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Context: Preventive medicine has historically favored reducing a risk factor
by a small amount in the entire population rather than by a large amount in
high-risk individuals. The use of multivariable risk prediction tools, however,
may affect the relative merits of this strategy.

Methods: This study uses risk factor data from the National Health and Nuctri-
tion Examination Survey III to simulate a population of more than 100 million
Americans aged thirty or older with no history of CV disease. Three strategies
that could affect CV events, CV mortality, and quality-adjusted life years were
examined: (1) a population-based strategy that treats all individuals with a
low- or moderate-intensity intervention (in which the low-intensity interven-
tion represents a public health campaign with no demonstrable adverse effects),
(2) a targeted strategy that treats individuals in the top 25 percent based on a
single risk factor (LDL), and (3) a risk-targeted strategy that treats individuals
in the top 25 percent based on overall CV risk (as predicted by a multivariable
prediction tool). The efficiency of each strategy was compared while varying
the intervention’s intensity and associated adverse effects, and the accuracy of
the risk prediction tool.

Findings: The LDL-targeted strategy and the low-intensity population-based
strategy were comparable for CV events prevented over five years (0.79 million
and 0.75 million, respectively), as were the risk-targeted strategy and
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moderate-intensity population-based strategy (1.56 million and 1.87 million,
respectively). The risk-targeted strategy, however, was more efficient than the
moderate-intensity population-based strategy (number needed to treat [NNT}
19 vs. 62). Incorporating a small degree of treatment-related adverse effects
greatly magnified the relative advantages of the risk-targeted approach over
other strategies. Reducing the accuracy of the prediction tool only modestly
decreased this greater efficiency.

Conclusions: A population-based prevention strategy can be an excellent op-
tion if an intervention has almost no adverse effects. But if the intervention
has even a small degree of disutility, a targeted approach using multivariable
risk prediction can prevent more morbidity and mortality while treating many
fewer people.

Keywords: Risk stratification, prevention, multivariable prediction tools,
cholesterol.

OPULATION-BASED PREVENTION APPROACHES THAT ATTEMPT
P to lower the risk of the entire population can have overwhelming

appeal, especially when applied to environmental exposures. For
example, decreasing the amount of trans fats or salt in commonly eaten
foods could efficiently and cheaply reduce disease in the overall popula-
tion to a degree that would be difficult to do using a medical model of
intervention (Stamler et al. 1989). However, a commonly quoted argu-
ment in favor of population-based prevention is that in most cases more
disease is prevented by reducing a risk factor by a small amount in the
general population than by selectively reducing it by a large amount
in high-risk individuals (Stamler et al. 1989; Rose 1985, 1992). This
principle of prevention was introduced by Geoffrey Rose in the 1980s
(Rose 1985). Using risk factors such as cholesterol and blood pressure
as examples, Rose demonstrated that a strategy that reduced the popu-
lation average would lower the prevalence of clinical heart disease more
than would a strategy that focused on those people with the highest
cholesterol and blood pressure values (Rose 1992).

Early epidemiological and modeling studies in cardiovascular (CV)
disease confirmed Rose’s theory (Kottke et al. 1985). These results were
based on the premise that CV risk was distributed so that the majority
of events and deaths occurred among the large number of persons with
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only a modest elevation in the targeted risk factor and that individuals
with the highest cholesterol and blood pressure levels accounted for
only a small proportion of events in the population. More recently, an
analysis of the World Health Organization’s Global Burden of Disease
database supported this pattern for most major global diseases (Rodgers
et al. 2004). These findings reinforce the concept of reducing the disease
burden by using prevention strategies that shift the distribution of risk
factors across the population.

One of the reasons that population-based strategies were favored in the
past is that a strategy targeting high-risk individuals requires an accurate
method of predicting future disease (Rodgers et al. 2004). When Rose
developed his concepts of population-based prevention in the 1970s
and 1980s, risk prediction was in its infancy, and a person’s risk was
generally estimated by one or two risk factors or by a simple point-based
system. Rose acknowledged the limitations of risk prediction at that
time, stating, “Unfortunately the ability to estimate the average risk
for a group, which may be good, is not matched by any corresponding
ability to predict which individuals are going to fall ill soon” (Rose
1992, 48). Today, however, we have robust multivariable risk prediction
tools for many common health outcomes (Avins and Browner 1998;
Cheung et al. 2001; Fiaccadori et al. 2000; Hayward et al. 2005; Le Goff
et al. 2000; Moscucci et al. 2001; Pocock et al. 2001; Selker et al. 1997;
Slotman 2000; Stier et al. 1999; Tekkis et al. 2003; Teno et al. 2000;
Wilson et al. 2007; Zimmerman et al. 1998). These tools use clinical
data in a regression model to estimate an individual’s risk of developing
disease. Recent work has shown that multivariable risk prediction can
detect heterogeneity in a clinical trial population’s treatment benefit
much more precisely than prediction using single risk factors (Hayward
et al. 2005, 2006; Kent et al. 2002; Kravitz, Duan, and Braslow 2004;
Rothwell and Warlow 1999). These improved risk prediction tools have
demonstrated that most people have a very low risk for CV events in
the next five to ten years (Avins and Browner 1998; Selker et al. 1997).
Thus, a majority of the people who are exposed to a population-based
strategy may be very unlikely to develop clinically significant disease.

Previous studies that compared population-based and targeted pre-
vention strategies raised concerns that the accuracy of risk prediction
tools could be substantially diminished when used in routine clinical
practice (Emberson et al. 2004; Strachan and Rose 1991). This can hap-
pen when high-risk individuals face barriers to health care access or if
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their health care providers cannot easily identify them as being at high
risk. A model that cannot be generalized from one population to an-
other may also cause problems. In addition, if the model considers too
many variables, it may be “overfit” to the study population, and if risk
factors are measured less accurately in practice than in clinical studies,
regression dilution due to measurement error can weaken the risk fac-
tor’s ability to accurately predict individual risk (Knuiman et al. 1998;
MacMahon et al. 1990). Such concerns about inaccuracies in risk predic-
tion tools have led to more misgivings about risk-stratified approaches
(Emberson et al. 2004).

Given the dramatic advances in multivariable risk prediction tools,
we were interested in exploring how these tools influence the relative
efficacy of targeted and population-based interventions in preventive
medicine. We examined this phenomenon in the general U.S. population
using one of the two scenarios that Rose used more than twenty-five years
ago, namely, LDL cholesterol and CV disease. Specifically, we looked at
both the population benefit, defined as the amount of harm reduced in
the total population, and the efficiency, defined as the amount of harm
reduced for each person treated. We examined how these elements vary
according to (1) the degree to which the population can be stratified by
risk (no risk stratification vs. single-variable risk stratification vs. mul-
tivariable risk stratification), (2) the degree of treatment-related adverse
effects (disutility related to complications, side effects, and inconve-
nience of the intervention), and (3) the accuracy of the risk prediction
tool. The aim of our analysis was not to determine whether a targeted
approach is always better or worse than a population-based strategy
(because the answer to that question depends on the intervention and
condition-specific circumstances and assumptions) but to better quan-
tify how specific factors can influence the relative merits of the two
approaches.

Methods

Population Estimates

The distribution of risk factors in the U.S. population was estimated
using data from the National Health and Nutrition Examination Sur-
vey (NHANES), which uses interviews, physical examinations, and
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diagnostic tests to obtain nationally representative information about
the health of the U.S. population. We chose NHANES III (conducted
between 1988 and 1994) for our analyses because we wanted data rep-
resenting the natural distribution of LDL cholesterol in the population
before the widespread use of statin therapy. Although other cholesterol-
lowering medications were used during this period, they were used
infrequently for primary prevention, and owing to their lower potency
and low adherence, they were only marginally effective in reducing LDL
(Goldman et al. 1991; Leitha et al. 1994; Watts et al. 1992).

Model Population

To estimate the distribution of CV risk factors, we used data from
NHANES III for persons aged thirty or older with no history of a heart
attack. Although few clinical trials have included large numbers of in-
dividuals older than seventy-five years, subgroup analyses have demon-
strated clear benefits of lowering cholesterol in all age groups studied,
and national guidelines do not include an age cutoff. We therefore opted
to include all age groups in our population-based analysis and to exclude
persons with no record of LDL cholesterol measurement. Results for the
4,922 subjects meeting our inclusion criteria were extrapolated to con-
struct a simulated population of more than 100 million individuals,
which approximates the U.S. population aged thirty or older with no
history of CV disease (U.S. Census Bureau 2004).

Risk of CV Events and Mortality

We estimated the risk of CV events (angina, myocardial infarction,
peripheral vascular disease, stroke, and heart failure) and CV death
over a five-year period using sex-specific Weibull regression models
based on the Framingham Cohort Study (Anderson et al. 1991). The
risk prediction tool includes age, sex, systolic blood pressure, current
smoking status, serum total and high-density lipoprotein cholesterol
concentrations, diabetes, and evidence of left ventricular hypertrophy as
detected using ECG. The end points were the incidence of CV events and
CV mortality. We chose a five-year interval based upon the assumption
that most patients would be reevaluated for preventive care and medical
intervention at least every three to five years.
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Intervention Efficacy

We assigned a 10 percent, 25 percent, and 35 percent relative risk re-
duction (RRR) for low-, moderate-, and high-intensity interventions,
respectively. These numbers roughly correspond to the effects of low-,
moderate-, and high-dose statin therapy (Heart Protection Study Collab-
orative Group 2002; Jacobson et al. 1998; LaRosa, He, and Vupputuri
1999; Pignone, Phillips, and Mulrow 2000), which produce a constant
RRR, or log-linear response, in CV events and mortality (Grundy et al.
2001).

Population and Targeted Intervention Strategies

Table 1 summarizes the treatment approaches we evaluated, including
each treatment’s efficacy and adverse effect rate. First we examined two
population-based prevention strategies that simulated low-intensity and
moderate-intensity population-wide interventions. We then stratified
the population first by a single risk factor (LDL) and second by the
overall CV risk as determined by the multivariable Framingham risk
prediction tool described earlier (Anderson et al. 1991). For the LDL-
targeted strategy, we evaluated the benefits of treating individuals with
moderate-intensity therapy if their LDL was in the seventy-fifth to
ninetieth percentile and with high-intensity therapy if their LDL was
higher than the ninetieth percentile. For the risk-targeted strategy, we
evaluated the benefits of treating individuals with moderate-intensity
therapy if their CV risk was in the seventy-fifth to ninetieth percentile
and with high-intensity therapy if their CV risk was higher than the
ninetieth percentile.

Benefits of Prevention Strategies

For each treatment model, we calculated the number of CV events and
deaths prevented and the number needed to treat (NNT) to prevent
one event or death. We then estimated the quality-adjusted life years
(QALYs) gained in each model and compared the population benefit
(QALYs gained over five years in the U.S. population) and the efficiency
(QALYs gained per 1,000 adults treated, and NNT to gain one QALY).
We computed the gain in QALYs for each person using the follow-
ing calculation (where 0.25 represents the disutility associated with a
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cardiovascular event) (Nowels et al. 2005; Tsevat et al. 1991): Gain
in QALY over five years due to intervention equals QALY lost over
five years without intervention minus QALYs lost over five years with
intervention. If the five-year CV mortality risk without intervention is
My, the five-year CV event risk without intervention is Ey; Mg, and
ERy are the comparable rates in the presence of the intervention, dgy is
the disutility associated with treatment, and a constant rate of outcomes
over a five-year period is assumed (with 2.5 representing the average
time over which events and deaths would take place during that period),
then:

QALYS gained = [(25 * M()) + (025 * 2.5 * (E() - M()))}

—1(2.5" Mgy) + (0.25 " 2.5 ™ (Egy — Mgx)) + Ory “ 5 — (2.5 * Mgy )))]

Treatment-Related Adverse Effects

We incorporated various degrees of treatment-related adverse effects
(disutility) into our calculation of QALYs. We used values that ranged
from 0.001 to 0.004 based on previous estimates of disutilities as-
sociated with lifestyle modifications and medications (e.g., taking an
aspirin a day has been estimated to have a disutility of 0.002) (Gage
et al. 1995; Krahn et al. 1991; Revicki and Wood 1998). We exam-
ined the impact on QALYs if the intervention had a “very small ad-
verse effect rate” (0 for low-intensity treatment, 0.001 for moderate-
intensity treatment, and 0.002 for high-intensity treatment) and a
“small adverse effect rate” (0 for low-intensity treatment, 0.002 for
moderate-intensity treatment, and 0.004 for high-intensity treatment).
The low-intensity population strategy was intended to mimic a pub-
lic health intervention with no direct or indirect adverse effects (as
might be the case in an educational campaign with no demonstrable
downside).

Accuracy of the Risk Prediction Tool

We examined how the accuracy of the risk-prediction tool influences the
total population benefit and the efficiency of treatment effects. Using
the Framingham risk tool to predict both risk and benefit may augment
the advantages of a risk-stratified approach because prediction tools are
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often less accurate when used in the real world than in the populations
in which they are developed. On the other hand, using the Framing-
ham risk tool may result in underestimating the benefits of optimal
risk-stratification because other tools offer more precise estimates of risk
(Empana et al. 2003; Ferrario et al. 2005; Grundy et al. 2001; Hense
et al. 2003; Liu et al. 2004). To account for these possibilities, we var-
ied the accuracy of the risk prediction tool in our sensitivity analysis
to determine how deterioration of the predictive model in actual prac-
tice would affect the results. We first randomly assigned outcomes to
our simulated U.S. population assuming no attenuation in the model
(meaning that the model works as well in practice as it did in the study
population). Next we progressively increased the measurement error in
the prediction tool’s estimated probability of CV events and deaths by
adding a uniform error component until the C-statistic (the area under
the receiver operator curve) decreased by approximately 20 percent and
40 percent. We then examined how this variation in the accuracy of the
model affected our results (Hayward et al. 2006).

Results

Table 1 shows the different strategies we tested for preventing CV events
and mortality in U.S. adults aged thirty or older with no history of CV
disease. The low-intensity population-based strategy would prevent an
estimated 0.75 million CV events and 0.14 million CV deaths over five
years in the U.S. population (compared with no intervention), whereas
the moderate-intensity population-based strategy would prevent
1.87 million events and 0.34 million deaths (table 2). The LDL-
targeted strategy would prevent an estimated 0.79 million events and
0.15 million deaths, and the risk-targeted strategy would prevent about
1.56 million events and 0.40 million deaths in the population.
Although the LDL-targeted strategy and the low-intensity
population-based approach would prevent a comparable number of CV
events (0.79 million and 0.75 million, respectively), the LDL-targeted
approach is much more efficient. For example, the NNT for five years
to prevent one event is 156 using a low-intensity population-based
approach, but only 37 using the LDL-targeted approach. The risk-
targeted strategy, however, would prevent twice as many events as
the low-intensity population strategy would (1.56 million and 0.75



D.M. Zulman, S. Vijan, G.S. Omenn, and R.A. Hayward

566

"YIedP AD JO 1UAAI AD) 2U0 1uaAdId 03 18211 03 papasu JaqUNN = NN, N

¢L 61 L¢l 8'¢¢ 0%°0 9¢'1 < £3a1e135 panaSrel-ssry

€61 LS z¢ | A4 ¢10 6L°0 (94 £3a1ens pareSre-1q 1

0¥ ¢ 9 6C 091 ¥¢0 L8'1 00T Lyrsuaiur 218I9PON

0¢8 9¢1 1 9 ZAN0) <L 001 Aysuaaur moT  £S91e13s paseq-uorrendog
Aneasoly  siuaag  AIRITON  SIU9AY  AI[EIIOP  SIUSAY pareasy, O1JeUIDG JUIWIIBIIT,

~LNN Pa1BaIT, SUOSIO (SUOTIITIN uonendog
000°T 32d arey ur) vorzerndoq NPV %
'S'[1 UT [P30L

aseasi(] AD JO AJ0ISTH ON Yyim a5y
JO STe3X +()¢ SINPY SuOwWe SIL3X ¢ JOA0 PRIUAAIIJ SAWOIIN()

S31591811G UOIIUIASIJ Pa31aSie], pue paseg-uoniendod Yarm paiuassid sawodIn(Q Jo JaquinN
¢ HIdV.L



Population-Based and Targeted Prevention Strategies 567

million, respectively) and is substantially more efficient than the LDL-
targeted strategy (NNT = 19 and 37, respectively). The efficiency of
the risk-targeted approach is even greater for mortality, where the NNT
to prevent one death is 73, compared with 850 in the low-intensity
population-based strategy and 193 in the LDL-targeted strategy.

To evaluate how disutility influences the efficiency of each prevention
strategy, we calculated the net gain in QALY that would be expected
with each approach if the intervention had a small degree of treatment-
related adverse effects (table 3). For the low-intensity population-based
strategy we estimated that the net QALY's gained in the U.S. population
would be 0.72 million (NNT to gain one QALY was 161). This was
the only strategy for which we assumed no treatment-related adverse
effects, as might be the case in a large-scale educational campaign.
When we incorporated treatment-related adverse effects into the model,
the LDL-targeted strategy performed less well than the population-
based strategies did in terms of QALY gained for all adults, although
it still was more efficient (NNT to gain one QALY was 51 to 77).
Incorporating treatment-related adverse effects, however, made the risk-
targeted approach even more effective relative to all other strategies for
both overall benefit across the U.S. population (1.33 to 1.53 million
QALY gained) and efficiency (NNT to gain one QALY was 19 to 22).

When we adjusted the results of the risk-targeted strategy to account
for a possible decrease in the predictive accuracy of the multivariable
risk prediction tool, we found that the NNT to prevent one CV event
rose by approximately 15 percent to 53 percent (table 4). Nevertheless,
the risk-targeted strategy still had a greater overall population benefit
than did the low-intensity population-based strategy. The risk-targeted
strategy also remained substantially more efficient than the moderate-
intensity population-based strategy, resulting in a gain of 34.4 QALYs
per 1,000 adults treated (compared with a gain of 10.6 QALY per 1,000
adults treated with the moderate-intensity population-based strategy).

Figure 1 provides a graphic explanation of why LDL-based targeting
performs so much less well than CV risk-based targeting. As the figure
illustrates, the correlation between LDL values and overall CV risk is
relatively low (the correlation coefficient is 0.26 for LDL and risk of CV
event, and 0.16 for LDL and risk of CV mortality). The risk of a CV
event for an individual in the top 10 percent of LDL levels is only two
times higher than that of an individual in the bottom 75 percent. But
when the population is stratified using multivariable risk prediction,
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FIGURE 1. Relationship between Serum LDL and Five-Year Risk of CV Events
and Mortality for 4,922 Individuals in NHANES III

Note: These graphs illustrate the correlation between LDL cholesterol and the risk of CV events
and mortality over five years. The low correlation coefficients for LDL and risk of CV event (0.26)
and LDL and risk of CV mortality (0.16) suggest that LDL levels alone are poor predictors of CV
risk. In this scenario, a targeting strategy that focuses solely on persons with high LDL is likely to
miss a substantial number who have low LDL levels but otherwise high CV risk.

this difference increases to nine times higher. These results are even
more striking when analyzing a person’s risk of dying from a CV event,
as the difference between the top 10 percent and the bottom 75 percent
is again two times when stratifying by LDL, but fifty-two times when
stratifying by overall CV risk. Table 5 uses two hypothetical individuals
to demonstrate this concept further. Individual B, who has low LDL
but several other risk factors for CV disease (i.e., low HDL, high blood
pressure, and history of tobacco use), has a risk of a CV event that is
approximately thirty times higher than that of individual A, who has
high LDL but no other major CV risk factors.

Discussion

This article explores how specific factors influence the relative merits of
population-based and targeted prevention strategies. By modeling one
of Rose’s examples in his seminal work (1992), we demonstrate that
reducing a risk factor by a small amount in the overall population is not
as effective as reducing it by a moderate amount in high-risk individuals
who are identified with a moderately accurate multivariable risk pre-
diction tool. Furthermore, our results show that a targeted strategy can
quickly become the dominant approach (fewer people are treated, and
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TABLE 5
Examples of Extreme Discordance between LDL Levels and CV Risk

A: High LDL, B: Low LDL,
Low CV Risk High CV Risk
Age 45 68
Sex Female Male
LDL 175 95
HDL 55 25
Triglycerides 100 200
Systolic blood pressure 120 145
Left ventricular hypertrophy by ECG No Yes
Tobacco use No Yes
S-year risk of CV event 1.3% 40.6%
5S-year risk of CV mortality < 0.1% 13.2%

Note: Values in boldface indicate risk factors for CV events and mortality.

To illustrate the concept of risk stratification, this table compares the risks of two individuals.
Despite having a high LDL, individual A has a 1.3 percent risk of a cardiovascular event in the
next five years, and less than 0.1 percent risk of mortality due to such an event. But individual B
has a 40.6 percent risk of a cardiovascular event in the next five years and a 13.2 percent risk of
mortality from such an event.

more morbidity and mortality are prevented) when the intervention has
even infrequent adverse effects.

Our study suggests that the principle that “reducing a risk factor by
a small amount in the overall population is more effective than reducing
it by a large amount in high-risk individuals” may seldom be true when
using multivariable risk prediction. The reason that a multivariable
approach makes such a large difference is that the contribution of a
single factor to overall risk is usually quite small (Hayward et al. 2005).
Even a major risk factor rarely increases risk by more than a factor of 1.5
to 2, whereas multivariable tools can often stratify risk to the point that
the risk of the highest quartile is five to forty times higher than that of
the lowest quartile (Ioannidis and Lau 1998; Kent and Hayward 2007).
This simple fact is what underlies much of the findings in our analyses.

In addition to renewing interest in evaluating “high-risk” or targeted
approaches to prevention, the availability of risk stratification tools has
enabled the incorporation of overall individual risk into certain clinical
guidelines (Emberson et al. 2004; Manuel et al. 2006). The National
Cholesterol Education Program (NCEP) guidelines are an example of
this. The initial guidelines focused primarily on LDL levels. Over time,
they were extended to major risk factors, such as diabetes and known
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macrovascular or kidney disease, until finally the overall Framingham
risk was added as a criterion in NCEP III (NCEP III 2002). Similarly,
tighter blood pressure goals are currently recommended for patients
with a higher CV risk than for those with a lower CV risk. Still, few
guidelines recommend using robust multivariable prediction tools to
assess the appropriateness of aggressive risk factor modification. Our
results suggest that such strategies should at least be considered in
future guideline deliberations in those instances for which multivariable
tools exist.

A possible limitation of targeted strategies is that they may not iden-
tify certain high-risk individuals, such as in cases of inadequate health
care access or an incomplete assessment of risk by a health care provider.
In addition, the efficiency of a targeted strategy may be overestimated
if the multivariable risk prediction tool is less accurate in practice than
in studies (i.e., due to overfitting or poor generalizability) (Emberson
et al. 2004; Strachan and Rose 1991). In order to evaluate the magnitude
of these effects, we varied the accuracy of the risk prediction tool. We
found that a less accurate tool, which would translate into fewer high-
risk individuals being treated, did have a substantial effect on the overall
population benefit. Even so, the targeted strategy remained much more
efficient, as measured by NNT.

Another potential drawback of a targeted approach is that the ben-
efits of preventive interventions often extend to several diseases and a
targeted strategy may offer these benefits to fewer people. For example,
a public health campaign encouraging physical activity could improve
a community’s risk profile not only for CV disease but also for diabetes,
cancer, osteoporosis, and depression, to name just a few. When the risks
of different disease outcomes are concentrated in subpopulations, tar-
geted approaches could be directed at such groups. If this is not the case,
however, a targeted approach may not be able to replicate the breadth
of benefits of a population-wide strategy. The impact of an intervention
on multiple disease processes is therefore an important consideration for
policy decisions.

Although our model focused on CV outcomes, we believe that the
results of our study could be extended to other conditions. While risk
estimation models for CV disease are more refined than those for most
other diseases, we found that only a modestly predictive tool (AUROC >
0.6) was needed to make a moderate-intensity targeted intervention
more effective than a low-intensity population-based strategy. Many
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major outcomes, including end-stage renal disease, stroke, CV disease,
hospitalization, ICU stays, and most cancers, have prediction tools with
AUROC curves substantially greater than 0.6 even after considering
likely regression dilution (Hayward et al. 2005). Furthermore, CV dis-
ease has a high absolute risk at the population level. This is important
because how much even a small degree of treatment harm influences
a preventive strategy depends on the absolute risk of disease-related
morbidity and mortality in the population. By using the example of
CV disease, we selected a “best-case scenario” for a population-based ap-
proach because CV disease is by far the leading cause of overall mortality.

Our study addresses only some of the factors influencing the mer-
its of different preventive approaches. Essential to a successful targeted
approach is that high-risk individuals be easily identified and treated.
In contrast, a population-based approach relies on effective commu-
nication about and access to the intervention. The costs and risks of
population-based interventions and targeted strategies may differ con-
siderably, and limited resources may make one strategy preferable. For
example, an affordable population-based intervention that offers short-
term improvements in quality of life (such as a diet or exercise program
that makes people feel better within a short time) will theoretically
almost always be preferable to a targeted approach. But if resources are
limited and the choice is between a cheap, low-intensity intervention
that increases all persons’ physical activity by a little and a more ex-
pensive but much more effective intervention that increases sedentary
high-risk individuals’ physical activity by a lot, the latter is likely to
do much more good (Richardson et al. 2004). In most circumstances,
however, the two approaches are not mutually exclusive and often are
complementary. While comparing them can yield valuable information
for policy development and implementation, the optimal prevention
policy will often use both strategies.

Our study demonstrates that the benefits of prevention strategies can
be substantially influenced by even a small magnitude of treatment-
related adverse effects. If a treatment truly has no direct or indirect ad-
verse effects, a population-based strategy will always prevent more bad
outcomes than will a targeted intervention of equal intensity, because
more people will benefit from the intervention and no one will suffer neg-
ative consequences. This is what makes public health campaigns, such as
those promoting appropriate exercise or banishing trans fats from restau-
rants, so compelling. We chose to model this type of population-wide
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intervention to show that even a risk-free, population-based strategy is
less efficient (in terms of NNT to prevent a particular outcome or to
gain one QALY) than an effective targeted strategy.

Even an educational campaign, however, is rarely without some dis-
utility, be it in the form of lost time or the intrusiveness or cost of a
lifestyle change. Even resentment of public health officials may some-
times need to be considered. For population-wide medical interventions
like a proposed polypill (Wald and Law 2003), the disutility may be
the traditional adverse effects of drugs, including mild side effects, rare
serious complications, and drug interactions. Our analysis strongly sug-
gests that even a minimal degree of treatment-related adverse effects,
approximately half the disutility estimated for a daily aspirin (Gage et al.
1995), can quickly make a population-based strategy much less desir-
able. The relative inefficiency of the population-based approach may
result in many people experiencing disutility but only a few gaining a
clinically significant benefit.

In conclusion, population-based prevention strategies may be appro-
priate when the risk for a disease is widely dispersed in the population
and the proposed intervention is very safe and cheap. Furthermore, the
appeal of a population-based approach increases when it is more costly
and difficult to identify and intervene on high-risk individuals. But
with the advent of more refined multivariable prediction tools, we now
are often able to identify those persons who account for the major-
ity of clinically significant disease morbidity and mortality. Our study
demonstrates that as risk stratification tools become more precise, a tar-
geted prevention strategy that focuses on high-risk individuals is usually
dramatically more efficient than a population-based strategy. In such sit-
uations, even a very small amount of treatment-related adverse effects
or disutility can make a targeted strategy the preferred choice. Conse-
quently, researchers and policymakers should consider the influence of
these factors when discussing the optimal strategy for preventing many
common diseases.

Summary Points

Population-based prevention strategies using cheap and safe interven-
tions can be considerably more effective than strategies that target
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individuals based on a single elevated risk factor (such as LDL or blood
pressure).

Multivariable prediction tools have greatly enhanced our ability to
identify individuals who are at higher or lower risk for developing
complex diseases such as coronary heart disease.

As the precision of risk prediction tools increases, targeted prevention
strategies that focus on high-risk individuals become dramatically more
efficient than population-based strategies.

When there is even a small degree of disutility associated with an
intervention, a targeted approach will result in greater prevention for
less cost.
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