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Summary. This paper describes a method for estimating disease±exposure odds ratios in a case±
control study where information on the exposure variable is available from several, possibly imper-
fect, sources. A hybrid approach is developed where a Bayesian perspective is used in combining
information from multiple sources, although the ultimate analysis of the disease±exposure associa-
tion is likelihood based and incorporates the design considerations from a frequentist perspective,
namely matching cases and controls on the basis of certain characteristics. The basic analytical
strategy involves using Gibbs sampling to draw several sets of actual exposure variables at random
from their posterior distribution, conditional on the exposure ascertainment from several sources
and other pertinent variables. Each set of drawn values of the actual exposure variable and the
confounding variables are used as independent variables in a conditional logistic regression model
with case±control status as the dependent variable. The resulting point estimates and their co-
variance matrices are then combined. This method is applied to a population-based case±control
study of the risk of primary cardiac arrest and the intake of n-3 polyunsaturated fatty acids derived
mainly from ®sh and seafood, which motivated this research. This hybrid strategy was developed
for pragmatic reasons as these data will be used for several analyses from differing perspectives by
different analysts. Hence, this paper also reports an evaluation from a frequentist perspective that
investigates the sampling properties of estimates so derived through a simulation study that is
similar in many respects to the actual data set analysed. These results show that the estimate of the
log-odds ratio obtained by using the method described in this paper is better in terms of bias, the
mean-square error and the con®dence coverage when compared with the estimate obtained by
using only one of the several sources as the exposure variable.

Keywords: Bayesian inference; Gibbs sampling; Measurement error model; Odds ratio; Surrogate
variables

1. Introduction

In an epidemiological study of the association between the occurrence of a disease and an

exposure variable, multiple measurements may be available to ascertain the exposure of interest.

In this paper we address the issue of combining information from these sources to estimate the

adjusted odds ratio, a parameter that is commonly used to measure disease±exposure association.

A particular problem that motivated this research was a population-based case±control study to

determine whether dietary intake of the n-3 polyunsaturated fatty acids derived mainly from ®sh
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and seafood, eicosapentaenoic acid (EPA) and docosohexaenoic acid (DHA), reduces the risk of

primary cardiac arrest (PCA). The details of this study are given in Siscovick et al. (1995). In this

study, three possible sources were available to assess the primary exposure variable, the dietary

intake of n-3 polyunsaturated fatty acids:

(a) a quantitative food frequency questionnaire, the seafood intake scale, administered to con-

trol subjects and surviving case subjects,

(b) a similar questionnaire administered independently to each subject's spouse as a surrogate

respondent for the subject (i.e. asking about the subject's intake) and

(c) a measure of n-3 polyunsaturated fatty acids in the red cell membrane as a percentage of

total fatty acids.

All three measures re¯ect dietary intake. The ®rst two approaches give the direct measures of

exposure in grams of dietary intake of EPA and DHA in the prior month. Furthermore, since these

two fatty acids are synthesized at low rates, the cell membrane levels of these fatty acids re¯ect

primarily dietary intake. Though all three measures are related to the actual dietary intake, none of

these measures may be taken as a substitute for the actual dietary intake. The subject and spouse

responses may have recall and response biases. The red cell membrane fatty acid in contrast is an

indirect measure of dietary intake and is subject to individual metabolic effects. Thus, the objec-

tive was to address whether these three sources can be combined to obtain a better estimate of

the exposure, the actual dietary intake and hence also a better estimate of the relative risk (or the

adjusted odds ratio) of PCA associated with the actual dietary seafood intake.

There is a vast literature on inference based on imperfect measures using measurement error

models. Various methods have been developed using parametric, semiparametric and nonpara-

metric approaches. Fuller (1987) and Carroll et al. (1995) have provided a comprehensive review

of the literature on several of these approaches. In particular, the logistic model with measurement

error in a covariate was considered by Stefanski and Carroll (1989) who used the suf®cient

statistics to develop consistent estimates when the conditional distribution of the mismeasured

covariate X given the actual value T is normal. Under a similar set-up Whittemore (1989)

suggested substituting the James±Stein estimate of E(T jX ) in the logistic model. Rosner et al.

(1992) and Carroll and Stefanski (1990) suggested other approaches for estimating E(T jX ).

Carroll and Wand (1991), Ii (1992) and Roeder et al. (1996) developed semiparametric approaches

and Pepe and Fleming (1991) developed a nonparametric approach based on estimated like-

lihoods. Armstrong et al. (1989) and Buonaccorsi (1990) also discussed ®tting logistic regression

models with covariates measured with error by using the discriminant analysis approach (Efron,

1975).

We adopt a parametric approach that is similar in spirit to the methods described in these

references but under a more general set-up dictated partly by the type of data being analysed. We

also adopt a hybrid approach in developing the estimate of the adjusted odds ratio. A Bayesian

model is used to combine information from multiple sources of exposure variables to estimate the

actual dietary intake; then this estimate is used in a logistic regression model to estimate the

disease±exposure odds ratio by using a likelihood-based method. The hybrid approach proposed

distinguishes the two tasks or stages explicitly. The ®rst is that of estimating the actual exposure

variable by combining the imperfect sources of information using a set of model assumptions.

The next is to use the estimated exposure variable in the usual analysis that would have been

carried out if it had been possible to obtain the actual exposure measures but adjusting the

standard errors to re¯ect the estimation in the ®rst stage. The hybrid approach proposed provides

some ¯exibility in developing models that are ®nely tuned to two stages and in accommodating

varied perspectives in the analysis of data from the basic case±control study. For instance, in the
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example discussed in this paper, the cases and controls were matched on gender and age (within 7

years), and hence, for those tuned to the likelihood perspective, the preference was to use a

conditional likelihood (Breslow and Day, 1980) approach to estimate the adjusted odds ratio and

at the same time a desire for a framework to combine information from multiple sources and the

associated uncertainties. The hybrid approach that is described in this paper develops and evalu-

ates a procedure to accommodate the differing perspectives.

As we indicate later, it is possible to develop methods that are either fully likelihood based or

fully Bayesian under certain conditions. The fully Bayesian analysis, using for example Gibbs

sampling (Richardson and Gilks, 1993), has the advantage that all the uncertainties due to estim-

ating the actual exposure variable are incorporated quite easily. The hybrid approach has some

advantages from a practical point of view. The explicit modelling of two phases or stages allows

us to use different sets of covariates in the model-building process. For instance, the number of

years that the subject and his or her spouse were married or whether or not the subject works away

from home has a bearing on the measurement error process but possibly none on the disease±

exposure relationship. Though an equivalent Bayesian method can be developed that allows this

¯exibility, the hybrid approach at least has pragmatic appeal. It is possible to develop such

methods for the likelihood-based analysis also. The fully likelihood approach may be computa-

tionally convenient only if all the imperfect measures are completely observed (i.e. there are no

missing values). However, in the data set certain values on one or more imperfect measures were

not observed. For instance, the case subjects who died had only two or one measures depending on

whether or not blood was drawn from the subject on his or her death.

The hybrid approach can also be viewed as a multiple-imputation analysis with missing data

(Rubin, 1987; Raghunathan and Siscovick, 1996). The actual dietary intake of n-3 fatty acids may

be viewed as missing on all the individuals and several sets are being imputed conditionally on a

certain set of variables measured or observed on those individuals, assuming that the data are

missing at random. The imputed values are then used to form completed data sets and the

appropriate multiple-imputation analyses of substantive interest are then performed. Such a view

is helpful, if the same data set will be used by many analysts looking at various aspects of

disease±risk factor relationships, where the actual exposure variables may be used as a confounder

or as a primary exposure variable of interest.

The hybrid approach described in this paper needs to be evaluated for pragmatic reasons. For

this, we conducted a simulation study to investigate the properties of the estimates when applied

repeatedly under similar settings. We generated several data sets under certain model assumptions

and applied our procedure to obtain point and interval estimates of the primary parameter of

interest. We evaluated the bias and mean-square error of the point estimates and the actual

con®dence coverage of the interval estimates across the data sets that were simulated.

The rest of the paper is organized into six sections. In Section 2 we brie¯y describe the case±

control study. Section 3 describes the model assumptions for each stage of the analysis. In Section

4 we describe the basics of the estimation method and include a discussion of the fully Bayesian

and likelihood-based approaches. Section 5 describes the results from applying the method to the

particular case±control example. In Section 6 we describe the results from the simulation study

and, ®nally, Section 7 concludes with a discussion.

2. Description of case±control study

In the population-based case±control study mentioned earlier, the cases were all incident out-of-

hospital PCAs attended by paramedics, satisfying the eligibility criteria listed below, that occurred

between 1988 and 1994 in King County, the largest county in the state of Washington. The
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cases were identi®ed through a review of incident reports ®lled out by paramedics from Seattle

and King County (Washington). In addition to the incident reports, death certi®cates, medical

examiner reports and autopsy reports (when available) were reviewed to con®rm the absence of

evidence of a non-cardiac condition as the cause of cardiac arrest. We de®ned PCA operationally

as a sudden pulseless condition in the absence of a known non-cardiac condition to account for

cardiac arrest.

The controls were selected by random digit dialling from the same population and were

matched to cases on gender and age (within 7 years). For cases and controls to be eligible they

were required to be between 25 and 74 years of age, free of clinically diagnosed heart disease or

other life-threatening conditions, such as cancer, liver disease, lung disease or end stage renal

disease, and to be married. The last condition was included as one of the eligibility criteria

because PCA has a case fatality rate of greater than 80% and therefore we relied on information

from surrogate respondents, spouses, to ascertain exposures to risk factors. Since the study

focused on dietary intake of n-3 polyunsaturated fatty acids, we also excluded case and control

subjects who might have been taking ®sh-oil supplements.

To ascertain exposure among cases, surviving cases and their spouses and the spouses of non-

surviving cases were interviewed. For controls, both the control subjects and their spouses were

interviewed. A detailed quantitative food frequency questionnaire, the seafood intake scale, was

administered to determine the number of portions and the size of portions for each type of

seafood. The questionnaire included a list of 35 types of seafood (25 ®shes and 10 shell®shes) that

are available in the Paci®c Northwest. During the interview, food models were used to assess the

size of portions. The spouses were asked to provide estimates of the subject's intake. Using the

data published by the United States Department of Agriculture on the content (grams) of EPA and

DHA per 100 grams, we computed the dietary intake of these fatty acids (in grams) over the prior

month. Blood was drawn from the cases in the ®eld at the time of the event, after resuscitation by

the paramedics or soon after they had died in the ®eld. Usually, blood was drawn within 30±

45 min of the cardiac arrest. Blood from controls was drawn at the time of their interview. The

blood specimens were analysed to determine the content of EPA and DHA in the red cell mem-

branes as a percentage of the total fatty acids (Siscovick et al., 1995). The data set contained

information on 266 cases and 356 controls. Of the 266 cases, 89 had two matched controls per

case and one case had three matched controls. Table 1 provides the means, the standard deviations

and the number of the observed values for the three exposure measures and other risk factors

among case and control subjects. Most controls have all three measures and many cases have

spouse and blood measures but only a few case subjects could provide information as many of

them died in the ®eld. Also the paramedics could not draw blood in some instances. Fig. 1

provides three scatterplots on a log-scale describing the relationships between the three measures:

(a) subjects'dietary intake,

(b) spouses' estimates of subjects' intake and

(c) the red cell membrane value.

From these scatterplots, linear regression models on a log-scale should be adequate amd hence all

those measured are assumed to be in the log-scale in the subsequent development.

3. Model assumptions

The model assumptions are developed in two stages. First, we describe the model assumptions that

relate the measured exposure variables to the actual dietary intake and then we describe the model

assumptions relating the actual dietary intake and the disease outcome.
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Table 1. Means and standard deviations SD of risk factors for PCA among the cases and controls

Characteristic Cases Controls

n Mean SD n Mean SD

Dietary intake
Subject 42 4.70 5.28 332 4.94 4.58
Spouse 266 3.76 4.97 356 4.62 4.66
Red cell value 80 4.34 1.37 292 4.74 1.13

Age 266 60 10 356 58 11
Female sex (%) 266 18.7 356 20.8
Hypertensives (%) 266 28.4 356 15.7
Diabetes (%) 266 12.8 356 2.8
Former smokers (%) 266 36.3 356 43.0
Current smokers (%) 266 36.7 356 9.3
Fat index score 266 22 4 356 21 4
Family history of myocardial
infarction or PCA (%)

266 48.4 356 46.5

At least high school education (%) 266 61.9 356 79.7

Fig. 1. Scatterplots of the three measures of dietary intake of n-3 fatty acids on the log-scale: 1, values for case
subjects; 0, values for control subjects
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There are several considerations in specifying the model assumptions relating the actual and

reported dietary intake. First, the measurement error properties due to recall biases and response

errors can be different for cases and controls. Similarly, owing to differences in their metabolic

effects, the cases and controls may have different relationships between the actual dietary intake

and the red cell values. Thus, we prefer to model these relationships separately for cases and

controls. Second, there may be some covariates that predict or modify the reliability of the

measured intake that may not be of interest in the actual case±control analysis as confounding

variables. For example, the number of years that the subject and spouse were married may affect

the reliability but it may not confound the relationship between the actual dietary intake and

disease. Finally, the model speci®cations that result in the closed form expression for the

conditional distributions in Gibbs sampling are desirable from the computational point of view.

3.1. Measurement error model
Suppose that Tid denotes the unobserved true or actual value of dietary intake of n-3 polyunsatu-

rated fatty acids for subject i � 1, 2, . . ., nd with disease status d � 0, 1. Let X id , Yid and Zid

denote the corresponding values (on a log-scale) derived from the subject's questionnaire, the

spouse's questionnaire and the red cell membrane value respectively. Let w denote a vector of

covariates.

The basic strategy is to model the joint distribution of (T , X , Y , Z) given w for cases and

controls separately and from which the predictive distribution of T given X, Y, Z and w is

constructed. The draws are obtained from the predictive distribution and are then used in the

second stage of the analysis. Ignoring the subscripts for brevity and using the notation [AjB] for

the conditional distribution of A given B, we use the decomposition

[T , X , Y , ZjÙ, w, D] � [X , Y jT , Z, Ù, w, D][T jZ, Ù, w, D][ZjÙ, w, D]

� [X jT , Ù, w, D][Y jT , Ù, w, D][T jZ, Ù, w, D][ZjÙ, w, D]

to model the joint distribution (T , X , Y , Z) given w and D, the disease status, where Ù is a vector

of unknown parameters. Though there are several other possible decompositions that could be

used to model this joint distribution, we chose this approach because of the apparent transparency

of the model assumptions as well as the computational ease. The last equality also implies that we

are assuming that, conditional on the actual exposure value T and the covariate w, the red cell

membrane value provides no additional information about X and Y and the measurement errors in

X and Y are independently distributed.

To describe the relationship between the reported dietary intake and the actual intake, [X , Y jT ,

D, Ù], we posit the regression models

X id � á0d � á1d Tid � áT
2d

wid � eid ,

Yid � â0d � â1d Tid � âT
2d

wid � f id ,
(1)

where wid is a p-dimensional vector of covariates, (á0d , á1d , áT
2d

, â0d , â1d , âT
2d

; d � 0, 1) are the

regression coef®cients and (eid , f id) are the error terms that are assumed to be mutually inde-

pendent (and also independent of Tid) normal random variables with mean 0 and variances ó 2
ed

and k2
d
ó 2

ed
respectively.

Equations (1) describe the measurement error model where the regression coef®cients de®ne

the extent of response bias or a systematic overestimation or underestimation by the subject or

spouse and the effect of covariates w on this relationship. Note that these relationships are

assumed to be different for cases and controls, acknowledging the possibility of recall and
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response bias properties to be different in these two populations. The variance terms ó 2
ed

and k2
d

de®ne the extent of random measurement error.

Next, we describe the model relating the actual dietary intake and the red cell membrane value

[T jZ, w, D, Ù]. Though a regression model similar to equations (1) with Zid as the dependent

variable can be used, we are expressing this relationship slightly differently. Any amount of n-3

fatty acids in the red cell membrane indicates that the subject has a certain dietary intake. Further,

the red cell value being measured as a percentage of all fatty acids cannot be considered as an

unbiased measure of the actual dietary intake. Thus we interpret the role of information provided

by the red cell value as that of providing means of forming a prior distribution of the actual dietary

intake. To quantify this prior information, we posit the regression model

Tid � ã0d � ã1d Zid � ãT
2d

wi � gid (2)

where (ã0d , ã1d , ãT
2d

) are the regression coef®cients and the gid are independent (also independent

of eid , f id and Zid) normal random variables with mean 0 and variance ó 2
gd . Finally, to complete

the model speci®cation, we assume that the Zid are normally distributed with mean ì0d � ìT
1d

wi

and variance ó 2
zd

.

However, the models as de®ned above are not identi®able. There are 11 parameters for each

disease group (á0d , á1d , â0d , â1d , ã0d , ã2d , ó ed , kd , ó gd , ì0d , ó zd) other than the regression

coef®cients for w that essentially have to be estimated using the nine suf®cient statistics based on

the conditional trivariate normal distribution of (X , Y , Z) given w. Consequently, two constraints

are needed to make the model identi®able. For this, we assume that the two intercepts á0d and â0d

are equal and we denote the common value by ád. The implication of this constraint is that when

the actual intake is 0 then the subjects and spouses with comparable w will agree with each other

except for some random errors. The basis of this assumption was an auxiliary study where the

subjects and spouses were asked to keep food records and these were compared with the estimate

based on the questionnaire. On the basis of the analysis of the auxiliary data, this assumption was

deemed reasonable. We also ®xed kd and used various values to index sensitivity analyses as

described in Section 5. There are other ways in which the model can be made identi®able. For

instance, a proper non-diffuse prior may be used on these parameters or we assume that one of the

measures is unbiased for the actual dietary intake. However, we chose the constraints because of

their empirical origins based on the auxiliary study.

The regression coef®cients for w, (á2d , â2d), are different for subjects and spouses in the model

speci®cation given in equations (1). We performed preliminary analyses to investigate the inter-

action between w and the disease status that is inherently implied in the model. On the basis of

this preliminary investigation, we concluded that further parsimony can be achieved by assuming

â2d � á2d � äd , i.e. the effect of covariates w on both subjects' and spouses' responses is the same

but differs by the disease status. This assumption is similar in spirit to the analysis-of-covariance

model.

We also specify a prior distribution for the unknown parameters

Ù � (ád , á1d , â1d , äd , ó 2
ed

, ã0d , ã1d , ì0d , ìT
1d

, ó 2
zd

, ãT
2d

, ó 2
gd

; d � 0, 1)

to be

prior / Q1
d�0

óÿ1
zd
óÿ1

ed
óÿ1

gd
:

3.2. Analysis model
If we had observed the actual dietary intake then the ultimate analysis of the case±control study

would be based on ®tting the logistic regression model
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logitfPr(Dih � 1)g � è0 h � è1Tih � U T

ih
è2 (3)

where Dih � 1 if the subject I in the matched subjects' h (stratum) is a case subject and Dih � 0 if

he or she is a control subject, Tih is the actual dietary intake, Uih is a vector of confounding

variables and (è0 h, h � 0, 1, . . ., n1, è1, èT

2 )
T

is a vector of regression coef®cients. The likelihood-

based approach is to eliminate the nuisance parameters, the stratum-speci®c intercepts è0 h,

through a conditioning argument (Breslow and Day, 1980), i.e. to estimate è � (è1, èT

2 )
T

by

maximizing the conditional likelihood

L � Qn1

h�1

1

1�Pn0 h

j�1

exp(è1ÄT h

j
� èT

2ÄU h

j
)

(4)

where n1 is the number of cases, n0 h is the number of matched controls for case h, ÄT h

j and ÄU h

j

are respectively the differences in the exposure variable and the confounding variables between

the case subject h and his or her jth matched control subject.

4. Estimation

From a frequentist perspective, the two essential quantities for inferential purposes are è̂(T ), the

estimate of è � (è1, è
T

2 ) conditional on T, and V (T ), the estimate of the variance of è̂(T ). Since T

is not observed, we propose that inference be made using the posterior mean and the variance of

è̂(T ),

è̂� � Efè̂(T )jX obs, Yobs, Zobs, W , Dg
and

V� � EfV (T )jX obs, Yobs, Zobs, W , Dg � Vfè̂(T )jX obs, Yobs, Zobs, W , Dg (5)

where (X obs, Yobs, Zobs) is the observed portion of (X , Y , Z) and the expectations are with respect

to the predictive distribution of T given (X obs, Yobs, Zobs, W , D).

These quantities can also be interpreted as the posterior mean,

E(èjobs) � EfE(èjobs, T )jobsg,
and V� as the posterior variance,

V (èjobs) � Efvar(èjobs, T )jobsg � varfE(èjT , obs)jobsg,
where obs � fX obs, Yobs, Zobs, U , W , Dg is the observed data.

A fully Bayesian version that acknowledges matching of cases and controls will typically treat

the stratum-speci®c intercepts è0 h in the logistic model (1) as independent random effects with

possibly a normal distribution with a common mean and variance. With a prior speci®ed for this

mean and variance and for è, the marginal posterior distribution of è1 could be constructed or at

least approximated. The essential difference between the hybrid approach and the fully Bayes-

ian approach lies in the nature of the approximation of E(èjobs, T ) and var(èjobs, T ), i.e. the

conditional likelihood function of è given in equation (4) can be interpreted as its marginal

posterior density given T , U and D (apart from the constant of proportionality independent of è)

under a uniform prior for è. This marginal posterior density of è given T, U and D is approximated

by a multivariate normal density with mean è̂(T ) and covariance matrix V (T ). Thus for large

samples è̂(T ) is an approximation for E(èjT , obs) and V (T ) for var(èjT , obs) under the model

assumptions stated.
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An alternative would be to sample directly from the density of è given in equation (4), which is

computationally dif®cult when the number of matching controls per case varies considerably and

for a large number of covariates. An advantage of the hybrid approach, from a robustness point of

view, is that the large sample approximation does not require the normality assumptions for the

stratum-speci®c intercepts è0 h, though prior investigations have shown that in the fully Bayesian

approach the results are not sensitive to departures from the assumed normality (Raghunathan and

Ii, 1993).

4.1. Maximum likelihood estimation
If there were no missing data in X, Y and Z, we could obtain the maximum likelihood estimates of

the parameters Ù (with restricted maximum likelihood estimates of the variance components)

by using the EM algorithm (Dempster et al., 1977) and hence empirical Bayes estimates T̂� of

the actual exposure measures could be obtained. The estimate è̂� could be approximated by

è̂(T̂�).
Speci®cally, in the EM set-up, the complete data are (X, Y, Z, T ) and the observed data are

(X , Y , Z). Given the complete data, it is straightforward to show that the maximum likelihood

estimates (the M-step), for d � 0, 1, are as follows.

(a) ì̂d � (W T

d
Wd)ÿ1W T

d
Zd and ó̂ 2

zd
� (Zd ÿ Wd ì̂d)T(Zd ÿ Wd ì̂d)=(nd ÿ pÿ 1) where ìd �

(ì0d , ìT
1d

)T, Zd � (Z1d , Z2d , . . ., Z nd d)T, Wd � (1, wd), wd � (w1d , w2d , . . ., wnd d)T, 1 is a

vector of 1s and nd is the number of individuals with disease status d.

(b) Letting ãd � (ã0d , ã1d , ã2d)T,

ã̂d � (V T

d
Vd)ÿ1V T

d
Td

and

ó̂ 2
gd
� (Td ÿ Vdã̂d)T(Td ÿ Vdã̂d)

nd ÿ pÿ 2

where Vd � (1, Zd , Wd) and Td � (T1d , T2d , . . ., T nd d)T.

(c) Let X d � (X 1d , X 2d , . . ., X nd d), Yd � (Y1d , Y2d , . . ., Ynd d), öd � (ád , á1d , â1d , äT

d
)

T
, Qd �

(X 2

d
, Y T

d
)T and

Ud � 1 Td 0 Wd

1 0 Td Wd

� �
:

It is easy to show that

ö̂d � (U T

d
Mÿ1

d
Ud)ÿ1U T

d
Mÿ1

d
Qd

where

M d � diag(1, 1, . . ., 1, k2
d
, k2

d
, . . ., k2

d
)

is a 2nd 3 2nd diagonal weight matrix due to the different precisions of the two dietary

measures and

ó̂ 2
ed � Ad=(2nd ÿ pÿ 3)

where

Ad �
P

i

(X id ÿ á̂d ÿ á̂1d Tid ÿ ä̂T

d
wid)2 � 1

k2
d

(Yid ÿ á̂d ÿ â̂1d Tid ÿ ä̂T

d
wid)2

� �
:

Combining Exposure Information 341



The estimates of ìd and ó zd in (a) do not involve any unknown quantities. The unknown

suf®cient statistics in the remaining expressions involve Tid and T 2

id . Thus, at the E-step we need

to compute the expected values of Tid and T 2

id
conditionally on the observed values and the current

estimate of the parameters. Given the parameter estimates and the observed data, it can be shown

that the Tid are independent normals with means

T̂�id �
á̂2

1d
� â̂2

1d
=k2

d

ó̂ 2
ed

� 1

ó̂ 2
gd

( )ÿ1

(X id ÿ á̂d ÿ ä̂T

d
wid)á̂1d � (Yid ÿ á̂d ÿ ä̂T

d
wid)â̂1d=k2

d

ó̂ 2
ed

(

� ã̂0d � ã̂1d Zid � ã̂T
2d

wid

ó̂ 2
gd

)
(6a)

and common variance

á̂2
1d
� â̂2

1d
=k2

d

ó̂ 2
ed

� 1

ó̂ 2
gd

 !ÿ1

: (6b)

Thus, starting with an initial guess for the unknown parameters, the EM algorithm iterates

between the E-step based on equations (6) and the M-steps until the parameter estimates stabilize.

At the convergence of the EM iterations, T̂�
id

are the empirical Bayes estimates of Tid which

can be substituted for T in the logistic model. The estimates è may be obtained again by

maximizing the conditional likelihood with T̂ and U as the covariates. However, the asymp-

totic variance V (T̂ ) will be an underestimate of the true sampling distribution as it ignores the

uncertainty in not knowing T. Either the bootstrap (Laird and Louis, 1987) or the jackknife

(Raghunathan, 1993) approach speci®cally discussed in the context of empirical Bayes analysis

will have to be used to re¯ect the increased uncertainty in the point estimate of è.

4.2. Gibbs sampling
A straightforward method for computing è̂� and V� de®ned in equations (4) when some values of

X, Y and Z are missing is through simulation techniques such as Gibbs sampling (Gelfand and

Smith, 1990) which has received considerable attention in the recent literature. Brie¯y, Gibbs

sampling in the present example involves drawing values from Pr(T jX obs, Yobs, Zobs, w, D) or

equivalently drawing values from Pr(T , X mis, Ymis, Zmis, ÙjX obs, Yobs, Zobs, w, D) where

Ù � (ád , á1d , â1d , äd , ó ed , ã0d , ã1d , ã2d , ó gd , ìzd , ó zd; d � 0, 1)

by drawing from each univariate conditional distribution (or that of a subvector) of the missing

value or the parameter in a cyclic fashion each time replacing the old values by the most recently

drawn values. It is preferable to ignore the initial few cycles to eliminate the effect of the starting

values. Also, Gelman and Rubin (1992) suggested using replicates or parallel cycles with different

starting values to eliminate their effects further.

Let t0 be the number of initial cycles that are ignored to eliminate the effect of the starting

values. For t � t0, t0 � 1, . . ., t0 � N, let T ( t) denote the value of T drawn in the tth Gibbs cycle.

Let è̂( t) � è̂(T ( t)) denote the estimate è from the logistic model using T ( t) instead of T and let

v( t) � V (T ( t)) denote the corresponding asymptotic variance of è̂( t). Using the ergodic results

(Gelfand and Smith, 1990) it can be shown that

è� � Pt0�N

t� t0

è̂( t)=N
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and

V� � Pt0�N

t� t0

v( t)=N � Pt0�N

t� t0

(è̂( t) ÿ è�)(è̂( t) ÿ è�)T=(N ÿ 1):

We now brie¯y describe the essential Gibbs sampling steps. For notational convenience we

shall use `Rest' to designate the rest of the variables and parameters other than the argument of

the density. From the model speci®cation for (T , X , Y , Zjw, D, Ù) and the prior distribution

described in Section 3, the following results are easily derived.

(a) óÿ2
zd
Ói (Zd ÿ W T

d
ì̂d)T(Zd ÿ W T

d
ì̂d)jRest � ÷2

ndÿ pÿ1 where Zd and Wd are de®ned in Section

4.1 and ì̂d � (W T

d
Wd)ÿ1W T

d
Zd .

(b) ìzd jRest � normalfì̂d , ó 2
zd

(W T

d
Wd)ÿ1g.

(c) óÿ2
gd

(Td ÿ Vdã̂d)T(Td ÿ Vdã̂d)jRest � ÷2
ndÿ pÿ2 where ãd � (ã0d , ã1d , ã2d)T, ã̂d � (V T

d
Vd)ÿ1

3 V T

d
Td and Td and Vd are de®ned in Section 4.1.

(d) ãd jRest � normalfã̂d , ó 2
gd

(V T

d
Vd)ÿ1g.

(e) Let ö̂d � (U T

d
Mÿ1

d
Ud)ÿ1U T

d
Mÿ1

d
Qd where öd , Qd , Ud and M d are de®ned in Section 4.1.

óÿ2
ed Ad jRest � ÷2

2 ndÿ pÿ3 where

Ad �
P

i

(X id ÿ á̂d ÿ á̂1d Tid ÿ ä̂T

d
wid)2 � 1

k2
d

(Yid ÿ á̂d ÿ â̂1d Tid ÿ ä̂T

d
wid)2

� �
:

(f ) öd jRest � normalfö̂d , ó 2
ed

(U T

d
Mÿ1

d
Ud)ÿ1g.

(g) TidjRest for i � 1, 2, . . ., nd, d � 0, 1, are independent normal distributions with mean

and variance given in equations (6) except that they are evaluated at the current drawn

value of the parameters.

(h) X idjRest for i � 1, 2, . . ., nd, d � 0, 1, are independent normal distributions with means

ád � á1d Tid � äT

d
wid and common variance ó 2

ed
.

(i) Yid jRest for i � 1, 2, . . ., nd, d � 0, 1, are independent normal distributions with means

ád � â1d Tid � äT

d
wid and common variance k2

d
ó 2

ed
.

(j) Zid jRest for i � 1, 2, . . ., nd, d � 0, 1, are independent normal distributions with means

(ã2
1d
=ó 2

gd
� 1=ó 2

zd
)ÿ1f(Tid ÿ ã0d ÿ ãT

2d
wid)ã1d=ó

2
gd
� (ì0d � ì1d wid)=ó 2

zd
g

and common variance (ã2
1d
=ó 2

gd
� 1=ó 2

zd
)ÿ1.

Thus Gibbs sampling involves ®rst drawing the initial values for the missing components of

(X , Y , Z), T and the parameters Ù and then using the conditional distributions given above to

update the drawn values sequentially.

The initial values can be obtained as follows. First, the missing values in (X , Y , Z) can be

drawn from the appropriate conditional distributions derived from a trivariate normal regression

model with w as the core dependent variable with the parameters estimated on the basis of the

complete cases (see, for example, Box and Tiao (1973)). For example, suppose that, say, X is

missing and Y and Z are observed; then the missing X can be drawn from a conditional normal

distribution of X given Y, Z and w. Once the missing values in (X , Y , Z) have been ®lled in, the

parameter estimates may be obtained through the maximum likelihood approach discussed in

Section 4, and then conditionally on these parameter estimates the values of T may be drawn on

the basis of the conditional distribution given in item (g) above.
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5. Analysis of example

For the example described in Section 2, we included all the covariates listed in Table 1 in w. We

also included number of years married, spouse's education and the occupation of the subjects as

measured by a dummy variable `working away from home' (yes ; 1; no ; 0) in the measurement

error model given in equation (1). All the continuous covariates were centred at the mean value

for the combined sample of cases and controls, so that the intercepts are interpretable as the

estimated response bias for an `average' member of our sample.

Using the method described in the previous section we obtained the estimate è� of è and the

associated covariance matrix V�. We used the conditional logistic regression approach because of

the matched design. In the Gibbs sampling we ignored the ®rst 10 000 (t0) draws to eliminate the

effect of starting values and 50 000 (N ) draws were used to construct the point estimates and their

standard errors. The Gibbs draws were obtained in 10 replicates of 5000 draws in each.

On the basis of a preliminary analysis the linear and quadratic function of the drawn values of

the actual dietary intake and other confounding variables listed in Table 1 were used as inde-

pendent variables in the logistic model. The point estimates and their standard errors are given

in the second and the third columns of Table 2 for k2
d
� 1, d � 0, 1. The next pair of columns

provide the point estimates and their standard errors when the spouses'data are used as a substitute

for the actual dietary intake. Although the estimates of the regression coef®cients for the con-

founding variables do not change much, the adjusted log-odds ratio is attenuated towards 0 when

the spouses' data are used instead of the estimated actual dietary intake. Thus it seems that the

protective effect of dietary intake on the incidence of PCA is underestimated using the proxy data.

To explore the sensitivity, we used two other values, k2
d � 1:5 and k2

d � 2. The estimates and their

standard errors under these alternative values of k2
d

are also provided in Table 2. The point

estimates do not change much but the standard errors are larger as expected because of the

imprecision that is inherent in a spouse's estimate of a subject's intake.

6. Simulation study

The method described in this paper uses a combination of Bayesian and frequentist ideas. For

routine applications, however, it is desirable to investigate the frequency properties of the estim-

ates obtained by using this method. We therefore conducted a simulation study to investigate the

Table 2. Estimated regression coef®cients (and their standard errors SE) in the logistic model

Variable Bayes, k2
d
� 1 Proxy (spouse) data Bayes, k2

d
� 1:5 Bayes, k2

d
� 2

Estimate SE Estimate SE Estimate SE Estimate SE

Dietary intake
Linear ÿ0.1961 0.0647 ÿ0.1193 0.0433 ÿ0.1817 0.0797 ÿ0.1820 0.0824
Quadratic 0.0079 0.0023 0.0038 0.0015 0.0068 0.0024 0.0068 0.0029

Age 0.1193 0.0174 0.1210 0.0370 0.1199 0.0174 0.1199 0.0172
Current smoker 1.6485 0.3770 1.8828 0.3233 1.6489 0.3771 1.6489 0.3771
Former smoker 0.3338 0.2419 0.3237 0.2496 0.3336 0.2422 0.3336 0.2443
Family history of myocardial

infarction or sudden death
0.7085 0.2005 0.7044 0.2189 0.7086 0.2011 0.7088 0.2017

Fat index score 0.0211 0.0282 0.0242 0.0276 0.0217 0.0284 0.0217 0.0292
Hypertension 0.4489 0.2732 0.4501 0.2623 0.4489 0.2741 0.4489 0.2472
Diabetes 1.6066 0.4245 1.6055 0.4135 1.6069 0.4244 1.6068 0.4244
More than high school education ÿ0.5992 0.2458 ÿ0.6006 0.2449 ÿ0.5997 0.2457 ÿ0.5996 0.0248
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bias and the mean-square error of the point estimate and the exact coverage of the nominal 95%

con®dence interval of the adjusted log-odds ratio è1 derived by using the method described in this

paper.

We considered two simulation conditions. In the ®rst, we generated the data T, X, Y and Z on

1000 individuals under the assumptions stated in Section 2. We used the estimates of ád , á1d , â1d ,

ó ed , ó gd , ìzd and ó zd, d � 0, 1, obtained in the example which are given in Table 3 and k2
d

was

®xed at 1.

We ®rst generated D such that roughly 43% of the Ds were 1 as in the example discussed in the

previous section. Next we generated values from the distributions [ZjD], [T jZ, D], [X jT , D] and

[Y jT , D]. This approximately resulted in the true log-odds ratio of ÿ0:97 for a one-unit increase

in T.

From the complete data we created incomplete data on X and Z that were very similar to the

numbers given in Table 1. Thus, this simulation condition is replicating data that are similar to the

example data. The second simulation condition was similar to the ®rst except that we ®xed ád � 0

and á1d � â1d � 1, i.e. both X and Y are unbiased for the actual value T. In both simulation

conditions there were no other covariates w.

For each simulation condition, 10 000 data sets were generated and the point and interval

estimates of è1 were obtained. The ®rst 2000 cycles were ignored in the Gibbs sequence for each

data set and the posterior mean and variance were computed on the basis of the next 5000 draws.

Several other choices of t0 and N on a smaller set of simulated data sets resulted in similar results.

All computations were performed on a SUN SPARCstation 20 using GAUSS programming lan-

guage (Aptech Systems, 1992).

Table 4 provides the bias and the mean-square error of the point estimate and the exact

con®dence coverage of the nominal 95% con®dence interval. For comparison, Table 4 also

provides the same quantities except using Y (as in the spouse's estimate which has no missing

values) as a substitute for the actual value T. The estimates based on the procedure described in

this paper are almost unbiased and the con®dence intervals are well calibrated. In contrast,

pretending that Y is the actual value leads to severely biased estimates and poorly calibrated

con®dence intervals even for the second simulation condition.

We wanted to explore the sensitivity of the sampling properties to the normality of the

distributions of X, Y, Z and T. Therefore, we repeated the simulation study just described except

that the values of X, Y, Z and T were drawn from a scaled ÷2-distribution with 4 degrees of

freedom. The scaling ensured that the means, variances and covariances were the same as in the

Table 3. Parameter estimates of the mea-
surement error model for the example when
k2

0 � k2
1 � 1

Parameter Case estimate
(d � 1)

Control
estimate
( d � 0)

ád ÿ3.2245 ÿ2.8871
á1d 1.1178 1.8963
â1d 1.1923 1.8699
ó 2

ed
0.0732 0.1699

ã0d 0.9931 0.8454
ã1d 0.7654 0.9221
ó 2

gd
0.0431 0.0721

ì0d 1.5667 1.5263
ó 2

zd
0.1827 0.2449
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normal case. The results are given in the bottom half of Table 4. There is a modest increase in

both the bias and the mean-square error and the con®dence interval becomes somewhat anti-

conservative.

7. Discussion

In this paper we have proposed, and evaluated, an analytical strategy for analysing data from a

case±control study where the exposure variable is measured by using multiple measurement

sources none of which are unbiased for the actual exposure variable. We have developed a hybrid

approach where a Bayesian model is used to estimate the actual dietary intake based on the

mismeasured covariates and a likelihood-based approach is used to estimate the relative risk of

PCA with respect to the actual dietary intake. Our approach incorporates the increase in

uncertainty due to using an estimated rather than the actual dietary intake while ®tting the ultimate

logistic regression model. However, for large samples the estimates of the log-odds ratios may also

be viewed as an approximate posterior mean under a fully Bayesian model. We have also

developed a maximum likelihood approach to ®t the measurement error model when there are no

missing values in the mismeasured covariates.

The particular data set that was analysed suggests that relying on the spouses' data as a marker

for the actual dietary intake can underestimate the protective effect of dietary intake of n-3

polyunsaturated fatty acids. For example, the adjusted odds ratio comparing 3.3 g of dietary intake

(one fatty ®sh meal per week) with those who do not eat any seafood is 0.7 (the 95% con®dence

interval is [0.5, 0.9]) using the proxy data and the corresponding ®gure using the estimated actual

dietary intake is 0.4 (95% con®dence interval [0.3, 0.6]).

The limited simulation study suggests that the point and interval estimates also have desirable

frequency properties and are fairly robust to modest departures from the assumed normality. A

further detailed investigation is necessary to explore fully the robustness and sensitivity of the

inference to the model assumptions.

A limitation of the approach that was taken is that it is predicated on the regression rela-

tionships between T and X, Y and Z. These are technically unveri®able assumptions in the absence

of validation data that provide information at least on all the three pairs (X , T ), (Y , T ) and (Z, T )

of relationships. Hence, it is important to apply the method by assuming different relationships

and to explore the sensitivity to the regression relationships stated. For example, we performed an

analysis identical with that described in Section 4 except using the original scale in all three

regression models given in equations (1) and (2). The results were quite similar to those given in

Table 2 and the maximum difference in the point estimates of the regression coef®cient was less

than 5% of the standard error.

Table 4. Bias and the mean-square error of the point estimates and the exact coverage
of the interval estimates of the adjusted log-odds ratio obtained by using the approximate
Bayes and naõÈve methods under various simulation conditions

Distribution Simulation Bias Mean-squared Coverage
error

Bayes NaõÈve Bayes NaõÈve

NaõÈve Bayes

Normal 1 0.0034 0.6221 0.1265 0.4248 96 1
Normal 2 0.0021 0.3212 0.1007 0.3990 94 22
÷2 1 0.0054 0.8337 0.1562 0.5287 92 3
÷2 2 0.0062 0.8339 0.2106 0.8978 94 21
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