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ABSTRACT

This analytical and experimental study seeks to find
those properties of narrowband waveforms which characterize the
waveform as being clocked instead of Gaussian noise, where the
waveforms are generated by hard-filtering sequences of constant-
amplitude clocked pulses having a random (positive or negative)
sign. First the ordinary frequency spectrum of both periodic
and aperiodic sequences of pulses is calculated, using the usual
methods. ‘

The short-time spectrum of the narrowband waveforms,
calculated by writing the output as a sum of filter pulse re-
sponses, exhibits a basic half-clock symmetry and other symmetry
relations. If the filter passband is located at any of these
symnetry points, the short-time spectrum will indicate the pres-
ence of clocking.

The variance of the magnitude of waveform samples
taken coherently with the clock is calculated, versus phase be-
tween the sampling and clock positions. A maximum and a mini-
mum variance relation is found, as a function of the clock-to-
filter frequency, for the exponentisl filter. An analysis and
corroborating experiments show that a waveform consisting of the
"sum of weighted, sampled variances" can be used to characterize
the waveforms as clocked if the waveform is run coherently with
the clock.

Zero-crossing calculations for exponential filters
show regularity of crossings under certain conditions. Proba-
bility density measurements of the zero-crossings show that an
exponential filter produces a density distinguishable from noise,
but this is not true, in general, for a non-exponential filter.

xii



CHAPTER I

INTRODUCTION

The objective of the research in this thesis is the study of
narrow-band waveforms which have been generated by passing sequences of
clocked pulses through a relatively narrow-band filter. In general it will
be our objective to note any characteristics of this narrow-band waveform
that are associated with the clocked-pulsed input. A particular goal is
the comparison of any output characteristics with the clocked input to the
corresponding characteristics when the input is Gaussian noise. This as-
pect of the general investigation can be represented as shown in Fig. 1-1;
the objective here is to note those characteristics which serve to identi-
fy the presence of the clocked pulses as the input, as opposed to the

Gaussian input, looking only at the output.

CLOCKED
————0
PULSES NARROW
BANDPASS [——o el(t)
FILT
GAUSSIAN ILTER
————o
NOISE

Fig. 1-1. The distinguishing aspect of the general investigation.

The sequence of pulses referred to here consists of pulses ap-
pearing at every clock position; these pulses are identical except that some
are positive and some negative. For the purposes of this thesis the sign

of the pulse at each clock position will be determined on a truly random



basis with the probability of a positive or negative being egqually likely,
hence, equal to one-half. One can consider such a sequence of pulses as
resulting from sampling, at the clock rate, of one type of "random tele-
graph signal” (Ref. 1). When referring to such a sequence, we shall use
the term "random telegraph wave."

When such a sequence of pulses is passed through a narrow-band
(high Q) filter, one can analytically view the filter output as a superpo-
sition of a number of the filter's pulse responses. The narrow-band prop-
erty is defined by the requirement that ten or more pulse responses will
give significant contributions to the output for any time t. Although a
certain amount of structure is imparted to the output by virtue of the
"clocking" of the input pulses, this output structure tends to disappear
for two reasons: (1) the randomness of the sign of the pulse; and (2) the
expected incommensurability of the clock rate and periodicities in the pulse
response. Hence, grossly speaking, the filter output "scrambles'" ten or
more of the input pulses and depends upon the particular positive-negative
sequence that immediately preceded time t.

At this point it is useful to note that the output, with a Gauss-
ian noise input (Fig. 1-1), can also be conceptually regarded as result-
ing from a superposition of elementary pulses. One of the most familiar
examples of Gaussian noise is the filtered shot effect, taken in a limit-
ing sense. In turn, the shot effect is viewed conceptually as the super-
position of elementary pulses, in which the density of pulses is allowed to
approach infinity while the magnitude of the individual pulse tends toward
zero (Ref. 2). Taking note of the differences between the above "sequence
of pulses” and the shot-effect model we note that: (1) the time of occur-

rence of the pulses in the shot effect is a random variable, compared to



the clocking of the pulses; (2) the expected number of pulses within a giv-
en time interval follows a Poisson distribution for the shot effect, but is
constant for the clocked process; and (3) the density of pulses in the shot

effect approaches infinity, compared to a finite clocking rate.

1.1l Areas of Investigation

This investigation of the narrow-band clocked waveforms is divid-~
ed into four major parts: (1) the ordinary power spectrum description of
the filtered and unfiltered clocked sequences; (2) short-time spectrum cal-
culations and experiments; (3) statistical amplitude considerations; and
(4) zero-crossing properties. The ordinary spectrum considerations will
be studied first, since they are the most familiar description of signals
and provide the most basic information about the clocked processes. In
dealing with these calculations the clocked processes will be considered
as a periodic phenomenon and also as a random process.

The short-time spectrum considerations will be found to be use-
ful in distinguishing the clocked process from Gaussian noise. From these
short-time considerations one can state properties of all clocked waveforms
and also distinguishing properties under a variety of conditions. Also
the short-time spectrum considerations will include the possible use of
short-time autocorrelation as a means of identifying the input. If the
clocked inpute are considered as samples of an ensemble of a random process,
then it is clear that the above two considerations, ordinary spectrum and
short-time spectrum, are calculations and measurements of the second-order
statistic. Such an approach, involving second-order statistics, is by far
the most familiar and most often used property in dealing with either ran-

dom processes or deterministic processes.



The third area of investigation involves statistical amplitude
considerations. Concerning the amplitude statistics, it can readily be
shown that these statistics are "cyclo-stationary"; that is,the statistics
are not stationary in the common sense but do exhibit a repetitive behav-
ior having the period of one clock interval. This repetitive statistical
behavior leads one to consider the variance of the amplitude, taken at dif-
ferent positions within a clock interval.

For the zero-crossing case, the investigation looks for partic-
ular behavior of the zero-crossing intervals when the waveform is clocked
and narrow-band. From this investigation, one can state the properties of
the "zero-crossing-interval" probability distribution for given combina-
tions of filters and clock frequencies. 1In addition, information is ob-
tained about the correlation of "excessive" zero-crossing intervals with
the clock. Experimental verification of both of these studies has been
obtained.

At this point it i1s worthwhile to point out two approaches which
have not been investigated in this study. The first is the testing of the
output for non-Gaussianness. Although any clocked process is inherently
nonstationary, one can construct a stationary ensemble from the samples by
assuming a random phase relationship (i.e., a random time origin) among the
samples. With such a stationary process it is possible to approximate the
amplitude probability density by calculating the first four moments and
using well-known approximation techniques (Ref. 3). The chief reason for
not pursuing this attack was the dim prospect for successful results.
Middleton (Ref. 4) and Mazelsky (Ref. 5) have shown that the amplitude prob-
ability density becomes very nearly Gaussian when a sufficiently narrow-band

filter is used, as 1s dealt with in this investigation.



Another method that might at first appear profitable is the con-
sideration of the inverse-filter possibility. This method was not pursued
primarily because, for narrow-band signals, the corresponding inverse fil-
ter becomes extremely difficult to realize since theoretically it would
require gain outside the signal passband and attenuation within this pass-
band. Thus the noise would far outweigh the signal. Further, if an in-
verse-filter achievement were successful it would mean that it would be
possible not only to identify the input as clocked but also to directly de-
code the input pulses. Thus this appears to be a more difficult problem
than identifying the input as clocked. Since we wish to simply identify
the presence of clocked input pulses under difficult conditions, the in-

verse filter was not considered feasible.

1.2 Maximal Sequences as Simulation of Truly Random Sequences

One way to generate a clocked sequence of pulses (described ear-
lier) is to divide the time axis into discrete intervals and, at each clock
position, decide the sign (positive or negative) of the pulse by purely
probabilistic means (the equivalent of flipping a coin). Generated in such
a way, the resulting sequence will have statistics given by probabllity
considerations. Over a sufficiently long time, the number of "heads" is
approximately equal to the number of '"tails"; about one-half the consecu-
tive runs have length one, one-quarter have length two, etc.

A very convenient tool, when dealing with clocked sequences ex-
perimentally, is the use of deterministic sequences which have, over a
period, statistics very close to those described above. Such sequences
are called "maximal sequences" (Ref. 6) or "pseudo-noise sequences" (Ref.

7). The statistics of these sequences over a period are very close to



those mentioned; in particular:

(1) The number of heads per period 1s always one more than
the number of tails.

(2) Half the runs (consecutive states of same sign) are of
length one, one-fourth of length two, etc., as long as

the number of runs concerned exceeds one.

(3) The finite autocorrelation of these sequences closely
resembles that of a truly random sequence.

In this work, maximal sequences were used as experimental signals
for simulating truly random sequences. This permits a repeatable waveform
to be displayed on the oscilloscope which, at the same time, has the neces-
sary statistics. Furthermore, the relative ease with which these sequen-
ces can be generated makes them especially attractive.

Maximal sequences are generated by using a binary shift-register
generator to which a binary feedback loop is attached. The feedback link
uses modulo-two logic and connects various stages of the register (includ-
ing the last) back to the input stage. By using this method, called a
"linear shift-register generator,’ one can obtain a sequence of length o1
from a register of n stages.

To illustrate this method, Fig. 1-2 shows a four-stage linear
shift-register, its output sequence, and its run statistics. The output
sequence can be Justified by assuming any four digits (except all zeros)
as the initial state and then adding modulo-two the last two digits to ob-
tain the next input digit, etc. For the run statistics there are a total
of eight runs in the period, which gives the statistics shown.

For the actual experiments a shift register of twelve stages was
used, which resulted in a period of L4 x 103 digits. It is by this means,
then, that the clocked sequences were obtained experimentally to study the

characteristics of narrow-band clocked waveforms.



MOD.
TWO Run Statistics (out of 8)
+ Iength | Number of runs Ratio to
in period total runs
1 L 1/2
—>] | 2 3 4 ———o0
2 2 /4
3 1 1/8
|s1111000100110108]| b 1 1/8

Fig. 1-2. Generation of maximal sequences and their run statistics.

1.3 Format

The format of the thesls follows the order of investigation men-
tioned above. Chapter II considers the ordinary spectrum calculations,
where the waveform is considered both as being periodic and as a sample of
a random process. In each case the objective 1s to note under what condi-
tions it is possible to use the particular method being considered to iden-
tify the input process. Chapter III is devoted to short-time frequency
spectrum considerations; both analytical calculations and experiments in-
cluding sound spectrographs are reported. Chapter IV concerns a statisti-
cal evaluation of the amplitude of clocked waveforms. Finally, Chapter V
deals with zero-crossing information, and a number of experimental results
are reported here.

In general, when reporting the results of experiments, we will
describe the experiment briefly and show the results within the text at
the appropriate place. The actual equipment used in the experiment, cir-

cuit diagrams of new equipment, and a detalled description will be relegated



to Chapter VI, the final chapter. Thus there will be one section of Chap-

ter VI for each major experiment performed.



CHAPTER II

ORDINARY SPECTRUM DESCRIPTION

It 1s the objective of this chapter to display the long-time pow-
er spectral density of the filtered and unfiltered pulse sequences that are
being dealt with in this report. The long-time spectrum considerations
consist of two points of view: (1) analyzing the pulse sequence in terms
of a periodic sequence of pulses; and (2) analyzing the pulse sequence as a
nonperiodic member of an ensemble of possible pulse sequences. As will be
noted, the two points of view yileld similar results, but the method of ob-
taining them is quite different. In the first part we will consider the
periodic point of view and in the second part the member-of-an-ensenble

point of view.

2.1 Periodic Clocked Sequences--Maximal Sequences

If one is dealing with a periodic clocked sequence, then there are
a finite number of possible sequences for a given period length. However,
out of all possible sequences of a given length, in this investigation we
are interested in those which simulate a truly random sequence by having the
three randomness properties described in Section 1.2. Restricting oneself
thus, one is forced to consider linear shift-register generated sequences
of the type described, since there are no other sequences having these prop-
erties. Therefore, in considering periodic "random-like" sequences, we shall
be dealing with such maximal sequences.

It will seem below that one can calculate the power spectral den-
sity for all maximal sequences with one general expression--which is a func-

tion of the period and the particular pulse shape. This can be done by
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noting that the finite-time autocorrelation function is the same for all

maximal sequences.

Before considering the power spectral density for maximal sequen-
ces, consider the simplest description of any periodic waveform, the Fourier
series representation. Using the complex form of a Fourier series repre-
sentation, any waveform having a finite number of maxima and minima and an

absolutely convergent integral in the fundamental range is written:

© i2my %
£(t) = Y Ae T (2-1)
MN==00 m
where:
~-12mn
A = = fT f(t)e T ° dt , and
m T ’
o]
T = period of pulse sequence.

Since the particular f(t) being considered in this section is a sequence of

pulses, the £(t) can be written as:

L
£(t) = Z a_g(t-7) , (2-2)
n f
n=0 c
where:
. 1
a = sign of pulse at t = n x 7
c
L = digit length of period = ch, and
g(t) = particular pulse shape of an elementary pulse.
Upon the substitution of Eq. 2-2 into Eg. 2-1, Am can formally be
written:
£ L T L
A = — L a [aglt-z)e at (2-3)
n=0 o} c
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where :

Am is the mth component of a Fourier series.

Any attempt to evaluate Eg. 2-3 to find the Fourier coefficients,
in amplitude and phase, requires that each a, for the pulse sequence be
known. However, here we are interested in the power spectral density, which
involves only the magnitude of the Fourier coefficients. It is well known
(Ref. 8) that the power spectral density of a periodic waveforml, which can
be expanded as in Eq. 2-1, is given by:

0

2, _ 1
8(f) = nfm 4,17 8(€ -nf ) (£, =5 (2-4)
where:
5(f) = power spectral density of periodic function, and
Am = Fourier coefficients given by Eq. 2-1.

We wish to find, then, the value of IAm|2 for all maximal sequences. This
is done by considering the finite-time autocorrelation for the maximal se-
quences. It is remembered that the time correlation functions equal the
statistical correlation functions if the process is ergodic (Ref. 9).

The finite-time autocorrelation is defined as:

T

1
R(t) = T [ x(t)x(t + 7)dt , (2-5)
0
where :
R(t) = finite-time autocorrelation function, and
T = 7period of waveform.

1 The power spectral density of a periodic waveform considered here should
not be confused with the spectral density of a periodic, wide-sense, sta-
tionary random process. In the former we deal with only the time auto-
correlation function, whereas in the latter a statistical correlation is
used.
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Considering the properties of maximal sequences in Section 1.2,
the fact that there is always one more "head" than "tails" means that this
correlation function will be the same for all maximal sequences. For the
case of rectangularly-shaped pulses the general function is depicted in Fig.

2~-1. The pulse parameters in Fig. 2-1 have been normalized so that the

f | FE |  a » -
Tel I e
O i
e T=TL ~|

e ] °

r .

1~

dLk Ik

Fig. 2-1. Finite, time autocorrelation for all maximal
sequences with rectangular pulses.

major peak [R(o)] equals one, and the subsidiary peaks [(R(%—)] equal -]L; (L
is the length of the period in clock intervals). It may becnoted that the
form of the major and subsidiary peaks are the same, but differ by a scale
factor. This will be true for all pulse shapes. If the pulse shapes were
triangular, then the correlation function would be parabolic, etc.

The issue here is that this R(7) is the same for all maximal
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sequences and therefore we wish to find the power spectral density in terms

of this correlation function. This can be done by finding the relation be-
2

tween R(t) and the values of [Am} . We begin by defining a finite transform

of R(t) for discrete frequencies:

Let
L T it
Fz(m) = 5 [ R(t)e dr (2-6)
o}
for
w3 ol = 0 (mod 2x),
where:
Fz(w) = finite Fourier transform.

Note that in Eq. 2-6 the Fz(w) is defined for only those w's for which oT =
0 (mod 21x); for w's restricted in such a way the Fz(w) is always real. Sub-

stituting Eq. 2-5 into Eq. 2~-6 one obtains:

Fg(w)

1l

ol

T T )
[ ] x(w)x(u + T)éindT du (2-7)
o o

T T .
- L ] X(U)eiwu X(u+T)e-lw(T+u)d1 du
o o

s

Now change variable by letting v = 7 + u.

Then:
T T
Fz(w) = ig [ [ x(u)ei(Du X(V)e-ﬂﬂv dudv (2-8)
T T .
= (-]i‘— Of x(u)eiwudu) (% Of x(v)e-lwvdv)

But for values of ® limited to multiples of 2x/T using Eq. 2-1 it is seen

that Eq. 2-8 consists of the product of Am and its complex conjugate:



1h

1:2(@) = A A:l= |Am\‘2 , (2-9)

where :

Am. = the Fourier coefficients given by Eq. 2-1.

It is remembered from Eq. 2-1 that Am is defined for both posi-
tive and negative values of m; hence we have a power spectral densit& for
both positive and negative frequencies. If one wishes to speak only about
spectral density for positive fregquencles, then the values of Eq. 2-9 must
be multiplied by two.

As a result of Eq. 2-9 one can find the power spectral density for
any perlodic maximal sequence of pulses. We will now do this for the gen-
eral autocorrelation of maximal sequences with rectangular pulses given in
Fig. 2-1. Our procedure will be to evaluate Fz(m) at the proper w. Figure

2-1 is repeated in Fig. 2-2 with proper notation.

F(1) _I

I

Fig. 2-2. R(7) for all maximal sequences with rectangular pulses;
a repeat of Fig. 2-1.

|

1
L

Using Eq. 2-6 and writing R(T) as the sum of its major peak and its minor

peaks, one writes:
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1Y ~iwT 1 et At -iwT
Fﬁ(w) = = [ "®B(1)e dt - = XL [ R, (7)e dt. (2-10)
T 1 T , o
_tl n=l n/fc—tl

But (Rg(t) = —]thRl(T). Noting this, and adding and subtracting (RQ(T) at T =

O, one obtains:

+t +t
s 1 i
F = 5 [ 'g(0)e™ar + 2 L [ TR (1) 0| (2o11)
T L L |T 1
-t -t
1 1l
p Lo PPt ~ioT
-7 L T [ (Rl('r)e dt
n=0 n/fc-tl
Let 7' =1 - ?-,— 5 Tthen drop the primes in the 2nd summation:
c
t +t
L . L-1 L . n
F‘E(a)) I A [ R (t)e™™®%ar - ¥ = [ R ('r)e_lw(ﬂ'f )d'r
T| L 1 L 1 c
—tl n=0 —tl
2-12)
+t +t n
1 . 1 L-1 |
- -3 -iwy T~
= % L%l f (Rl('r)e T —% I (Rl( )e T 3 ST fe g
-t -t n=0
1 1
m2:tfc
Since F‘g(w) is defined only for ®=—,
L ™ der L - T L1 R
F2(a) )= = |== | R, (1)e at - = [ R,(7)e 2 e ar| . (2-13)
m’ T | L 1 L 1
-t -t n=0
1 1
Concerning the summation on the right, note the following:
I -:LELmnn
2 e = L if m =0 (mod L), and
n=1
(2-14)
-12 mn

Y e b 0 if m # 0 (mod L).
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Therefore, for all m = O (mod L) the summation on the right of Eq. 2-13

equals L. For all other m, the summation eguals zero. Consequently one

may write, for Fg(w):

+t

. 2mmf
b F =)= &Y | R0 ar i = —2 £0 (md 2x); ox
-t
1
(2-15)
+t
1 . 2t
la_|7 = Flo) = % (%) [ B (e PTar  if e = —2 =0 (mod 21) .
-t
1

Note that in Eq. 2-15 there is a factor of L + 1 between the components at
multiples of clock frequency relative to the other frequencies. We can use
Eq. 2-15, then, to find the power spectral density for any type of pulse
shape for all maeximal sequences; the triangular R(t) shown in Figs. 2-1 and
2-2 pertains specifically to square-top pulses. For other pulse shapes one
merely uses the proper R(7) in Eq. 2-15. It is noted that one must always
evaluate the two conditions, the case in which multiples of clock are in-
volved and the other cases.

From Eg. 2-15 it can be seen that each of the components in the
spectral density will be multiplied by the transform of the particular R(T)
and that one can think of this transform as being the envelope of the dis-
crete components in the spectral density. For the square-top waveforms one
gets a triangular autocorrelation as shown in Figs.2-1 and 2-2, and there-

fore the corresponding Fz(w) can be shown to be:

mﬂtl 2
t sin
2
A |7 = Fg(w) B P for 2N # O (mod 2x); and
m m L T moct T
1

T (2-16)



t sin
1 1
|4 . = LT myt

T e _ (mod 2x)
1

for T

If the particular sequence of pulses consisted of ideal impulses, then the
integrals in Eg. 2-15 would result in a flat transform. From the foregoing

considerations the entries in Fig. 2-3 can be Jjustified.

TIME WAVEFORM TIME AUTOCORRELATION POWER SPECTRAL DENSITY

'C
1 LINES T APART
2
— — am
SQUARE |_ > E— - >
WAVE —F 7 f

_lﬁ' NEREA . of

-
T NNV | TS,

<

-

)
IMPULSE l !
WAVE

Fig. 2-3. Power spectral density for various pulse shapes,
for any maximal sequence.

Part (a) gives the results for the case in which the pulses are as wide as

. 2
sin x) _

the clock interval, and it is seen that the components follow a (
shaped emvelope. For the impulse case it is seen that the components are
flat except for multiples of clock frequencies. In relation to this case it
may be noted that one can obtain equal components, including the components
at multiples of clock, simply by unbalancing the impulses; i.e., by adding

a train of impulses, all of the same sign, to the original train. This can
be verified when one considers that the Fourier transform is a linear opera-

tion, so if waveforms are added in the time domain one may add the transforms
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in the frequency domain. Consequently a flat component envelope could be
obtained in Part (b) if the impulses were unbalanced properly in the posi-
tive direction. Part (c) considers the case for a finite pulse wave but
where the width is less than the clock intervals. This is the case which
is of most interest to us. It is noted that the component envelope follows

2

a (Sli X) -shaped curve, and the first zero occurs when m = %— . For other
1

pulse shapes one would find other envelope relationships.

If the maximal clocked sequences treated above are passed through
a filter with a transfer characteristic, H(Jjw), the resultant spectral den-
sity is obtained, as usual, by multiplying the sequence density by |H(jw)|2.

One can see the spectral effect of passing a sequence through a
narrow=-band filter by considering Fig. 2-3. In the usual case there will
be a large number of components (spaced fC/L apart) even in a narrow band
of frequencies. In dealing with such spectra experimentally, it is implied
that analyzing equipments have an effective integrating time which is of
the order of ten or more times the period of the sequence. Therefore, if
the sequence were short enough one could hope to ascertain the fact that
separate components exist, and they would bear the relation shown in Fig.
2-3. Under such an ideal condition one could of course identify the pulse
input as opposed to the Gaussian noise input without any further ado; how-
ever this i1s a situation which requires no further comment since it is one
of a number of singular cases that yield a simple solution. Our purpose

here has been to portray these fundamental properties of maximal sequences.

2.2 Aperiodic Random Sequence of Pulses

In Section 2.1 we considered the power spectral density for max-
imal sequences of pulses which are repeated in order to form a periodic

sequence. Here we wish to consider the power spectrum of the random process
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composed of sequences of pulses which occur when no period considerations
are present. We take the point of view here that the sequence of pulses is
a member of an ensemble of possible such sequences.

There are two general methods for calculating power spectra of
nonperiodic phenomena. The first consists of a direct evaluation of the
general formulas; the second, applicable only if the process is stationary
over the continuous time domain, consists of finding first the autocorrela-
tion function and then using the Fourier transform to obtain the power spec-
tra. Consider for a moment the stationarity of our process consisting of a
sequence of pulses. If a random process x(t) is stationary the joint prob-
ability distribution for x(tl) and x(tg) depends only on the time differ-

ence T and not on the particular wvalues tland t Then the autocorrela-

X
tion function is a function only of the time difference T, hence it is in-~

dependent of t (Ref. 10).

R (5, t,) = R(t, t-7) =B {x, x,} =R () (2-17)
where:
RX(T) = autocorrelation function of process x(%),
x, = value of x(t) at t = to,
x, = value of x(t) at t = t,

From this definition it can be seen that a sequence of pulses such as we
have is not a stationary process with time as a continuous parameter. For
example, if the T separation is less than a pulse interval the joint proba-

bility of x, and x_. will depend on whether the v lies within a pulse inter-

1 2
val or spans across two pulse intervals. In any event it can be shown rig-
orously that a sequence of clocked pulses such as we have does not constitute

a stationary process. This is done by showing that the autocorrelation of
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the ensemble x(t) does not reduce to an expression which is independent of
time and therefore would violate Eg. 2-17.

Since one is not able, a priori, to use the stationary property,
the power spectrum must be found by the direct method mentioned above.l
However, after the results have been obtained it will be seen that the same
result would have been obtained if the process were either assumed to be
stationary or made to be stationary by the construction of a new ensemble
function (allowing the phases of the members of the ensemble to be random) .

A method for calculating the power spectrum of sequences of pulses
without making use of the stationary property has been described by Bennett
(Ref. 11). Because the development below is similar to Bennett's, only the
2

major steps will be outlined here.

To begin, define the ensemble xN(t) to include only the pulses

from n = -N to n = +N:
N n
x(t) = X a &lt-7), (2-18)
n=-N c
where:
. . -N N
XN(t) = ensemble of functions x(t) defined from z= to Z— , and
c c
g(t) = shape of the individual or elementary pulse.

1 There is some confusion among authors about terminology of power spec-
tral density of random processes. Some authors (Ref. 8) restrict dis-
cussion of power spectral density to wide-sense stationary random proc-
esses. Here, however, we use the more general concept that includes
nonstationary random processes (Ref. 12), as described in Eg. 2-20 below.
It can be shown that if a power spectral density exists for a nonstation-
ary process then the operations of Eg. 2-20 converge to it.

2 Just prior to publication it was learned that a similar development is
described by H. S. Tsien in Engineering Cybernetics (McGraw-Hill, 195k,
p. 118-120) with the same results.




Then if we have

of the ensemble

where:

2l

unit pulses which possess a Fourier transform the transform

XN(t) exists and is given by

N -in2x g—
SN(f) = 2 a G(f)e c (2-19)

Fourier transform of XN(t) given above, and

Fourier transform of g(t), the particular pulse shape of
pulses in the sequence.

Now in general the power spectral density for a random process is

defined as follows (Ref. 12):

lim
GXX(f) = T_NOGXX(f,T) (2-20)
with
N
GXX(f,t) = <:?T(f, Xi:> av. over ensenmble
and
2
N
X Ap(E, Tx) |
GT(f’ x) = ’
T
where:
GXX(t) = power spectral density of random process,
Gxx(f’T) = ensemble average of finite power spectral density, and
AT(f, Nx) = finite Fourier transform of any sample of x(t).

By a straight implementation of this definition it can be seen

that the power spectrum we seek is given by:

av 2
G, () = Hm fo . (2-21)

N | op 1 ¢

2
To evaluate this, begin by writing the average of ‘SN(f)\ :
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N N i2x g— (m-n)
av]SN(f)la - Z.N Z.N av {an am} G(£)a" (£)e ¢ (2-22)
M= N=w
o
N _— ) i2nk 7
= X I Rr®er)|% °,
m=-N k=m-N

where:

k =m - nand

R(k) av‘{a a for fixed r.
r “r+

The order of summation of Eg. 2-22 can now be reversed by using the follow-
ing conversion, which can be justified by considering the summation area in
the kK - m plane.

N m+N 0 k+N 2N N

2 L = L X o+ X 2. (2-23)
m=-N k=m-N k=-2N m=~-N k=1 m=k-=N

Using this to change the order of summation in Eq. 2-22 one finds:

. 0 K4l . 12k %‘
av|s (£)[® = X % R(k)|c(f)|% ¢
k=-2N m==N
(2-2L)
oN N . i2nk %—
+ L % R)|a(r)|% °
k=1 m=k-N

Now, since the quantities under the summation depend only on k and not on
m, one can evaluate the inner summation directly by simply totaling the num-

ber of terms. By a straightforward process this results in:

. f
i2nk =—
2 0 5 £_
av |8y () | =k2 (k + 2N + 1)R(k) |a(£) |Te
=-2N
(2-25)
o T
oN . i2x fc
+ X (2N + 1 - k)R(k) [a(F)|“e .

k=1
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Using the fact that R(k) is equal to R(-k) for all cases and making a sub-
stitution of variables in either of the summations, the two summations can

be combined to result in:

oN
av|sN(f)[2 = 2 X (2N+1-k)R(k)|G(f)\2 cos 2nk ;- + (2N+l)R(O)lG(f)’2
k=1 c
(2-26)
2 2N K £
= (aw1)[a(r) | {R(0) + 2 ng(l - =) R(k)cos 21k =}

From this step it can quickly be seen that dividing by 2N+l, multiplying by

fc, and letting N go to infinity (Eq. 2-21) yields the result:

Rl

2 ot : £
XX T No oo 2N+l x fc = fC|G(f)\ {R<O) + 2 2 R(k)cos 2nk 52}52-27)

k=1
where:

Gxx(f) is the desired power spectral density.

Equation 2-27, then, is the result for the power spectral density
of a sequence of pulses which are clocked and which have a zero mean. It
is remenbered that the pulse sequences we are considering have a zero mean.
Note that Eq. 2-27 shows that the power spectral density 1s determined in
two ways: by the basic spectrum of the unit pulse itself and by the statis-
tics of the pulse train which makes up the process. We will now evaluate
this expression for a few simple cases.

The case of direct interest to us is that in which the individual
an's are independent. For this condition the power spectral density of Eq.
2-27 reduces to
‘2 a2

G (f) = fciG(f) , (2-28)
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where:

a height of pulse, and

av {an2 } = ae.

Here it is seen that the power spectrum is determined primarily by the

1l

R(0)

1l

shape of the spectrum of the individual pulse itself. It is for this case
of independent an's that one could have obtained the same result by regard-
ing the process as stationary. That is, one could have regarded the phases
of the individual members of the ensemble as being randomly distributed.
The procedure then would be: (1) find the auto-correlation function for a
representative sample of the process; (2) find the expected value (over the
ensemble) of this autocorrelation; and (3) take the Fourier transform of
this average autocorrelation to find the power spectral density. It can be
shown that, if the an's are independent, this procedure yields the same re-
sult as Eq. 2-28. We have used the non-stationary method here because this
lack of stationarity will be used to show statistical identification meth-
ods for the clocked process (Sec. 4.2). Also, the stationary calculation
would nOtVShOW"the dependence of the spectrum upon the statistics of the
pulse sequence.

Using Eq. 2-28 one can depict the continuous power spectral den-
sity for various pulse shapes. Figure 2-L4 shows the result for two cases
of rectangular pulses. These two densities should be compared to parts (a)
and (c) of Fig. 2-3. It is seen that the density here forms the continuous
enveloﬁe of the frequency spikes of Fig. 2-3.

It should be noted at this point that if the sequence of values
a, did not have a zero mean then the power spectrum as calculated above
might contain discrete contributions (spikes) at each of the multiples of

clock frequency; in fact there would be such discrete contributions unless
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1

x(t) x(t)
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A
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1
fc 2fC f fc f

Fig. 2-4. Power spectral density for random sequence of
pulses with an'sfindependent.

the spectrum of the individual pulse itself had zeros at multiples of clock
freguency. Thus, for the general case in which the pulse sequence does not
have a zero mean the spectrum will have both a continuous power spectral
density as calculated in Eq. 2-27 and line spectral components at each mul-
tiple of clock frequency. Since for our case we do not consider anything
other than sequences having a zero mean these line components did not appear.
It is of interest to consider the power spectral density when the
an's are not independent but form a Markoffian process. If the sequence of

an's forms a wide-sense Markoffian process then the R(k) can be written:

-|x|a (2-29)

R(k) = E {a a = 2%
n

n+k}

Under these conditions, utilizing Eq. 2-27, the power spectrum is found
to be:

G _(£) = fCIG(f)[2 e 42 § a2e ™ oo ok g—-} . (2-30)

xX k=1
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Note that the continuous power spectrum now contains periodic components

2a

whose period is f . For example, if o > 2.3, so that e “ is one-tenth

(04

or less of e ~, than a good approximation to GXX(f) is given by the first

two terms of Eq. 2-30:

G (£) = a° fC|G(f)|9{1+2e'O‘ cos Enf,—c} a>2.3. (2-31)

Thus a periodic phenomenon is superimposed on the spectrum of the unit
pulse itself. This periodic phenomenon, here coming from the relation of
one an to another, is similar to the behavior which occurs in the short-
time spectrum for independent an's, which will be considered in the next
section.

As is always true, the power spectral density after passing any
of the above sequences through a linear filter is given by multiplying the
appropriate sequence spectrum by IH(jw)‘g, where H(Jjo) is the transfer
characteristic of the filter.

In summary, then, we have found that the power spectral density
resulting from considering the pulse sequence as one member of an ensemble
of a random process is a continuous density which is similar to the dis-
crete density when the pulse sequence is maximal and periodic. That is,
for independent values of & s the power spectrum is determined, except for
a constant, by the spectrum of the unit pulse itself. Thus this resultéd
in a continuous version of the same spectrum that occurred in a line spec-

trum for the periodic maximal case.



CHAPTER III

SHORT-TIME SPECTRUM CONSIDERATIONS

In the preceding chapter the long-time spectral properties of pulse
sequences were investigated, both from the standpoint of the sequence being
a periodic phenomenon and from the standpoint of it being a sample of an
ensemble of possible pulse sequences. In each of the cases we noted the
effect of passing this spectrum through a narrow-band filter and then dis-
cussed the possibilities of identifying the input based on the long-time
spectrum at the output of the filter. Here we will be interested, not in
a long-time spectral property, but rather in short-time spectral consider-
ations.

Although the concept of "short-time spectra" may be conceptually
clear, it is best to be as precise as possible. For long-time or ordinary
spectra, the averaging time is over a period (if the waveform is periodic)
or over an infinite interval (for transient waveforms or random processes).
In both of these cases the result of the averaging is a constant--for a
particular frequency--hence independent of time. For short-time spectra,
on the other hand, one chooses to average over a time which is short com-
pared either to any period present or to infinity. The result is an aver-
age which is a function of time, and it is this time dependence which is
desired.

When attempting to approximate long-time power spectra experi-
mentally, one inherently thinks about filtering, and the process is as fol-
lows: (1) pass the waveform through a variable narrow-band "analyzing"
filter; (2) pass this signal through a power-averaging circuit (for example,

a thermocouple); and (3) read the dc output of the averaging circuit. [Tt

27
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is not necessary to obtailn spectra in this way; it is possible to find spec-
tra experimentally using a computational procedure--for example, see Black-
man and Tukey (Ref. 13)]. In contrast to this long-time spectrum, the
short-time spectra defined for this study does not utilize a power-averag-
ing circuit. The square of the filter's output envelope is the measured
variable. It may be noted that, if this squared envelope were smoothed to
approximate the long-time spectra, the result does not converge to the de-
sired long-time spectrum.l

The short-time spectrum considerations can thus be depicted as
shown in Fig. 3-1. Although one is interested in the properties at the

output of the "transmitting" filter [el(t)], one is in fact dealing with

x(1) TRANSMITTING| ¢,(t)| ANALYZING |e,(t)| gnveLopE | @sl!)
o———1  FILTER FILTER — o

Fig. 3-1. Basic block diagram to study short-time spectrum
properties of N.B. pulsed waveforms.

the envelope at the output of the analyzing filter when investigating the
short-time spectra of el(t).

For reasons to appear shortly, we must restrict the possible ana-
lyzing filters to those of the type stated below. We can now state specif-

ically what we mean by "short-time spectra':

1 In the past a number of experimental procedures for obtaining long-time
spectra used the procedure of averaging the squared envelope of the an-
alyzing filter. However, it has been shown (Ref. 8, p. 107) that this
average does not converge to the desired long-time spectrum for a large
class of signals: 1i.e., for real Gaussian random variables.
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(1) The analyzing filter has a pulse responsel of the form:
g(t) = F(t) cos(a)ot +6) t >0 (3-1)

g(t)

0 t <o,

where:
(o]

F(t) = any envelope such that [ |g(t)] dt < + «,
-

ringing frequency of filter, and

e
[

(O
Il

rhase angle.

(2) The averaging time of the filter is much less than any period
involved, or less than infinity.

(3) The short-time power spectrum.[Gt(m)]will consist of the
square of the envelope out of this analyzing filter. The short-time spec-
trum is studied, then, in terms of these requirements.

Although Fig. 3-1 represents our problem, we shall, in the fol-
lowing material, reverse the positions of the two filters. That is, we
shall consider the sequence as the input to the analyzing filter, and the
transmitting filter will follow. This is legitimate since one can always
interchange linear filters and retain the same output. The reason for doing
this is as follows: for the class of analyzing pulse responses of Eq. 3-1
one 1s able to state certain symmetry properties about the clocked sequence;
if a filter H(Jjw) is at least as wide in frequency as G(jwo) these proper-
ties are not altered by subsequent filtering by H(jw). By using this meth-

od one can exhibit the symmetry properties for any H(jw) as above, while

1 The term "pulse response" is used throughout the analytical work of this
report, as opposed to "impulse response." This is done because most of
the results are valid for any pulse configuration as long as the response
meets the requirements. However, in any practical situation, and in the
experiments, the pulse length is sufficiently short relative to any peri-
odicity in the response, so we can consider the response as the true
impulse response.
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the permissible g(t)'s are given by Eq. 3-1. This makes sense in light of
the fact that the analyzing filter g(t) is under our control, whereas the

n(t) filter is not (referring to the situation depicted in Fig. 1-1).

3.1 Half-Clock Spectral Symmetry

We will now note an important property about all clocked wave-
forms. If a clocked waveform is put into an "analyzing" filter of the type
in Eq. 3-1 and this filter is first centered at a frequency which is a spec-
ified distance above any multiple of one-half clock frequency and then
placed the same distance below the multiple one-half clock frequency, the
envelopes of the two outputs will be identical. The restriction that the
pulse response be of the form g(t) = F(t) cos (wot + 6) is not very severe
since narrow-band filters tend to have equally-spaced zero crossings in
their impulse responses. Figure 3-2 indicates this basic symmetry property

o
along the frequency axis. The analyzing filter is first tuned to (—ES-+ wd>

x(t)
I | | «(1) | ANALYZING 2
t } } t + + t» o— FILTER —————0
|e(= - )
1 ~
Gf(w) E \\
- 1 k2eg TS
' ~
" _'L L L \‘\.- w
maw, (Mm+l) w, =
2 2

Fig. 3-2. Illustration of one-half clock symmetry.
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m
and then to (—EE - wd), where ®, is the clock frequency and &ﬁ is the fre-

quency interval away from the multiple of half-clock frequency. From the
previous study it is known that the long-time power spectral density of a
rectangular pulse sequence is as shown by the dashed lines. The symmetry

mw
property states that, about any multiple of one-half clock (——E-), identi-

2
cal envelopes will be observed if an analyzing filter is tuned to equal
intervals on either side of the multiple.

This spectral symmetry will now be derived. The output, when a

clocked sequence of pulses is the input to a filter, can be written as:

N(t)

E(t) = I a_ st - =) forts N<t<N, (3-2)
N==c0 C

where:

N = integer N < t < N+1,

a, = +l or -1, depending on positive pulse or negative pulse,

g(t) = pulse response of analyzing filter,

fc = clock repetition rate, and

%— = interval between pulses.

c

It should be carefully noted that the upper limit, N, of the summation in-
creases by one as t moves from one interval to the next clock interval; it
is not a constant but is a function of time. Since the sequence does not
actually begin at t = -«,the time reference can be changed so that t = 0O
coincides with the beginning of a sequence. Henceforth, the output of the
analyzing filter will be written as:

N(t)

E(t) = 2 ang(t-?—) for t 3 N<t < N+L . (3-3)
n=0 c

Let the pulse response of the analyzing filter by given by:
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g(t) = F(t) cos(wt +6) = F(t) Re {ei(wt * 9)} . (3-4)
Then the output voltage E(t) is:
N n c
E(t) = X a_ Re {F(t - F)e } . (3-5)
n=0 c

To test for symmetry, let two voltages be defined!

mo
c
Ela(t) = El(t) when ® = —5— + g and (3-6)
e
Elb(t) = El(t) when (llb =-—2—" -(Dd

where:

Wy = frequency difference from a multiple of half-clock, and

m = any integer.

Now, the 2Re's

Re {Z} ; therefore:

IIIDC n
N . l[(-—2—- +(l)d)(t —§'C—) +6]
E, (t) = Re{-Z a F(t - 7)e }
1a n=0 n fC
(3-7)
mo g
i[—2—9 +wd]t 16 N n , -imng - £
= Re{e e Y a F(t - 7)e e }
n £
n=0 c
Writing in terms of envelope (or magnitude):
qa
N . f iw t 16
B (t) = | Z a PF(t-z)e " e ClRe{e & e N}, (3-8)
a n T
n=0 c
where:
mo
®» = —< + W and
a 2 a’
GN = phase angle, dependent on N.

In an identical manner, Elb(t) is written:
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nw,

i _— 1
. f it i6

t) = | X a F(t - %— T € | Re {e " e } » (3-9)

where

Looking at Egs. 3-8 and 3-9, at the magnitude of both of these terms, it is
seen that both magnitudes are summations of terms involving n and t and that
each term in the summations is the complex conjugate of the corresponding
term in the other voltage. Therefore, the envelopes or magnitudes of both

voltages are equal:

Since the magnitudes are equal, the squaresof the magnitudes are equal, and
therefore the power as a function of time is the same for the two voltages.

Since the voltages E,_ and Elb were taken at symmetrical points about an

la
arbitrary multiple of one-half clock frequency, this is the proof, then,
that all clocked waveforms possess this half-clock symmetry.

It has been shown above that a clocked sequence of pulses exhibits
half-clock spectral symmetry when a proper but common type of analyzing fil-
ter is used. To illustrate this, Fig. 3-3 shows a "sound spectrograph' of
a sequence of rectangular pulses, from a twelve-stage maximal generator at
2000 cps. The multiples of half-clock frequency are shown by dashed lines.
The symmetry of the spectra about these lines is clearly visible. The sound
spectrograph is a device which measures the short-time spectra as defined
above. Its filter is very close to that of the form in Eq. 3-1, and the
darkness of the record is monotone with the magnitude-squared of the output
envelope (see‘Section 6.2).

We are now interested in this half-clock symmetry when a general
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Fig. 3-3. Sound spectrograph of a clocked sequence of rectangular pulses.

narrow-band filter H(Jw) (not necessarily of the form in Eq. 3-1)is inter-
posed between the sequence and the analyzing filter (see Fig. 3-1). It
will be found that, if the filter H(Jjw) contains energy around some multi-
ple of half-clock frequency, and if the analyzing filter (being narrower
than the H filter) is consecutively placed at two symmetrical positions
within the passband of H(Jjw) then the basic symmetry property just noted
can be viewed directly at the output. Thus, for the case in which H(jw) is
placed so that it transmits energy on both sides of a multiple of half-clock
frequency, the output exhibits the property of having short-time power sym-
metry at two symmetrical positions within the passband.

To show this extension of the basic half-clock symmetry, consider
Fig. 3-hk. If the analyzing filter appears first, as shown in Fig. 3-Lb,
then the voltage El(t) will possess half-clock symmetry by virtue of the
previous proof, Egs. 3-8 and 3-9. Now if this El(t) is a narrow-band wave-
form, the transmitting filter will affect the envelope of El(t) by essen-
tially multiplying it by a constant. That is, the effect of the bandpass

filter on the envelope of El(t) can be approximated by simply multiplying
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Fig. 3-4. Depiction of notation when reversing linear filters.

the envelope by the value of |H(Jjw)|, where ® is the frequency of the ana-
lyzing filter. Thus, referring to Egs. 3-8 and 3-9, let K(t, md) equal the

amplitudes of E.(t) at both of the symmetrical frequencies. Then the two

1
E2(t)'s will be given by:

Epp(t) = [H(jw, )| K(t, 0;) cos(at +6y) (3-11)
where :
IH(jwa)( = magnitude of bandpass filter response at frequency @,
mon
c
o =5+ W0y, and
K(t, wd) = amplitude of El(t) (see Egs. 3-8 and 3-9).
Also:
]
Ep(t) = [HQo )| K(t, @) cos(ot +6p) (3-12)
where:
m
= —C - (D
% T2 a

Thus one can expect the symmetry to be retained with the arrangement shown
ir Fig. 3-4b. Since it is well known that any cascaded linear filters can
be interchanged it is evident that half-clock symmetry will be present in
the situation of Fig. 3-L4a, the case of interest here. This concludes the

argument that e2(t) will exhibit half-clock envelope symmetry when the



36

H(jo) filter includes energy around a multiple of half-clock frequency.

One can consider the implications of this result by referring back
to Fig. 1-1. The conclusion is that we have found a property peculiar to
the clocked input, consisting of half-clock symmetry in the output. Of
course, there would be no such symmetry if Gaussian noise were the input to
the filter. However, a restriction on this conclusion is that the H(Jjw) fil-
ter must transmit energy on both sides of some multiple of half-clock fre-
quency. If the bandpass filter is not so located one simply cannot test
for this basic symmetry around a multiple of half-clock. The procedure for
experimentally verifying this symmetry is first to place the analyzing fil-
ter a certain interval above the multiple of half clock, and then place a
second filter the same frequency interval below the multiple of half-clock,
and note the correspondence in the time behavior of the two outputs with
square-law detection. This can be done either by using a sound spectro-
graph as depicted above or by correlating the two different frequency am-
plitudes and noting a peak in the correlation. Sound spectrographs have
been obtained which clearly show this symmetry.

Figure 3-5 shows a sound spectrograph of the output when the same
sequence used in Fig. 3-3, clocked at 2000 cps, was inserted into a filter
with a 2100-cps bandwidth centered ;t 5950 cps. This filter was a L-pole
Tschebyscheff type, and its impulse response was quite unlike that of Eq.
3-1 (see Fig. 6-9).

Another version of the same experimental evidence is shown in
Fig. 3-6. Here the two envelopes of eaa(t) and eQb(t) are superimposed,
to exhibit the correlation, when the clocked sequence is the input. Thus
these envelopes correspond to two symmetrical, single traces of the fre-

quency-time diagram of Fig. 3-5. With the sequence clocked at 2000 cps,
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Fig. 3-5. Sound spectrograph of filtered clocked sequence.

the envelopes were taken at 5500 cps and 6500 cps. Also shown are the cor-
responding envelopes with a Gaussian noise input, to exhibit the complete

lack of correlation (see Section 6.3 for experimental description).

/‘\ /\‘ \ .
A \ \ ) X
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(a) Clocked input.
(——‘6500 CPS
---5500 CPS
f\
\ A 1
\ \ \ [ W | A I\
v R U AR TMOSY 02 AV PR
(b) Noise.

Fig. 3-6. Superimposed envelopes of two symmetrical frequencies with
a clocked input and a Gaussian input.
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From the above it is seen that this half-clock symmetry represents

a singular case which yields a relatively simple solution.

3.2 Energy Midway Between Half-Clock

In the above section we noted that power spectral symmetry exists
on either side of any multiple of half-clock frequency. This phenomenon
can be observed at the output of an analyzing filter. This basic spectral
symmetry is one general consequence of the fact that structure exists between
spectral components when the input is a pulsed process. Therefore, the
problem is to be able to extract some representation of this structure. In
the above case it was a quite simple matter to note the equality of two en-
velopes.

A second case occurs when one considers spectral envelopes situ-
ated in symmetrical positions midway between half-clock positions. This
situation occurs when one envelope is taken at a frequency interval (wd)

above a multiple of half-clock, and another is taken at an interval W3 be-

low the next half-clock position. This situation in the frequency plane is

depicted in Fig. 3-7. To investigate this situation we proceed as before

x(t)

: | aNALYZING OI )
FILTER |° (m+ 1w, I
( 2 - d)
S + + + + + —p W
m w, (m+|)wC
> 2

Fig. 3-7. Symmetry action for energy midway between half-clock frequencies.
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by writing the output voltage for both cases in terms of an envelope and a

carrier. Thus, for the case in which w is a certain interval above a mul-

mf
tiple —— one has the same equation as in Egq. 3-8:
4 _a
N n , -imngx fc i(bat ieN
E (t) = | 2 a Flt - =2)e e | Re {e e }, (3-13)
la n T
n=0 c
where:
mw
w = - +o and
a 2 d’
GN = phase angle, dependent on N.

Now consider the voltage at the same distance W4 from the next half-clock

1
position; it is found that this Elb(t) can be written:

nw
T !
: N . in t 16
BL(t) = | £ a Bt -Zoettimln, o Te Re{ewbe ACELY
1b n T
n=0 C
where:
_ (m41)
= > w, - wd,and
1
GN = phase angle, dependent on N.
Taking out the term e I causes Eq. 3-14 to appear as:
it '
N f i, t 16
' 3 n n , -imng c ® N
Elb(t) = | Z an(—l) F(t - F)e e | Re {e e },(3—15)
n= c
where:
_ (m+l) o -
% T T % "%

Comparing the magnitudes of Eg4. 3-13 and 3-15, it is seen that they are
alike except that a, 1s the sequence in Eq. 3-13, and an(—l)n is the se-
quence in Eq. 3-15. Thus the envelopes behave according to two different

sequences; but the sequences are closely related in that one is the
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complement of the other (the sign of every other pulse is reversed). Al-
though the two different envelopes were obtained by placing an analyzing
filter at two different frequencies, since we are dealing only with magni-
tudes this can Jjust as well be considered as one filter with two different
inputs: a sequence and its complement.

If we write the magnitudes of the two envelopes in terms of real
and imaginary quantities, for m even [for m odd, a term (-l)n multiplies
all quantities in both equations and thus reverses the role of a and anc]’

one obtains:

2 N n ! ° N n ~q °
|Ela(t)| = ( % anF(t - f—) cos -i-,——) + (Z anF(t - f—) sin — )
n= c c n=l c c
(3-16)
|E (t)|2 = ga F(t - =) a ] + ga F(t - =) si T i
1b - nc T F /GO F nc TF/SRF ’
n=0 c c n=0 c c
where:
a = complement of the sequence a_.
nc n
@q o}
First it may be noted that, if = 90~ (corresponding to both analyzing
c

filters placed midway between half-clock positions), then the two envelopes
are identical since those terms having different signs are zero. This must
certainly be so since the filters are placed at exactly the same fregquency.
For other permissible angles (OO < ?9-< 900) no quantitative relation be-

f
c

tween the envelopes has been found. Experimental results in the form of
envelopes taken at symmetrical positions about one-quarter clock frequency,
for two cases, are shown in Fig. 3-8. While this experimental evidence
gives some indication that the clocked envelopes show more of a tendency
towards behaving oppositely than the noise envelopes, no firm conclusion

can be based on this evidence. Any firm conclusion would be dependent on
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a refined statistical study of such envelopes.
In Fig. 3-8 each pair of superimposed envelopes was taken at
symmetrical positions about a 'quarter-clock" position, as depicted in

Fig. 3-7. A twelve-stage maximal sequence clocked at 2000 cps was insert-

ed into a filter with a 2100 cps bandwidth centered at 5950 cps (same

{ 5800 CPS
(a) Clocked ——— 5200 CPS
i
N
: AT /ﬂ b ] Wi 4/\
1/\1/\/\//\,.\/\ |/ /‘\,\\’\ \'\/ \/ " YA \\‘/ \/
(b) DNoise
Al
“ p{\ A
|
) AR /\\U AL \,ﬂ\{
VW g VUV Al W n W),
@ s -t
n
N\ //‘k] /\ ~ ” {/\ n /\ /\
W VAR A \
| o VAN ‘ )\ /
AU Ky A U\ ‘ vaﬂ vl s “ /k/\ﬂﬁ
(d) Noise

Fig. 3-8. Superimposed envelopes at frequencies symmetrical
about quarter-clock frequency.
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conditions as Figs. 3-5 and 3-6). The envelopes in parts (a) and (b) were
taken at 5200 cps and 5800 cps; those in parts (c) and (d) were taken at

w

5400 cps and 5600 cps. Thus in part (a) the value of fg was 36°, and in
c

part (c) the value was 72°; parts (b) and (d) show the two envelopes for
a sample of Gaussian noise.

It is again seen that, if a filter H(jw) is placed between the
sequence and the analyzing filter (see Fig. 1-1), any possible differences
in the statistical behavior of the envelopes will still be available. This
follows by invoking the interchangeability of filters used in the previous
section. Hence, this allows one to possibly identify a clocked input if
energy is available as stated; this is an additional property to the one
of the previous section where energy around a multiple of half-clock was

required.

3.3 Energy Midway Between Quarter-Clock

In the preceding two sections we described properties of a nar-
row-band clocked sequence of impulses for two situations; (1) one in which
energy is available on both sides of a multiple of half-clock frequency,
and (2) one in which energy is available on both sides of midway between
multiples of half-clock frequency. A third situation, about which one can
study a relation between the envelopes is depicted in Fig. 3-9. It is seen
that this is concerned with the case in which energy is centered midway be-
tween quarter-clock positions (or symmetrical about one-eighth clock). We
now seek the relation between the envelopes when analyzing filters are

placed at the two positions shown in Fig. 3-9.



43

(mw )|2
‘() le( S + wg
ANALYZ ING 2
— - & —
|e( 2 Yt
We
Gylw) wdl}'| Ve Riry
S L L4 ; T T T ’w
m w, (m+l)wC

Fig. 3-9. Symmetry action for energy on both sides of one-eighth clock.

To investigate this, one again writes the first voltage waveform
as shown in Eq. 3-17 (andkin Egs. 3-8 and 3-13 before):

nw

. d
N T ot 16
E, (t) = | Z a_ F(t - =)e T e | Re {e e } , (3-17)
a n hil
n=0 c
where:
mb
o = —= + O
a 2 d

By referring to Fig. 3-9 it will be seen that the other voltage will be

written as:

mwc (DC ] n_ 1
1 N —l[—— + -® T i, t i6
Elb(t) = | 2 a F(t - %—)e 2 + d c} Re {e b e N-} s
n=0 n c
where:
mw W
= S+ 0w
% 5 T T %
W
d TC "
in(=— - 2) . .
N . f 2 t i@
" n -imng c ay N
B (8) = | on a_ F(t - f;-)e e [refe © e ¥} (3-18)

Comparing the envelopes of Egs. 3-17 and 3-18, the two envelopes can be writ-

ten as:
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N . N +in(e - X)
| Z a F(t, n)e“lne | versus | X a F(t, n)e 2 | . (3-19)
n=0 n=0

As in the previous case no quantitative relations between the envelopes
were found. Experimental envelopes taken for symmetrical positions about
one-eighth clock are shown in Fig. 3-10. Here the sequence was clocked at
2000 cps, and the envelopes taken at 5100 and 5400 cps. Comparing Figs.
3-9 and 3-10 it appears that any statistical relation between the two en-
velopes is less pronounced for this case of one-eighth clock symmetry. As
before, the presence of a narrow-band filter H(jo) between the sequence

and the analyzing filter will not affect the envelope situation as long

i ¢ b N
/
o BRI o P AN
v AR LT A el W by
(a) Clocked { —— 5400 CPS
——— 5100 CPS
|
[ :
AT YN NN PR Y T
Jf/ 1/““’ / \ v \/ 4 ﬂ } ! A

(b) Noise

Fig. 3-10. Depiction of envelopes symmetrical about
one-eighth clock frequency.

as the analyzing filter is sufficiently narrow.



3.4 Summary of Spectral Symmetry

The relationships between envelopes obtained from symmetrical fre-
quency positions for three different cases have been noted. These cases

are summarized on a frequency sketch in Fig. 3-11.

:——P (3)@— :
] |
| (2) i
Gt(w) g t—1—> (1)
i : <F——f——-"
| ! |
I F- t ' t +—P W
2 2

Fig. 3-11. Summary of symmetrical envelope relations.

For the first case, with envelopes taken symmetrical about a half-
clock frequency, the envelopes are identical and give a firm positive iden-
tification. In the second case, symmetrical about a quarter-clock frequency,
the envelopes behave as though they resulted from complementary sequences.
In the third case, symmetrical about one-eighth clock frequency, the en-

velope relation is indicated by Eq. 3-19.

3.5 Reversing (Filter) Property when Heterodyning is Used

In the foregoing three sections the interchangeability of linear
passive filters was used to show that the various symmetry properties of a
pulsed waveform are present even when a filter H(jw) appears between the se-
quence and analyzing filter. For the filters in those sections the bandpass

of the two concerned filters were always within the same region; that is,
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the filter g(t) was always within the bandpass of the filter h(t). This
method of considering two filters as being reversed suggests exploring the
possibility of reversing the filters when the two filters do not overlap,
and hence one must use heterodyning. Consider, for example, the two fil-
ters with heterodyning shown in Fig. 3-12. No matter where the filter H(jw)
is placed, the proper heterodyning frequency can be used to translate any
desired part of the spectrum of x(t) to the passband of H(Jjw). Thus, for
example, g(t) could be set to symmetrical points about a multiple of half-

clock and then identical envelopes would appear at E3(t). If it were

x(t) ANALYZ ING BN Egft) TRANSMITT ING E4lt)
o— FILTER X FILTER ———o0
g(t) h(t)

wy
Gf(w) - - —
mf. 3
- “~H(jw) t
—»

Fig. 3-12. Illustration of symmetry property when H(Jjw)
is not at a half-clock symmetrical point.

possible to reverse the order of the filters, and obtain the same envelope,
then it would be possible to test for half-clock symmetry no matter where
the filter H(Jjw) was placed.

In the following we will show, as briefly as possible, the re-
quirements for the envelopes to remain the same when the filters of Fig.
3-12 are interchanged. No satisfactory solution to fulfill these reguire-

ments has been found. However, as a result of this study, one can state
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under what conditions the filters can be reversed--these conditions do not
provide the symmetry which was desired.

Figure 3-13 depicts the reversing of the filters and shows the no-
tation to be used in the following material. In short we will ask what cCo~-

herent multiplication is required, in part (b), in order that the envelope

x(1) 9“)/' E,(1) jijx\ E 1) (1) Eqlt)
B cos w t
(b)

x (1) h(1) e,(t) Co:ﬁ?_'lE'.NT ex(t) 9(”/' eslt)
i
y(t)

Fig. 3-13. Reversal of the filters when heterodyning is used.

of e_(t) be the same as that of E3(t). Using the summation of impulse re-

3

sponsesl and the convolution integral, E_(t) can be written:

t N
E(t) =B [ 2 a_ gt - E—) cos w7 h(t - ) d, (3-20)
3 n f L
0 n=0 C
where:
g(t) = impulse response of analyzing filter,
h(t) = impulse response of transmitting filter, and
Q. =

heterodyning frequency necessary to move symmetry point
within passband h(t).

L DNote that here, when using the convolution integral, the impulse response
must be used, rather than the more general pulse response sufficient in
previous sections.
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In order to put E_(%t) into a form for comparison with e_(t), one can inter-

3 3

change order of integration and summation and change variables by letting

n
t -1 =1 - - The result after interchanging again and dropping the primes is
¢
t N n ncDL
E(t) = B [ 2 a_ g(t-1) hit -%) cos (w1 ~ =— - w_t)dr . (3-21)
3 o np=o B £, L°f, L

For comparison to this let us first write e_(t) without any coherent mul-

3
tiplication:
t N n
e (t) = B [ X a h(r - 7) gt - t)ar . (3-22)
3 o n=0 c

Now suppose for a moment that it were possible to separate out each indi-
vidual component of el(t) and then multiply each such component by a sine
waveform of the proper phase. If all such factors were then added one could

obtain an e_(t) of:

N
e2(t) = 2 a h{t - %) cos (w.t - E——) . (3-23)

If such were possible, then e_(t) would become:

3

t N nw

e3(t) = B of ngo a h(t - %;) g(t - 1) cos (wLT - F:E)df.(3—2h)

Comparing Eq. 3-24 to Eg. 3-21 it will be seen that they are identical ex-

IF factor in the cosine term of Egq. 3-21. It can be shown that

this difference is due to the fact that the output E

cept for an w

(t) is centered at a

3

different frequency from that of e (t). The two terms can be made identical

3
by coherently detecting the waveform,e3(t) (multiplying by cos wIF).
Of course, the difficulty lies in obtaining the ea(t) of Eg. 3-23.

Since the waveform el(t) consists of a sum of impulse responses it is re-

quired that each such response be separated out and then multiplied by a
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sine waveform of the proper phase. One might attempt to separate out the
individual components of el(t) by use of delay line techniques, but this
would amount to no less than attempting to decode the sequence itself (which
is deemed impractical for purposes of this study). Consequently, there
seems little hope of exploiting symmetry properties in a general way, for
any position of H(jw).

A rather extensive experimental test was run to determine whether
or not a simple waveform might give results sufficiently similar to Eq.
3-23 to permit symmetry recognization. The waveform used to multiply was

of the form:

y(t) = cos (wLﬁ - —=) . (3-25)

Here N is increased by one in step with the clock frequency. This results

in a sine wave whose phase is "bumped" in step with the clock. The ee(t),

then, was:

N

N L
e (t) = 2 a h(t - =) cos (aiﬁ - 5——) . (3-26)
n=0 ¢ C

No symmetry was obtainable with this attempted approximation. The coherent
"phase-bumped" wave served merely to broad-band the el(t) waveform so that,
in general, only a simple heterodyning [by one component of y(t)] of the
el(t) waveform was accomplished when passed through the g(t) filter.

One can see what conditions are necessary to be able to reverse
the filters with heterodyning by comparing Egs. 3-21 and 3-24. If the

heterodyning frequency w. is any multiple of clock frequency, then the term

L

nwL/fc is always 2x. Under this condition, the two waveforms differ only

by the w.t term mentioned earlier, and this difference can be eliminated by

L

coherently detecting e (t). The result, then, is as follows: if the input

3
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to two filters with heterodyning between them is a clocked sequence of im-
pulses and if the heterodyning waveform is a multiple of the clocking fre-
gquency (and coherent with it) then one can reverse the positions of the two
filters and retain the same output.

It can be seen that this reversible property does not help in our
attempt to find symmetry irrespective of where H(jw) is placed. To do this

it 1s necessary to have w,. take on values between multiples of clock fre-

L
quency. If one is restricted to multiples, then one is merely reflecting

a given symmetry point into another identical one.

3.6 Short-Time Autocorrelation Function

In the earlier parts of this chapter the distinctive properties
of pulsed waveforms as exhibited by their short-time spectral properties
were noted. Also, a rather precise definition of what is meant by short-
time power spectra was given in Section 3. Whenever one deals with power
spectra there appears the possibility of alternatively considering a time
autocorrelation function (as opposed to a statistical autocorrelation func-
tion). Since we have dealt with a time-varying short-time power spectrum,
one questions whether there is a corresponding time-dependent autocorrela-
tion function.

The Fourier transform relation between long-time power spectra
and the statistical autocorrelation function (for stationary random proc-
esses) is well known and is called Wiener's theorem. With such a relation,
knowledge about the power spectra implies knowledge of the autocorrelation
function, and vice versa. Hence one can work either in the spectrum (fil-
ter) plane or in the time (delay) plane.

Analagous to this relation for long-time spectra, Fano (Ref. 1k)
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has shown that, for a special case of short-time spectra, a time-varying
autocorrelation exists which is the transform of the time-varying short-
time power spectra. Referring to our previous definition of short-time
spectra (p. 29) +the special case applies to the situation in which the an-
alyzing filter has an impulse response:

g(t) = e cog (th +0) . (3-27)

In other words the general F(t) permissible before must now be given by
e_am. With such an analyzing filter, and with the measurements to be de-

scribed below, the relation between short-time spectra and short-time auto-

correlation is:

altl =
Qt(T) = 5= _wf Gt(m) cos oT 4w
(3-28)
" el
Gt(w) = [ ¥t 9t<T) cos wt 4t
-0
where:
Gt(r) = short-time autocorrelation function,
Gt(w) = short-time power spectrum, and
a = time constant of analyzing filter.

As seen, these relations are similar to the relations which exist for the
long-time quantities. It must be remembered, however, that it is necessary
to use a particular type of analyzing filter, as noted above, in order for
these relations to be valid. This is different from the case of the long-
time quantities.

The measurements which are required in order to obtain Gt(w) and

et(r) are as follows. For the short-time freguency spedtrum, assuming that
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Q is much greater than 1 (which is our interest here), the waveform is put
through a filter which has an impulse response e * Cos (abt + 6). The
output will be a sinusoid at the center frequency with slowly varying ampli-
tude and phase. One now takes the envelope of this sinusoid and squares it
to obtain Gt(w). To emphasize, it is necessary to have this particular type
of filter and also it 1s necessary that Q be much greater than 1 for this
simple procedure to hold. If Q is not appreciably greater than 1,two fil-
ters are required which are essentially orthogonal to each other.

For the short-time autocorrelation measurement, which corresponds
to the frequency measurement Jjust described, one first multiplies the wave-
form by the same waveform delayed by 7. This product is then passed through
a low-pass filter which has an impulse response 2QE-20¢. The resulting out-
put is then Qt(r). Thus, if the measurements are done as described, then
the two quantities that are measured will be related as shown in Egq. 3-28.

The essence of these relations is the same as for the case of the
long-time relations in that one has the freedom to obtain the power spec-
trum either by direct measurement or by measuring the autocorrelation func-
tion and then using the transform. It is our interest here, however, not
to obtain the Gt(w) in detail but rather to note a particular characteristic

about it. For example, the half-clock symmetry property noted in Sec. 3.1

means that

HKDC ch
G (5= +m) = Gz -o0), (3-29)
and
Gt(mc +®) = Gt(‘b) (m=0,1,2,3, ---)

Thus, although the time behavior of the power spectrum is essentially a ran-

dom process (because of the randomness of the an's) we were able to find



that particular places in the frequency spectrum yielded the same random
process as a function of time.

In considering how the symmetry properties in the Gt(w) plane ap-
pear in the Gt(T) plane, one can use the ordinary Fourier transform prop-
erties as a guide. Thus, if Gt(w) consists of an infinite periodic func-
tion of w for all t, then et(r) will consist of a spike function of 71 at
multiples of the periodicity in w. For example, the Gt(w) for a clocked train
of impulses, for any time t, is a periodic function of periocd o, and extends
to infinity. The et(T) for this will be a series of parallel lines (corre-

= %ﬂ apart with varying amplitude of

c ¢
the various lines for different t. The fact that et(x) is everywhere zero

sponding to harmonics) spaced T =

except when T = EE is obvious from considering the time waveform itself.

If the gt(w) is narrow in o for all t, then the et(T) will have
nonzero amplitude for values of T between the harmonic values mentioned
above. Further, if a narrow Gt(w) includes a symmetry point (as in Eg. 3-29)
then the action in the et(f) plane can be thought of as analogous to an
amplitude-modulated, double-sideband wave. That is, the carrier itself will
be evident in the time domain (in this case the = domain), with a slowly
varying amplitude. For any t, the action of Qt(T) versus T will be that
the periodicity with v will be evident; i.e., Gt(r) will go through zero
at the same values of 7, for all t, but the heights of the "cycles" will
vary slowly from cycle to cycle.

From the above it appears that, for narrow-band waveforms, deal-
ing with symmetry properties in the Gt(r) domain is not more convenient

than in the Gt(w) domain. However, any final conclusion in this respect

would be dependent on further study.



CHAPTER IV

STATISTICAL AMPLITUDE CONSIDERATIONS

In the previous two chapters the long-time and the short-time
spectrum properties of clocked narrow-band waveforms were considered. In
this section the statistics of the clocked waveforms will be studied; in
particular, the sampled variance. Variance in general can be considered as
the average, over frequency, of all the spectral content.

To deal with the sampled wvariance of a clocked waveform it is nec-
essary to consider first the stationarity of the waveform. It will be shown
that the waveform is "cyclo-stationary"; that is, the statistics are repeti-
tive with the clock period. One can obtain a stationary set of values by
sampling the clocked waveform coherently with the clock. The variance of
these samples (called sampled variance) will then be studied. It will be
shown that, in dealing with these variances, one can characterize the wave-
form as being clocked as opposed to non-clocked. Further, it will be seen
that multiplication by a coherent continuous wave will yield what is equiva-
lent to a "sum of weighted sampled-variances." Finally, experimental re-

sults using a coherent, continuous multiplying waveform will be reported.

4.1 Review of Classical Knowledge

Before considering the statistics of clocked waveforms it is prof-
itable to review briefly the classical information about Gaussian waveforms
and the way in which a related type of noise, random-pulse nolse, approaches
a Gaussian waveform.

It is well known that if a Gaussian waveform is the input to a

linear filter, then the output is a Gaussian waveform (Ref. 15). Since a

5k
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filtered shot effect is a familiar example of Gaussian noise, and since the
conceptual model for the shot effect is a pulse process in which the time

of occurrence is random (called random-pulse noise), one can consider the
amplitude distribution for a finite random-pulse noise. That is, the pulses
are not infinitely dense as they are for the shot effect. Although random-
pulse noise is not the same as a clocked waveform, the conclusions reached
about this noise are instructive for considering the clocked waveforms.

Middleton (Ref. 16) has derived analytic expressions for the prob-
ability densities, of the various orders, for random-pulse noise. As one
expects, it is found that the character of the distribution functions depends
heavily on the overlapping of the elementary pulses. Further, for heavy
overlapping of pulses, the character of the distribution function is little
affected by the precise shape and statistics of the elementary pulses--which
is justified by considering the Central Limit Theorem. If the average num-
ber of pulses per second times duration of a typical pulse is in the range
of 10 to lOu, the distributions are normal with one or more correction terms.
Above this range the correction terms are insignificant.

Hilibrand (Ref. 17) is concerned with & similar situation when
studying the approach to a Gaussian distribution of random-pulse noise which
is passed through a narrow-band filter. By using a moments technique in
the frequency domain, he evaluates the odd-order higher moments (which are
zero for Gaussian noise) for random-pulse noise. By such a method it is
possible to see the approach to Gaussianness of the distributions of random-
pulse noise.

The above comments relate to random pulse noise, where the time
of occurrence of the pulses is random. However, for clocked waveforms one

would expect the same type of action. For example, with heavy overlapping
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of the pulses (high fc), the Central Limit Theorem still specifies that the
waveform approach a Gaussian distribution. Thus one can expect the same
type of approach to Gaussianness in the clocked case as in the random-pulse
case.

Although one could hope to characterize the clocked waveform by
evaluating the correction terms by which the amplitude statistics differ
from Gaussian, it appears more profitable to make use of the clock informa-
tion and to search for characteristics that result from the clocking. This
point of view has been taken in this investigation. Furthermore, the 'non-
Gaussian" approach leaves the characterization uncertain as to whether the

non-Gaussianness results from clocking or from some other mechanism.

L.2 Cyclo-Stationarity of Clocked Waveforms

It was mentioned in Section 2.2 that an ensemble of clocked wave-
forms, where the clock positions of each sample are 'lined up," represents
a non-stationary process in the continuous time domain. If one assumes
either that one knows the clock rate or that he can find it by a scanning
method, 1t is possible to characterize the clocked waveform by exploiting
the particular type of non-stationarity that is exhibited by clocked wave-
forms (called cyclo-stationarity). We begin by calculating the autocor-
relation to exhibit this non-stationarity. The following sections then con-
sider ways to utilize the cyclo-stationarity.

To investigate the non-stationarity, consider the autocorrelation,

which is the expected value of e(t) e(t + 1).

R (1, t) = E {e(t)e(t + T)} = av {e(t)e(t + T)} (4-1)
where:

Re(T, t) = autocorrelation of ensemble {e(t)} .
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If one lets e(t) be given by

e(t) = 3 a h(t - #), (4-2)

Il=-0

Then the autocorrelation Re(T, t) is given by:

R (1, ) = av {mg_mamh(t - f_%l;-) né_manh(t - ?—z + T)}
) mzl—oo l’lzl—ooaV[aman] h(t i ?_C)h(t ) ?-: i T) (u-B)

[o¥]

2 § R(m - n)h(t - ?—)h(t -+ 1),
M=-c0 N==00 C Cc

1]

where:

R(m - n) = av[aman].

For the process to be stationary, Eq. 4-3 would have to be independent of
t. To show that Re(T, t) is not independent of time, merely substitute
t o+ l/fC for t in Eq. 4-3. The result is:

©

Re(T, t) = L § R(m - n)h(t - ?i)h(t _nol, T) . (4-4)
mM=-00 N=-00 Cc c

If we now let m' = m-1, and n' = n-1, it is quickly seen that Eq. k-4 is
identical to Eq. 4-3. Thus Re(’r, t) is periodic in t with period T = l/fc.
Bennett (Ref. 18) has termed a process having such a periodic autocorrela-
tion as 'cyclo-stationary." He also states the conditions necessary for
this periodicity to vanish--which would result in a stationary process. If
one expands RE(T, t) as a Fourier seriesf

o iEknfct

R (1, t) = k_é-wdke ) (4-5)

then dk is given by:



q = £, X R(m)F('r+Iir,l—, k) (4-6)
m==-co (e}
where:
F(t, £) = [ n(t)n(t + 1)e Bty

-0

For the process to be stationary it is necessary that dk be zero for all

values of kfc except zero. In general, this will never be true.

4.3 Calculation of Sampled Variance

The realization that a clocked waveform sampled at the clock rate
results in a stationary process leads one to investigate the statistics of
such sampled functions. In particular, we will calculate the variance of a
sampled, clocked waveform. Consider the notation used in Fig. 4-1. We will

calculate the variance of ea(t) as a function of P, where B is the phasing

x(t)

elt) e.(t) f
o— ht) ——(X)—2 SQUARE |2

| D A2
—Y € (kT+BT) |—o0

k=1

®
Y8(t-kT- BT
k=0

Fig. 4-1. Depilction of calculation and measurement of sampled variance.

of the sampling with respect to the clock (0 < B < 1). First write el(t) as:

o] (o]

e)(t) = I a(@n(t-3) = I a(u(t-im) (4=7)

i=-c0 c i=-e

where:

After sampling, ez(t) appears as:
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eg(t) = 0 for T f(t -BT), 0<B<L1 ,
and, by letting E—:TEI = k: (4-8)
k
e2(kT +BT) = X a(i)n([k-i]T + BT) for T|(t- BT).
i=-m
Since h(t) = 0 for t < O:
k
e2(kT +BT) = X a(i)n([k-ilT + pT) . (4-9)
i=-m
Ilet k =1 = n:
ee(kT +B8T) = 2 a(k - n)h(nT + BT) . (4-10)
n=0
One can now evaluate the variance of ee(kT + BT):
Variance = E {e22(kT + BT)} = 02(5) . (4-11)

Since the a(n)'s are mutually independent, and also independent of h(n/fc),

one can write:

§ E {ae(k - n)} E{ha(prf + BT)}

E {egg(k’l‘ +87) } z

> 2 2 i
nEO E{ (n)}E{h (nT+5T)} . (4-12)

Letting a(n) = +1 or -1, the E {5?&0} = 1; therefore:
2(kT+BT)} = T
n=0

E{e2 nT + BT) = F(B) . (4-13)

The important result here is that, with independent a(n)'s, the variance of
the sampled, clocked waveform is a function only of the impulse response of
the filter. Further, the variance will, in general, vary with B, the angle

between the clock position and the sampling function. If there is a
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detectable change in 02(6) as B is varied, one may characterize the filter
input as being clocked, since sampling true noise should not show any change
in 02(5) as B is varied. A useful way to exploit this is to take measure-
ments at two B's, and subtract them. If one chooses Bl and 52 properly for
the particular filter, a non-zero difference will exist for the clocked
case, whereas zero is expected for true noise. A practical implementation
of this idea would appear as in Fig. 4-1. The waveform el(t) is first sam-

pled, then squared, and an estimate of the sampled variance obtained by sum-

ming a large number of terms:

A n
F(B) = = T eP(xr+pr) for large n , (4-14)
n 2
k=1
where:
No )
o] (B) = estimate of the sampled variance.

If this process were done for two values of B, and the results subtracted,
the differences noted above will result.

Since two sampled experiments are to be conducted, and their re-
sults subtracted, one can view this as multiplying the square of el(t) by a
single sampling function whose samples are alternately positive and nega-

tive. This is depicted in Fig. 4-2.

t t t) 0*(B,)-0%(3,)
il h(t) il SQUARE e()m el L §e3(t) 7B Bzo

Ozo; kT-B,T) - 8(t-kT-B])
k:

Fig. L4-2. Implementation of measuring difference in sampled variance.
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As an example of this method we will calculate the 02(6) as a
function of B for a simple exponential filter. In general, when taking the
difference, 02(51) - 02(52), one desires this difference to be as large as

possible. Therefore, after calculating 02(6) we will investigate the dif-

Terence relation as a function of the clock frequency-to-filter frequency

ratio.
To begin, let:
h(t) = e cos (wot +6) . (4-15)
Then let:
T = 1/f,
h(nT + BT) = e 0BT -omT oo (wOnT + o BT + 9)
(4-16)
2h2(nT + BT) = ¢ 20BT -20mT «{1.+-cos[2wonT + 20 BT + 26 ] }
Using Eg. L4-13:
202(5) = ¢ 20RT { Y, e2oml cos(2wOBT +20) L e 20mT (oo 2o _nT
n=0 n=0
. (4-17)
-2anT
- sin(2moBT +20) L e sin EwOﬁT} .
n=0

Since each of the infinite summations in Egq. 4-17 forms a geometric series,
one can use the summation formula. Doing this, after sufficient algebra
the result is:

=207

cos(EmOBT + 20)-e cos(2wOT[l-B]— 26)

f@)=05§mﬂ = + i

(1-18)

1 - 28_2QT cos 20 T + e

Considering Eq. 4-18 as a function of B, it is seen that the term within

brackets contains a constant dc term and an ac sine wave term of freguency
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2wOT. Regarding, for a moment, the exponential term outside the bracket as
a constant, and noting that the dc term subtracts out in 02(61) - 02(62),
it is sensible to find the relation between o, (the filter frequency) and T
(reciprocal of clock frequency) for maximizing and minimizing the magnitude
of the ac term. For the exponential filter (and considering the e-2QﬁT
term as constant) this represents the best and worst conditions, since the
maximum of [02(51) - 02(62)] depends on the magnitude of the ac term.
Considering the e-zaBT term as constant is very reasonable for a

narrov-band filter. Thus if of < 0.05, e 2%PT

-208T

varies from 1.0 to 0.9 as B
goes from O to 1. Since the e term multiplies both the dc term and
the ac term within the bracket, regarding it as a constant means that the
variance is well approximated by a constant times the dc term plus the ac
one within the brackets of Eq. 4-18. We will now find the relation between
@, and T for the ac magnitude to be both a maximum and a minimum.

To find the magnitude of the ac term, first rewrite Eq. 4-18 in

general terms and let 6 = O; there is no loss in generality for 6 = O since

it serves merely to alter the phase of the ac term and doesn't affect the

magnitude.
2 -208T cos XB - a cos (xXB - X
() =0.5 eF® |k 4 B (132 ) (4-19)
1l -2a cos X + a
where:
1 1
K = =
1 - e-zaT 1l-a
6 = e—2aT
X = 20 T
o)

In finding the magnitude of the ac term, one need merely regard the two co-

sine terms as vectors and find their vector sum. The result is that the ac



term can be written:

cos xp - a cos (xp - x) _ (1 -2acos x + ag)é cos [xB + P(x)]

1l - 2a cos x + a2 1l - 2a cos x + a2

(4-20)
(L - 2a cos x + ae)-% cos [xg +®(x)],

]

where:

®D(x) = phase angle as function of x.

Hence the magnitude (M) of the ac term is:

]
[\

M = Magn. = (1 - 2a cos x + a2) . (k-21)

The maximum and minimum of this magnitude can be found by differentiating
with respect to x and setting the result equal to zero. There are two sets

of roots:

(1) x = 0 (mod 2x) = m2q, m = 0, 1, 2, 3, - - -
are maxima; (4-22)
(2)x = (em-1)x m = 0, 1, 2, 3, - - - are minima.

To establish that the set (1) are mexima and the set (2) minima, the second
derivative of the magnitude was taken, and the sign of this expression at

values of the critical points was noted. Remembering that x = EwOT and T =

25

(6V]
C

fc is noted, for maximum and minimum magnitude of the ac variance term:

» the following relation between filter frequency f and clock freguency
0

mf
Maximum when fo = —ES for m = 0, 1,2, 3, - - = ;
mf f ()-I-—EB)
.. 2m-1 c c
Minimum when fo = =~ f_, = S - form= 1,2, 3, - - -

These relations then give the maximum and minimum magnitude of the ac vari-

-208T

ance term (for e ® constant) which in turn give the maximum "difference
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in variance' achieved by sampling at two different B points for an exponen-
tial filter.
To illustrate the variation of 02(6) versus B for a maximum (ex-

ponential filter) condition, consider the following example:

fo = fc (clock frequency equals ringing freguency),
al = 0.05,
6 = 0, and

h(t) = e™ % cos w

Then, using Eq. 4-18 it is found that:
o (B) = e 1P { 5.26 + 5.26 cos hnﬁ}. . (h-25)

The variation with B is sketched in Fig. 4-3;

o¥(B)

Fig. 4-3. og(ﬁ) vs. B for filter frequency equal to clock frequency.

For this simple exponential case with 6 = O one notes that the maximum 02(6)
occurs at g = 0, and a minimum at B = %. If the sampling function were suc-
cessively adjusted to these two values, and the difference taken, the ex-

pected result would be:
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02(0) - 02(%) = 10.5%2 . (4-26)

Dividing this difference by the initial "mean" of 02(5) gives some measure
of the accuracy required of any experimental implementation in the absence
of added (non-clocked) noise; in this case the value is 2.

To illustrate the other extreme, a minimum situation for the ex-

ponential filter is given by the following example:

£ = % £ (m =3 in Eg. 4-23)

o = .05

0 = 0 ()"l'_27>
h(t) = e " cos o t.

Again using Eq. 4-18 it is found that:
02(5) - ol {5.26 + 0.2625 cos 518 } . (4-28)

This variation with B is sketched in Fig. L-L4.

B
T

Fig. L4-L4, 02(5) vs. B for filter frequency equal to 5/4 clock frequency.

For this case, dividing the maximum difference in variance by the initial

mean results in a value of 0.1 (as compared to 2.0 for the previous case).
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From Eq. 4-18 and from the above two examples one can conclude
some general comments regarding the behavior of 02(6) for an exponential
filter. If there is an integral relation between fo and fc/z then the max-
imum difference in 02(6) over the range of B is the maximum possible. For
all such cases 02(6) will have an integral number of cycles in the range
(0<B<1); if £ = me/Q then there are m complete cycles in the range.
Also, the 02(6) curve will always go to zero for these cases. Finally, the
effect of a non-zero 6 is to shift the curve horizontally.

I fo and fc/2 are not integrally related then the general effect
is that the maximum difference in 02(5) over the p range shrinks. Also the
02(6) will not have an integral number of cycles for (0 < g < 1) and will
never go to zero.

The maximum difference in 02(5) reaches a minimum when fo is an
odd multiple of one-quarter clock frequency. For all such cases the 02(8)
contains an odd number of half-cycles in the range (0 < g < 1). Since these
are the minimum cases, it is expected that they would be the most difficult
to deal with in terms of characterizing the filter input as being clocked
as opposed to Gaussian noise. It must be remembered that the above conclu-
sions assume that the ¢ 20BT factor of Egq. 4-18 is approximately a constant.

Thus in principle the 02(8) for an exponential filter will always
retain a maximum and a minimum value for a clocked waveform, so that it
should be possible always to distinguish it from true noise. In general
these comments will also be true for all narrow-band filters, as will be
discussed below (Section 4.4.1).

It is interesting to compare this "difference of variance' method
with the short-time symmetry method of the previous chapter. First of all,

to note symmetry effects, energy has to be available at certain positions in
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the frequency domain. Here there is no such requirement, but the clock fre-
guency must be known in order to sample properly. Thus this is a coherent
measurement; to make the two methods equivalent in this respect it would be
necessary to run coherent spectral measurements. Hence, whereas it is ex-
pected that noise will quickly wash out any spectral symmetry if there is
not sufficient signal energy in symmetrical positions, here, with a coherent
measurement, in principle it is possible to extract the presence of clocking

no matter now much noise is present.

L.L The Sum of Weighted Variances--A General Method

In the previous section it was seen that, in general, narrow-band
clocked waveforms will exhibit two different values of sampled variance,
for proper sampling positions B. For true noise, on the other hand, the
two values of variance should be the same.

These results lead one to question whether some continuous coher-
ent multiplying waveforms may be used which give results equal to or better
than the sampled variance case. In this section we will consider multiply-
ing by a coherent (possibly phase-bumped) sine wave instead of with a sam-
pling waveform. It will be shown that this procedure is optimum if the
sampled variance, as a function of B, is essentially sinusoidal (which it
is for sufficiently narrow-band filters). This result will be obtained by
considering the multiplication by a coherent wave as a "sum of weighted var-
iances."

L.4.1 Calculation. We now wish to consider what coherent, con-

tinuous waveform results in the best indication of the presence of clocking
when considering the variance of the waveform. Consider the block diagram

of Fig. L4-5. Whereas in the previous sampled case, depicted in Fig. 4-2,



68

the multiplying waveform was a sampling function consisting of the subtrac-
tion of two basic sampling functions, here the multiplying waveform is a
continuous function. We will analyze the effect of this waveform, and the
best K(t), by considering the result as a "sum of weighted variances."

Because of this technique the result as to what form of K(t) is
best will first appear in terms of B as K(B), and it will be necessary to
convert to K(t). This conversion is straightforward with the idea being
that one wishes to multiply by the proper K(B) in each clock interval. Thus
the K(t) waveform will be a waveform which repeats, in each clock interval,
the desired XK(B).

In order to find the proper K(B), the first step is to write the

K(B) as a sum of impulses; that is, as a sum of rectangular elements taken

T': n/fc

T (1 ( Nfef(t) e s
X
o i 22 souare —2(X) 0 —o

T L7

K(1)
Fig. 4-5. Procedure for measuring the sum of weighted variances.

to the limit. ILet K(B) be given by:

1/A8
K(B) = L ALBu (B - kAB) , (4-29)
k=0
where : A, = magnitude of K(B) in interval kAB,
u, = rectangular area taken to the limit to form impulse, and
AB = elementary length of B.

It is seen that the rectangular impulses have an area which is proportional
to the magnitude of K(B).
Using this form of K(B) [or K(t)] we now seek to write the out-

A
put of Fig. 4-5 [e3(T')] in terms of 02(6)~--the sampled variance. This
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can be done by considering e.(T') as the sum of a parallel bank of units

3

of the type shown in Fig. L-1. For each such unit one set of rectangular
impulses of Eq. 4-29, spaced l/fc apart, is used to multiply elg(t). To
do this first write e3(T') as the limit of a summation:

T M=Nf T'
by L 2 _lim Ll c 2 .
e5(T') = 7 Of K(t)e,"(t)at = 7 & i§1 K(t;)e,"(t;) - ot (L-30)

where : N

il

number of elements in a clock interval, l/fC

M

NTCT' = total number of elements in time T'.
Now divide this total summation into a set of n, where n = T‘fc,
and where the contributions from each one of the set are spaced T = l/fc

apart. Also, note that At = l/fCN, with N defined above; then:

lim 1 3 % 2 1
e (1) = T L Kb) L e "(rT +8,T) - 57 (4-31)
3 Now T k=] tk rel 1 k ch
where: Bk = kAP = phasing of the sampling with respect to the clock
tk = rT + BkT.

Since K(t) is a repetitive waveform with period T, we can use

Eq. 4-29 to substitute A, for K(tk):
N n
lim 1 2 1
e (T') = 2 A - = Y e “(xT +p.T) » =
3 Now =k £TI0 771 k N
N n
lim 1 2
= L ANB = Z e, (rT + g, T)
k=1 r=1
where: AR = l/N .

But, using Eq. L4-14, it is noted that the second summation equals
Ge(ﬁk). The resulting limiting value as N, the number of elements in a

clock interval, approaches « can thus be returned to integral form:

A N=1/AB 1
ey(11) = fﬁimkzl a0 Be) = [ Fe) x(elas.  (4-32)
= 0O
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The important result here is that the output, when multiplying by
a coherent, continuous waveform K(B) consists of the area under the product
curve of 02(6) and K(B). This method of viewing the analyzing process in
terms of the sampled variance has been chosen because the behavior of the
varlance and its difference for clocked waveforms and true noise is known.
Also this treatment will allow one to decide upon the best form of K(t).

One can now find what form of K(B) is required to exhibit the
greatest difference between the case of clocked waveforms (el) and true
noise.

To do this, it is necessary to consider for a moment the influence
of the dc part of K(B) versus the ac part in comparing the clocked waveform
to true noise with this method. When comparing the waveforms, using Eq.

4-32 one is interested in the quantity:

1 2 L 2
[ o (B)K(B)aB - [ oy (B)K(B)AB , (4-33)
o o
where : ccg(a) = variance of clocked waveform, and
ON?(B) = variance of noise waveform.

If the waveform el(t) is true noise then the expected value of 0N2(6) is a
constant or dc value and equals the average power. Since, when comparing
the two situations, the power should be equal, the dc value of 062(6) (aver-
age power) should be equal to ONE.
tion of 052(5) will be equal to the second integral of Eq. 4-33 and sub-

Thus the integral of the dc contribu-

tract to zero. The term remaining will be the ac portion of 002(5), as

expressed by:

Lo oo 2t
[ oo (Bklag + [ o “(B)k(B)ap - o [ K(p)ip =
(k-3k)
1 2
[ oo, (B)K(plap ,

o
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where:
o 2(6) = dc component of o 2(5)
dc e )
e 2
O e (B) = ac component of o, (B), and
2 2

It is clear that, in seeking the best K(B) for distinguishing, one wishes
to find the largest value of:

1

[ o

ac
0

2(B)K(p)ap - (4-35)

Using Schwarz's inequality, which states that:

[ x(t)y(t)at

- <1 (4-36)
T
/ IR at [ 1 ¥ (t)at

2(B)K(B)ap

[ o,

(0] ¢ <
T T -
[17s teas 1 E(slas

it will be seen that the largest value occurs when K(B) is made equal to

Thus it has been shown that the best coherent, continuous wave-
form K(t) to use as the multiplier in Fig. 4-5 consists of a wave which, in
each clock interval, has the form:

[e2]

2 2 2
K@) = o, (B) = Z b7(al +p8T) - o, “(B) (4-38)
n=0
where:
K(B) = multiplying waveform to characterize clocked input, and
n(t) = dimpulse response of transmitting filter.
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The conversion of XK(B) to K(t) can be formalized as follows:
let
t t
B =gF-[gl, (4-39)

where:

[ % ] = largest integer less than % .

Then B will always be in the range (0 < p < 1) as used before. Consequently

one can let t = BT and:

K(t) = X(pT) . (4-10)

i

Clearly K(t) is a periodic time function with period T = and is of the

same form as 0502(5) in each clock interval. For example,cif 0502(6) is
sinusoidal and has an integral number of cycles for O < B <1, then K(t) will
be sinusoidal. If cécz(ﬁ) is sinusoidal but not integral cycle, then the
K(t) would be a Phase-bumped sine wave; i.e., it would begin repeating the
pattern of oéc2(5) each clock interval.

Consider the proper K(t) for given filters. If h(t) is an expo-
nential filter and is clocked at some multiple of half-clock, then the
0502(5) 1s a slightly damped exponential and has an integral number of cy-
cles, as found in Eq. 4-25. The ideal K(t) then would be a sine wave that
decays exponentially between clock pulses. For many narrow-band filters a
pure undamped sine wave will be quite adequate. If this same filter is
clocked other than at some multiple of half-clock, the 0502(6) will be a
damped sine wave, but not having an integral number of cycles. For this

case a phase-bumped, damped sine wave would be the ideal K(t). Again, for

many purposes a phase-bumped sine wave without damping will be adequate.

For filters other than exponential, the oaCE(B) will be approxi-

mately of the sinusoidal form for narrow-band filters. This can be verified
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by considering a general impulse response:

r —qmt
n(t) = méi e cos (wht + em) . (4-41)

For a narrow-band filter the assorted wm's will be close to each other; the
result is that the OéCE(B) is made up of a sum of damped sine waves, each
of which differs in frequency by only a small amount.

Some comments regarding the relative position of fo(the filter
center frequency) and the clock frequency are justified. As in the straight
sampled variance case, the best situation occurs when the filter is located
at some multiple of half-clock frequency. For then the Oécg(ﬁ) is the
largest possible. For other frequency positions the 0502(3) will shrink
and K(t) will decrease correspondingly. However, as before, the distinction
between Oécg(s) for true noise and clocked waveforms will always remain (no
matter what the position of energy) so that, in principle one can always
use this method; however, this test, as will all others, becomes more and
more difficult as fc increases indefinitely relative to fo' If the filter
is exponential, and if f, < 2f  so that at least one full cycle of 02(6)
occurs in the B range, then the minimum situation occurs when fo is an odd
multiple of fc/h, as proved in the previous section.

L.4.2 Comparison of Sampled and Continuous Cases. It is of in-

terest to compare the "difference of sampled variance" method of Section
4.3 with the continuous multiplication method of this section. In compar-
ing a clocked waveform with true noise in the sampled variance case one

notes that the quantity:

2 2
{0y ®) - o, “(®)}, (k)
where :
dmax2 = maximum of 02(5) for (0 <B<1), and
Qming = minimum of 02(5) for (0 <p < 1),

1s zero for true noise, but is different from zero for clocked waveforms.
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In comparing the two waveforms for the continuous multiplication
case, it was seen in Eq. 4-35 that the comparison results in:
-
[ o, (BB , (4-43)

o)

where:

K(g) = Oécg(ﬁ) for the best condition.

Hence in comparing the two distinguishing methods, we will evaluate the re-
sults of Eq. L4-42 versus those of Eg. 4-43 for the exponential filter.
The 02(5) for the exponential filter is shown in Egs. 4-18 and

4-19. For the comparison we are concerned with only the ac portion of the

2 -208T | .
o (B). As before, the term e is approximately constant over the range
(0 <p< 1) for narrow-band filters. Consequently the second term in the
2

(

brackets of Egs. 4-18 and 4-19 will be the 9. B). Using this approxima-

tion then, oécz(ﬁ) for the exponential filter can be written:

2
0. (B) = Mcos [xp +P(x)], (L-lels)
where:
M = the magnitude of the cosine term (Eq. 4-21), and

Xx = 2w T.
o}

Assume for a moment that at least one full cycle of oaCE(B) occurs in the
range (O <p< 1). If this is true, Eq. h-42, for the sampled variance case,
results in "2M" for the clocked waveform and zero for the noise case. Thus

the difference is 2M. The condition that at least one full cycle of 02(6)

f
c

occurs corresponds to fo > 5 - If this is not true, the value may be less

than 2M, depending on the portion of a cycle that appears and on P(x).

Evaluating the continuous case, Eq. L4-4k is substituted into Eq.

f
c
4-43. For general results one must again use the restriction f 2> =
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otherwise the value of Eq. L4-43 will depend on the portion of a cycle in

(0<B<1) and on®(x).. With this restriction the result is:

1 . £, 8nfo
Of M cos [x8 +P(x)] cos [xp +P(x)lag = M |% + l6ijO sin T ,
where: (k-45)
byt
X = o,
T
c

Since it was assumed that at least one full cycle of 0502(6) appears, the
result is independent of @(x) and thus ®(x) plays no part in the above inte-
gral. For moderate values of fc/fo, it is seen that the value is M/2.

Thus, for the sampled variance case the comparison results in a
value 2M, and for the continuous multiplication case a value M/2. This is
to be expected since in the sampled case one is taking the difference of
two extreme values, whereas in the continuous case one obtains an "average'
of all values over the f range. However, this comparison has meaning for

2(p) 1is

only an ideal "noiseless" case; that is, a clean variance signal O
available. In any realistic situation one should take account of added

noise in the clocked case. 1In this situation it is a fundamental theorem
of Signal Detectability that the continuous multiplication case is the op-

timum test.

4.4.3 Experimental Results. In order to exhibit experimental

evidence of the method of using a coherent, continuous multiplying waveform
a series of experiments were run. For the first set of experiments an ex-
ponential filter was used with clock freguencies that provided maximum, in-
termediate, and minimum variance situations. A similar set of three experi-
ments was run using a non-exponential filter.

The general idea of all the experiments is depicted in Fig. L4-5.

The K(t) in each case was chosen to approxate the 0502(3), as specified by
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Eq. 4-37 and run in synchronism with the clock. Since the integrator out-
put [eg(t) of Fig. 4-5] is itself a random process, for a finite integrat-
ing time, this output was analyzed by measuring the cumulative distribution
curve. In some cases the difference in mean between the "noise" and the
"eclocked waveform" situations was so great that the particular analyzing
equipment could not be used. For these cases, photographs of the integrator
output were taken, and prove conclusive.

The analyzing equipment used to obtain the cumulative distribu-
tions consisted of a special purpose simulator called "SIMulated Receiver
And Recorder" (SIMRAR). This equipment essentially assigns the integrator
output, with a gated-and-dump operation, to one of ten slot intervals. The
cumulative data consisting of the number of times the output rises above a
given level are totalized on relay counters. At the end of a "run" the
counters provide the data for drawing the histograms to approximate the
cumulative distribution (see Section 6.4 for experimental description).

Two sets of counters and the switching arrangements are available
for alternately measuring one waveform, then the other. With this operation
the relative counter totals are independent of drifts which may occur in
the discriminators and operational amplifiers. This feature was used 1in
our experiments with true noise as one input and a clocked waveform as the
other.

The experimental results using the exponential filterl are shown -
in Fig. 4-6. Three different clock frequencies were used, and the analyz-
ing results for the three cases are shown in the left-hand column. Pictures

of the time waveform for each of the three cases appear to the right of the

1 The impulse response and bandpass of the exponential filter are shown in
Chapter 6, Fig. 6-7, p. 109.
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corresponding results. The picture at right-center shows the time waveform
when noise was passed through the filter. This picture is to be compared
with each of the three clocked time waveforms.

In the first case, Fig. 4-6(a), the f,=1f_. From Section h.3 it
i1s remembered that this is a case in which the magnitude of 0502(6) is a
maximum. Thus the variance ccg(ﬁ) for this case is of the form shown in
Fig. 4-3. Although the ideal 002(5) is slightly damped (Eq. 4-19), the K(t)
waveform used was an undamped sine wave (no phase-bumping was required since
OE(B) has an integral number of cycles). For this particular filter the ap-
proximation is very good.

Since this is a maximum case the difference in the mean of the in-
tegrator output, for the noise case versus the clocked case, was too great
to use SIMRAR. For this reason a picture of the output is shown in part (a).
The three ramps shown correspond to the integrator output when the input is
clocked; the two intervening waveforms show the output when noise is the
input. The integrator is gated and dumped at the end of each interval.
Considering the end of each integrating period, the difference between the
clocked and noise situations is quite obvious. Comparing the time waveform
of part (a) to that of noise (d) it is seen that they are recognizably dif-
ferent; exponential envelope segments appear frequently in the clocked case.
This will be true for all cases of fo = mfc/2 for an exponential filter;
these situations can be considered as singular cases in which the time wave-
form itself is not very noiselike.

Part (b) is an intermediate case (between maximum and minimum) in
which the fc was chosen to achieve as noiselike a time waveform as possible.
Comparing the time waveform of (b) to (d) shows that they are quite similar.

The analyzing results for part (b) show the cumulative distribution for
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Analysis results Clocked time waveforms True noise waveform

[NOISE |cLock|

8

% OF TOTAL COUNT
8

THRESHOLD SETTING (.075 VOLT INTERVALS)

(b) £ <f; £, = 3525, £ = 3908 (4) Noise

% OF TOTAL COUNT

THRESHOLD SETTING (.075 VOLT INTERVALS)

Fig. 4-6. Analysis results for exponential filter.
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both noise and clocked cases of the integrator output. For convenience, the
actual curves plotted are "1 - cumulative distribution." This allowed plot-
ting the data directly in terms of gate setting and counts. Thus these are
the cumulative data of the integrator values at the end of the integrating
time. Since OéCE(B) has a non-integral number of cycles for this case a
phase-bumped sine wave was used. A "photoformer'" arrangement (see Section
6.4) was used to obtain this phase-bumped curve. Comparing the results

to part (a), it is remembered that there the noise and clocked curves were
separated too far to permit using the analyzing equipment. Hence, for part
(a) the curves would be similar but separated much farther. It should be
noted that the horizontal scale on all the distribution curves is not abso-
lute; that is, each palr of curves may be moved to the right or left. This
position is actually determined by the bias used in the experiment: the
equipment can analyze only positive voltages. Since, for the noise case,
negative values are equally probable as positive ones, a common bias must

be used for both noise and clocked cases. For all the curves, the same bias
was used.

For part (c) the f_ was chosen to implement a case where the mag-
nitude of 0562(5) is a minimum. Thus, f_ was made an odd multiple of fc/h;
in this case fo = % fc The variance curve for this case is of the form
shown in Fig. L4-4. As in the previous case, the oace(s) has a non-integral
nunber of cycles in the range (O <B< lL hence a sine wave whose phase is
bumped at every clock interval was used; in this case the phase-bump was
180°. It is seen that the noise and clocked distributions are closer than
for part (b), but still clearly discernible. Comparing the time waveform

to the noise one, it is seen that the waveform is again very noiselike.

In conclusion, Fig. 4-6 shows the action that occurs when the
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best, intermediate, and worst clocking conditions are used. This depicts
the results, then, for the exponential filter, with the method of multiply-
ing by a coherent continuous wave which is a good approximation to the
“(e).

ac

The equivalent set of results for a non-exponential filter (whose
impulse response and bandpass is given in Chapter 6, Figs. 6-9 and 6-10) are
shown in Fig. 4-7. For these experiments a sine wave or a phase-bumped sine
wave was used as the multiplying waveform K(t). Thus the K(B) in this case
is a poorer approximation to the actual Oécz(ﬁ) than was true for the expo-
nential filter. Although this filter is not strictly narrow-band (Q ® 3),
this does not affect greatly the quantities of interest here.

For the first case, Fig. 4-7(a), the £, = fo. Here again the re-
sultant difference in the mean of es(t) was too great to use the analyzing
equipment. As before every other interval in (a) is a clocked portion, and
the intervening ones are noise. In comparing the time waveform of (a) to
the noise waveform of (d) it appears that the clocked waveform has a more liny
construction. One would expect some singular action in the time waveform
for the singular cases of fo = mfc/2, but the non-regular impulse response
tends to destroy this.

In the second case, Fig. 4-7(b), an intermediate f was chosen
(fc = 3866, f= 4p65). This case was chosen to coincide with a case in
the next chapter, where zero-crossing interval distributions were measured.
Whereas, as shall be seen later, there is little difference in the zero-
crossing interval distribution, here the difference between the clocked and
the noise cases is clearly discernible. The height of the ramp in this case
is about one-half that of the previous case. By comparing the time waveform

with that of noise (d), it is seen that the waveform is very noiselike.
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Analysis results Clocked time waveforms True noise waveform

|NOISEcLOCK]

(a) £ = f_ = L265 cps

INOISEIcLOCK]

(b) r,o<f; f, = 3866, £, = L265 (d) Noise

<3
<3

% OF TOTAL COUNT

THRESHOLD SETTING (075 VOLT INTERVALS)

Fig. L-7. Analysis results for nonexponential filter.
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For the third case, part (c), the £y = 5/4 fo. This represents
an approximately minimum situation since this ratio would be minimum for
an exponential filter. From the cumulative distribution of part (c) it is
seen that this situation is the least detectable of the cases treated.

The time waveform of part (c) indicates a lower peak-to-rms ratio than
appears for true noise (d). Thus the time waveform shows the evidence of
a singular relation between the clock and filter frequency.

As is always the case with statistical measurements, the accu-
racy depends upon the number of trials. For the data given here there are
two questions to ask: (1) how significant are the true e3(T') data; and
(2) how significant is the measurement or estimation of these true data?

The true e3(T') data depend upon the length of integration time
T'. If T' is 1ncreased the mean-to-standard deviation of e3(T ), for dif-
ferent samples, will improve for both clocked and noise situations. In
the graphs of Figs. 4-6 and 4-7 an increasing T' would cause the cumula-
tive distribution curves to become more vertical; if T' — « the clocked
and noise curves would be two vertical lines. A T' of 1 second was used
in our experiments. Using the respective filter bandwidths, this corres-
ponds to about 200 independent waveform samples (2WT') for the exponential
filter and 1300 samples for the non-exponential case. In terms of "sig-
nal-detectability,” the curves of Fig. 4-6(c) (the worst exponential case)
exhibit a 4' of 1.3; this corresponds roughly to a signal-to-noise ratio
of 2.3 db. Since, for independent values, this can be expected to im-
prove in proportion to increased T', a T' of 10 sec. would have yielded
an equivalent output signal-to-noise ratio of 12.3 db.

The measurement of the true e3(T') data is dependent upon the
number of thresholds used and the number of trials. For our measured
data 10 thresholds and 500 runs were used. The number of runs necessary
to provide a given "estimation" accuracy can be approximated by consid-
ering the data for each threshold as a series of n Bernoulli trials. For
n sufficiently large the data probability "estimate" will coincide with
the true probability of the data; for n much smaller the data estimates
will vary about the true mean, for different runs, and thus their proba-
bility estimates will exhibit a distribution.

To illustrate the effect of n, let us specify that the clocked
and noise distributions of the probability estimates intersect at their
respective 3¢ points. Then:

p, (1-p,) p,(1-p,)
Py =P, = 30, +30, = 3 —ln—-l—+3 —?-5-2—, (k-46)
where: p, = true probability of clocked case exceeding a given
threshold,
p, = true probability of noise case exceeding the same
threshold, and
n = number of runs or trials.

Suppose the true probabilities were .50 and .32, respectively;
then 129 trials are required to meet the specified criterion. If the
smooth curves which approximate the histograms on Fig. 4-7(c) are used
for the probability estimate, the values of .50 and .32 occur for a
threshold position. From the above this means that our n of 500 is suf-
ficient to provide a good estimate of the true data. By such methods the
statistical significance of the data can be evaluated.



CHAPTER V

ZERO-CROSSING CONSIDERATIONS

In the previous section the analysis of clocked waveforms and
the method for characterizing such waveforms utilized the amplitude statis-
tics of the waveform. In this section we will ignore all amplitude infor-
mation and study the characteristics of the zero-crossings of clocked wave-
forms. In general we will be interested in looking upon any properties of
the zero-crossings which may be gleaned from the fact that the waveform is
a clocked process. Toward this end it is profitable first to review the
classical literature concerning zero-crossing information for true Gauss-
ian noise. We will then portray special properties of the zero-crossings
for the exponential filter. Both calculations and experimental results
will be shown. The last section will discuss general narrow-band filters

and show experimental results.

5.1 Review of Classical Knowledge

It is well known that if a true Gaussian waveform is passed

through a narrow-band filter, the output can be expressed as:

e(t) = V(t) cos [wot +oo(t)] , (5-1)
where:
V(t) = slowly varying envelope, and
o(t) = slowly varying phase.

This representation can be applied even when the waveform is not limited to
a narrow-band, but then the envelope and phase functions do not have a use-
ful physical significance. With this representation, the zero-crossings

are determined by the combination of w_t and p(t).
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A statistical description of the zero-crossings of a random proc-
ess, in general, is given by the probability distribution of the distance
between successive zero-crossings. Rice (Ref. 19) was the first to attempt
to find analytically this probability distribution for the distance between
successive zero crossings for Gaussian noise. He succeeded in finding the
probability that the random noise record will pass through zero in the in-
terval (t, T + dt) with a negative slope when it is known that it passes
through zero at v = O with a positive slope. The resulting distribution is
very close to the desired interval distribution for short intervals. Rice's
distribution departs from the actual desired distribution in that this func-
tion will include even numbers of intermediate crossings between the de-
sired crossings which do not properly belong there. However, it has been
experimentally shown that his results very closely approximate the actual
measurements made on Gaussian noise, except for the longer intervals. In
fact the actual process of determining a complete distribution function for
the distance between successive zeros is still an outstanding problem in
random noise theory. McFadden (Ref. 20) has achieved some success in this
direction by determining the relation between the zero-crossing interval
probability density and the autocorrelation function of the infinitely-
clipped waveform which leaves invariant the zero crossings. It is shown
that this probability density function is closely related to the autocorre-
lation function of the clipped noise signal.

A number of experimental investigations have been devoted to
measuring the probability distributions for the zero-crossings of Gaussian
noise. Kohlenberg (Ref. 21), White (Ref. 22), and Bl8tekjaer (Ref. 23) are

some of the investigators in this area.
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5.2 Exponential Filter

It will be the general purpose in these calculations and experi -
ments to find whatever information is possible about the zero crossings of
the clocked narrow-band waveforms. The technique will be to glean any pos-
sible information from the fact that the clocked narrow-band waveforms are
made up of regularly-spaced sums of the impulse response of the filter being
used. Information will be obtained about the distribution of the intervals
between zero-crossings and also about the time behavior of certain inter-
vals. The object in this latter case is to take advantage of the fact
that the impulse responses which are being summed are in a definite time
relationship with each other. Therefore, making use of time properties of
the axis-crossing intervals involves more information than the distribution
function alone contains since it lumps all intervals of a given length to-
gether.

5.2.1 Concerning Distribution of Zero-Crossing Intervals. First

we will consider the probability distribution of the intervals between suc-
cessive zero-crossings for the simple exponential filter. The impulse re-
sponse is:

h(t) = e cos (wot +0), (5-2)
where:

h(t) = impulse response of the transmitting filter.

As before write the output waveform e(t) as the summation of impulse re-

sponses:
() ]
e(t) = 2L a h(t—r) for t3 N<t< DN+ 1, (5-3)
n= . c
where:
a_ = +l, -1, depending upon binary seguence x(t).

n
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Substituting the particular impulse response of Ea. 5-2 one finds:

n
e(t) = nzb a_ e ¢ cos [wo(t - fz) +0] . (5-4)

From Eq. 5-4 one can note the zero-crossing action when the fil-
ter frequency (fo) is any multiple of half-clock frequency. For this case
the cosine term can be brought cutside the summation and e(t) can be writ-

ten, depending upon whether fo is an even or an odd multiple of fc, as:

n n
N(t) —a(t - %Z) N(t) -a(t - i)
e(t) = 2 ace cos(w t +6 - n2x) = cos(w.t +6) L ae
neo B o o ho B
(5-5)
for even multiple, and
n n
N(t) -O[('t - fC) N(t) 0 'a(t'f;)
e(t) = L ace cos(w t +6 - nx) =cos(wt +6) 2 a (-1)e
n o o n
n=0 n=0

for odd multiple.

In Eq. 5-5, zero-crossings will be contributed both by the cosine (carrier)
term and the summation (envelope) term. The first conclusion is that, for
such synchronism between fo and a multiple of fC/E, zero-crossings will
occur at spacings of l/zfo for all time. This occurrence of zero-cross-
ings at regular intervals is depicted in Fig. 5-1 below. For this picture
an exponential filter centered at 3908 cps was used with an input seguence
at fc = 1117 (3908/1117 = 3.5). The scope trace was triggered in synchro-
nism with the clock. The fact that all the corresponding zero-crossings
coincide exhibits the regularity, through-out-time, of these crossings when
the filter is at a multiple of half-clock freguency.

Zero-crossings of the envelope may occur between the "carrier"
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crossings, and thus the intervals be-
tween successive zero-crossings will
be affected by these crossings also.

In general, the zeros of the summa-

tion term will be of a much smaller

number than those of the cosine term
Fig. 5-1. Demonstratioh of regular

in Egq. 5-5 if fo is greater than fc' zero-crossings when fy is a multiple
of fC/E for an exponential filter.

Thus one would expect practically all

of the zero-crossing intervals to be

of length l/2fo, in the zero-crossing interval distribution, for such syn-

chronous, exponential filter cases.

An experimental test was run to measure the zero-crossing inter-
val probability density curve for the synchronous case,fO equal to fC, and
the results are shown in Fig. 5-2. The experimental apparatus consisted
essentially of clipping the waveform, forming a monotonically increasing
voltage whose height is proportional to the zero-crossing interval, and
then counting the total number of intervals that exceed a given length.
From these cumulative data, adjacent values were subtracted and divided by
the abscissa interval to form the density curve of Fig. 5-2. Also shown,

for comparison, is the measured density curve for Gaussian noise with the

same filter. The abscissa is normalized and is plotted as:

o = EﬂfOT 3 (5-6)
where:

T = zero-crossing interval.

The advantage of this is that the plot is normalized with respect to fre-

quency so that the results are valid for a filter with the same characteristics
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Fig. 5-2. Probability distribution of the intervals between successive
zero-crossings for the synchronous, exponential filter.
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at any center frequency. The ordinate values have been divided by the
total count, so that they read the probability density---the total area
under each curve is 1.0. To summarize the above, the treatment of the data
can be itemized as follows: (1) the T being measured by a given setting
was determined by a calibration procedure (described in Section 6.5); (2)

© = 2xf T was calculated for each setting; (3) Ap, the difference in two
adjacent settings, was then calculated; (4) the difference in "counts" for
the two adjacent settings was determined; (5) this difference in "counts”
was divided by Ag; (6) this value, divided by the number of counts for the
lowest setting (highest count), was plotted as p(op).

The first thing to note in Fig. 5-2 is the high "spike valu€' cen-
tered at n. Although ideally this should be a spike with no skirts, the
inevitable error in zero-crossing measurement and slight drifts in frequen-
cy are responsible for the finite skirts. Also, the filter impulsé re-
sponse, for large t, departs somewhat from the ideal response of Eq. 5-2,
and the result of this is to put slight perturbations on the zero-crossing
intervals.

Another important action in Fig. 5-2 is the zero-crossings at
ﬁ/2—-—shown in an expanded scale on the figure. The intervals here result
from the envelope crossings of Eq. 5-5, in conJjunction with the wot crossings.
These intervals result from successive crossings l/MfO apart, and Fig. 5-3
shows a typical interaction between envelope and carrier crossing. This
action at l/MfO is peculiar to the clocked situation and, in conjunction
with the high peak at l/2fo(2nfor = 7), can be considered as characteriz-
ing a clocked waveform in which there is an integral relation between the
filter frequency'wo and a multiple of half-clock frequency.

Another phenomenon of Fig. 5-2 is the readings which appear above
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Fig. 5-3. Interaction between envelope and carrier crossing
for clock frequency egual to filter frequency.

the spike at x (also shown on an expanded scale). As can be seen from Eq.
5-5, theoretically there are no intervals greater than l/2fo since a zero
always occurs for wot +6 = (2k + 1) % . In the experiment, however,
readings for intervals longer than this were obtained, shown by dashed
lines in Fig. 5-2. The reason for these erroneous readings are that, when
clocked at filter frequency, at some places the waveform hovers extremely
close to zero and fails to operate the zero-crossing circuit. Hence, 1n
actuality these values should be added to the values at x and /2. They
are only of the order of five per cent, however, so the data are plotted
as they were recorded. This problem is prevalent only for the case where
mfC = fO; the reason for conducting this experiment was to note the spike
at 7 and the unique subsidiary one at x/2.

The same distribution measurements were made for true noise, using
a General Radio random-noise generator. The results shown in Fig. >-2 were

compared with experimental results by BlBtekjaer (Ref. 23%). Although his

results covered Q's only up to 3, and the Q here was L3 his results, when
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extrapolated, agreed closely. In Section 5.3 measurements were taken for
a filter having a Q of about 3; although the skirts are not as sharp as
those in Ref. (23), the results are comparable and show good agreement.

The next experiment was run for the case in which fc is appreci-
ably less than fo. Figure 5-4 shows these results where fo = 460 cps and
fo = 3008 cps. Because of this frequency ratio there are approximately
nine crossing intervals of wot between each possible envelope zero. The
result is a nearly ideal spike at 5, as shown in Fig. 5-4. Due to the in-
comnensurability of o, and W, there is not the problem of erronecusly
reading long intervals as was the case in Fig. 5-2. Also, there is no es-
peclal action at,n/2 as.previously. This is because the envelope crossings
are so infrequent relative to the carrier crossings.

A final experiment with the exponential filter was run with ® =
w5 but not equal. Figure 5-5 shows the results for fc = 23668 cps with £
= 3908 cps. For this case it is seen that the probability density curve
begins to approach the curve for Gaussian noise. The skirts are wider than
before, and the spike at n is reduced. Again no significant error at large
intervals is encountered.

The above three experiments and basic theory exhibit the proper-
ties of zero-crossing intervals when a sequence of clocked pulses is passed
through an exponential filter. If the filter frequency fo is a multiple
of half-clock, zero-crossings will appear regularly at intervals of l/2fo,
with envelope zeros befween. Considering the distribution, a spike appears
at 5 and a subsidiary spike at n/2. It fc << fo, the spike at n increases
and no action at ﬂ/2 is noted. As fc approaches and exceeds (but is not
equal to) fo the distribution becomes more and more like that of Gaussian

noise.
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zero-crossings for the exponential filter with fc < fo.
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Fig. 5-5. Probability distribution of the intervals between successive
zero-crossings for the exponential filter with fc = fo.
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5.2.2 Regularity Between Pulses. From Egy. 5-5 above it was not-

ed that, 1f an exponential filter has a ringing freguency at a multiple of
half-clock, there will be regularly-spaced zero-crossings at intervals of
l/2fo. For other freguency positions this does not occur. However, a reg-
ularity of zero-crossings does occur between pulses (if @, >‘wc) for all
filter positions. This can be seen as follows.

In general the N(t) in Egs. 5-2, 5-%, and 5-4 increases with t.
Iet us consider N(t) as being fixed and thus note the action only within a
given interval between pulses. Using Eq. 5-4 and denoting N' as a particu-

lar value of N(t), one writes:

. NI
_ ot = e
e(t) = e nz‘o K, cos (wot +0 - cpn) =e Ay, cos (wot +(I)N,)
(5-7)
for t3 N' <t <N' + 1,
where: n_
K = a_ €
n n !
N' = particular value of N(t),
e
0 = —— , and
n fC
¢HW = phase angle of a particular sum of sine terms.

Similarly, one can write the e(t) for the next pulse interval:

N'+1
e(t) = ey K, cos (wot +0 - @n) =e Ayi,q €08 (wot +&bN,+l)
B (5-8)
for €3 N'+L <t <N' +2

at

One can write the output of Eg. 5-8 as the sum of the previous output and

the new contribution:
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(N +1)wo

_ -t
e(t) = e Ay cos (wot +¢DN,) + Ky ,q COS (wot +6 - o

)

5-9)
for ta N'+41L < t < N'42

From Egs. 5-7, 5-8, and 5-9 it is seen that regular crossings

"phase bumps' may occur only in

occur between pulses (if wo >(DC> and that
conjunction with clock pulses. A neat way to demonstrate this phenocmenon
consists of triggering a scope trace at the zero-crossing immediately fol-
lowing a clock pulse. An experiment was set up to depict this property
and the results are shown in the following figures.

Figures 5-6(a) and 5-6(b) are oscilloscope pictures taken when &
sequence of pulses was driving an exponential filter at 1200 cps (a) and
1807 cps (b). The filter frequency was 3908. The trigger was arranged so
that the trace began at the first negative-going zero-crossing after a
clock pulse. As seen in part (a), all the zero-crossings "line-up" for two
complete cycles. Then the extraneous crossings appear and, for the rest
of the picture, are spread out. Considering the frequency ratio of fo
(3908) to fc (1200) one would expect three complete cycles of superimposed
crossings. The reason there are only two such cycles is because the trig-
ger circuit is capable of triggering on only one slope; hence being lim-
ited to "negative-going zero-crossings after a clock pulse" means that in
many cases the trace begins at the second zero-crossing after a clock
pulse. For this reason, then, some extraneous crossings appear one cycle
earlier.

The same conditions apply to part (b), where the clock freguency
is 1807 cps. For comparison, Gaussian noise was passed through the same

exponential filter and the triggering was established as above for 1200

cps. The result is shown in part (c). As expected, the zero-crossings are
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(&) Clocked;
fc = 1200 cycles.

(b) Clocked;
f, = 1807 cycles.

(c) Noise (scope
triggered at 1200 cycles).

Fig. 5-6. Depiction of regularity of
zero-crossings between clock pulseu
for exponential filters.

now dispersed.

It is interesting to note
the behavior of the zero-crossings if
the trace 1s always started with a
clock pulse. One now expects a pure-
ly random zero-crossing situation,
for the clocked case, and this is
shown in Fig. 5-7(a) where the clock
was 1200 cps (fo = 3908). This shows
that, although there are regular spac-
ings between clock pulses, these
blocks of spacing occur randomly on
the time scale. It was seen before
that when fo is a multiple of half-
clock these blocks of regular spacings
themselves appear regularly sco that
there are coherent zero-crossings at
intervals of l/2fo throughout time.

In Fig. 5-7(a) note that the second
clock pulse is faintly discernible at
the right. For comparison, the result
when Gaussian noise was inserted, and
the trace still triggered with the
1200 cycle clock, is shown in 5-7(b).
It is seen that the two pictures are

much the same.
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(a) Clocked waveform. (b) Gaussian noise.

Fig. 5~7. Depiction of the irregularity of zero-crossings
when taken over many clock intervals.

5.3 General Filter

For the exponential filter above it was fouﬁd that the zero-cross-
ing interval distribution tends to have a spike at the interval l/2fo, de-
pending upon the fo/fC ratio. IT fo is any multiple of half-clock a defi-
nite spike appears; for other fo's this effect is diminished. Further,
for this exponential filter, there are regularly-spaced zero-crossings be-
tween clock pulses if fo > fc; if fo is a multiple of half-clock, these
spacings are coherent throughout time.

In general one can say that any narrow-band filter will tend to
exhibit the behavior reviewed above for the exponential filter. In this
section we will write the equations for the general filter and see how the
various results depart from those of the exponential filter. Experimental
results will also be given.

One begins by again writing the output as a sum of impulse re-
sponses:

N
e(t) = X anh(t—%—) for t3N<t <N+ 1. (5-10)
n=0 c

Any general h(t) can be written in either of two forms:
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r -ogmt
h(t) = 2 e cos (wt +6) (5-11)
m m’
m=1
where:
r = number of poles in upper, left-half plane,
or:
h(t) = F(t) cos [wot +0(t)] . (5-12)

Equation 5-11 expresses the impulse responses in terms of the
contribution from each pole-pair. Since, for any realizable filter, the
poles will occur as complex conjugates, one need only look at the poles in
the upper left-half complex freguency plane. Equation 5-12 uses the nar-
row-band representation which is valid for any narrow-band waveform. One
can use either Eg. 5-11 or 5-12 to substitute in 5-10 in order to seek zero-
crossing properties. Below we will use Egq. 5-12.

Substituting Eq. 5-12 into 5-10, one has:

e(t) = g‘, a F(t - =) cos |wt - o, 6(t - n—)] . (5-1%)
2 ®n £ " T T £

Consider first the case where fo is a multiple of half-clock fre-

quency; for an even multiple one has:

%—) cos [bot +0(t - ?—J} . (5-14)

n=0 c c

It is obvious that one can take the cosine term outside the summation (as
was done in Eg. 5-5) only if 6(t) of Eg. 5-12 is constant.

For frequencies fo other than a multiple of half-clock, only gen-
eral comments can be made. Both the F(t) and the 6(t) will contribute to
departures from the situation of "regularly-spaced crossings between clock

pulses,” as was true for the exponential filter. Considering the F(t), an
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F(t) other than an exponential will cause the summation of Eq. 5-14 to con-
sist of a sum of sine waves whose amplitudes are functions of time. Now a
sum of sine waves of constant amplitude will result in another sine wave.

A sum of sine waves of slowly varying amplitude will yield a perturbed sine
wave; and this is the effect of F(t) in Eq. 5-14. The 6(t) will also, of
course, influence or disturb the zero-crossings.

Based on the foregoing, one expects the same general phencmena
for the general filter as for the exponential, but with each characteris-
tic more like that of noise. Figure 5-8 shows the measured interval dis-
tribution for the case where the non-exponential filter of Figs. 6-8 and
6-9 is clocked at its ringing frequency. As seen, for this synchronous
case there is a spike at n, but the skirts of the spike are wider than
those of the corresponding exponential case (Fig. 5-2). DNote that here
also the action at ﬁ/2 is present; this action is peculiar to clocked, syn-
chronous waveforms. The action above x, shown by the dashed line, is again
due to the fact that the waveform, for this synchronous case, sometimes
hovers very near the axis and fails to operate the zero-crossing circuit.

Figure 5-9 shows the distribution when the filter is clocked
close to, but not integral with, the filter frequency. Here it can be seen
that the distribution does not differ essentially from that of Gaussian
noise. Although the Q of this filter is only 3, and differences could be
expected to be greater for a higher Q, this does indicate that the zero-
crossing distrubution does not serve as a reliable characterization for the
clocked waveforms treated here. The case shown here is identical to the
case treated in Fig. L-Tb of Section 4.4.3, where the difference was detect-
able.

Pictures to indicate the regularity of crossings between clock
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Fig. 5-8. Probability distribution of the intervals between successive
zero-crossings for a non-exponential filter with fc = fo.
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Fig. 5-9. Probability distribution of the intervals between successive
zero-crossings for a non-exponential filter with fc R fo.
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(a) Clocked (b) DNoise

Fig. 5-10. Regularity of zero-crossings between
clock pulses; f_ R 1987.

pulses (comparable to Fig. 5-6 above) are shown in Fig. 5-10. It is seen
that, although the crossings are more coherent than for those of noise,

the perturbations make the characterization difficult.



CHAPTER VI

DESCRIPTION OF EXPERIMENTS

It will be the objective of this chapter to describe the experi-
ments, the results of which were reported throughout the previous material.
Since the data were presented previously, this chapter will not repeat
these data but will present the necessary descriptions, circuit diagrams,
and procedures used for the experiments. In each case reference will be

made to the proper section of the preceding material.

6.1 Method of Obtaining Clocked Waveforms

As indicated in Section 1.2 the clocked waveforms used throughout
this study were generated by passing the pulses from a maximal shift-reg-
ister generator through a narrow-band, high Q filter. As is shown in Fig.

6-1 the shift-register generator itself is driven by the clock. The output

SHIFT
REGISTER PULSER NA’;‘T(?EBRAND
GENERATOR —*°
t
|
CLOCK | -—-——— |

Fig. 6-1. Generation of clocked waveforms.

of the generator is a "square wave' waveform, and this waveform is converted
into a pulse waveform in synchronism with the clock. The result, then, is
a sequence of pulses whose sign at any clock interval is determined by the
generator state in that interval. This sequence of pulses is then passed

through the narrow-band filter.

103
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6.1.1 Obtaining Clocked Pulses. For the data reported in the

previous material, the combination of the clock, the shift-register gener-
ator, and the pulser of Fig. 6-1 were all obtained with the use of "Harvey-
Wells Digital Data Blocs." This equipment consists of flexible, transis-
torized, basic digital items, the major items being flip-flops, "and/or"
gates, and a clock.

As mentioned in Section 1.2, a shift-register generator is com-
posed of a basic shift-register to which modulo-two feedback is attached.
Figure 6-2 shows the function diagrams for all of the conponents used to
form a shift-register generator with Harvey-Wells equipment (Ref. 24). The
gates assoclated with the flip-flop units are for the purpose of allowing
flexible logical decisions. The Logic A configuration can be used to form
either an "and" gate or an "or" gate. The Logic B unit is used primarily
as an "or" gate but ﬁay also form an "and" gate.

The basic shift-register is formed by a cascading of flip-flops.
The panel connections to form a shift-register with the flip-flops shown
in Fig. 6-2 are shown in Fig. 6-3. Also shown in this figure is the panel
connection for the modulo-two adder and the method in which it is combined
with the basic shift-register. In addition, the connections which provide
a sync signal are also shown in Fig. 6-3.

The essential idea in forming the basic shift-register is to
connect the output of a flip-flop to the input gates of the next flip-flop.
The input gates are also connected to the clock. Thus the input gates act
as a coincidence device between the clock pulses and the previous flip-
flop level. In this way the content of any given stage is made to travel
to the succeeding stages in the manner of a shift-register.

Because of loading considerations, the clock is connected in a
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Fig. 6-2. Functional diagram of generator components.

pyramid arrangement (not shown in Fig. 6-%) through the "output gates" of
the flip-flop units. A sync signal was obtained by noting when the regis-

nn

ter contained all "ones' This was implemented, as shown in the figure,
by connecting all "one'" outputs of the flip-flops to a Logic B circuit act-
ing as an "and" gate. This sync signal allowed any experiment to be syn-
chronized with the period of the maximal sequence of the shift-register
generator.

A modulo-two adder i1s formed by interconnecting two gates, such
as in the Iogic A unit (Fig. 6-2). The emitters are connected to the op-
posite "inputs' and the collectors are connected together with a common

load resistor. The functional diagram is shown in Fig. 6-4. With this

arrangement, both transistors will be "off" if the inputs are the same,
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and one of the transistors will be
"on" if the inputs differ. In this
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Fig. 6-L.
modulo-two adder.
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Functional diagram of

way the modulo-two function is imple-
mented. To handle more than two feed-
back taps, such modulo-two units can
be pyramided. Some units allowing
four feedback taps were bullt, and the
panel is shown in Fig. 6-3. The man-
ner in which the modulo-two unit is

connected to the basic register is

shown; the mod-two inputs are connected
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to the desired flip-flop outputs. Since the mod-two output is levels
(rather than pulses) this mod-two output feeds the first flip-flop in the
same manner as the other flip-flops are fed.

This, then, is the way in which the basic shift-register of Fig.
6-1 is realized.

For the pulser of Fig. 6-1, the obJjective is to obtain a positive

1

pulse if the output flip-flop is in state "one," and a negative pulse for

state "zero."

A pulse will occur at each clock pulse interval. A circuilt
to realize this with the digital components of Fig. 6-2 was evolved by form-
ing a monostable multivibrator which is used in a coincidence arrangement
with two other gates. The functional diagram is shown in Fig. 6-5. The

clock drives the monostable circuit and the width of the output pulse is

determined by the external capacitor C. This pulse then forms coincidence

-vC -vC

CLOCK
= "ZERO"IN §2.7K
-vC
—@
¢—o DOUBLE POLARITY
L "ONE" IN OUTPUT
c* ;f' -vC -vC § 27K
| ¥*0.01uf PER pSEC. OF
DESIRED PULSE DURATION

Fig. 6-5. Functional diagram of double polarity pulser.
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with two gates; one gate is driven by the "

one" level of the output flip-
flop and the other by the "zero" level. An inverter stage is required on
one gate. The collectors of the two gates are connected by an external
resistance circuilt so that the double polarity pulse can be achieved. As
mentioned, the output of this pulser is a sequence of pulses in which the
sign of each pulse is determined by the state of the shift-register output
stage in that clock interval. The combination of the basic shift-register
and this pulser, then, provided the desired sequence of pulses for perform-
ing all the experiments of this report.

Although all the experimental data of this report were obtained
using the above equipment it may be noted that the earlier experiments were
done with a vacuum tube shift-register generator which was adapted from a
digital computer. Sync circulits, modulo-two circuits, and special purpose
circuitry were adapted to this basic shift-register to perform various ex-
periments. However, the equipment mentioned above superseded this equip-

ment since it is much more flexible and has a much higher frequency range.

6.1.2 Narrow-band Filters. The various narrow-band filters

used in this study will now be described. For the exponential filter de-
scribed throughout this report the filter was constructed as shown in Fig.
6-6. Essentially this is a pentode with a parallel resonant circuit as the
load. The pentode is biased in the active region so that both positive and
negative pulses will be treated with approximately equal gains by the ring-
ing stage. DBecause of low signal level at the plate this section is fol-
lowed immediately by an extremely linear amplifier, and then a cathode
follower provides the necessary reduction in impedance to drive other ex-
perimental apparatus. This filter has a center freguency of 3908 and a Q

of about 4%. When this filter was used in an experiment it was followed
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by a Krohn-Hite Hi-pass filter whose

+200

lower cutoff was set at 200 cycles

}___
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to reduce the inevitable ripple which

1”—)

response and the bandpass character-

istic of this filter, with the Kron-

Hite filter included, is shown in

Fig. 6-7. Fig. 6-6. Circuit diagram of
exponential filter.

0
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(b) Expansion of impulse response. (c)

Fig. 6-7. Impulse response and bandpass of exponential filter.

For the nonexponential filter a U4-pole, Tschebyscheff-designed,

maximally flat filter was used. The prototype bandpass network is given
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in Fig. 6-8. TFilters based on this design were available from the range

L, Lz
o—= L 2 —0
| CZ
o—e o

Fig. 6-8. Prototype bandpass network.

of 200 cycles to 7 k with 10 filters covering this range. The bandwidths
of the filters themselves were actually designed to optimize the freguency
breakdown for the Vocoder audio system. Throughout this work various of
the filters were used depending upon the particular experiment. However,
all of these had the same prototype network as shown in Fig. 6-8. The ac-
tual bandpass characteristic of the filter used most often is shown in Fig.

6-9.

f, = 4255
BW = 1158

29 db

——— Af = 1158 ————P

| H(jw)| IN DECIBELS

-10 37 a8
_30:”—-—4%!/1 | 1 l J———

324 35 40 425 45 50 557 6.0
FREQUENCY IN KILOCYCLES

Fig. 6-9. Bandpass of 4-pole Tschebyscheff filter.

The impulse response which corresponds to this is shown in Fig. 6-10.
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Although these Tschebyscheff filters
do not actually qualify as high-Q
filters, this fact and their distinct-
1y nonexponential impulse response
provided a stringent test of the re-

sults derived in this report--which

were directed primarily toward high-

Q filters.
Fig. 6-10. TImpulse response of
With the circuits described L-pole Tschebyscheff filter;
fo = L255, BW = 1200.
in this section, then, the narrow- :

band clocked waveforms were generated for the various experiments.

6.2 Sound Spectrograph Experiments

Tne use of the sound spectrograph in this work consisted of por-
traying the "half-clock spectral symmetry" treated in Section 3.1. The
sound spectrogram is an instrument which portrays, as a function of time,
the short time spectral density of the audio input waveform. Thus it ana-
lyzes, on a short time basis, the frequency composition of the input wave-
form. The output is an intensity-modulated "fregquency vs. time'" graph
marked on electrically sensitive Teledeltos paper as depicted in Figs. 3-3
and 3-5.

The particular sound spectrograph used here was of the hetero-
dyne type. It employs a fixed-band filter, with a variable oscillator and
modulator system by which any portion of the sound spectrograph can be
brought within the frequency range of the filter. The spectrograph can be
grossly depicted as shown in Fig. 6-11.

In operating the sound spectrograph, the signal to be analyzed
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Fig. 6-11. Block diagram of basic operation of sound spectrograph.

is recorded on a continuous-loop magnetic tape. This loop is then driven
by a synchronous motor, which also drives the "spectrogram pattern record-
er." This recorder consists of Teledeltos paper mounted on a 4" diameter
drum, and the associated pen for recording.

In essence, the operation is as follows: the magnetic tape loop
is turned one revolution for a given setting of local oscillator, a given
position of the recording pen, and one revolution of the recording drum.
Within this revolution, the output of the analyzing filter (see Fig. 6-11)
appears on the recording pen and forms a single-line imprint on the paper.
Then the local oscillator is changed incremently, the recording pen is
shifted vertically, and another revolution of both tape loop and recording
drum is undergone. This stepped procedure is continued for the frequency
range of the instrument. In this way a 'frequency vs. time" graph is ob-
tained as shown in Figs. 3-3 and 3-5.

The basic parameters of the instrument are as follows (Ref. 25):
the frequency range is 100-3500 cps; there are two analyzing filter band-
widths with an effective U45-cycle width on "narrow'" position and 300-cycle
width on "wideband" position. Further, the intensity of blackness on the
graph itself is grossly proportional to the magnitude-squared or the power
of the analyzing filter output. The marking range of the paper is about

12 db.
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For each of the two filter settings there is an AGC-type control
available. The narrow-band control circuit is a series arrangement which
may be switched in ahead of the analyzing filter. It has the effect of
amplifying low level detail in the output signal and then compressing it
to the dynamic range of the paper. With the wideband setting a full band
control 1s available and it 1s a shunt arrangement. This also has the gen-
eral effect of providing an AGC action. A block diagram of the entire ana-

lyzing operation is shown in Fig. 6-12.

STYLUS ¢
TURN DRUM
TABLE }-------1 WITH
PAPER NARROW
I8 RP BAND
CONTROL
CIRCUIT
(v u)
MARK | NG AMPLIFIER-\\\
SIGNAL BALANCED | oy ANALYZING FIRST 1 | T TT7T 7
AMPLIFIER MODULATOR[ N\, FILTER STAGE \ > |
o0—o |
7 |
]
m SECOND :
[}
I
i
t
|

|
|
|
|
|
: STAGE
|
|
|
1

FULL BAND
< CONTROL
CIRCUIT
CARRIER
OSCILLATOR

Fig. 6-12. Spectrograph components arranged for reproducing and analyzing.

Although the range of fregquencies mentioned above is the basic
range, other frequencies can be analyzed by using different speeds in the
recording of the tape-loop and reproducing of that loop. For example, to

get a range of 200-7000 instead of the 100-3500 range one can originally
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record the desired signal at x inches per second and then play this signal
onto the spectrograph tape-loop at x/2" per second. The tape loop would
then be reproduced at the same speed as it was recorded. To get a ratio

of 3 to 1 resulting in a frequency range of 300 to 10,500, one can record
the tape-loop at the same speed as the originally recorded signal but then
speed the reproduction of this tape-loop by a factor of %. With these var-
ious features the sound spectrograph represents a very flexible piece of
eguipment.

The experimental procedure consisted of first recording the de-
sired signal on a commercial tape-recorder. This recording was then played
back onto the magnetic tape drum of the sound spectrograph. The machine
was switched to the reproduce position and the spectrogram made. The VU
meter provided with the spectrograph was monitored for the correct levels
of recording and reproducing to insure a minimum of distortion. AllL the
spectrographs were made using the NB analyzing filter and the narrow-band

control circuit.

6.3 Experiments to Measure Envelopes

The envelope experiments were used to portray the half-clock,
guarter-clock, and one-eighth clock symmetries in Sections 3.1, 3.2, and
3.%, The essence of these experiments is that each envelope depicts the
time behavior of the short time spectrum at a single frequency of the sound
spectrograph. Whereas the sound spectrograph records the time behavior of
the waveform at all frequencies within a certain range, the envelope exper-
iments consisted of looking only at two predetermined symmetrical freguen-
cies and recording the envelopes detected at these specific frequencies.

The block diagram for these experiments is shown in Fig. 6-13.
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Fig. 6-13. Block diagram of envelope experiments.

In our particular experiment the analyzing filter was the filter of a com-
mercial harmonic analyzer. The envelope was recorded on a Sanborn Recorder.
The filter used in these experiments was obtained by using a por-
tion of the Hewlett-Packard Harmonic Wave Analyzer, Model 300 A. The signal
was taken out after the filter and before entering the averaging circuilt
of the commercial analyzer. This harmonic analyzer is of the heterodyne
type and hence the various filter positions were obtained by using differ-
ent values of the local oscillator; the heterodyned signal then passed
through the fixed bandpass filter. This particular filter has a minimum
bandpass of 3.5 cycles at the %3 db points and in this position is only 30
cycles wide at the 40 db points.
The detector was of the simple passive RC peak-reading type.
The circuit diagram of this detector is shown in Fig. 6-1k.

In running the experiments

IN54A
the first item was to calibrate the =~ -
INPUT 22K OUTPUT
"filter" to the desired frequency. .
This was accomplished by inserting a
sine wave of the desired freguency Fig. 6-14. Detector circuit for

envelope experiments.
as an input to the harmonic analyzer.

An electronic counter was placed on the output of the local oscillator of



116

this harmonic analyzer, which was then tuned to show a maximum output meter
reading. Having determined the nominal frequency of the sine wave input
by the counter, the counter was then used to accurately set up the desired
symmetrical frequency. By thus attaching the counter to the local oscil-
lator instead of measuring the input directly, more accuracy was obtained.
Also it provided a direct measure of the drift in the harmonic analyzer as
the experiment was run. It was found that the drift was unappreciable.

In this experiment it was necessary to align the envelopes so
that the envelopes at the two symmetrical frequency positions would be com-
ing from the same signal interval. For the clocked waveforms this was di-
rectly possible by using a sync signal which appeared at the end of each
period of the maximal sequence. This sync signal was then used to insert
a sync marker on the Sanborn chart. For the case of true noise, a magnet-
ic-tape loop was made and a special saturating signal was put on at one
point in this loop in order to provide the same marking action. Thus the
envelopes of the two symmetrical frequencies could be aligned when present-
ing the data.

Using these techniques, then, the envelopes of Figs. 3-6, 3-8,

and 3-10 were obtained.

6.4 Variance Experiments Using Coherent Multiplication

The purpose of this experimentation was to depict experimentally
a method of characterizing a clocked waveform. On the basis of the anal-
ysis in Section 4.4, this method is called "the sum of weighted variances."

The essential idea, shown in Fig. 6-15,is to multiply the square
of the waveform by a coherent wave which is given in each clock interval

approximately by:



K(g) = L h2(

n=0

nT + BT) . (6-1)

The time waveform K(t) is a periodic wave with a period the same as that of
the clock. This product waveform is then integrated for some period of
time T'. Since the output of this integrator is itself a random process,
the sensible method of analyzing the output is to measure the distribution.
With a clocked waveform input this distribution will have a nonzero mean,

while the mean will be zero for true Gaussian nolse. For the experimenc

- DISTRIBUTION
B b~ ANALYZER
CLOCKED — I
WAVEFORM e.t) I '\
ello———— 1 SQUARE 2 . COUNTER
OR NOISE L~

K(t)

Fig. 6-15. Condensed block diagram of method to
characterize clocked waveforms.

here, the distribution was obtained by using a special purpose simulator.
The direct output of this simulator is the data used for drawing the his-
tograms to approximate the distribution.

A more complete block diagram of the experiment is shown in Fig.
6-16. Referring to this figure, the first part shows the equipment used
to generate the clocked waveforms, as described earlier. The Kron-Hite is
used to remove the inevitable ripple. The synchronization between the
clocked and the coherent multiplying waveform K(t) was obtained by having

the basic clock oscillator drive a pulser which in turn drove a '"photoformer."
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Fig. 6-16. Block diagram of variance experiments.

This photoformer is a general function generator which will reasonably re-
produce the waveform specified by a mask on the face of an oscilloscope.
The desired waveform was produced by cutting a suitable mask, and this
waveform was synchronized with the clock by simply triggering the horizon-
tal oscillator of the oscilloscope with the clock pulses. The analyzing
equipment, denoted as "SIMRAR," essentially integrates the waveform for a
given interval and then assigns the resulting value to one of ten slot in-
tervals. The cumulative data consisting of the number of times the output
waveform of the integrator falls within a given slot are then recorded on
relays. At the end of an experiment, then, the cumulative curve for the
distribution of the output can be read directly from the totals on the ten
counters.

All the equipments shown on Fig. 6-16 have been discussed before,
except the photoformer, the multipliers, and the SIMRAR equipment. We will
now briefly describe these items.

The photoformer consists essentially of a feedback loop attached
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to an oscilloscope which has the obJjective of causing the electron beam to
ride along the edge of a mask. A mask cut to the desired waveshape and a
photocell are attached to the scope face. The signal from the photocell
passes through a feedback network to the vertical deflection plates. With
a suitable feedback network and proper bias voltages, the beam can be made
to follow the edge of the mask---within the frequency restrictions of the
loop---and a voltage having the same form as the mask is available at the
photocell output. Using the horizontal drive of the oscilloscope, a repet-
itive waveform of the desired type is then available. It was by this means,
then, that the K(t) voltage described in Sections 4.4.1 and 4.4.3 was ob-
talned.

Since all the K(t)'s were either sine waves or phase-bumped
sine waves the mask was cut in the form of a sine wave. The desired number
of cycles (within a clock interval) was achieved by adjusting the oscillo-
scope horizontal amplifier and position. By triggering the sweep with the
clock pulses, any sine wave or phase-bumped wave was obtainable. A pulser
with a variable delay was used to change the phase position of K(t) with
respect to the clock.

Concerning the multipliers, both of the multipliers were con-
structed earlier by CEL for use in a special purpose analog computer. They
are based on a design developed at the instrumentation laboratory of MIT
(Ref. 26). The multipliers are designed to produce a continuous approxi-
mation to the product of two independent variables by instrumenting the

identity:

(F v 2xy +57) - (2 - oxy 4+ FP) = by, (6-2)

where:

X,y = two independent variables.
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If this is simplified and solved for the product of xy one obtains

2
xy = Mge: L PN (6-3)

In instrumentation the sum (x + y) and the difference (x - y) of the two
inputs are obtained from two independent summing amplifiers. The squaring
of the sum and difference is then accomplished by four square-law shapers
with two more summing amplifiers being used to combine and correct the
polarity of the output of the shapers. In addition, they provide a low im-
pedance output for the multiplier. A block diagram of these multipliers
is shown in Fig. 6-17.

In using SIMRAR, which stands

for "SIMulated Receiver And Recorder,'

> M

+ . . .
. o2 VY "["’P ! . the essential idea is to measure auto-
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| > \
‘l . I3 .
AMP 2 F{>>———~» For our experiments an integrator in
__%AZA'—— 4 s
A SIMRAR was also used. Considering
ALL RESISTERS IN MEGOHMS 0.51

the output of this integrator in Fig.
Fig. 6-17. Block diagram of
multiplier and squarer. 6-15, this voltage trips a counter
when the voltage exceeds a preset
threshold level which is variable from O to 60 volts. Since the counters
are sensitive to only positive voltages, a bias is necessary if any nega-
tive voltages may be encountered. Figure 6-18 below shows a block diagram
of SIMRAR as it was used in these experiments.

Referring to the block diagram Fig. 6-18, the sections of SIMRAR

which were used are: an integrator, 10 amplitude discriminators with two
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Fig. 6-18. Block diagram of SIMRAR.

counters associated with each discriminator (one counter for each of two
possible inputs), a counter to record total samples, a circuit to preset

the desired integrating time, a cycling control to select one of two avail-
able signals, and a central control circuit to perform all necessary switch-
ing operations.

The integrator output is connected to all 10 amplitude discrimi-
nators. As mentioned, the voltage output trips a counter when the voltage
exceeds a certain preset threshold level which is variable from O to 60
volts. Since the counters are sensitive to only positive voltages a bilas
voltage connected in parallel with the signal (at the input to the inte-
grator) is necessary if any negative integrator outputs may be encountered.

The cycling control is available for alternating between two in-

puts. The idea here is that one is often testing a given waveform agalnst
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another, and by automatically alternating inputs between these two wave-
forms the output readings are essentially independent of any drift which
may occur in the operational amplifier and discriminators. In our case we
were interested in comparing a clocked waveform to a true Gaussian noise
waveform, and this feature was immediately applicable.

The procedure for running this experiment can now be described
by referring back to Fig. 6-15. First of all, the two compared waveforms
were made to be as nearly equal as possible by using a Ballantine true rms
voltmeter. Next, the K(t) multiplying waveform was adjusted; this opera-
tion will now be described.

First the photoformer output was adjusted for the proper number

of cycles,using the relation:

Hh

Number of cycles = 2 §E . (6-4)
o}

With a repetitive waveform of this number of cycles, obtained by trigger-
ing the horizontal drive in sync'with the clock, the phase position of K(t)
was varied until a maximum difference in integrator output was obtained
between noise and the clocked waveforms. This maximum was established by
plotting a curve of 'counts exceeding a threshold" for both noise and
clocked waveforms versus phase angle B. The resulting B was the proper
phase relation for the particular filter used. After the phase setting,
the number of cycles was then trimmed up for maximum results.

To set up the analyzing equipment, first the threshold levels of
SIMRAR were set. The method used was to connect a known dc potential di-
rectly to the input of the amplitude discriminators. While cycling the
machine (which applies a test signal to the discriminators), the discrim-

inator threshold potentiometer was adjusted for the lowest voltage at which
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the counter of the discriminator would still count every sample. The count-
er would then be tripped whenever the integrator output exceeded this pre-
set level. The dc potential input was then changed to a new value and the
next discriminator was set. Similarly, all the discriminators were set to
the desired threshold levels. By using a dc battery and a micro-voltmeter
with a known dc potential in series with it as a "bucking' voltage the
gates can be set to 50 millivolts accuracy over the entire 0-60 volt range.

Because of possible drift it was necessary to measure the thresh-
0ld levels of each amplitude discriminator both before and after each set
of trials. Also, it was desirable to allow a suitable warm-up time to
stabilize all the circuits as much as possible. The integrator was cali-
brated by adjusting the output to zero volts while the input was shorted.

After checking all components of the system for correct opera-
tion and calibration a preset counter control was set to stop the machine
after the desired number of cycles. The input wave and integrator output
was monitored to ensure continued correct operation. After the completion
of the desired number of cycles the number of counts registered on each
counter was taken as data for the histograms.

These are the equipments and procedures, then, which were used
to perform the variance experiments reported on in Figs. 4-6 and 4-7. The

equipment used for the experiments is shown in Fig. 6-19.

6.5 Zero-Crossing Distribution Experiments

The objective of these experiments was to obtain zero-crossing
interval distributions for both clocked waveforms and Gaussian noise. The
method for doing this is shown in Fig. 6-20. The method consists of first

converting the zero-crossing interval into a monotonic height. The Schmidt
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Fig. 6-19. Equipment used in variance experiments.

trigger was then set at the greatest height and the count recorded. The

trigger was then reduced by successive incremental amounts, with a count

ZERO -CROSSING CIRCUIT

r—-F—F-"F-"F""""""=—-_-"—-—_—"——_-—1——_—__—_- ﬂl

|

| ' CUMULATIVE

! ZERQ- CROSSING scHmioT | | DISTRIBUTION
o4 INTERVAL TO — TRiceer [T®| COUNTER -0
: HEIGHT CONVERTER :

| |

Fig. 6-20. Block diagram of zero-crossing interval
distribution experiments.

being taken at each setting. This operation is depicted graphically in
Fig. 6-21.
The resulting counts versus length of zero-crossing interval con-

stitute the cumulative distribution curve.
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Referring to Fig. 6-20 we vt
shall refer to the combination of the N ‘/\
N~ .
. . (a) \/ VARV, ;
zero-crossing interval to height con-
verter'" and the Schmidt trigger as (b) 101 11 | >
t
THRESHOLD
constituting the "zero-crossing cir- J:“ s /
(e) / I A A /L >
cuit." A special zero-crossing cir- | I | '
(d) >
cuit was built for these experiments, t

the circuit diagram of which is shown

Fig. 6-21. Graphical depiction of
in Fig. 6-22. The general idea here distribution measurements.
was to implement the operations shown
in Fig. 6-21. The first operation was to convert the noise waveform into
a square wave; thus the interval between zero-crossings of the square wave
was directly equal to the interval between zero-crossings of the noise
waveform. These square waves were then converted into a monotonic slope
so that the height or voltage of this waveform was proportional to the
original zero-crossing interval. This varying-height voltage was then fed
to a Schmidt trigger which in effect operated on all heights that exceeded
a given set level.

The first operation of converting the noise waveform into a square
wave was accomplished by first limiting (with parallel diodes), then ampli-
fying, and then using this waveform to operate a bistable multivibrator.
The reason for using a multivibrator was that it is much easier to obtain
good transient response and a constant, flat-topped wave with it than, for
example, by attempting to build a good video amplifier to do this job. For
accuracy it is necessary to have a non-decaying square wave. The circuit,
then, is as follows: the clipping diodes are followed by a grounded emit-

ter amplifier. An emitter follower then feeds the triggering circuits for
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the bistable multivibrator.

To convert the square waveform into monotonic heights, a simple
RC integrating circuit was used. A diode was placed in parallel with the
resistor to provide fast recovery time. Thus the waveform now consists of
a series of '"charge curves" with rapid decay times. The height reached by
any particular charge curve 1s proportional to the time between "off and
on" of the square wave--which in turn is equal to the interval between
zero-crossings of the input waveform.

An emitter follower then isolates this RC charge circuit from the
ensuing Schmidt trigger. The Schmidt trigger is actually a monostable
multivibrator in which the triggering voltage is varied by the simple means
of varying the common terminal of the multivibrator with respect to ground.
This varying voltage was provided by a sensitive potentiometer across a dc
battery. Finally an emitter follower was used to couple the monostable
output to a counter.

Thus, whenever a charging curve from the RC circuit exceeds the
trigger level of the multivibrator, an output pulse is counted by the
counter. In this manner the number of times which a zero-crossing interval
exceeds a given length is obtained. These "cumulative distribution" data
were then converted to "density" data .by subtracting adjacent counts.

Because of the use of mercury batteries as power supplies for
this entire circuit many problems that are caused by the use of dc power
supplies were avolded. Concerning accuracy, one of the most critical com-
ponents is a silicon diode type 1NL457 which is part of the RC charging
curve. BEven though silicon is much less sensitive to temperature changes
than germanium, it was found in early experiments that the RC charge curve

varied with different levels of rms voltage coming into the charging circuit.
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Therefore a fan was continuously directed toward the silicon diode to keep
it at a constant temperature.

To depict the procedure used in this experiment a block diagram
of the entire experimental apparatus is shown in Fig. 6-23. For the case
where clocked waveforms were the input, a synchronizing pulse was used at

the beginning of each period of the shift-register generator so that this

period determined the length of the counting time.

0scC SRG PULSER [*0
Yool M L e L cnpiin [ coumren
FILTER FILTER CIRCUIT ON  OFF
P e |
SYNCHRONIZING PULSE
Fig. 6-23%. Block diagram of zero-crossing distribution experiments.

Since a simple monotonic curve was used to convert the time in-
tervals into voltage height, the entire experiment's accuracy depended upon
the calibration method used. For this reason, a good deal of care was taken
with the calibration method, which is described below. The zero-crossing
circuit was calibrated at the beginning of a particular run and then imme-
diately afterwards. If the two calibrations differed by only a small a-

mount, the average of the two was taken as the true calibration. If they

differed by a large amount, the data were rejected and corrections were
made. The calibration procedure itself consisted of using a sine wave 0s-
cillator and two counters. One counter was connected to the input sine
wave and one to the output of the zero-crossing circuit. The frequency of

the oscillator was increased until the two counters differed. If the
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oscillator were raised a few cycles above this point where the counters
differed, the zero-crossing circuit counter stopped entirely. Thus there
were only a few cycles of ambiguity regarding the length of the zero-cross-
ing interval.

In order to make a valid comparison between clocked and true noise
waveforms, the rms value of the two waveforms were made equal by measure-
ments with a Ballantine true rms voltmeter. The signal waveform was made
as large as possible without saturating and resulted in an rms voltage of
about 7 volts. The objective in having the waveform as large as possible,
of course, is to define the zero-crossing as well as possible.

The experimental data which resulted from these experiments were

recorded in Chapter 5, Figs. 5-2 through 5-9.

6.6 Zero-Crossing Oscilloscope Experiments

The purpose of the zero-crossing oscilloscope experiments in Sec-
tions 5.2 and 5.3 was to depict, in a visual manner, the regularity and
irregularity of the zero-crossings under given conditions. The essential
part of the experiment consisted of devising a circuit to trigger the scope
trace in the desired manner. The block diagram of the system is shown in
Fig. 6-24. The pictures shown in Chapter 5 were taken with one of the fol-
lowing triggering methods: (1) triggering on the first negative-going
zero-crossing after a clock pulse; (2) triggering on a clock pulse; (3)
triggering on zero-crossings, regardless of clock.

In obtaining the triggering on the first zero-crossing after a
clock pulse, the necessary triggering circuit was obtained essentially by
modifying the Harvey-Wells digital equipment. The functional diagram of

how this was accomplished is shown in Fig. 6-25. The essential idea is to
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use a bistable multivibrator in which
the "one" state is controlled by the
clock pulse and the zero state is ac-
tivated by an output from the zero-

crossing circuit. It was arranged

that the multivibrator stay in its

zero state until the next clock pulse, at which it is again returned to its

1" 1"

one state.

The threshold setting of the zero-crossing circuit described

in the previous section was set at a low value in order to specify the

20t
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-25. Functional diagram of "triggering" circuit for
zero-crossing oscilloscope pictures.

The result is a pulse at each negative zero-crossing of

proper duration and polarity to trigger the multivibrator. Thus an out-

put pulse was achieved whenever a negative zero-crossing was encountered.

Assuming that the clock frequency is less than the ringing fre-

quency of the filter, the waveform out of the multivibrator which 1s used

to trigger the scope is shown in Fig. 6-26. Since the zero-crossing
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circuit is producing an output pulse only for negative crossings, it is
clear that the triggering circuit will operate on "the first negative cross-
ing after a clock pulse." For this reason, as explained in Chapter 5, ir-
regularities appear earlier than if the circuit were operating on the first
crossing (positive or negative after

a clock pulse. This is not detrimen-

ZERO CROSSINGS
. w— 4\; /\ /\3\4\
tal as long as the clock freguency is | \y/ \v/ \v?/ \\
1

j——— CLOCK PULSES —

less than the ringing frequency by an

— - /f} o
SCOPE TRIGGER I" STATE v
amount large enough to enable one to WAVEFORM

-4y

CLOCK PULSE  ZERO CROSSING .\"O" STATE
. N . SLOPE SLOPE
see the regularities in the zero-

crossings for a few cycles.
' Fig. 6-26. Operation of

A Dumont Oscilloscope Rec- triggering circuit.
ord Camera Type 299 with Polaroid
type 42 film was used in making the photographs. The circuit is first con-
nected as shown in Fig. 6-25. The input waveform must be as large as pos-
sible without clipping to ensure triggering the zero-crossing circuit at
every zero-crossing. The oscilloscope setting to operate with the circuit
described above is as follows: the scope sync selector must be on "exter-
nal," and the trigger slope selector in the positive-going slope position
and at approximately -2 volts. This was the method, then, to implement
the triggering circuit for obtaining "triggering on the first negative-
going zero-crossing after a clock pulse." The pictures of Figs. 5-1, 5-6,
and 5-10 were taken using this method.

For the pictures of Chapter 5 which were taken by triggering on
a clock-pulse no special triggering circuit was required; here one merely

fed the clock pulses into the external sync terminal of the scope and the

trigger-slope setting was negative. The trigger level was set at
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approximately -2 volts; Fig. 5-7 was taken with this method.

To trigger on zero-crossings irrespective of position with respect
to clock, it was again unnecessary to use the external triggering circuit
described above. Here one merely set the oscilloscope to trigger on a
zero-crossing. The scope trigger-slope selector was set for either posi-

tive or negative and O volts.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

This investigation is both an analytical and an experimental
study which seeks to find those properties of narrow-band waveforms which
characterize the waveform as being clocked instead of Gaussian noise, where
the waveforms are generated by hard-filtering sequences of constant ampli-
tude clocked pulses having a random (positive or negative) sign. The prop-
erties which were studied and the principle results fall into four cate-
gories: (1) ordinary spectrum, (2) short time spectrum, (3) coherent
sampled variance, and (4) zero-crossing properties. The results in each
of these areas and their significance will be discussed below.

The ordinary spectrum treatment considers two cases: (1) the
case where the waveform stems from a periodic clocked sequence and (2) the
case where the waveform is the result of a random sequence of pulses in
which there are no period considerations. The waveform spectrum was cal-
culated by first finding the spectrum of the sequence of pulses and then
using the usual filter-transfer magnitude relation.

For the periodic case the sequences were limited to linear max-
imal sequences and the long-time spectrum was calculated in terms of the

common autocorrelation of these sequences. The sequence spectral result

T
£

L

transform of the major component of the autocorrelation function of the

is a series of lines spaced apart and having an envelope which is the
maximal sequence. If the sequence were short enough so that the analyzing
equipment had an effective integrating time of the order of 10 or more
times the period, one should be able to identify the filtered sequences as
a clocked phenomenon as opposed to Gaussian noise. This situation will

rarely occur in practice however.

133
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For the case of a random sequence of pulses the spectrum was cal-
culated by what is known as the "direct method." If the pulse sequence
values are independent and have a zero mean, this results in a continuous
power spectral density which is simllar to the envelope of the frequency
components of the periodic case. Under these conditions the power spectral
density of the sequence of pulses is determined, except for a constant, by
the spectrum of the unit pulse itself. If the pulse sequence values have
a non-zero mean the power spectral density will contain discrete contribu-
tions at multiples of the clock frequency.

The short-time spectrum properties of clocked waveforms are ana-
lyzed by writing the output of an analyzing filter (through which the
clocked waveform is passed) as a sum of pulses and regarding the short-
time spectrum as the square of the output envelope of this analyzing fil-
ter. Using this procedure the output envelopes exhibit half-clock symmetry,
which means that the two varying envelopes are identical in time if two an-
alyzing filters are placed symmetrically on both sides of any multiple of
half-clock frequency. This property was experimentally verified and sound
spectrographs depicting the symmetry are shown. A restriction on this re-
sult, of course, is that clocked waveform energy must be available on both
sides of some multiple of half-clock frequency in order to observe the sym-
metry. Two other symmetrical situations were studied: one-quarter clock
and one-eighth clock relations. For the quarter-clock case it was found
that the envelopes of the two symmetrical positions behave according to
two different sequences, where the one sequence is the precise complement
of the other (the sign of every other pulse is reversed). Although this
i1s a firm relation between the effective inputs for the two envelopes no

quantitative relation between the resulting envelopes has been found. It
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is recommended that, should this case be of interest for a particular ap-
plication, this envelope relation be explored in a refined statistical man-
ner to seek a reliable distinguishing characteristic (from the measured
noise envelopes). Much the same applies to the one-eighth clock relation.
Although the two envelopes can be written as the sum of related quantities
no simple quantitative relation between the envelopes is evident. There-
fore, any discernible characteristic will have to result from a refined
statistical study.

In dealing with statistical amplitude properties of clocked wave-
forms the main concern was with the sampled variance, where the samples
are taken coherently with the clock. For independent values of the pulse
sequence this sampled variance of the clocked waveform is a function only
of the impulse response of the filter. Of course, it also varies with the
phase position of the sampling with respect to the clock. Thus if one knew
the clock frequency and could sample coherently with it, one could in prin-
ciple always distinguish a clocked waveform from a noise waveform by sam-
pling at two proper phase positions and determining the two variances.
For a clocked case there will be a non-zero difference if proper phase po-
sitions are chosen while for the noise case they should be zero. Since
the behavior of the sampled variance as a function of phase position de-
pends upon the relation of the filter frequency to the clock frequency, a
maximum and a minimum behavior were calculated for an exponential filter.
It was found that, for filter frequencies which are any multiple of half-
clock frequencies, the sampled variance shows a maximum variation over the
range of the sampling phase position. A minimum for this variation is
shown whenever the filter frequency equals an odd multiple of quarter-clock

frequency. Another property is that the sampled variance, over the range
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of the sampling phase position, has an integral number of cycles whenever
the filter frequency is any multiple of half-clock frequency. For any
other relation the sampled variance does not have such an integral number
of cycles.

Instead of utilizing the sampled variance directly to distinguish
the clocked waveform from noise, as described above, a method using a 'sum
of weighted variances" was evolved. This permitted using a continuous
multiplying waveform rather than a sampling procedure. The question of
what continuous multiplying waveform is best was answered by expressing the
output in terms of the sampled variance. A multiplying waveform of the
same form as the varying component of the sampled variance was found to be
best. Thus, in implementing this distinguishing method, the clocked wave-
form is first squared and then multiplied by a coherent, repetitive wave-
form (with period equal to the clock interval) of the above form. This
product is then integrated for a time much longer than the clock interval.
For a sufficiently long integrating time the output will be non-zero for
the clocked case, and zero for a noise waveform.

The proper multiplying wave for a narrow-band exponential filter
is a coherent sine wave, if the filter fregquency (fo) is any multiple of
half-clock frequency (i;% and a phase-bumped sine wave for any other fre-
quency relation. Since this method uses the sampled variances, the maxi-
mum and minimum relations noted before hold here: for an exponential fil-
ter with fc < 2fo the most difficult distinguishing situation will occur
for the filter frequency equal to an odd multiple of quarter-clock fre-
quency, and the easiest situation will occur for the filter frequency equal
to a multiple of half-clock. Although this is precisely true only for ex-

ponential filters, it will hold approximately for non-exponential,
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narrow-band filters. Experimental tests run in the range fc < 2fo using
both an exponential and a non-exponential filter verified that, if the
multiplying waveform is run coherently with the clock and if the integra-
ting time is sufficiently long, the given clocked waveform can be distin-
guished from noise in the stated range of clock frequencies.

The advantage of this method is that it is not dependent on
particular filter frequency-to-clock frequency positions, as are the above
symmetry properties. Note also that, with coherent tests, external noise
in principle will not ruin the test whereas it would be expected to quick-
ly wash out the above symmetry properties. The limitations, however, are
that the clock frequency must be known, the tests must be run coherently
with the clock, and the filter's variance-versus-phase must be estimated.
Also, as is true for any distinguishing method, the test will become more
and more difficult as clock frequency increases indefinitely relative to
the filter frequency. Since knowledge of the clock frequency is required,
it is desirable to extend this study to find a suitable scanning procedure.

The zero-crossing investigation consisted of a basic analytical
approach and experimental measurements of the zero-crossing interval prob-
ability distributions. Again, the case of the exponential filter provides
the only means of showing precise properties but these properties have
significance also for non-exponential narrow-band filters. If an exponen-
tial filter frequency is any multiple of half-clock frequency the zero-
crossings exhibit a regularity throughout time which, of course, provides
an easily discernible case. The zero-crossing interval distribution for
this case consists of a spike at n (for a normalized interval) and a small
subsidiary spike at I, If the filter frequency is higher than the clock

2

frequency the zero-crossings exhibit a regularity within a clock interval,
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but these sets of crossings move with respect to each other from interval
to interval. Thus, this might be considered as a local regularity; these
regularity properties were demonstrated experimentally with oscilloscope

pictures. The zero-crossing interval probability distribution again shows

X

5 As the filter frequency becomes

a high spike at =n but no action at
equal to and less than the clock frequency no regularity of zero-crossings
can be derived and the zero-crossing probability distribution begins to
approach that of a Gaussian noise case. For a general non-exponential fil-
ter the above regularity properties are essentially perturbed both by the
time varying envelope and phase of the filter's pulse response. Also, the
zero-crossing distribution appears to much more rapidly approach that of
the Gaussian case. Hence, it is concluded from experimental evidence that
the zero-crossing distribution does not serve as a reliable characteriza-
tion for the clocked waveforms unless one is dealing with special cases of
exponential filters.

In addition to the suggested extensions noted above 1t is rec-
ommended that the cocherent distinguishing method based on the sampled
variance be pursued to find what properties remain if the clocked waveform
is first limited and then filtered again. Another area is to explore the
autocorrelation of zero-crossings, both analytically and experimentally.
The general idea here is to look for statistical action at time delays
which are multiples of the clock interval. Finally, where symmetry prop-
erties are desirable and applicable, it is recommended that the short-time
autocorrelation of the clocked waveform (the transform of a special case
of the short-time spectrum dealt with herein) be explored. Since any in-
formation available in one domain of a transform is available in the other,

it is desirable to ascertain whether the time domain case is more conven-

ient for using short-time properties to characterize the clocked waveform.
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