission is considered, which can be
effectively represented in a 2WT vector space. There are exactly 2WT vectors in every or-
thogonal complete set, and if we divide this space into orthogonal subspaces and require that
each subspace contain two orthogonal vectors, then there will be at most 2WT divided by 2,
or WT subspaces. Therefore the maximum rate of signalling corresponds to the number of

subspaces possible over a long time, divided by that time: W subspaces per second. This
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Fig. 35. More practical curve (2TW=4) for maximum rate transmission.

means a maximum of W binary orthogonal signals per second. Although the above reasoning
may appear quite geometric or pictoral, it is based on the rigorous logic of the requirement
that the total transmitted waveform be composed so that the demodulation of a given symbol
is not unaffected by the information bit or modulation of previous and subsequent symbols. In
the vector space representation this corresponds to a requirement that every possible com-
ponent in one subspace be orthogonal to every other possible componenet in the other sub-

spaces.

A.4 Time Synchronous Blocks, RF Phase Incoherent Reception with Orthogonal Trans-

missions

In dealing with RF incoherent demodulation one does not have the freedom to draw
a direct analogy between an RF waveform and a low-pass waveform, as was done in the pre-
vious two sections. Therefore this discussion will be completely limited to the vector space

representation of the transmission and demodulation process. With an RF coherent demodu-
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lation one can represent each single waveform, and in particular each pure sinusoidal wave-
form, as occupying a one-dimensional subspace, that is, a pure single vector in the space.

If one considers incoherent demodulation, then the demodulator will be affected similarly by
the reception of any phase of a pure sine wave component, and indeed can be shown to be a
function of the "radius" in a two-dimensional subspace. This is customarily shown in studies
of narrowband transmissions and noise (where "narrowband' means that the total bandwidth
of the transmission is small compared to the center bandwidth, a condition always met in
conventional communications). If the part of the waveform carrying one bit of information is
decomposed into the two phase coherent components, the first coherent with a given phase of

center frequency and the second at an orthogonal phase of center frequency as shown in Eq.

100,
x(t) = xl(t) cos wt + xz(t) sin wt (100)

then one can transform to variables similar to polar co-ordinates by the use of the "cosine of

two variables' formula, to obtain
x(t) = l/le(t) + X; (t) cos[wt + ¢(t)] (101)

This is often simply written as

x(t) = R(t) cos[wt + ¢(t)] (102)

where the radius R, or envelope R, is the square root of the sum of the squares of the two
phase coherent components. A time synchronous, but RF phase incoherent, demodulator
is one which is sensitive to the value of R and insensitive to the individual phase components
Xy and Xg - That is, it is insensitive to the phase angle ¢. If one wants to signal using this
type of reception, one has to choose two waveforms which will be distinguishable at the re-
ceiver. The usual means of accomplishing this is to choose two different frequencies. In
the vector space this is represented by assigning one two-dimensional hyperplane to one of
the signals and a second and orthogonal hyperplane to the other signal. Thus each pair of
binary signals consumes four dimensions, and the total number of such signalling subspaces
that can be utilized in a long transmission of duration of T seconds is 2WT divided by four,

yielding an average rate of W/2 signalling subspaces per second.



A.5 Summary

This section has attempted to demonstrate limitations on the maximum signalling
rate which can be used for binary transmissions where (1) the channel assignment is strict;
(2) the communicator has no control over adjacent transmissions; and (3) the signalling wave-
forms need not be individually limited to short times, but merely concentrated in time, and
cause no intersymbol interference because of the lack of limitation in time. The results are

a direct consequence of the strict band limitation, as is pointed out in the Shannon Sampling

Theorem. The method of deriving the results has been to consider the average rate of form-
ation of allowable independent orthogonal subspaces over long durations of transmission. The
ultimate limitations that are derived are in terms of the familiar 2WT product and, for the
three cases, the 2WT values take on the minimum values of 1, 2, and 4. In actual practice
one will find that the difficulty of obtaining improvement will increase steeply as one gets
within a factor of about 4 of these limiting values. In these cases very stringent specifica-
tions must be applied to the precision of the time synchronization and the precision in forma-
tion of the actual signalling waveforms. Thus these limitations are seen to be valid: although

they are physically approachable, they may not be viewed as practical goals by many users.
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APPENDIX B: THE EQUIVALENT SOURCE

(R. A. Carlsen)

INTRODUCTION

In an asynchronous time-multiplexed communication system, N sources feed
samples into a clocked buffer (Fig. 36). The purpose of this appendix is to show the rela-
tionship between the individual sources and the equivalent source indicated in the figure. It
turns out that the equivalent source is Bernoulli (i. e., that the number of samples ""genera-
ted" in an interval 7 is Poisson-distributed) when a large number of independent sources is
assumed.

In the first section, we define a model for the single source. Then, on the basis
of this model, the probability of exactly k samples in an interval T is determined for the sin-
gle source. This result is then used to determine, in Section B. 2, the probability of k sam-
ples in the interval 7, given a large number of independent single sources which becomes, in
the limit, the Bernoulli equivalent source. The discussion is summarized, in Section B. 3,
by considering an alternative approach which leads to the same result. That is, the N sources
are modeled as trials in a Bernoulli experiment.

The approach presented in the first two sections is instructive for at least two
reasons. First, the end result is obtained by progressing from the single source whose
characteristics are known to the equivalent source; second, some insight is gained into the

problems encountered when N, the number of sources, is restricted to small values.

B.1 The Single Source

The distribution of the intervals between extremes has been experimentally de-
termined by Mathews. 4 However, this distribution alone is not an adequate description of the
statistics of the speech waveform. For example, we have no knowledge of the correlation
between successive intervals. It is reasonable, therefore, to fill in the missing data by

assumption (the procedure which is always followed in the construction of an analytical model).

4See Ref. 28 and Fig. 37.
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Fig. 36. Buffering in an asynchronous multiplexed communication system.

The implication is that the validity of the model will be verified by experiment.

Perhaps one might question the wisdom of defining a model for the speech process.
At least a partial answer to this objection is the advantage which can be gained by knowing the
precise characterization of the process which has been substituted for the original source.
For example, the speech source is modeled as a stationary, simple Markoff process.

As a first step in defining a model for the speech process, stationarity is assumed.
The individual speech source is obviously nonstationary, as the speaker is silent approxi-
mately half the time. Perhaps we can think of a single source as being equivalent to two sys-

tem users, one occupying the silent periods of the other. Second, the distribution of the intervals

between extremes will be assumed to be of the form

f(u) = Aue Y (103)

where: X = the average sample generation rate for a
single source

the mean interval between extremes.

[+
i}

This function is a reasonable approximation of the experiment data and is, in addition, mathe-
matically convenient. This function, Eq.103, is called the Erlang type-1 distribution and is

obtained by the convolution of two exponential density functions. An exponential source means
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simply that the intervals between samples are exponentially distributed. For example, an
Erlang type-1 source can be obtained by removing every other sample from an exponential
source.

It is clear that the extremes of the speech waveform are the zero-crossings of
the derivative of the original waveform. Therefore the distribution for the intervals between
the extremes will be referred to as the ""zero-crossing distribution" with the understanding
that the derivative of the speech signal is being discussed.

In addition to stationarity, it is assumed that the intervals between zero-crossing
are independent. Assuming independence between intervals and the zero-crossing distribu-
tion (Eq. 103) suggests that one might model the speech source as a simple Markoff process. >
Although this additional assumption is not utilized in this appendix, it does establish a firm
basis for additional analytical work. For example, Faurea.u6 has shown experimentally that
the output of a three-pole low-pass filter with a white Gaussian input has a zero-crossing
distribution of the form assumed here for the speech process. 7 Thus, once the zero-crossing

distribution for bandlimited Gaussian noise is solved, an analytical solution based upon a
Markoff model would be an approximate solution for the current problem and an exact solu-
tion for a modified application of the system (e.g., the transmission of pseudo-noise coded

signals).

5Middleton, Ref. 39, pp. 45-48.

6Ref. 40, and Fig. 38.

7In fact, McFadden (Ref. 41) has shown that the intervals between zero-crossings are nearly
independent for the three-pole low-pass filter.
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When the simple Markoff model and an Erlang type-1 zero-crossing distribution
have been specified, the next step is to determine the statistical properties of the source. If
the interval between zero-crossings, u, is normalized with respect to the mean interval be-

tween zeros (1/1), the assumed zero-crossing density function becomes
fu) = ue ¥ (104)
where: u = the normalized interval between zeros.

Given a point of observation (£) relative to the last zero-crossing, the probability of the next

zero-crossing in the range X, X + dx (where x is the elapsed time since the point of observa-

tion) is given by

f0v/) = — (105)
f f(u)du
3

where: fl(x/g) = the probability density of a zero-crossing,
given £ since the last zero (see Fig. 37).

This is a conditional zero-crossing density which, for the zero-crossing density assumed in

Eq. 104, is given by

fx/g) = 1 &7 (106)

One can easily show that for an exponential source, f(u) = e-u, the above conditional density
function, fl(x/g ), is still exponential. That is to say, for an exponential source the distribu-
tion of the intervals between an arbitrary point of observation and the next zero-crossing is
equal to distribution of the intervals between consecutive zero-crossings. That is equivalent
to saying that probability of a zero-crossing from an exponential source in an incremental in-
terval, du, is equally likely and independent from interval to interval. Since the zero-cross-
ing density function is independent of the point of observation for the exponential density func-
tion, the probability of k zeros in an interval r is Poisson-distributed (i. e., the single source
is Bernoulli). Furthermore, N independent exponential sources in parallel are equivalent to
a single exponential source with a generation rate N times that for a single source. Asa
result, an equivalent Bernoulli source is obtained when a finite number of independent expon-

ential sources is assumed. However, the assumption that the zero-crossing density function
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is exponential is a poor approximation of the experimental dafa. 8

The objective is to obtain the probability, P'(k, r/£), of k zero-crossings in an
arbitrary interval -, given £. It turns out, as indicated in Section B. 2, that the expected
value of P'(k,u/¢) is of interest. However, it is first necessary to determine the probability
density function, f(£), for the intervals £. Suppose (as in Fig. 38) that the interval between
two zeros is known to be . The point of observation will always fall between two such zero-
crossings. Now, the point of observation, £, is selected at random (i. e., each interval d¢
between the indicated zeros is equally likely); the probability of starting the observation be-

tween £ and £ + d§, given u, is

fg/u) g = 3 de (107)

as the point of observation is uniformly distributed between 0 and u. However, the interval

u is a random variable having the density function given by Eq. 104. Therefore,

0
f(£)de = fg £(£ /) f(w) du d¢ (108)
(e) = et

Now, one finds P'(k, +/¢) by finding the probability of k zeros in the interval .

8See Fig. 39 and Ref. 28.
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This is determined by knowing the probability density for the intervals between every second,
third,... zero-crossing. Since the intervals between zeros are independent, the desired

density functions are obtained by convolution.

f3(x/£) = fl(x/g) * fz(X/O)
f(x/&) = £,(x/&) * £ _ (x/0) (108a)

where: fn(x/g ydx

the probability of the nth zero-
crossing in the interval x, x+dx,
given { since the last zero

i}

the probability of nth zero-cross-
ing in the interval x, x+dx, given
an intial zero-crossing.

fn(x/O)dx

The probability of k zero-crossings or less is obtained by integrating these density functions

for x greater than 7.

[oo]

Pk <n,7/£) = [ f(x/§)dx (108b)
T

That is, we obtain the probability that the nth zero has not occurred. For n=1, in the above
equation, we have the probability of no zero in the interval 7. The probability of k or more
zeros is therefore

T

Pk >n,7/8) = [ f (x/§)dx (108c)
(0]

Thus, the probability of exactly k=n zerus in the interval is given by
P'(k=n,7/£) = P(kzn+l,7/&) - P'(k2n,1/8) (108d)

These results agree with McFadden's equivalent expression for P(k=n, T/O).9 These computa-

tions can be simplified by taking advantage of the following relationship:

9J. McFadden, Ref. 41, Appendix L.
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T

P'(k,7/¢) = [ f(x/&)ax P'(k-1, 7-x/0)
(¢}
T

P'(k,7/£) = [ f(r-x/£)dx P'(k-1,%/0) (109)
(0]

The prime identifies the result with a single source.

The probability of no zeros in the interval 7, given &, is

P'(0,7/&)

f f; +}1( e ™ dx (see Eq. 106)

P0,7/8) = ST €T

(110)

P'(k,+/ 0) is of particular interest as the point of observation is always at a zero-crossing.

One can show, by convolution, that

[ ,2k 2kl
P'(k,T/O) = € m + m (111)
The expected value of P'(k,u/£) is
o0
P'(k,u) = [ P(k,u/¢) f(§) ds (112)
(0]
T o0}
or P'k,u) = [ [ f(r-x/£)f(£)dt P'(k-1,x/0) dx (113)
[e] (6]

P'(k,u) is the probability obtained by measuring across an ensemble of sources or from a

long observation of a single source (an ergodic source is assumed). The computations are

summarized by:

P'(0,7)

|
a
]
-
—
-t
+
<
3
—

o 2%k-1 2k 21 2kl
P'(k,f):eT[T +I——:| + ye [ ]

k1)1 * 3K Bk-1)1 * @ks1)! (114)
o -

where: = f E——l d¢ = .62
(o] g+
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The above equations may be written as

0
> P'k,7) = 1
k=0

P'(k,7) 2 O all kand 7

lim P'(k,7) = 0 all k
T - ©
lim P'(k,7) =1 k=0
T~ 0
lim Pk, 7) =0 k#0

T~ 0

The expected number of zero-crossings, k, in an interval 7, is

0
W = » kPk,7)
k=0
, -7 72 3 5 6
u' = e [’T+§—!—+2(§T+ﬂ) + 3(3—!+£—!)+...
-7 R
- ye [T *ET BTt
which for small 7 becomes
u = (1-97 (115)

All the above results have been obtained using the normalized zero-crossing distribution.
Therefore, 7 is replaced by A7 in all the above equations for the actual source having a gen-

eration rate of A samples per unit of time.

B.2 The Multiple Source

Since it is the multiple source which is of interest, consider the N identical (but
independent) sources shown in Fig. 40. We want to determine the probability of k samples
from the equivalent source in the interval 7, given the intervals £ 1’ 52, cee gn. The point
of observation is just prior to a clock pulse, and the interval 7 ends just prior to the next

clock pulse. The probability of having no zero-crossings from the equivalent source during
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the interval 7 is

PO, 7/ ,Eg &) = PU0,T/8,) PU(0,7/E,) .. PU0,7/E ) (116)

In the same way, the probability of just one zero-crossing from the equivalent source is

P(L,7/6) 8y e b)) = PU(LT/81) PAO,T/E,) ... PO, 7/ )

+

P'(0,7/8;) P'(1,7/E,) ... PO, 7/£ )

+

P'(0,7/8,) P'(0,7/E5) ... P'(1,7/E ) (117)

For larger values of k similar expressions are obtained by considering all the possible com-

binations of N channel outputs which will produce k zero-crossings.

If the number of sources, N, is large enough to justify an ensemble average for

Pk, T/t 1 ¢ PURER £N), one can take advantage of the results of the previous section, Eq. 114.
For example, the expected value of P(0, 7/¢& 1 ¢ PURER .§N) is
o0 0 00
POT = [ [ oo [ POT/E) PO,/ . PO, T/E )
o o 0
f(¢ 4, Ez,---ﬁn)dﬁldéz---dEN (118)

Since the sources are assumed to be independent, the joint distribution for the intervals & 1’

&2, &Ncanbe written as

By gy -on by = £(E ) H(E,) .. £(E ) (119)

and, as a result

© 0 ©
PO,7) = [ PO, 7/E )M DdE [ .. [ PO, 7/E ) (e Jak
o) 0 o}
or
N N
P'(0,7) = CO[P'(O,T)]. (see Eq. 114) (120)
In the same way, the probability of k=1, 2, 3, 4, ... can be shown to be given by
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p(2,7) - ) P2, » P00 L Cf (1,7 P02

p(3,7) = ) (3,7 Pro, 0N 1+ CY P2, P, 7) pi(0, N2
+ e, e,
P(4,7) = CI\II P(4,7) P'(0, ) T+ CI;[P'(S,T) P'(1,7)
2

v P2, n? Pio, N L cY pig,n) Pt P, N

+ Np, 0t pro, 0Nt

That is to say, one can obtain P'(k,7) for a single source and use this result and a knowledge
of the combinations of sources which will produce a total of k zeros in a clock interval 7.
The taking of the ensemble average (i. e., a large number of sources) is the
assumption which must be avoided in order to study the advantages of asynchronous multi-
plexing for a small number of sources.
It is instructive to consider the probability of k samples in the interval 7 as the
number of sources, N, approaches infinity. Since the N sources are independent, the ex-

pected number of zero-crossings per clock interval from the equivalent source is

u = Nu'
u = N(l— YIAT (see Eq. 115)
Therefore,
u
AT = 121
N(T - 7) (121)

When this substitution is made in Eq. 120, we have
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N
N u S
P(0,u) = C_ [exp { "‘N(l—y)} (“N(Ylliﬁ)]

It is easily shown that

lim  P(0,u) -

N~ o

1
[¢]

(122)

Likewise,

lim P(1,u) = ue ™
N- o

u? -u
lim P(2,u) = 5T ©
N- o ’

uk -u
lim Pk,u) = 1—-{—,—e
N- ’

That is, the number of samples generated by the equivalent source is Poisson-distributed.
Thus, the equivalent source is Bernoulli when a large number of independent, simple Markoff,

Erlang type-1 sources is assumed.

B. 3 The Bernoulli Experiment

The same result can be obtained by considering the transmitter as performing a
Bernoulli experiment. In essence, the transmitter is looking at N channels in the interval 7
which, for large N, is small enough that the probability of more than one sample from a
single source is negligible. That is, a look at each source during an interval 7 constitutes a
Bernoulli trial (i. e., only a binary outcome is possible). If, in addition, it is assumed that
the N sources are independent and that probability of a sample is constant from source to
source in each interval 7 (i. e., that the expected number of samples per clock period is con-
stant), the assumptions underlying the Poisson approximation for a series of Bernoulli trials
are satisfied. Thus, an equivalent Bernoulli source is obtained when (1) the assumptions
governing a Bernoulli experiment are satisfied (from interval to interval), (2) a finite num-
ber of independent exponential sources is combined in parallel, or (3) the assumptions and

model of Section B. 2 are applicable.
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APPENDIX C: ANALYSIS OF FREEZE OUT RUNS

(T. G. Birdsall)

Summary of Freeze Out Runs

Equations and definitions:

P(c) = probability of a run of exactly c clock intervals containing
some (total) source inputs frozen out
Ple) = (1+u) e ¥[1-e N1 +u)] c-1 cz1
B 1
E(c) = P(c=1)
P(d) = probability of d source inputs being frozen in a clock inter-

val, during the second and third, etc. clock interval of a

run of freeze outs

-u ud+1
P(d) = p(d+l,u) = e @) dz1
Numbers for u =.8
Runs of Length ¢ Blocks of Size d in a Given Interval
P(1) =80.9 % P(1) = 80.88 %
P(2) =15.4 % P(2) =14.38 %
P(3)= 3.0% P(3) = 3.539%
P(4) = 0.6% P(4)= .71%
P(5)= 0.1% P(5) = .50%

E(c) 1. 24

t

Note: These conditional equations are independent of M, the buffer size.

An attempt on the problem of freeze out follows (assume N large):
I) The first step is to consider a different problem--that of the distribution of
consecutive freeze outs from all sources combined--and then to tackle the problem of a single

source (voice channel) and its individual freeze out.
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We know the distribution of '"blocks" of freeze outs, that is, the number of inputs

dropped between successive clock pulses. This is

P M+d
o)

igl BMH

Prob(0 digits droppéd | some dropped) =

Since there is only a finite number of nonzero ay terms, we can write each ’SM+d as:

[ 2 3 M M+1
8 :e_u a 1 ia 4 + a L+a L—-}
M+1 M-1 2! M-2 31 " 1 M! o (M+1)!
r 3 4 M+2
8 eVla S ia L - —
M+2 t M-1 3! M-2 4! o (M+2)!
d+1 d+2 M+d
B =eVia 4 +a L + -
M+d L " M-1 (d+1)! M-2 (d+2)! o (M+d)!
.M d+i
=et T o« L i
i-1  M-i (d+)
d

Note: BM+d is strictly monotone decreasing in d since each coefficient of o, is progressively

k

smaller for u < 3 (so it certainly is for u < 1). This makes the last equation look like a poor
choice; thus the following is preferable:

d -u M u‘1 ud e_u M u‘l
B = u e E a . < = Z Y. —
M+d i1 M-i (d+i)! M) ;5; 'M-1 (d+1)!

These can be readily calculated for u = .8, for which we already know ap and I'(M). Thus

P(d digits dropped at once ' there is freeze out)

M i M i
d _-u u d < u
u e z v s AT u Z oy T
. i=1 M-i (d+i)! . i-1 M-i (d+i)!
T i T w o« (4 1
z u] eV |

u
b . 7T D) o '
g=1 i=1 M-EDT 5 i=1 T ™

120



A slightly different method is to calculate the probability of d2 simultaneous
freeze outs, assuming at least one freeze out in the previous 7-clock interval. In this case
we know that there is one buffer cell empty at the beginning of the input interval (that is,

9 =0)

p(d2 previous freeze out) =

|
o
—~
o,
Do
+
-
=
~

while the probability of no subsequent freeze out is the probability of 0 or 1 arrival:
p(no FO| previous interval FO) = e_u(l +u)

These are independent of buffer size.

For example, for u = .80, we have the following:

p(no further FO | FO in previous interval) = 80.88 %
p(1 FO | ) = 14.38 %
p(2 FO in block | ) = 3.53%
p(3 FO in block | ) = .11 G
p(z 4 FO in block| )y = .50%

This implies that there will be definite runs of freeze out once single freeze out

occurs. If we further manipulate this, we get

P(1 interval contains FO's| previous interval contained FO's)

1-e %1+

-u

"

u-l-u)

I
[¢]
—
o

Iterating.this, we get

P(c subsequent intervals all contain FO's | initial interval

~-cu_ C

contains FO's) = (e_u'yl)c =e 7
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This is a geometric progression. Summarizing formally:

Def. A freeze out run of length c occurs when there are source inputs frozen
out in exactly c consecutive clocking intervals.
Corr. During a freeze out of run length ¢, only the first source input arriving
after a clock pulse will be accepted by the buffer.
Equations:
Plc=1) = e-u(1+u)
P(cz2) = 1-e Y1+)=e Y -u-1)
-2u, u 2
P(cz3) =-¢e “(e -u-1)
~(c*-1 *_
Plczc¥) = e (MDY U__yy(c*-1)
Therefore
P(exactly ¢) = P(z ¢) - P(2 c+1)
= [e™%e%u-1)]°71 - [e Y% -u-1)]C
= [e—u(eu—u—l)]c'1 f1- e_u(eu—u-l)]
= e e u-1)]T [rl)e™y
-u -u c-1
P(freeze out run of length ¢) = (u+l)e [1-e "(1+u)]
Detailing:

Pc=1) = e Y(1+u)
P(c =2) = e (1+u) [e Y(e"-u-1)]
P(c =3) = e Y(1+u) [e’u(eu—u-l)] 2
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To check: These should add to 1. 0000.

® u © -u, u i u(1 )
Z Plc) = e (1+u) Z [e (e -u-1)]" = ?u +u
c=1 i=0 1-[e"Y(e"-u-1)]
_ e'(1+u) -1
1-[1 - e Y(-u-1)]
The average value of a geometric probability density is 1~ ratio * 5°
Bo) - e = -
1-[e (e -u-1)] e (u+l) P(c=1)
o1
E(¢) = 5D
Example: u=.8
P(c=1) = .8088
E(c) =1.24
P(c=1) = .8088 80.9 %
P(c=2) = .1542 (slide rule) 15.4%
P(c=3) = .0285 3.0%
P(c=4) = .0056 6%
P(c=5) = .0011 1%
P(c=6) = .0002 --

It is difficult to say directly how many inputs are frozen out during the initial in-
terval of an FO run, but we have established above that the probability distribution in the re-

maining intervals is

P(d FO's) = p(d+1,u).
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