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I am very honored to have been designated the “Scientist-in-Residence” of the 
New York Academy of Sciences for the current week. This is an honor com- 
parable to any of those which I have already enjoyed. 

By definition, an independent discovery in graph theory occurs when two people 
or groups of people working independently discover essentially the same result. 
Usually these discoveries occur at about the same time, but they can be separated 
by periods of many years, as you will see from some of our examples. I should 
make it clear at the outset that I really mean independent discoveries in graph 
theory, not independent discoveries of graph theory. The latter, of course, refers to 
discoveries of the entire field, which I shall mention briefly before moving on. 

The first recorded discovery of graph theory was made by the great Swiss 
mathematician Leonhard Euler [7] when he developed a theorem on graphs to 
solve the famous problem of the Seven Bridges of Konigsberg in 1736. This theorem 
is now known as the characterization of eulerian graphs. The discovery of graph 
theory which has had the greatest impact on modern life was by Georg Kirchhoff 
in 1847 in his study [16] of electrical networks. Cayley, in 1857, while considering 
the problem of changes of variables in differential calculus, discovered trees [5], and 
some seventeen years later found in them the ideal tool for counting chemical 
isomers [6]. The great Irish mathematician and physicist, Sir William Hamilton, was 
led into graph theory as a result of a game he invented in 1859. The game, which 
essentially required the finding of a spanning cycle in the skeleton of a dodeca- 
hedron, was never a commercial success (except to Hamilton, who sold the idea 
for f25). However, it resulted in Hamilton’s name being attached to one of the 
more recalcitrant problems in graph theory, that of characterizing hamiltonian 
graphs, which have a cycle containing all the points. Another famous problem which 
has led many people into graph theory is the Four Color Conjecture, only recently 
proved by Haken et al. [lo] (with a computer). This by no means exhausts the list of 
discoverers of graph theory. In very many cases and in disciplines in the physical 
sciences, the social sciences, computer science, and the humanities, graphs frequently 
occur as a natural, useful, and intuitive mathematical model. The consequence is 
that those investigators who were not aware of the existence of graph theory as a 
study in its own right were led to rediscover it in order to apply it. 

One of the most fundamental theorems is that of Kasimierz Kuratowski charac- 
terizing planar graphs [18]. When it appeared in 1930, two American mathematicians, 
Orrin Frink and Paul A. Smith, had already submitted (independently, and inde- 
pendently of each other) papers containing precisely the same theorem, which they 
promptly withdrew. 

Now I would like to share with you a number of cases of independent dis- 
coveries in graph theory. These are classified as win, lose, or draw according to 

* Adapted by J. A. Kabell from the recording of the address delivered at the New York 
Academy of Sciences on 5 May 1977. 

1 
0077-8923/79/0328-01$1.75/1 0 1979, NYAS 



2 Annals New York Academy of Sciences 

chronological priority. A former student of mine, Lowell Beineke, published [l] a 
technique for partioning complete graphs into line-disjoint paths. It  was only later 
that we learned that the great French number theorist and collector of puzzles, 
E. Lucas, had published exactly the same construction in 1887 [19]. Another loser 
was the characterization of planar graphs in terms of contractions (dualizing 
Kuratowski’s theorem) which Bill Tutte and I published in 1965 [15], only to find 
later that Klaus Wagner had obtained the same result in 1937 [22]. 

Beineke and I, in 1965, calculated and published [2] the genus of the n-cube. 
Unfortunately for us, Gerhard Ringel [ZO] had published the same result ten years 
earlier. Another example of a loser is a manuscript I wrote with my first doctoral 
student, Bob Norman. In this note we showed that the sum of the point inde- 
pendence and covering numbers, and likewise the sum of the line independence and 
covering numbers, is always just the number of points in the graph (ao + Do = 
a, + = p). The only problem was that Tibor Gallai [9] had done precisely the 
same work a few years earlier. Fortunately, the referee to whom our paper was 
sent by Paul Halmos was familiar with Gallai’s result, so Bob and I were saved some 
embarrassment. 

Now that we have seen some losers, let me tell you about one bona fide draw. 
Pavol Hell and I, at an AMS meeting in Las Vegas, happened to hit on the idea 
of the ramsey number of a directed graph. Eventually, we wrote up and pub- 
lished [ 141 our results. The very same month in which our paper appeared, another 
journal had a paper by Jean-Claude Bermond [41, defining exactly the same concept 
and proving many of the same results! That can truly be called a draw. 

Here are two more draw stories both involving the Japanese graph theorist, 
Jin Akiyama. By way of background, I met in person both Dragos Cvetkovic and 
his doctoral student S. Simic on arrival at the Belgrade airport in 1974. At about 
the same time, Akiyama and his student K. Kaneko were also deriving graph equa- 
tions for line graphs and nth power graphs. Friendly correspondence between Tokyo 
and Belgrade led to a triply joint paper which is to appear in 1980. 

Akiyama was also doing the research in another Ph.D. thesis elsewhere in the 
world when he derived a forbidden subgraph characterization of iterated line graphs. 
The referee recommended that Jin write to D. G .  Akka of Shahabad, India, who 
had also obtained the same result, with the suggestion that they get together and 
write one joint article, and Jin has agreed to do so. 

Now let us look at a few winners. In 1958, Claude Berge published the second 
book ever written [3] on graph theory (the first was, of course, Konig [17], in 
1936), and Mathematical Reviews (MR) sent me a copy to review. It concluded with 
a section of fifteen unsolved problems. The last four were disguised versions of 
Four Color Conjecture which happily has since been proved, as mentioned above. 
Problem 11 ,  however, was simple enough for me to solve at once. It asked for the 
maximum connectivity of a graph with a given number of points and lines, and I 
included the result in my review in MR. Shortly thereafter, I received several papers 
to referee in which i t  was solved. Therefore I decided to publish this straightforward 
result [13]. 

Another winner I would like to present tonight actually concerns a real world 
application of graph theory rather than a new theorem. The idea of signed graphs 
and balance, which I introduced in 1953 [ll], grew naturally out of attempts to 
describe both positive and negative psychological and social interactions in graphical 
terms. As a war involves essentially the same types of interactions, but between 
countries rather than individuals, I analyzed the Mideast conflict of 1956 using 
signed graphs and the tendency toward balance. The resulting paper [12] was 
published in the Journal of ConJlict Resolution in 1962. In 1969, I received a frantic 
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long-distance telephone call from Greece, from a man named George. First he 
spoke to me in Greek and I spoke to  him in English, with neither of us understanding 
a word of the other language. Then he tried Turkish and I tried Spanish with the 
same result, and we finally settled on very fractured French. He was calling to 
tell me that he had just found out that his Ph.D. thesis in political science was 
essentially subsumed by this article of mine and needed to have my written per- 
mission to receive his doctorate from the University of Athens. Naturally I was so 
delighted to learn that my approach was worthy of a Ph.D. in political science 
that I immediately gave my blessing. 

Here is an example of multiple independent discovery. It is a well-established 
result that any planar graph can be drawn in the plane in such a way that all its 
edges are straight line segments. This was published by Fary [8] in 1948 and is 
often called Fary’s Theorem. It was rediscovered by Sherman Stein 1211 in 1951 
and by several others since then. Once again, however, Klaus Wagner [23] antici- 
pated everyone by publishing the same theorem in 1936. 

An amusing incident concerns two papers received not long ago by the Managing 
Editor of the Journal of Graph Theory,  my good friend and colleague Gary 
Chartrand. The result, which was submitted nearly simultaneously as a joint note 
by two mathematicians in one university and also by one chap in another 
university, was a novel observation which stated that if a graph satisfied three very 
simple sounding conditions, it didn’t exist. Of course, Gary wrote to  these three 
gentlemen and suggested that they submit one joint paper which we would be glad 
to  publish. The sole author agreed, but the two coauthors did not, so unfortunately 
we had to decline both notes. 

These anecdotes d o  not by any means exhaust the examples of independent 
discovery in graph theory. In fact, independent discovery is probably more the 
rule than the exception, particularly in a field which is growing as rapidly as 
graph theory. One of the reasons is that we now have results on problems of interest 
circulated widely among people of varying backgrounds. It is not at all unreasonable 
that more than one person should have a similar insight at about the same time. 
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