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asymptotic stability of solitary-wave-like solutions in other systems.
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1. Boussinesq’s equations

In several works presented to the Paris Academy of Sciences in 1871 and
1872, Boussinesq addressed the problem of the persistence of solitary waves

w xof permanent form on a fluid interface 1]4 . This problem had been raised
w xto prominence in the 1840s by the observations of Scott Russell 5 and the

w x w xobjections of Airy 6 and Stokes 7 .
Starting from Euler’s equations for two-dimensional, inviscid, irrotational

flow beneath a free surface, Boussinesq introduced approximations appro-
priate for long waves of small amplitude. To describe the nature of Boussi-
nesq’s approximations, we follow modern practice and nondimensionalize as
follows. Let a denote a typical surface wave amplitude, h , the uniform fluid0

depth when the fluid is at rest, and l, a characteristic length of a surface
wave. Introduce the dimensionless ratios of lengths

a s arh , b s h2 r l 2 .0 0

The Boussinesq scaling is defined by taking a s b s« to be a small
parameter, corresponding to studying long waves of small amplitude. A
formal expansion may be carried out in powers of « , neglecting terms of

w xhigh order}see the book by Whitham 8 . The result of this procedure is a
system of equations governing the time evolution of the nondimensional,

Ž . Ž .scaled variables h x, t , the elevation of the free surface, and u x, t , the
vertically averaged horizontal component of fluid velocity.

The most well known of Boussinesq’s equations obtained in this way may
be written

3 12h s h q « h q «h .Ž .t t x x x x x x2 3x x

This equation is intended to describe waves moving basically in one direc-
Ž .tion, for which h qh sO « . It gives a satisfactory description of steadyt x

long waves of small amplitude, has solitary-traveling-wave solutions, and
w xadmits an associated inverse scattering formalism, cf. 9, 10 . The solitary

waves may be written explicitly, and they are unimodal and decay to a
constant at "`. This Boussinesq equation has not been found suitable for
the purpose of describing unsteady wave propagation, however, because its
initial value problem is linearly ill posed. Linear plane waves eik xyiv t obey

12 2 4the dispersion relation v s k y « k , which permits unbounded growth3

rates for high-frequency waves.
We concern ourselves with three other systems connected with Boussi-

nesq’s work for water waves, which have the advantage of being linearly well
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posed. These systems are treated in parallel in this work, and it will be
convenient to refer to cases B1, B2, or B3, indicating to which system a
particular equation corresponds.

The first equation may be obtained from that above by a modification that
Ž .produces the same order of approximation. Since formally h sh qO « ,t t x x

Ž 2 .one obtains, to within terms that are O « ,

3 12h s h q « h q «h . 1.1.B1Ž .Ž .t t x x x x t t2 3x x

The linearization of this equation has a real dispersion relation, v s
1 2'" kr 1q « k , and the initial value problem has a rather simple local3

existence theory. Regarding global existence, it is known that some solutions
w xdevelop singularities in finite time 11 . The sort of modification made in

Ž .1.1.B1 is a type of approximation made frequently by Boussinesq, although
Ž .we have not found an equation exactly equivalent to 1.1.B1 in Boussinesq’s

Ž .works. The regularization in 1.1.B1 resembles that used by Benjamin et al.
w x Ž .12 to regularize the KdV equation, and 1.1.B1 has been derived by

w x Ž .Rosenau 13 to model the bidirectional propagation of nonlinear waves in
lattices.

The equations above are valid approximations for water waves only for
waves propagating in one direction, but Boussinesq also derived related
systems of equations that are appropriate for describing the bidirectional
propagation of long waves of small amplitude. We are particularly interested

w xin two systems that are described by Whitham 8 , which have exactly the
Ž . 1same linear dispersion relation as 1.1.B1 . The first system is

h q u q « hu s 0,Ž . xt x

1.1.B2Ž .
1u qh q « uu q «h s 0.t x x t t x3

Ž .The initial value problem for 1.1.B2 has not been studied, to our
Ž .knowledge. However, if one invokes the approximation h qu sO « , onet x

w xobtains a variant mentioned by Whitham 8, p. 466 , which also appears in a
w xpaper of Peregrine 14 . This variant again has the same linear dispersion

1 w xThis system is nearly identical to one that received substantial attention by Boussinesq 15 ,
Ž . Ž . Ž .consisting of his equations 270 bis and 276 ter . The system 1.1.B2 differs only in that Boussinesq

retained a nonlinear coefficient in front of the h term. But Boussinesq does approximate this termt t x
as linear on page 391, in passing.
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Ž . 2relation as 1.1.B1 and is given by the system

h q u q « hu s 0,Ž . xt x

1.1.B3Ž .
1u qh q « uu y « u s 0.t x x t x x3

Ž .The well posedness of the initial value problem for 1.1.B3 has been
w x w xestablished, globally in time, by Schonbek 15 and Amick 16 .

Ž .In deriving Equations 1.1 these days, one might prefer to proceed in
Ž . Ž .reverse order. Whitham derives 1.1.B3 , then relates it to 1.1.B2 . Using

Ž . Ž .the formal approximations u qu sO « , h qh sO « , which are appro-t x t x
Ž . Ž .priate for unidirectional propagation, from 1.1.B3a one finds ushqO « .

Ž . Ž .Then 1.1.B1 can be derived, and from that, 1.1 .
Ž .Each system of Boussinesq equations 1.1 has a two-parameter family of

solitary-wave solutions that travel to the right}we describe these in Section
2. We are interested in stability properties of these waves, i.e., in the
long-time behavior of solutions initially close to such a wave. Let us first
discuss the physical heuristics that motivate our analysis. A small perturba-
tion of a solitary traveling wave is expected to generate small-amplitude
dispersive waves, and possibly small-amplitude solitary waves. We approxi-
mately describe small-amplitude dispersive waves as superpositions of plane

Ž . Ž .waves exp ikxy iv t , where v s v k is a branch of the dispersion relation
for the linearized equation. For the equations at hand, the group velocity of
linear dispersive waves, dv rdk, is always strictly less than the speed of any
solitary wave traveling to the right. Furthermore, small solitary waves travel
slower than larger ones.

Thus, we expect that a slightly perturbed solitary wave will outrun the
distortions generated by a small perturbation and recover its shape, after
allowing for some adjustment of phase and amplitude. Equivalently, in a
rightward-moving frame of reference in which the solitary wave is at rest,
small disturbances should appear to convect away to the left, due to the
mismatch between the solitary-traveling-wave speed and the admissible
speeds of small disturbances. In this situation, we call the solitary traveling
waves con¨ectï ely stable.

How can we formulate the notion of convective stability mathematically?
The heuristics above suggest that one introduce a weighted norm defined in
terms of a frame of reference moving with the unperturbed solitary wave,

2 Ž . Ž .The system 1.1.B3 has been associated with Boussinesq by several authors. As with 1.1.B1 , we
Ž .have not been able to find the system 1.1.B3 in Boussinesq’s work. However, it is not unreasonable

Ž . Ž .to associate these equations with Boussinesq. The approximations leading to 1.1.B1 and 1.1.B3
are entirely consistent with his method and style, which involved many fairly freely made approxima-
tions.
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designed to diminish as perturbations travel to the left. The solitary waves
may be called convectively stable if they are asymptotically stable with
respect to such a norm, modulo small adjustments of phase and amplitude.

To be more precise, suppose that the wave evolution equation can be
Ž .written as a system w s FF w and that a solitary wave traveling with speed ct

Ž . Ž .is given by w xyct . We anticipate that if initial data w x, 0 are close toc
Ž .w x , then the solution approaches a solitary wave traveling with a nearbyc

speed c with perhaps a small phase shift s , in the sense thatq q

w x , t s w xyc tys q z xyc t , t ,Ž . Ž . Ž .c q q qq

where z s, t ª 0 as t ª ` 1.2Ž . Ž .

in the weighted norm.
w xIn our work on solitary wave stability for generalized KdV equations 17 ,

we proved a convective stability result of just this type, finding that a
convenient weighted norm is an exponentially weighted L2 norm of the form

1r2
2as 2 as

25 5 5 5f s e f s e f s ds , 1.3Ž . Ž .a L Hž /
Ž .where a)0 is sufficiently small. Note that for a function f sqCt being

Ž . 5 Ž .5convected to the left C)0 , the norm f ?qCt ª0 as tª` at ana

exponential rate.
w xAn important part of the analysis in 17 is to establish what we call

con¨ectï e linear stability for the solitary waves. Suppose that in a frame of
reference moving with the speed of the unperturbed solitary wave, the

Ž .linearized evolution equation for the solitary wave perturbation, z s, t , is
written in the form

­ z s AAz . 1.4Ž .t

Ž .This equation has a two-parameter family of secular nondecaying solu-
tions, corresponding to infinitesimal shifts in phase and changes in solitary

Ž .wave speed. One wishes to show that Equation 1.4 is asymptotically stable
Ž .with respect to the weighted norm in 1.3 , modulo this two-parameter

family.
The main purpose of this article is to prove this convective linear stability

property for the small-amplitude solitary waves of the Boussinesq equations
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Ž .in 1.1 , in cases B1 and B3. The main result is Theorem 11.1. In effect, we
show that, with respect to a Hilbert space defined using the weighted norm in
Ž .1.3 :

Ž . Ž .i The initial value problem for 1.4 is well posed, in that AA is the
Ž .generator of a C -semigroup strongly continuous semigroup .0

Ž .ii Zero is an isolated eigenvalue of AA of multiplicity two.
Ž . Ž . Ž . Ž .iii Given initial data z s, 0 s z s for 1.4 whose spectral projection0

onto the generalized kernel of AA vanishes, we have

yb t 5 5z ?, t F Ce z , t ) 0.Ž . aa 0

Something less is achieved in the case B2, due to the lack of a theory of
Žwell-posedness in that case. What is proved in all three cases see Theorem

.5.3 is the absence of nonzero eigen¨alues satisfying Rl)yb for some b)0,
with respect to the weighted norm. This is the major part of proving
convective linear stability in the cases B1 and B3.

In these cases, introducing the weighted norm has the effect of shifting
the continuous spectrum of AA from the imaginary axis into the left half-plane.
Any nonzero eigenvalues that appear, which satisfy RlF0, correspond to
what are called resonance poles3 for AA with respect to the unweighted norm,

Ž .and serve to limit the decay rate that may be obtained in iii . In effect, we
show that resonance poles are absent in a strip yb-RlF0 containing the
imaginary axis.

wTo study the eigenvalue problem, we make use of the E¨ans function 23,
x24 , a Wronskian-like analytic function whose zeros in the right half-plane

correspond to unstable eigenvalues. For the problems at hand, the natural
domain of the Evans function extends some distance into the left half-plane.
To locate its zeros, our strategy is to exploit the fact that in the small-ampli-
tude, long-wave regime for unidirectional wave propagation, each of the

Ž .Boussinesq equations 1.1 is asymptotically related to a fundamental and
famous equation, the so-called Korteweg ] de Vries equation:

3 1h qh q «hh q «h s 0. 1.5Ž .t x x x x x2 6

Ž .We prove that the Evans function for each eigenvalue problem from 1.1
Ž .converges uniformly in a domain containing the closed right half-plane to

3 w xThe term ‘‘resonance pole’’ is drawn from a phenomenon arising in quantum scattering theory 18 .
w xThe same phenomenon gives rise to the scattering frequencies in classical scattering theory 19 and

w x‘‘Landau damping’’ in plasma physics 20, 21, 22 .
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that from the KdV equation, taken with an appropriate scaling. For the KdV
equation, the Evans function is known explicitly, and it vanishes only at the
origin. By means of the argument principle for analytic functions, we
deduce, for small-amplitude solitary waves of each of the Boussinesq equa-

Ž .tions 1.1 , that there are no nonzero eigenvalues satisfying Rl)yb, for
some b)0.

Of course, it is insufficient to prove the absence of eigenvalues with
Ž .Rl)yb, in order to prove a stability estimate such as iii for the C -semi-0

Ž .group exp AAt , regarded as restricted to the spectral complement of the
generalized kernel of AA. The spectrum of the operator AA will not consist of
eigenvalues only. And anyway, the location of the spectrum does not
determine stability}examples are known in which the operator norm of a
C -semigroup grows exponentially in time, while the spectrum of the genera-0

tor lies in the left half of the complex plane.
Ž .Indeed, to infer the stability estimate iii , we make use of a relatively

recent result in semigroup theory, derived from Gearhart’s strong spectral
w x w x Ž w x.mapping theorem 25 . As is elegantly shown by Pruss 26 also see 27 ,¨

Ž .given a C -semigroup exp AAt on a Hilbert space, a necessary and sufficient0

condition for uniform asymptotic stability is that the norm of the resol̈ ent
Ž .y1lIy AA be uniformly bounded for Rl)0. For the cases B1 and B3, we
establish such uniform bounds in Section 11.

Convective stability, in the sense we have described, has recently been
proved for solitary waves in a number of nonlinear dispersive systems. We

w xhave already referred to our results for generalized KdV equations 17 .
w x w xMiller 28 and Miller and Weinstein 29 obtained similar results for solitary

Ž . w xtraveling waves of the regularized long-wave RLW equation. Dodd 30 has
proved a convective stability result for shock profiles in a modified KdV]
Burgers equation with cubic nonlinearity. In all these works, exponentially

Ž .weighted Sobolev norms were used, similar to the norm in 1.3 . For a class
Ž .of nonlinear Schrodinger equations NLS , such as arise in nonlinear optics¨

and plasma physics, a closely related approach was introduced by Soffer and
w xWeinstein 31]33 to prove the nonlinear asymptotic stability of solitary

standing waves. Soffer and Weinstein used polynomially weighted L2 norms
and L p norms with p)2 to measure the transport and decay of dispersive
waves in NLS.

In some dissipative systems, traveling waves that are unstable in a uniform
norm may be convectively linearly stable and play a large role in the
dynamics of solutions generally. One class of examples concerns model

w xequations for gravity-driven waves on thin liquid films; see 34, 35 for
reviews of work in this area. In certain parameter regimes, the uniform film
is unstable to sufficiently long-wave perturbations, and solitary-traveling-wave
solutions that are unstable for that reason exist. However, it is observed that
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typical solutions develop an irregular train of weakly interacting solitary
pulses, with each pulse suppressing instabilities that grow slowly in the wake

w xof the pulse preceding. Related problems are studied by Chang et al. 36
w xand Ogawa and Suzuki 37 .

A further motivation for pursuing the present approach to stability for the
Ž .Boussinesq equations 1.1 , in particular, is the dramatic failure of a now-

Ž .classic method of proving nonlinear stability modulo translations for soli-
w xtary waves. This classic method, introduced by Benjamin 38 , is based on

using a conserved functional associated with a Hamiltonian structure as a
Lyapunov function for solutions constrained by other conserved functionals
Ž .‘‘momenta’’ . At the heart of the success of the method is a variational
characterization of the wave profile of interest as a constrained minimum of
the Hamiltonian subject to fixed momenta. It has since been developed with
considerable success to obtain orbital stability results in a wide variety of

w xnonlinear systems; cf. 39, 40, 41, 42, 43]46 for example. The work of
w xCazenave and Lions 47 is closely related. Lyapunov-type stability argu-

w xments have been used in many other fluid problems; see 48, 49, 50 . For the
Boussinesq systems under consideration, the Lyapunov method fails be-
cause, as a critical point of the appropriate constrained variational problem,
the solitary wave is a saddle point of infinite index. The failure of this

Ž .method for solitary waves in the case B1 for 1.1 and a related system is
w x w xdiscussed by Smereka 51 and by Pego et al. 52 . The mode of failure is

similar to that which occurs for the full Euler equations, as mentioned by
w xBona and Sachs 53 .

Historical remarks on the origin of the KdV equation

Ž .It is a remarkable fact, and apparently little known, that Equation 1.5
Ž .appears explicitly in Boussinesq’s massive 1877 Memoir, as Equation 283bis

Ž .in a footnote on page 360 with a different, but recognizable, notation .
Moreover, Boussinesq based his description of the solitary wave, and his

Ž .account of its stability, on a pair of equations exactly equivalent to 1.5 ,
written in his notation as

dh d.hvq s 0, 1.6Ž .dt dx

v 3h H 2 d2 hs 1q q . 1.7Ž .24H 6h dx'gH

In this notation, H is constant and represents the depth of the fluid at
infinity, h represents the elevation of the wave, and g is the gravitational

Ž . Ž . w x Ž . Ž .constant. These are Equations 5a and 7a of 2 , Equations 29 and 34



Convective Linear Stability 319

w x Ž . Ž . w x Ž . Ž . w xof 3 , and Equations 283 and 291 of 4 . single Equation 40 of 3 and
Ž . w x Ž .292 of 4 is also exactly equivalent to 1.5 .

w xThe solitary waves obtained by Boussinesq 2]4 were exactly traveling
Ž . Ž .wave solutions of his pair of equations 1.6 ] 1.7 , obtained by requiring that

Ž . Ž .v be constant in 1.6 ] 1.7 . It seems that in 1895 Korteweg and de Vries
w x54 were unaware of these works of Boussinesq. They refer only to the first

w xComptes Rendus note of Boussinesq 1 , which sketches a different, less
satisfactory treatment.

Ž .In addition to his discovery of 1.5 , Boussinesq’s rationale for the stability
Ž .of the solitary waves of 1.5 has had a major influence on modern develop-

w xments on the topic. Benjamin 38 credits Boussinesq for the idea that a
certain conserved functional, which Boussinesq called the ‘‘moment of
instability,’’ is relevant for explaining the stability of solitary waves. This

Ž .functional is now known as a Hamiltonian energy for 1.5 . One hundred
w x w xyears after Boussinesq introduced this quantity, Benjamin 38 and Bona 55

used it as a Lyapunov functional to construct a rigorous proof of orbital
Ž .stability for the solitary wave solutions of 1.5 . Boussinesq’s argument that

the moment of instability is constant in time rests exactly on his version of
Ž . Ž . Ž .Equation 1.5 , namely Equations 1.6 ] 1.7 .

It is curious that, until now, no one seems to have noted the important
Ž .role that 1.5 itself plays in Boussinesq’s work, with one exception being

w xMiles 56 , who gives a rather thorough account. We refer the reader to that
paper for further information. Miles did not press Boussinesq’s priority for

Ž .deriving 1.5 , however, most likely because he appears not to have been
aware of its explicit appearance in the 1877 Memoir.

2. The KdV scaling and solitary waves

We begin by developing the properties of the solitary waves of the Boussi-
Ž .nesq equations 1.1 that are subsequently useful. It is convenient to rewrite

Ž .the equations in a frame of reference moving with some nondimensional
speed c, in which solitary waves appear as equilibria. In addition, we unscale
Ž .1.1 to obtain equations where the parameter « does not appear. To do this,
define

1 c 3 3
h s h , u s u , t s c t , s s xyct .Ž .( (˜ ˜3« 3« « «

Ž .Carrying out this change of variables in 1.1 for each case gives respectively

2 12 2 y2 2Iy­ ­ y­ hy­ c hq h s 0 2.1.B1Ž . Ž .˜ ˜ ˜Ž . Ž .s t s s 2
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1­ y­ hq­ uq hu s 0,Ž . Ž .˜ ˜ ˜˜t s s 3

2.1.B2Ž .
21y2 2­ y­ uq­ c hq u q ­ y­ h s 0,Ž . Ž .˜ ˜ ˜ ˜ž /t s s t s6

1­ y­ hq­ uq hu s 0,Ž . Ž .˜ ˜ ˜˜t s s 3

2.1.B3Ž .
12 y2 2Iy­ ­ y­ uq­ c hq u s 0.Ž . ˜ ˜ ˜Ž . Ž .s t s s 6

Ž Ž . 2 .In 2.1.B1 we have used the definition hsc hr3« instead.˜
We study the stability properties of solitary traveling waves in the so-called

Ž .Korteweg]de Vries KdV limit. We introduce the parameter g by defining

cy2 s 1yg 2 . 2.2Ž .

The parameter c corresponds to the Froude number in the exact theory of
water waves. We presume that c)0, without loss of generality. The KdV
limit corresponds to taking c2 ª1, or g ª0. In this process, « is regarded as
fixed.

The KdV scaling is defined by

12 2 3h s g h j ,T , u s g u j ,T , where j s g s, T s g t . 2.3Ž . Ž . Ž .˜ ˜* * 2

Ž .In the KdV limit, for the Boussinesq equations in 2.1 , one finds that
Ž 2 . Ž 2 .formally u sh qO g and that up to terms formally of order O g , h* * *

satisfies the Korteweg]de Vries equation in the form

1 2 3­ h y ­ h q ­ h q ­ h s 0. 2.4Ž .Ž .T * j * j * j *2

Ž .Solitary wa¨es of 1.1 moving with speed c correspond to time-indepen-
Ž .dent solutions of 2.1 that vanish in the limit sª"`. Seeking solutions

Ž . Ž . Ž .hsh s , usu s where subscripts no longer denote derivatives , we˜ ˜ ˜ ˜c c

require respectively

Y 12 2h yg h q h s 0, 2.5.B1Ž .˜ ˜ ˜c c c2

9q2h h˜ ˜1Y c c2 2h yg h q h s 0, u s , 2.5.B2Ž .˜ ˜ ˜ ˜ 1c c c c22 1q h̃3qh c3Ž .˜c

1yg 2 u2 uŽ .˜ ˜1Y c c2 2u yg u q u q s 0, h s . 2.5.B3Ž .˜ ˜ ˜ ˜ 1c c c c6 3yu 1y u˜ ˜c c3

12 2Ž . Ž .The solitary wave for the case B1 is given explicitly by h s s3g sech g s .˜c 2
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Introduce the KdV scaling

h s g 2h j ,g , u s g 2 u j ,g . 2.6Ž . Ž . Ž .˜ ˜c * c *

Ž 2 .In the KdV limit g ª0, we find that u sh q OO g for the cases B2 and* *

B3, and in all cases it turns out that

Y 1 2 2 2h yh q h s OO g h . 2.7Ž .Ž .* * * *2

Ž . Ž .The solitary wave h sQ j of the KdV equation 2.4 satisfies*

1 2Q0 y Q q Q s 0. 2.8Ž .2

It is given explicitly by

12Q j s 3 sech j .Ž . Ž .2

Note that for the case B1 we have h sQ exactly. For the other two cases,*

the properties of solitary wave solutions are summarized by the following
result.

w .THEOREM 2.1. In the cases B2 and B3, for any nonzero g g 0,1 , Equa-
Ž . Ž .tion 2.5 has a unique solution h , u with positï e, e¨en components that˜ ˜c c

Ž .approach 0 as sª`. In the KdV scaling 2.6 , the functions h and u are real* *
Ž . w .analytic in their arguments j ,g gR= 0,1 . When g s0 we ha¨e h su sQ.* *

w .Furthermore, for g in any compact subset of 0,1 ,

jj " j­ h j ,g e sgn j ª K g as j ª "`, for j s 0,1,2, 2.9Ž . Ž . Ž . Ž .j * j

uniformly in g , where K is a non¨anishing continuous function of g , forj

js0,1,2.

Proof: First consider case B2. Let ¨ sh and suppose g /0. Then we˜c

require

¨ 0 yg 2 ¨ q FX ¨ s 0, 2.10Ž . Ž .

1 3Ž . Ž .where F ¨ s ¨ r 3q¨ . In the phase plane of this equation, the origin is2
1 X 2 1 2 2Ž .a saddle point. Equation 2.10 has the first integral Es ¨ y g ¨ q2 2
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1 2 2Ž . Ž . Ž .F ¨ . There is a unique ¨ s¨ g )0 such that F ¨ y g ¨ s0, givenm m m m2
2 Ž 2 . Ž . Ž .explicitly by ¨ s3g r 1yg . The solution of 2.10 having ¨ 0 s¨ ,m m

XŽ .¨ 0 s0 has Es0 and it follows that this solution is even, positive, and
Ž . 2 Ž .approaches zero as sª"`. In the KdV scaling ¨ s sg ¨ j ,g , it is easy*

Ž . w .to see that ¨ is real analytic in j and g for j ,g gR= 0,1 , and*
Ž . Ž .¨ j , 0 sQ j .*

Ž . " j j Ž .That the limits K g s lim e ­ ¨ j ,g exist is a standard conclu-j j ª "` j *

sion of the stable manifold theorem. By following a standard proof of this
Ž w x .theorem cf. 57 for example , it is straightforward to verify that the limit is

attained uniformly on compact sets, so K is continuous.j

Finally, consider the case B3. We proceed in a similar way as above, this
Ž . XŽ .time with ¨ su . The function F in 2.10 is now determined from F ¨ s˜c

1 X X2 2Ž Ž . Ž .. Ž . Ž . Ž .¨ q 1yg r 3y¨ . We have F 0 s F 0 s F0 0 s0, F is an increas-6
Ž .ing convex function, and F ¨ increases from 0 to ` as ¨ goes from 0 to 3. It

follows that a unique ¨ exists as above, depending analytically on g , withm

0-¨ -3. The remainder of the proof goes the same as above. Bm

w x w .COROLLARY 2.2. Gï en a compact inter̈ al 0,g ; 0,1 , there exists a0
w xconstant K such that for g g 0,g , we ha¨e* 0

j y < j <­ h j F K e for j s 0,1,2, y` - j - `,Ž .j * *

or equï alently

j 2qj y <g s <­ h s F K g e for j s 0,1,2, y` - s - `.Ž .˜s c *

3. The eigenvalue problem

In this section, we display the eigenvalue problems associated with the
Ž .solitary waves of the Boussinesq equations in 2.1 , and we observe, at a

formal level, how the eigenvalue problem for the KdV solitary wave emerges
in the KdV limit.

Ž .For each of the Boussinesq equations in 2.1 , we substitute

h s,t s h s q h s,t , u s,t s u s q ¨ s,t ,Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜ ˜ ˜c c

Ž . Ž .and obtain linearized evolution equations for h s,t and ¨ s,t by retaining
only terms that are linear in h and ¨ . We then seek solutions of the

Ž . lt Ž . ltlinearized evolution equations of the form h s e and ¨ s e . Correspond-
Ž .ing to each equation in 2.1 respectively, we obtain the following eigenvalue

equations:

22 2 y2Iy­ ly­ hy­ c qh h s 0, 3.1.B1Ž . Ž .˜Ž . Ž .s s s c
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1ly­ hq­ ¨ q ­ u hqh ¨ s 0,Ž . ˜ ˜Ž .s s s c c3
3.1.B2Ž .

2 1y2ly­ ¨q c q ly­ ­ hq ­ u ¨ s 0,Ž . Ž . Ž .˜ž /s s s s c3

1ly­ hq­ ¨q ­ u hqh ¨ s 0,Ž . ˜ ˜Ž .s s s c c3
3.1.B3Ž .12 y2Iy­ ly­ ¨qc ­ hq ­ u ¨ s 0.Ž . Ž .˜Ž .s s s s c3

Ž . Ž .The corresponding linearized evolution equations for h s,t and ¨ s,t may
Ž .be written down by replacing l by ­ in 3.1 . Each eigenvalue problem int

Ž .3.1 admits a symmetry usually associated with Hamiltonian systems. One
may replace l by yl and reflect in space, replacing s by ys. It follows that

Žif l is an eigenvalue with respect to an unweighted or symmetrically
.weighted norm , then yl is also.

Now we introduce a KdV scaling of these eigenvalue problems. Recalling
Ž .the scaling in 2.4 , let

1 3 2 2l s g L , h s s g H j , ¨ s s g V j , where j s g s.Ž . Ž . Ž . Ž .2

3.2Ž .

The eigenvalue problems in the KdV scaling are given by

13 2 3 2 2 2­ L Hq­ Hy­ Hq­ QH s g L­ q L Iyg ­ H , 3.3.B1Ž . Ž .ž /j j j j j j4

1 12­ HyV sg L Hq ­ u Hqh V ,Ž . Ž .j j * *2 3

1 13L HqV q­ Hy­ Hq ­ u Hq u qh VŽ . Ž .Ž . 3.3.B2Ž .j j j * * *2 3

12 2 4 2sg L­ Hq g L­ H ,j j4

1 12­ HyV sg L Hq ­ u Hqh V ,Ž . Ž .j j * *2 3

1 13L HqV q­ V y­ Hq ­ u Hq u qh VŽ . Ž .Ž . 3.3.B3Ž .j j j * * *2 3

1 2 2s g L­ V .j2

Ž . Ž Ž ..The second equation in 3.3.B2 resp. in 3.3.B3 is obtained by adding
Ž . Ž Ž ..the equations in 3.1.B2 resp. in 3.1.B3 , then scaling. This is done to

make more clear how the KdV eigenvalue problem emerges in the limit
g ª0. Indeed, in this limit it is simple to observe that each of the

Ž .eigenvalue problems in 3.3 formally reduces to the equation

L H q ­ 3H y ­ H q ­ QH s 0. 3.4Ž . Ž .j j j

This is the eigenvalue problem that arises from linearization of the KdV
Ž . Ž . Ž .equation 2.4 about its solitary wave, Q j , the solution of 2.8 . It is known

w x Ž .from previous work 17, 58, 59, 60 that if L/0 and RlG0, then 3.4 has
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2 Ž .no nontrivial solution H in L . Regarding the eigenvalue problems in 3.1 ,
our objective is to use what is known about the KdV eigenvalue problem to
deduce that for sufficiently small g )0, and some a)0, the eigenvalue

Ž . as as 2problem in 3.1 has no solution with e h and e ¨ in L , for any nonzero l
in a half-plane of the form Rl)yb, b)0.

4. The Evans function

To analyze each eigenvalue problem displayed in Section 3, we define an
Ž .E¨ans function D l,g , an analytic function designed so its zeros correspond

to eigenvalues when Rl)0. This function was introduced by J. W. Evans
w x24 to study traveling wave stability in reaction]diffusion systems modeling

w xnerve impulses; further applications were given by Jones 61 and Alexander
w xet al. 23 . A systematic development of the basic properties of the Evans

w xfunction was given by Pego and Weinstein 60 , whose analysis was applied
Ž . 2in particular to the single equation 3.1.B1 , regarding c )1 as fixed. Here

Ž .we are interested in studying D l,g as a function of both l and g , in the
singular limit g ª0 corresponding to the limit c2 ª1q. We begin with a
general description, then proceed to detail the results we need in Section 5
for stating the main results of this article.

To describe the Evans function as it may be defined for the eigenvalue
problems in Section 3, we begin with the observation that each of these
eigenvalue problems can be written, by a standard reduction, as a first-order
homogeneous system of ordinary differential equations, e.g.,

dy s A s, l,g y. 4.1Ž . Ž .ds

Since the solitary waves decay exponentially as sª"`, the coefficient
Ž .matrix in Equation 4.1 converges rapidly, as sª"`, to that of a constant

coefficient system

dy `s A l,g y. 4.2Ž . Ž .ds

Ž . m sEquation 4.2 has the solution ys e v whenever m is an eigenvalue of the
`Ž .matrix A l,g and v is a corresponding eigenvector. Our systems have the

`Ž .feature that when RlG0, the matrix A l,g has a unique eigenvalue with
`Ž .negative real part. Thus the eigenvalues of A l,g may be labeled so that

for RlG0,

Rm l,g - 0 F min Rm l,g . 4.3Ž . Ž . Ž .1 j
j)1
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m1 s Ž . Ž .Corresponding to the solution e v of 4.2 , Equation 4.1 has a unique1
q Ž .solution that decays to zero as sª`, denoted y s, l,g , with a normaliza-

tion chosen so that

yq s, l,g ; e m1 s v as s ª q`. 4.4Ž . Ž .1

Ž .For Rl)0, then, any solution of 4.1 that decays to zero as sª` must be
q Ž .a constant multiple of y . The Evans function D l,g may be characterized

by the property

yq s, l,g ; D l,g e m1 s v as s ª y`. 4.5Ž . Ž . Ž .1

That is, the Evans function serves as a transmission coefficient for yq. It turns
q Ž . Ž .out that, for Rl)0, y s, l,g ª0 as sªy` if and only if D l,g s0.

From this, we find that, for Rl)0, l is an eigenvalue with respect to an
Ž .unweighted norm if and only if D l,g s0.

In this article, the Evans function is defined in a vertical strip containing
the imaginary axis, in addition to the right half-plane. According to the

w xtheory developed in 60 , for g fixed, an Evans function may be defined
Ž . gnaturally for 4.1 for all l belonging to a simply connected domain V in

the complex plane, provided that the following four hypotheses hold:

Ž . Ž .H1 A s, l,g is continuous in s, l and is analytic in l for fixed s.
Ž . `Ž .H2 A s, l,g ª A l,g as sª"`, uniformly for l in any compact

subset of Vg.
` < Ž . `Ž . < gH3 The integral H A s, l,g y A l,g ds converges for all lgV ,y`

uniformly on compact subsets.
g `Ž .H4 For every lgV , A l,g has a unique eigenvalue of smallest real

part, which is simple.

Ž .For the eigenvalue problems in 3.1 , the structural hypotheses H1, H2,
and H3 are straightforward to verify}see Section 7, where we display

Ž . `Ž .explicitly the matrices A s, l,g and A l,g corresponding to each case.
Ž .Compared with 4.3 , hypothesis H4 simply requires that the eigenvalues of

`Ž .A l,g can always be labeled so that

Rm l,g - m l,g ' min Rm l,g . 4.6Ž . Ž . Ž . Ž .1 * j
j)1

g Ž .It takes some trouble to describe a suitable domain V on which 4.6 holds,
because of a singular property of the KdV limit}as it turns out, A` has the

Ž . Ž .quadruple eigenvalue ms0 when l,g s 0,0 .
If we suppose that we have a domain Vg on which hypotheses H1]H4

g Ž . Ž .hold, then for lgV the Evans function D l,g is characterized by 4.4
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Ž .and 4.5 , exactly as above. In general, what happens when the Evans
w xfunction vanishes is described by the following result, drawn from 60 .

PROPOSITION 4.1. Suppose H1] H4 hold on Vg. Then for lgVg, the
following are equï alent:

Ž . Ž .i D l,g s0.
Ž . q Ž . Ž m1 s.ii y s, l,g s o e as sªy`.
Ž . q Ž . Ž m) s < < ry1.iii y s, l,g sO e s as sªy`.

Ž Ž . Ž .In part iii of this proposition, r s r l,g denotes the maximum algebraic
`Ž .multiplicity of any eigenvalue m of A l,g . Generally the eigenvalues arej

distinct and simple so r s1. When r )1, however, one must strengthen
< < ry1 .assumption H3 slightly by multiplying the integrand by s .

Ž .For the eigenvalue problems in Section 3, it turns out that m l,g has*
q Ž .the same sign as Rl. This is why y s, l,g ª0 as sªy` if and only if

Ž .D l,g s0, for Rl)0. It will follow that if Rl)0, l is an eigenvalue with
2 Ž .respect to the unweighted L norm if and only if D l,g s0.

Ž .With respect to the weighted norm in 1.3 , we show that for l in a
half-plane of the form Rl)yb, b)0, l is an eigenvalue if and only if

as q Ž .e y s, l,g ª0 as sª"`. By Proposition 4.1, this is true if and only if
Ž . Ž .D l,g s0, provided l,g is such that

Rm q a - 0 - Rm q a for j ) 1.1 j

Below, we describe suitable conditions under which this relationship holds,
whenever Rl)yb.

In the remainder of this section, we study the Evans functions specifically
Ž . Ž .associated with the eigenvalue problems in 3.1 and 3.3 respectively, with

particular emphasis on the domain. Also we describe the properties of the
Ž .Evans function, for the eigenvalue problem 3.4 arising from the KdV

w xequation, which have been proved previously in 17, 60 .

4.1. The E¨ans function in unscaled ¨ariables

Ž . Ž .Consider the eigenvalue problems in 3.1 . For each system in 3.1 respec-
Ž .tively, the reduction to the form 4.1 is defined by setting

y t s h , ­ h , ­ 2 h , ­ 3h , h , ­ h , ­ 2 h ,¨ , or ¨ , ­ ¨ , ­ 2 ¨ , h . 4.7Ž .Ž . Ž . Ž .s s s s s s s

Ž t .Here y denotes the transpose of the vector y. The characteristic polyno-
`Ž .mial of the corresponding matrix A l,g is determined by the linear
Ž .dispersion relation of the equations in 2.1 . The latter are all precisely the
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same, and we find that in each case, the characteristic polynomial of
`Ž .A l,g is given by

22 2 2PP m s PP m ; l,g s m y1 lym q 1yg m . 4.8Ž . Ž . Ž . Ž .Ž . Ž .

`Ž .Some basic facts about the eigenvalues m of A l,g are summarized asj

follows. The proof is in Section 6.

Ž .LEMMA 4.2. a Suppose 0-g -1. Then for an appropriate labeling of the
Ž .zeros m of PP m , we ha¨e:j

Ž .i Rm -0-Rm for js2,3,4, when Rl)0.1 j
Ž .ii Rm -0sRm sRm -Rm , when R ls0.1 2 3 4
Ž .iii Rm -0-Rm for js1,2,3, when Rl-0.j 4 'Ž .b If asc g where 0-c -1r 3 , and if g )0 is sufficiently small, then0 0

there exists b)0, such that if Rl)yb then

Rm - ya - Rm for j s 2,3,4.1 j

It turns out that the two eigenvalues of smallest real part meet when

3r21 1r33 y3 2l s yl g s y g L g , L g s 2g 1y 1yg . 4.9Ž . Ž . Ž . Ž .Ž .ž /* * *2

4Ž w . Ž . .'Note that L is continuous for g g 0,1 if we define L 0 s . This* * 27

collision of eigenvalues largely explains why the domain Vg is defined as it is
in the following proposition, with a cut along the negative real axis.

Ž .PROPOSITION 4.3. Put « s0.7. There exists g g 0,1 , such that if 0Fg F0 0

g , then hypothesis H4 holds with Vg defined by0

g � 4V s l¬RlGy« _ y`,yl g .Ž .Ž0 *

g `Ž .That is, for lgV the matrix A l,g has a unique eigen¨alue of smallest real
part, which is simple.

This proposition is proved in Section 6. Note that 0fV0! The numbers
g and « described in Proposition 4.3 may be regarded as fixed in the0 0

remainder of this article apart from Section 6.
Now the domain and regularity of the Evans function may be described as

follows. The proof is completed in Sections 7 and 8.

Ž . Ž .PROPOSITION 4.4. For the system 4.1 corresponding to each system in 3.1 ,
Ž . Ž .the E¨ans function D l,g is analytic in l, and jointly continuous in l,g , in
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the set V defined by

V s l,g ¬0Fg Fg and lgVg .� 4Ž . 0

'PROPOSITION 4.5. If asc g , where 0-c -1r 3 and g )0 is sufficiently0 0

small, then there exists b)0, such that if Rl)yb, then each eigen¨alue
Ž . 5 5 5 5problem in 3.1 has a nontrï ial solution such that h and ¨ are finite, ifa a

Ž .and only if D l,g s0.

Ž .Proof: By Lemma 4.2 b , if g )0 is sufficiently small then there exists
b)0 as stated, such that whenever Rl)yb, the conclusions of Lemma

Ž . Ž .4.2 b hold. By Proposition 4.1, if Rl)yb and D l,g s0, it follows from
Ž . Ž . 5 5 5 5 Ž .4.7 that 3.1 has a solution with h and ¨ finite. Conversely, if 3.1a a

has such a nontrivial solution, it is rather straightforward to show that
as q Ž . Ž . w xe y s, l,g s o 1 as sª"`, utilizing results from 62 regarding the

theory of asymptotic behavior of solutions of systems of ordinary differential
equations with asymptotically constant coefficients. By Proposition 4.1, it

Ž .follows that D l,g s0. B

4.2. The E¨ans function for the KdV equation

The Evans function for the eigenvalue problems above, taken in the KdV
scaling, will be related to the Evans function for the KdV equation itself, so
it is appropriate to discuss the latter at this point. In Section 3 we observed

Ž .how the scaled eigenvalue equations in 3.3 , for Boussinesq solitary waves,
converge formally to the eigenvalue problem for KdV solitary waves:

13 2L H q ­ H y ­ H q ­ QH s 0, where Q j s 3 sech j .Ž . Ž .j j j ž /2

4.10Ž .

Ž .One may associate an Evans function D L with this equation, and itKdV
w xmay be characterized as follows. See 17, 60 for the proofs. The characteris-
Ž .tic polynomial that we associate with 4.10 is

PP m s L q m3 y m. 4.11Ž . Ž .KdV

4'For L in the complex plane, except for real LFy , it turns out that27
Ž .PP has a unique zero of smallest real part, which we denote by msk L .KdV 1

Ž . q Ž . q Ž . k1 jEquation 4.10 has a unique solution H j , L satisfying H j , L ; e
Ž .as j ªq`. The Evans function D L is the ‘‘transmission coefficient’’KdV
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for this solution, with the property that

Hq j , L ; D L ek1 j as j ª y`. 4.12Ž . Ž . Ž .KdV

The following theorem is a summary of the properties of D .KdV

Ž .THEOREM 4.6. i The domain, V , of D is equal to the complexK dV K dV
4Ž . 'plane, cut along the negatï e real axis from y` to yL 0 sy .* 27

Ž . Ž .ii The E¨ans function D L is gï en by the explicit formulaK dV

2
k q11D L s ,Ž .K dV ž /k y11

Ž . Ž .where msk L is the root of smallest real part of Equation 4.11 .1
Ž . Ž .iii The only point at which D L ¨anishes is Ls0, which is a zero ofK dV

order two.
Ž . Ž . < <iv D L ª1 as L ª` with LgV .K dV K dV

Remark 4.7: The zeros of the cubic polynomial, PP , may be givenKdV

explicitly as

1 1r3 2p i k r3m s r q , where r s u e , k s 0,1,2,3r

1 42and u s y Lq L y . 4.13Ž .(ž /2 27

4 4' 'For L-y , the zero of smallest real part is not unique. At Lsy ,27 27

'the two smallest zeros are equal, having the value msy1r 3 .

Remark 4.8: The fact that Ls0 is a zero of order two is closely
connected with the existence of a two-parameter family of solitary wave

Ž . w xsolutions for the KdV equation 2.4 . For a full discussion, see 17 .

4.3. The E¨ans function in the KdV scaling

In Section 4.1 we studied the Evans function associated with each of the
Ž .eigenvalue problems in 3.1 . In an entirely analogous way, we may introduce
Ž .the Evans function D L,g associated with each of the scaled eigenvalue*

Ž .problems in 3.3 . The function D is directly related to D, but what is of*

interest is the direct relation of D to D in the limit g ª0.* KdV
Ž .Each of the equations in 3.3 is written by standard reduction as a

first-order system

dY s A j , L ,g Y . 4.14Ž . Ž .*dj
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Ž .The reduction is defined for each system in 3.3 respectively by

Y t s H , ­ H , ­ 2H , ­ 3H , H , ­ H , ­ 2H ,V , or V , ­ V , ­ 2V , H . 4.15Ž .ž / ž / ž /j j j j j j j

`Ž . Ž .Let A L, g s lim A j , L, g . The characteristic polynomial of* j ª "` *
`Ž .A L,g works out to be*

PP n s PP n , L ,g sgy4 PP gn ; l,gŽ . Ž . Ž .* *

1 12 3 2 4 2 2s n PP n yg n Lq L q g n L . 4.16Ž . Ž .Ž .KdV 4 4

1 3Ž . Ž .As usual, ls g L. The zeros of PP n will be denoted n . Clearly, these* j2

are related to the zeros m of PP and the zeros k of PP . We havej j KdV

n L ,g s gy1m l,g for g ) 0. 4.17Ž . Ž . Ž .j j

For g s0, however, the zeros of PP simply consist of the three zeros k of* j

PP , together with the value n s0.KdV
Ž .To define an Evans function for 4.14 , we need to verify that hypotheses

corresponding to H1]H4 hold on an appropriate simply connected domain
Vg. Hypotheses H1]H3 will be easy to verify once we describe in Section 7*

the specific structure of the matrices arising from the eigenvalue problems in
Section 3. To verify H4, however, we must identify a domain in which we

`Ž .may always label the eigenvalues of A L,g so that*

Rn L ,g - min Rn L ,g . 4.18Ž . Ž . Ž .1 j
j)1

As an immediate consequence of Proposition 4.3 and the behavior of the
Ž .zeros k that was discussed following 4.11 , an appropriate domain is givenj

as follows. Compare Proposition 4.3.

PROPOSITION 4.9. For 0-g Fg , define the set Vg s2gy3 Vg, so that0 *

g 3V s L ¬RlGy2« rg _ y`,yL g .Ž .� 4 Ž* 0 *

40 Ž x'For g s0 define V sV sC_ y`,y . Then if 0Fg Fg , for all* K dV 027
g `Ž .LgV the matrix A L,g has a unique eigen¨alue of smallest real part,* *

which is simple.
g Ž .Just as in Section 4.32, for LgV Equation 4.14 has a unique solution*

q Ž . Ž n ) j .Y j , L,g , which is o e as j ªq`, with the normalization

Yq j , L ,g ; en1 j v as j ª q`. 4.19Ž . Ž .1*
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` Ž 2 .Here v is an eigenvector of A , which we take in the form v s 1, n , n ,¨ .1* * 1* 1 1 *
Ž .Then the Evans function D L,g is characterized by*

Yq j , L ,g ; D L ,g en1 j v as j ª y`. 4.20Ž . Ž . Ž .* 1*

Ž . gNote that by Proposition 4.9, the domain of D L,g , V , approaches* *
Ž .V , the domain of D L , as g ª0. In a manner entirely analogous toKdV KdV

the proof of Proposition 4.4, one may prove:

Ž .PROPOSITION 4.10. The E¨ans function D L,g is analytic in L and jointly*
Ž .continuous for L,g in the set

V ' L ,g ¬0Fg Fg and LgVg .� 4Ž .* 0 *

4.4. Relations among the E¨ans functions

Ž . Ž .For each system in 3.1 and the corresponding scaled system in 3.3 , the
Ž . Ž .Evans functions D l,g and D L,g are related to each other and D* KdV

in the following way.
1 3THEOREM 4.11. With ls g L, we ha¨e2

D L ,g s D l,g for g ) 0 and D L , 0 s D L . 4.21Ž . Ž . Ž . Ž . Ž .* * K dV

Proof: Consider the case 0-g -1. Because of the relationships m sgn1 1
Ž . Ž . Ž .and j sg s, we have m ssn j . From 3.2 , 4.4 , and 4.19 it then follows1 1

that since

yq s, l,g ; e m1 s and Yq j , L ,g ; en1 jŽ . Ž .1 1

Ž Ž . Ž . Ž ..as s, j ªq`, it must be recalling 4.7 , 4.15 , and 3.2 that

yq s, l,g s Yq j , L ,g .Ž . Ž .1 1

Ž . Ž .Then D L,g s D l,g , because of the characterizations of these Evans*
Ž . Ž .functions in 4.5 and 4.20 .

Ž . Ž . Ž Ž .In the case g s0, we note that n L, 0 sk L see 4.16 and Theorem1 1
. q Ž .4.6 . Furthermore, the solution H of the linearized KdV equation 4.10 ,

q Ž . k1 jwhich satisfies H j , L ; e as j ªq`, yields a valid solution Y of the
Ž . Ž . q Ž . qsystem derived from 3.3 with Y j , L, 0 s H j , L . It follows that Y s1 1

q Ž . Ž .H . Because of the characterization of Evans functions in 4.12 and 4.20 ,
Ž . Ž .we deduce that D L, 0 s D L . B* KdV
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5. Main theorems on absence of nonzero eigenvalues

A central technical result of this article is the following. It concerns the
convergence of the Evans function D for each scaled eigenvalue problem*

Ž .in 3.3 to the Evans function D for the KdV eigenvalue problem inKdV
Ž .3.4 , in the limit g ª0. The convergence is uniform in the whole domain
Vg outside a sectorial neighborhood of the branch cut along the negative*

real axis. To describe the domain of convergence, recall that « s0.7 from0

Proposition 4.3. Let s )0 be an arbitrary small number, and define regions
in the complex plane by

0 4'SS s L Either arg L Fp ys or RlGy qs , 5.1Ž . Ž .½ 527

g 0 3SS s SS l L RlGy2« rg , 0 - g - 1. 5.2Ž .� 40

Ž .See Figure 1.

Ž .THEOREM 5.1 Convergence of the Evans Function . Fix s )0, and define
SS

g as abo¨e. Then

sup D L ,g y D L ª 0 as g ª 0.Ž . Ž .* KdV
g

Lg SS

Figure 1. Domain of uniform convergence.
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Ž .In Section 9, we prove that for 0-g Fg , Ls0 is a zero of D L,g of0 *

order at least two, a fact that is related to the symmetries of spatial
translation and changing wave speed for the family of solitary waves. From
this fact and Theorems 5.1 and 4.6, one may easily deduce the following,
using Rouche’s theorem on zeros of analytic functions under perturbation.´

Ž .COROLLARY 5.2 Zeros of D . For sufficiently small g )0, the only zero of*
Ž . gD L,g with Lg SS is Ls0, which is a zero of order two exactly. Conse-*

quently

D L ,g s D L 1q o 1Ž . Ž . Ž .Ž .* KdV

as g ª0, uniformly for Lg SS
g.

At this point, we may deduce our main result concerning the eigenvalue
problems in Section 3, considered with respect to the exponentially weighted

Ž .norm in 1.3 . This result follows immediately from Corollary 5.2 and
Proposition 4.5.

'THEOREM 5.3. Suppose asc g , where 0-c -1r 3 and g )0 is suffi-0 0

ciently small. Then there exists b)0, such that if l/0 with Rl)yb, then
Ž . 5 5each eigen¨alue problem in 3.1 has no nontrï ial solution such that h anda

5 5¨ are finite.a

The proof of Theorem 5.1 and its corollary are organized as follows. In
the rest of this section, we outline the proof of Theorem 5.1. In Section 6 we
establish a number of fundamental properties of the roots m of thej

Ž .characteristic polynomial PP m; l,g , proving Lemma 4.2, Proposition 4.3
Ž .which verifies hypothesis H4 , and some auxiliary estimates. In Section 7 we
describe the matrices A and A` specifically in each case and verify the

Ž . ghypotheses H1]H3, which ensure that D l,g is defined on V ; also we
obtain some asymptotic estimates for the eigenvectors of A`. In Section 8

Ž .we explain the joint continuity of D l,g , and in Section 9 we show that
ls0 is a zero of order at least two, which yields Corollary 5.2. Finally in
Section 10 we study the Evans function in two regimes corresponding to
large values of l and L, finishing the results needed to prove Theorem 5.1.

5.1. Four regimes for the eigen¨alue parameter

Ž .The proof of Theorem 5.1 involves the study of D l,g in four overlapping
1 3regimes for the values of ls g L and g . For some suitably small d )0,2

which shall be fixed later, these regimes correspond to the sets S , . . . , S1 4

defined as follows.

� 5 y14 gRegime I: S s L Lb¨ F2d l SS1
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In this regime, L is bounded and is bounded away from the branch cut in
Ž .the domain of D L,g on the negative real axis. It turns out to be*

surprisingly easy to study the limit g ª0 in this regime.

PROPOSITION 5.4. Let d )0 be gï en. Then

lim sup D L ,g y D L s 0.Ž . Ž .* KdV
g ª 0 L g S1

Ž .Proof: This is a simple consequence of the joint continuity of D L,g ,*
Ž . Ž .the fact that D L, 0 s D L , and the fact that S is a fixed compact* KdV 1

subset of the domain Vg for sufficiently small g G0. B*

Ž .In the remaining three regimes, the idea is that since D L ª1 asKdV
< < Ž .L ª`, we wish to show that D l,g y1 is small if d and g are sufficiently
small. In Regimes II and IV, this is accomplished using Lemma 10.1, which

w Ž .xis related to the results of 60, Section 1 g , concerning the behavior of
Ž .D l for large l. To use this lemma, some careful estimates of the roots m j

and their associated eigenvectors will be needed.

� 3 y1 < < < < 4Regime II: S s l¬g d F l Fd and arg l Fp ys2

Regime II represents a ‘‘crossover’’ regime; L is large but l is small. In this
regime we obtain the following estimate.

PROPOSITION 5.5. There exists positï e constants C , d , and g , such that2 2 2

for 0Fg Fg , 0-d Fd , we ha¨e2 2

11r3 3sup D L ,g y1 - C d , where g L s l.Ž .* 2 2
lg S2

� < < y1 < < 4Regime III: S s l¬d F l Fd and RlGy« and arg l Fp ys3 0

In Regime III, l lies in a fixed compact set bounded away from infinity and
from the branch cut on the negative real axis. From Proposition 4.4, we infer

Ž . Ž . Ž . w xthat D l,g is jointly continuous in l,g for l,g gS = 0,g . Since3 0
Ž . Ž .D l, 0 is the Evans function for a problem in the form 4.1 with constant

Ž .coefficients, the characterization 4.5 immediately yields

D l, 0 ' 1.Ž .
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Therefore we obtain the following.

PROPOSITION 5.6. Let d )0 be gï en. Then

lim sup D l,g y1 s 0.Ž .
g ª 0 lg S3

� y1 < < 4Regime IV : S s l¬d F l and RlGy«4 0

< <Here l is large. Curiously, this regime is technically by far the most difficult
to treat. The strategy is similar to that for Regime II. We need to prove the
following result, whose proof is concluded in Section 10.

PROPOSITION 5.7. There exist positï e constants C , g , and d , such that if4 4 4

0-d Fd and 0-g Fg , then we ha¨e4 4

sup D l,g y1 F C g .Ž . 4
lg S4

Proof of Theorem 5.1: Let « )0. Then by invoking Theorem 4.6 and
Propositions 5.5 and 5.7, we may assert that there exist d )0 and g )01

such that

1 y1< <D L y1 - « for L G d ,Ž .KdV 2

1 1 3sup D L ,g y1 - « for l s g L , 0 - g F g ,Ž .* 12 2
lg S2

1
sup D l,g y1 - « for 0 - g F g .Ž . 12

lg S4

With d now fixed, by Proposition 5.6 we have

1
sup D l,g y1 - «Ž . 2

lg S3

for g sufficiently small. Finally, using Proposition 5.4 and the fact that
D 4 S s SS

g, we deduce thatjs1 j

sup D L ,g y D L - «Ž . Ž .* KdV
g

Lg SS

for g sufficiently small. This proves Theorem 5.1. B
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6. Characteristic roots

Ž .In this section we study the characteristic roots m l,g of the polynomialj
Ž .given in 4.8 , namely

22 2 2PP m ; l,g s m y1 lym q m rc .Ž . Ž .Ž .

2Ž .'Recall cs 1r 1yg . We prove Lemma 4.2 and Proposition 4.3 andŽ .
develop estimates for the roots m that are needed in Regimes II and IVj

described in Section 5.2.

Ž . Ž .Proof of Lemma 4.2 a : Note that PP m never vanishes for ms"1, and
therefore, satisfying the equation PPs0 is equivalent to satisfying one of the
equations

m m
l s PP m ,g ' m q , l s PP m ,g ' m y .Ž . Ž .q y2 2' 'c 1ym c 1ym

6.1Ž ."

Ž .Below, we frequently suppress the dependence of PP upon g . Clearly, if"

Ž .Rl/0, there are no solutions m of 6.1 with Rms0. Therefore, the"

Ž .number of solutions of 6.1 in the right half-plane or left half-plane may"

change only if the sign of Rl changes.
Ž .To calculate this number, first note that PP "g ,g s0. Second, it isy

Ž .easy to check that the functions t¬y i PP it,g are both strictly increasing"

functions, which map the real line onto itself. So, for Rls0, there are
exactly two zeros m with Rms0. From these two facts it follows that if
Rls0, then there is one root m in the left half-plane and one root in the
right half-plane.

Ž . ŽFinally, since ­ PP 0,g s1"1rc)0, as l moves into the right respec-m "

.tively the left half-plane, so do both imaginary roots. The lemma
follows. B

Ž .Proof of Proposition 4.3: From Lemma 4.2 a , we infer that it suffices to
establish the result for Rl-0. For real values of l, the result is compara-
tively easy to prove. Suppose l-0. The function PP monotonically maps mq

Ž . Ž .in y1,1 onto the real line, so Equation 6.1 has a unique solution, whichq
we label m , and this solution clearly satisfies l-m -0. The function PP4 4 y

Ž .is odd in m, vanishes at ms0 and yg , and is strictly convex on y1,0 . It
Ž y2r3.1r2has a minimum at m sy 1yc , with minimum value equal tom
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Ž .y l g , where*

3r21 3 y2r3PP m s y l g s y g L g s y 1yc . 6.2Ž . Ž . Ž . Ž . Ž .y m * *2

'Ž . Ž .See Figure 2. We note that as g ª0, m ;yg r 3 and l g ;m *
3 ' Ž . Ž .yg r 27 . For y l g - l-0, Equation 6.1 has three real solutions* y

that satisfy

m - m - l - 0 - m .1 2 3

It remains to study the situation when J l)0, since the case J l-0 can
be reduced to this one by taking the complex conjugate. We proceed via a

Ž .series of lemmas, first analyzing Equation 6.1 .q

Ž .LEMMA 6.1. Suppose y1-Rl-0 and J l)0. Then 6.1 has a uniqueq
solution, labeled msm , and this solution satisfies4

Rl - Rm - 0, 0 - Jm - J l. 6.3Ž .4 4

Proof: Consider the function defined by

2'Q m s mr 1ym .Ž .

Ž . Ž .Figure 2. P t vs t cs1.2 .y
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Ž xThen Q is analytic for m in the half-plane RmF0 minus the cut y`,y1 ,
� 4is odd in m, and is bounded outside any neighborhood of the set y1,1 .

Ž .2 2Also, note that Q m is real only if m is. It follows that Q leaves each
Ž . Žquadrant of the complex plane invariant. That is, the sign of RQ m resp.

Ž .. Ž .the sign of JQ m agrees with the sign of Rm resp. the sign of Jm .
From this last property of Q, we may infer that, given l as supposed, any

Ž . Ž .solution of 6.1 must satisfy 6.3 . To see that a unique solution exists,q
consider the rectangle

� 4B s m ¬Rl-Rm-0,0-Jm-J l .

Because Q leaves each quadrant invariant, the image of this rectangle under
Ž .PP contains the rectangle, i.e., PP B > B, and furthermore, one may inferq q

Ž .that the image of the boundary of the rectangle, PP ­ B , has windingq
Ž .number 1 about l. Therefore a unique solution of 6.1 exists. Bq

Ž .Now we turn our attention to Equation 6.1 . Because of the equiva-y
Ž .lence between 6.1 and the polynomial equation PPs0, it follows that if

Ž .y1-Rl-0, Equation 6.1 has three solutions. It turns out that thesey
solutions lie in three different quadrants. To characterize them, we use the
following result.

LEMMA 6.2. Suppose y1-Rl-1, that l2 is not real, and that l is not in
Ž .the fourth quadrant of the complex plane. Then there exists a unique msm lˆ

Ž .lying in the third quadrant, which satisfies 6.1 .y

Proof: We show that for certain contours G, which consist of a sufficiently
large quarter-circle in the third quadrant, with a small semicircle ‘‘cut out’’

Ž .near msy1, the winding number of the image PP G about l is 1. Thisy
Ž .proves that 6.1 has a unique solution inside G.y

Ž .Let B z, r denote the disk in the complex plane with center z, radius r.
For « )0 sufficiently small, consider the set obtained by intersecting
Ž y1 . Ž .B 0, « _ B y1, « with the third quadrant. The contour G shall be the

Ž .boundary of this set. See Figure 3a. That is,

< < y1 < <G s ­ m ¬Rm-0, Jm-0, m -« , mq1 )« .� 4

The contour G is the union of five curves:

� 4 yi tG s t ¬0G tGy1q« , G s y1q« e ¬0F tFp ,� 41 2

G s ty0 i ¬y1y« G tGy«y1 ,� 43

1y1 i t y1G s y« e ¬0F tF p , G s it ¬y« F tF0 .� 44 5½ 52
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Ž . Ž . Ž . Ž .Figure 3. a The contour G « s0.15 . b Image of G cs1.25 .
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Ž .To compute the winding number of PP G about l, we make the followingy
Ž .observations: First, PP G lies on the real axis. For mgG , let msy1qy 1 2

« eyi t, where 0F tFp . Then we compute

PP y1q« eyi tŽ .y

y1r2i tr2 i tr2e 1 eyi t yi t 's y1q« e 1y 1y « e s y1q O « .Ž . Ž .ž /2ž /' 'c 2« c 2«

Ž .For mgG , we have R PP m -y1, since3 y

it
PP tq0 i s t q for t - y1.Ž .y 2'c t y1

Ž . Ž y2 .y1r2For mgG , m lies in the third quadrant, so Q m sy i 1ym .4
< < Ž . Ž .Therefore as m ª` in the third quadrant, PP m smq ircq o 1 . Fi-y

Ž .nally, for mgG , R PP m s0.5 y
With these observations, it is straightforward to deduce that, if l is fixed

and satisfies the hypotheses of the Lemma, and « is sufficiently small, then
Ž . Ž .the winding number of PP G about l is 1. See Figure 3b. This finishesy

the proof. B

Now, assume y1-Rl-0 and J l)0. We claim that the solutions of
Ž .6.1 may be labeled so that the following relations hold:y

Rm - 0, Rm - 0, Rm ) 0,1 2 3
6.4Ž .

Jm - 0, Jm ) 0, Jm - 0.1 2 3

Ž . Ž .To prove these relations, we exploit the symmetries PP ym syPP m ,y y
Ž . Ž .PP m s PP m . It suffices to invoke Lemma 6.2 and define m sm l,gŽ .y y j j

for js1,2,3 via

m s m l , m s m l , m s ym yl . 6.5Ž . Ž . Ž . Ž .ˆ ˆ ˆ1 2 3

Ž . Ž .This establishes 6.4 . Because RQ m -0 when Rm-0, the relations in
Ž . Ž .6.3 and 6.4 imply that

Rm - Rl - Rm - 0 - Rm , for j s 1,2. 6.6Ž .j 4 3

To prove Proposition 4.3, then, it will be enough to show that for g
sufficiently small, if RlGy« sy0.7 and J l)0, then0

Rm - Rm .1 2
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Ž .By 6.5 , proving this inequality is equivalent to showing that

Rm l - Rm l . 6.7Ž . Ž . Ž .ˆ ˆ

Our strategy for proving this is as follows. For a-0, let M be the opena

vertical half-strip defined by

� 4M s m ¬ a-Rm-0 and Jm-0 .a

Ž .As a decreases from 0, the images PP M increase. For negative a ofy a
Ž . Ž .sufficiently large magnitude, M contains both m l and m l , so that theˆ ˆa

Ž . Ž .image PP M contains both l and l. To establish 6.7 , what we musty a

show is that as a decreases, l is ‘‘eaten’’ before l is. That is, we must show
Ž . Ž .that there exists a-0 such that lg PP M but lf PP M .y a y a

To carry out this strategy, we study the image of the vertical half-line on
which Rms a and Jm-0. The results that we have obtained are restricted
to the case when a)y1, however. See Figure 4a for a plot of the image

Ž .PP M , for the sample case cs1.2, with asy0.7. In Figure 4b the imagey a

of the half-line corresponding to asy1 is also indicated, as a dashed curve.

Ž̂ .LEMMA 6.3. Suppose 0Fg -1. Suppose y1- a-0, and define l t s
Ž . Ž 2r3.1r2 Ž .PP ay it . Recall that m sy 1yc is the ¨alue at which PP my m y

attains its minimum for y1-mF0. Then

ˆ ˆŽ . Ž . Ž .i Rl t decreases as t increases for t)0, and lim Rl t s a.t ª`

ˆŽ . Ž .ii If m F a-0, then J l t decreases as t increases for all t)0, andm
Ž̂ .lim J l t sy`.t ª`

ˆŽ . Ž . Ž .iii If y1- a-m , then for some t )0, J l t increases on 0, t , andm a a
ˆŽ . Ž .decreases on t ,` , and lim J l t sy`.a t ª`

X̂ XŽ . Ž . Ž .Proof: For ms ay it, l t sy i PP m , so to prove i it suffices to showy
X Ž .that J PP m -0. We computey

y3r2X y1 2PP m s 1y c 1ym . 6.8Ž . Ž .Ž .y

It is easy to check that if y1-Rm-0 and Jm-0, then 1ym2 lies in the
X Ž .fourth quadrant, and therefore J PP m -0.y

Ž . Ž . X Ž .To prove ii and iii , we must show that R PP ay it is always positivey
Ž . Ž .in case ii and changes sign once from negative to positive in case iii . We

X Ž . Ž .have already seen that, for ts0, PP a is in fact positive for ag m , 0y m
X̂ XŽ . Ž . Ž . Ž .and negative for ag y1, m . Since from 6.8 , J l t syR PP ay it ªm

X Ž .y1 as tª`, it is enough to show that R PP ay it may change sign aty
Ž .most once. By 6.8 , this is equivalent to showing that for tG0 and

Ž 2 .y3r2ms ay it, R 1ym sc has at most one solution.
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Ž . Ž . Ž .Figure 4. a Half strip M with asy0.7. b Image of half strip with asy0.7 cs1.2 .a
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Ž 2 .y3r2 Ž . iu Ž t .With ms ay it, if we write 1ym as r t e , it can be checked
Ž . Ž .that r t is strictly decreasing for t)0, and that u t is increasing for

2'0F t- t and decreasing for t - t, where t s 1y a . It follows that g :a a a
Ž 2 .y3r2t¬ 1ym has decreasing real part for 0F tF t . Moreover, witha

12 y1Ž .m s ay it , we find R 1ym s , and one may compute that for alla a a 2
12 y1Ž . Ž . Ž .t)0, drdt R 1ym -0. It follows that R g t - for tG t .a2

Ž . Ž 2 .y3r2 Ž .Note that g 0 s 1y a . For y1- a-m , we have g 0 )cG1.m
Ž 2 .y3r2From the above considerations, we infer that R 1ym sc holds

Ž .exactly once for t)0 if y1- a-m . This implies iii . On the other hand,m
ˆŽ . Ž .if aGm , we have g 0 Fc and therefore J l t is decreasing for t)0, them

Ž .statement in ii . B

Before we conclude the proof of Proposition 4.3, we observe that for the
special values

' ' 'm s y 0.96 y i 0.84 , l s y 0.54 , g s 0,0 0

Ž . Ž . Ž .we have PP m ; l , 0 s0. In fact, for l,g s l , 0 we have m sm s m ,0 0 0 0 1 2'and m s 0.06 " 0.6 for js3 and 4. Clearly l -y0.7, so for the valuej 0' w Ž .. Žas a sy 0.96 , the segment y0.7,yl g lies below the curve PP ay0 * y
.it , and this remains true for 0-g Fg , for some sufficiently small g )0.0 0

w Ž .. Ž .Indeed, the segment y0.7,yl g lies in the image PP M . It is not* y a0

hard to prove this by computing a winding number. For « )0 and y1- a-0,
« « � y14let M be the rectangle M s M l m ¬Jm)y« . For sufficiently smalla a a

y1 Ž . y1 Ž . Ž .« , if Jmsy« , then J PP m -y« q2. Also PP m Gyl g is real ify y *
w x Ž .mg a, 0 , and PP m is purely imaginary if m is. So it is easy to see that they

Ž « .winding number of the curve PP ­ M about any point of the segmenty a0

w Ž ..y0.7,yl g is one.*

We are now ready to finish the proof of Proposition 4.3. Assume 0-g Fg0
w Ž ..and y0.7FRl-0 with J l)0. Suppose at first that Rlg y0.7,yl g .*

ŽThen there exists a complex number a q ib g M such that Rls PP a qa y0

.ib . Since J l)0, from the results of Lemma 6.3, and the argument of the
Ž . Ž .preceding paragraph, we have that lg PP M , but lf PP M . They a y a

Ž .inequality 6.7 follows.
w Ž . .The remaining case to consider is when Rlg yl g , 0 . But this case is*

Ž .easier}we may take asm and deduce that the image PP M liesm y a

entirely in the third quadrant and contains l but not l. So Rm -m -Rm ,1 m 2
Ž .giving 6.7 in this case also. This finishes the proof of Proposition 4.3. B

Remark: Numerical computations indicate that one may take « sy1 in0
w .the statement of Proposition 4.3, for any g g 0,1 , but we have not found a

proof.

'Ž . Ž .Proof of Lemma 4.2 b : Let asc g where c g 0,1r 3 ; then m -ya0 0 m
Ž .-0 for sufficiently small g . Choose b so that 0- b-yPP y a . Suppose
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Ž .Rl)yb. If l is real the desired result follows from Lemma 4.2 a and the
first part of the proof of Proposition 4.3. Without loss of generality we may
assume J l)0. By Lemma 6.3 and the last part of the proof of Proposition
4.3, it is clear that if yb-Rl-0, then

Rm - ya - Rm ,1 2

Ž . Ž .since PP M contains l but not l. Now 6.6 yields the desired conclu-y ya

sion for such l. If RlG0 and J l)0, then Rm -m -ya and 0FRm1 m j

for j)1. This finishes the proof. B

Our next result establishes approximations to the roots m in Regime II,j
< < < <where L is large but l is small.

Ž .PROPOSITION 6.4. Let m sm l,g denote the four roots of the quarticj j
Ž .equation PP m; l,g s0.

Ž . Ž .a There exists a positï e constant g , such that for l,g satisfying2
3 y1 < <g d - l -d , 0Fg Fg :2 2 2

1r3 2p i jr3m s y2cl e 1q o 1 for j s 1,2,3, 6.9Ž . Ž . Ž .Ž .j

uniformly as d ª0q.2
Ž . < <b For l -d sufficiently small,

cl 3m s 1q OO l , 6.10Ž . Ž .Ž .4 cq1

w .uniformly in g g 0,1 .
12 y1r2 2 4Ž . Ž . Ž . Ž .Proof: To prove 6.9 , write 1ym s1q m qm r m where r m2

Ž .is analytic near zero. Then 6.1 is equivalent toy

1 3 5m q cl s cy1 m y m r m . 6.11Ž . Ž . Ž .2

Ž .1r3 2p i jr3 Ž .For js1,2,3, let n s y2cl e and seek a solution of 6.11 in thej

Ž .1r3 Ž .form msn 1y b . Then Equation 6.11 is equivalent toj

cy1 n n 5Ž . j j1r3 5r3 1r3
b s 1y b q 1y b r n 1y b .Ž . Ž . Ž .ž /jcl cl

Ž . Ž 2 < <y2r3. 5 Ž < < 2r3.Since cy1 n rclsO g l and n rclsO l , it is clear that forj j

small d )0 we may solve for b by fixed point iteration, and that b s2
Ž 2 < <y2r3 < < 2r3. Ž . Ž .O g l q l s o 1 as d ª0. This proves 6.9 . The expansion2

Ž . Ž .6.10 is more easily proved using 6.1 . Bq
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Finally, for large l, corresponding to Regime IV, we have the following
approximations to the roots.

Ž .PROPOSITION 6.5. Suppose 0-g -1; then the four roots of PP m may be0

labeled so that the following approximations are ¨alid, uniformly for 0Fg Fg ,0
< <as l ª`:

< <y2 < <y2m s y1q O l , m s 1q O l ,Ž . Ž .1 4

< <y2 < <y2m s l y irc q O l , m s l q irc q O l .Ž . Ž .2 3

w xThis result was proved for fixed values of g )0 in 60 , and it is a simple
matter to check in the proof that the error terms can be bounded uniformly

Ž .for 0Fg Fg , for any g g 0,1 .0 0

7. Eigenvectors and eigenvalues at infinity

Ž . `Ž . Ž .Here we describe explicitly the matrices A s, l,g and A l,g in 4.1 and
Ž . Ž .4.2 for each of the Boussinesq eigenvalue problems in 3.1 . We also verify
that the structural hypotheses H1]H3 hold, which are needed to define the

Ž .Evans function D l,g in Section 4. Furthermore, we describe the left and
right eigenvectors of A`, which are needed in the proofs of Propositions 5.5
and 5.7.

In this section we simplify slightly the notation regarding the solitary-wave
profile, writing simply h in place of h and u in place of u , and hX s­ h ,˜ ˜ ˜c c c c c s c

etc. We make considerable use of the following identity for the solitary-wave
Ž .profiles of 2.1 in cases B2 and B3, which follows from integrating the
Ž .equations in 2.5 for the steady state:

1 1
1y u 1q h s 1. 7.1Ž .c cž / ž /3 3

Ž .Corresponding to the definition of the 4-vector y in 4.7 , the matrix
Ž . Ž .As A s, l,g derived from 3.1 is given respectively as

0 1 0 0
0 0 1 0

A s , 7.2.B1Ž .0 0 0 1
Y X� 02 2 2l yh y2ly2h g y l yh 2lc c c
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0 1 0 0
0 0 1 0

X X3lq 1r3 u nŽ . 1 1 1c cX2 2y 1y u y1qg y l 2 l y lq u yc cž / ž /2 23 3 3A s ,1q 1r3 h 1q 1r3 hŽ . Ž .Ž . Ž .c c
X 2lq 1r3 uŽ . 1 1 1c X� 0y 1y u 0 y h 1y uc c cž / ž /3 3 31q 1r3 hŽ . c

7.2.B2Ž .

0 1 0 0
0 0 1 0

X X2 2h 1yg lq 1r3 uŽ .Ž .Ž .1 1 1 1ygc cX 2y lq u y 1y u y l y 1ygŽ .c cž / ž / 23 3 3As .1y 1r3 u 1y 1r3 uŽ . Ž .c c1q 1r3 hŽ .Ž .c
X2 lq 1r3 uŽ .1 1 1 cX� 0h 1q h 1q h 0c c cž / ž /3 3 3 1y 1r3 uŽ . c

7.2.B3Ž .

` `Ž .The corresponding matrix A s A l,g is

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0`A s , ,2 20 0 0 1 yl g y l 2l yl� 0� 02 2 2l y2l g y l 2l yl 1 0 0

0 1 0 0
0 0 1 0

. 7.3Ž .2 2yl g l y 1yg lŽ .� 0
0 1 0 l

Ž . `Ž .In light of the expressions above for A s, l,g and A l,g , the estimates
Ž .in Corollary 2.2 for h sh and its derivatives, and the relation 7.1 , it is˜c c

easy to deduce the following.

Ž . Ž . `Ž .LEMMA 7.1. i The matrices A s, l,g and A l,g are jointly continuous
Ž . w .functions of their arguments for l,g gC= 0,1 , and are analytic in l.

Ž . w .ii Gï en any compact set V ;C= 0,1 , there exists a constant K such1 *
Ž .that for any l,g gV ,1

` 2 y <g s <A s, l,g y A l,g F K g e , y` - s - `.Ž . Ž . *

Ž .From this result, it is evident that the hypotheses H1]H3 in Section 4
hold on any domain Vg. Taken together with the results of Section 6 and

w xthe treatment in 60 , we may conclude that the Evans function is defined as
asserted in Proposition 4.4, except that the joint continuity will be proved in
Section 8.
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Ž . `Ž .We omit the explicit description of the matrices A j , L,g and A L,g ,* *
Ž .which correspond to the system 4.14 arising from the eigenvalue problem

Ž .in the KdV scaling. It is evident from the structure of Equations 3.3 and
the estimates of Corollary 2.2 that they have the following properties,

Ž .however. From this we deduce that the Evans function D L,g is defined*
Ž .as asserted in Proposition 4.9 except for the joint continuity .

Ž . Ž . `Ž .LEMMA 7.2. i The matrices A j , L,g and A L,g are jointly continu-* *
Ž . w .ous functions of their arguments for L,g gC= 0,1 and are analytic func-

tions of L.
Ž . w .ii Gï en any compact set V ;C= 0,1 , there exists a constant K such1 *

Ž .that for any L,g gV ,1

` y < j <A j , L ,g y A L ,g F K e , y` - j - `.Ž . Ž .* * *

It is straightforward to compute that for each case B1]B3, the determi-
`Ž . Ž . Ž .nant of A l,g ymI is PP m; l,g as defined in 4.8 , so the eigenvalues

are given by the m discussed in Section 4. Next, we describe the eigenvec-j

tors of A`, corresponding to eigenvalues that are simple and nonzero; this
shall suffice for the analysis we shall perform.

Given a simple eigenvalue m , the corresponding right eigenvector, de-j
Ž .noted by v , is given respectively for cases B1]B3 byj

1 1 1
m m mj j j

v s , , . 7.42 Ž .2 2j m m mj j j� 0 � 0� 03 m y l rm m r m y lm Ž . Ž .j j j jj

The left eigenvector corresponding to m will be denoted w , and is taken toj j
Ž .be normalized so that w v s1. Then w is given respectively , for is1 . . . 4,j j i

as follows:

w 2 l ly2m l m y lŽ . Ž .l li i is , , m y2l, 1 , y , m y2l, 1,y ,i i2 2v m mž /ž /m mi i ii i

l 1yg 2l Ž .y , m y l, 1, . 7.5Ž .iž /m lymi i
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Here the normalizing factors v are given respectively byi

m m2 mi i iv s , , . 7.6Ž .i 3 3 32 m y l m y l 2 m y l m y l 2 m y lŽ . Ž .Ž . Ž . Ž .i i i i i

8. Joint continuity of the Evans function

Ž .Here we briefly explain why the Evans function D l,g corresponding to
Ž . Ž .the system 4.1 is jointly continuous in l,g . This will complete the proof

of Proposition 4.4. Proposition 4.10 is proved in the same way.
First, we need to recall the precise definition of the Evans function as

w x Žstudied in 60 . This is necessary for the considerations in Sections 9 and 10
. g Ž .as well. Recall that for lgV , the system 4.1 has a unique solution,

Ž m) s. q Ž .which is o e as sª`, given by y s, l,g , with the normalization

yq s, l,g ; e m1 s v as s ª q`. 8.1Ž . Ž .1

Ž .Associated with 4.1 is the transposed system

dz s yzA s, l,g , 8.2Ž . Ž .ds

in which z is regarded as a row vector. Let w be a left eigenvector of yA`
1

corresponding to the eigenvalue ym , normalized by requiring w ? v s1.1 1 1
Ž . y Ž .Then 8.2 has a unique solution z s, l,g satisfying

zy s, l,g ; eym 1 s w as s ª y`. 8.3Ž . Ž .1

The definition of the Evans function is

D l,g s zy s, l,g ? yq s, l,g . 8.4Ž . Ž . Ž . Ž .

w xThis scalar product is independent of s. According to the results of 60 ,
because the hypotheses H1]H4 hold on the domain Vg for 0-g Fg ,0
Ž . gD l, g is well defined for lgV and is analytic in l.

Ž .It remains to explain the joint continuity in l,g . Introduce the notation
Ž . Ž . Ž .f sf s, l,g , Bs B l,g , and Rs R s, l,g , by requiring

yq s s e m1 s v qf s , B s A` y m I , R s s A s y A` .Ž . Ž . Ž . Ž .Ž .1 1
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Ž Ž . . Ž .Ž .Here the dependence on l,g is suppressed. Then ­ f s Bq R v qfs 1
w xand Bv s0. Following the analysis in Section 1 of 60 , we have that1

`
Ž syr .Bf s s v y e R r v qf r dr . 8.5Ž . Ž . Ž . Ž .Ž .H1 1

s

The function f is determined from this equation using fixed-point iteration.
Ž .Now, it is evident from Lemma 7.1 that the quantities B, R s , and v1

Ž .depend continuously on l,g in V, and that in any compact subset of V,
< sB < < Ž . <we have e FC for all s-0, and H R s dsª0 as Lª`, uniformly< s < G L

Ž . Ž .in l,g . Now, it is straightforward to prove that since B, R, and v in 8.51
Ž . Ž .are jointly continuous in l,g , then so is f s, l,g , for any fixed s.

q Ž . Ž .Therefore, y s, l,g is jointly continuous in l,g for any fixed s. In a
y Ž . Ž .similar manner one may prove that z s, l,g is jointly continuous in l,g

Ž . Ž .for fixed s. Then by the definition 8.4 , the Evans function D l,g is jointly
continuous. B

9. Order of the zero at the origin

Here we study the behavior of the Evans function at the origin, as promised
Ž .in Section 5. The value ls0 is always an eigenvalue for 3.1 , as a

Ž .consequence of the invariance of 1.1 under spatial translations. A corre-
sponding eigenfunction may be obtained by differentiating the correspond-

Ž .ing equation for the solitary wave profile from 2.5 . From this we deduce
that the Evans function vanishes at the origin. Additionally, we employ an
integral formula for derivatives of the Evans function, derived by Pego and

w xWeinstein 60 , to deduce the following result, which is needed in the proof
Ž . Ž .of Corollary 5.2. Recall that for g )0, D l,g s D L,g .*

PROPOSITION 9.1. For 0-g Fg , the ¨alue ls0 is a zero of order at least0
Ž .two for the E¨ans function D l,g . That is,

D 0,g s ­ D 0,g s 0.Ž . Ž .l

w xProof: The proof is done for the case B1 in 46 . For cases B2 and B3, we
Ž . Ž . w x Ž w x.show that D 0,g s0, then use the formula 1.22 of 60 see also 63 .

Using the definitions in Section 8, this formula yields an expression for the
derivative of the Evans function at the origin, namely

` ­ AX y qD 0 s y z s, 0 s, 0 y s, 0 ds. 9.1Ž . Ž . Ž . Ž . Ž .H ­ly`
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Here and throughout the rest of this section, the g argument is suppressed,
and g is regarded as fixed. To prove Proposition 9.1, we identify yq and zy

Ž . Ž .and use the characterization 4.5 and the formula 9.1 to show that
Ž . XŽ .D 0 s0 and D 0 s0.

LEMMA 9.2. For each case B2 and B3, there exists a number b /0 such
q Ž . Ž . Ž .that y s, 0 s b y s , where respectï ely :˜

y s ­ h , ­ 2h , ­ 3h , ­ u or ­ u , ­ 2 u , ­ 3u , ­ h . 9.2Ž .˜ Ž . Ž .s c s c s c s c s c s c s c s c

Ž . Ž .Proof: Since h , u are stationary solutions of 2.1 , by differentiatingc c
Ž . Ž . Ž .with respect to s, it follows that h,¨ s ­ h , ­ u satisfies 3.1 with ls0.s c s c

Ž . Ž . Ž .If y s denotes the right-hand side of 9.2 , then from 4.2 it follows that y˜ ˜
Ž . Ž . q Ž .satisfies 4.1 with ls0. Now the lemma follows, because y s and y s, 0˜

both decay exponentially as sªq`. B

To determine zy, it is useful to write the system yX s Ay in an equivalent
form when ls0, namely as

X Xy1B s y s B y , where B B y B s A s, 0 . 9.3Ž . Ž . Ž . Ž .Ž .1 2 1 2 1

Ž .The matrices B s and B may be chosen as follows, in cases B2 and B31 2
Ž Ž . .respectively. B is the same in both cases. Compare 3.1 .2

1 0 0 0
0 1 0 0

12B s s orŽ .1 1yg 0 1 y 1y uŽ .c3� 01 1y 1y u 0 0 1q hŽ .c c3 3

1 0 0 0
0 1 0 0

1 2 ,y 1y u 0 1 1ygŽ .c3� 01 11q h 0 0 y 1y uŽ .c c3 3

0 1 0 0
0 0 1 0B s .2 0 0 0 0� 0
0 0 0 0

To find z satisfying zX syzA, it suffices to find z so that˜

z9B s yzB , 9.4Ž .˜ ˜1 2

and then let zs zB .˜ 1
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LEMMA 9.3. For each case B2 and B3, there exists a number b such that
y Ž . Ž . Ž .z s, 0 s b z s B s , where respectï ely:˜ 1

z s s ­ 2h ,y­ h ,h , u orŽ .˜ Ž .s c s c c c

12 2­ u ,y­ u , u , 3 1yg log 1q h . 9.5Ž .Ž . Ž .Ž .s c s c c c3

Ž . Ž . Ž .Proof: Because h,¨ s ­ h , ­ u satisfies 3.1 for ls0, it is easy tos c s c
Ž . Ž . Ž . Ž .verify that z s defined as above satisfies 9.4 in each case. Since z s B s˜ ˜ 1

ª0 as sªy`, it follows that z is a scalar multiple of zy. B˜
q Ž .Proof of Proposition 9.1: From Lemma 9.2, it is clear that y s, 0 ª0 as

Ž .sªy`. By the characterization of the Evans function in 4.5 , it follows
Ž . Ž .D 0 s0, since m 0 -0.1

Ž . XŽ .We use the formula 9.1 to compute D 0 . For each case B2 and B3,
respectively, we compute

0 0 0 0
0 0 0 0

2­ A s, 0 s or1Ž .l y 1y u 0 2 y1Ž .c3� 01y 1y u 0 0 0Ž .c3

0 0 0 0
0 0 0 0

12 .y1 0 1 y 1yg 1q hŽ . Ž .c3� 010 0 0 1q hc3

XŽ .To show that D 0 s0 it suffices to integrate the expression zB ­ Ay, from˜ ˜1 l

Lemmas 9.2 and 9.3. We find that this expression equals, for cases B2 and
B3, respectively,

21 13zB ­ Ay s y 1y u h ­ h q2h ­ h yh ­ u y u 1y u ­ h˜ ˜ Ž . Ž .1 l c c s c c s c c s c c c s c3 3

or

13 2yu ­ u q u ­ u y3 1yg log 1q h ­ h .Ž .c s c c s c c s cž /3

1Ž .ŽSince u can be replaced by h and vice versa using the relation 1y u 1qc c c3
1 .h s1, every term in these expressions is a perfect derivative, so it followsc3

that

`

z s B s ­ A s, 0 y s ds s 0.Ž . Ž . Ž . Ž .˜ ˜H 1 l
y`

XŽ .Therefore D 0 s0. B
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10. Large values of the eigenvalue parameter

In this section we complete the proof of Theorem 5.1, by proving Proposi-
tions 5.5 and 5.7. For this, we need to obtain appropriate estimates on
< Ž . <D l,g y1 in Regimes II and IV. In all cases but one, the necessary
estimates are obtained from the following lemma.

LEMMA 10.1. Consider the n= n system

d¨ s B¨ s q F s e q¨ s , 0 F s - `. 10.1Ž . Ž . Ž . Ž .Ž .1ds

Ž . tHere e s 1,0, . . . , 0 . Assume that B is a diagonal matrix with B s0 and1 11
Ž .R B G0 for j)1, and that the matrix F s is continuous in s withj j

Ž . ` < Ž . <lim F s s0 and H F s ds-`. Then there exist positï e constants dsª` 0 0
` < Ž . < Ž . Ž .and C , such that if H F s ds-d , then 10.1 has a solution ¨ s with0 0 0

Ž .lim ¨ s s0, and this solution satisfiessª`

`

sup ¨ s F C F s ds. 10.2Ž . Ž . Ž .H0
00F s-`

Ž .Proof: The solution ¨ s is obtained by fixed-point iteration using the
equation

`
Ž syr .B¨ s s TT¨ s ' y e F r e q¨ r dr , 10.3Ž . Ž . Ž . Ž . Ž . Ž .Ž .H 1

s

< Bs <along with the estimate e FC for sF0, and the estimate

`

TT¨ s F C F r dr 1q sup ¨ r . 10.4Ž . Ž . Ž . Ž . Ž .H ž /
s 0 F r -`

Ž . Ž . Ž .From 10.3 and 10.4 it is easy to establish the bound 10.2 B
< Ž . <To obtain a bound on D l,g y1 , we use Lemma 10.1, with the matrices

B and F constructed as follows. B is obtained by diagonalizing A`ym I.1

Because of Propositions 6.4 and 6.5, the eigenvalues of A are distinct in`

Regimes II and IV. Let V be the matrix containing the right eigenvector vj
Ž .from 7.4 in column j, and let W be the matrix containing the left

Ž .eigenvector w from 7.5 in row i. Then WVs I. Suppressing the depen-i
Ž .dence on l,g , we set

` � 4B s W A ym I Vsdiag m ym ,Ž .1 j 1

F s s WR s VsW A s y A` V .Ž . Ž . Ž .Ž .
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q Ž . Ž . q Ž .Recall the characterization of y s in 4.6 , and define ¨ s from

yq s s e m1 sV e q¨q s .Ž . Ž .Ž .1

q Ž . q Ž .Then ¨ s¨ satisfies 10.1 and ¨ s ª0 as sª`. In similar fashion we
y Ž . y Ž . y Ž . Ž y Ž . t . ym 1 s ydefine w s from z s using z s s w s q e We . Then wsw1

satisfies

dw ts yw s B y w s q e F s , y` - s F 0,Ž . Ž . Ž .Ž .1ds

y Ž .and w s ª0 as sªy`. Taking the transpose and reflecting in s, we may
` < Ž . <conclude that if H F s ds-d , from Lemma 10.1 we obtain the estimatey` 0

`
q ysup ¨ s q sup w s F C F s ds. 10.5Ž . Ž . Ž . Ž .H

y`0 F s-` y`- sF 0

Ž . y q Ž t y .Ž q .Therefore, since D l,g s z ? y s e qw e q¨ , we have:1 1

Ž .COROLLARY 10.2. Consider the system 4.1 under the hypotheses of Section
`Ž .4 and assume A l is diagonalizable with V and W being the matrices of right

Ž . Ž . Ž Ž . `.respectï ely, left eigen¨ectors. Let F s sW A s y A V. There exists a
` < Ž . <number d )0 such that if H F s dsFd , then0 y` 0

`

D l,g y1 F C F s ds. 10.6Ž . Ž . Ž .H
y`

This estimate is used to prove Propositions 5.5 and 5.7, except in one
case, that of B3 in Regime IV, which requires special treatment.

Ž . ` Ž .Because of the structure of the matrices A in 7.1 and A in 7.2 ,
and the estimates for h and u from Corollary 2.2, it is evident that˜ ˜c c

for 0Fg Fg , lgC, we have the following estimates on the de¨iator0
Ž . Ž . `Ž .R s, l,g s A s, l,g y A l,g :

2 y <g s <R s, l,g F Cg e E , 10.7Ž . Ž .i j i j

where for each case B1, B2, B3, respectively,

0 0 0 0 0 0 0 00 0 0 0
0 0 0 0 0 0 0 00 0 0 0

E s , , .< < < <g q l 1 0 g g 1 0 g q l0 0 0 0� 0 � 0 � 02 < < < <g g 1 0 g q l 1 0 g g 1 0 g q l
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Ž . Ž .Using the expressions for the entries of V and W in 7.4 and 7.5 , it follows
that

2 y <g s <F s F Cg e G , 10.8Ž . Ž .i j i j

where in terms of the roots m we have respectivelyj

< <m 2i 2 < < < <G s g qg m q m , 10.9.B1Ž .ž /i j j j3< < < <m y l m y li i

2 m y l< <m l ji < < < <G s 1q g q l q m qg , 10.9.B2Ž .i j j3 ž /m mž /< < < <m y l m y l i ji i

mm l ji < < < <G s 1q g q m q g q l . 10.9.B3Ž .Ž .i j j3 ž / ž /lym m y lm y l i ji

Proof of Proposition 5.5: Using Proposition 6.4, there exists g )0 such2

that for 0-g -g , the following estimates hold uniformly for lgS as2 2

d ª0:

for js1,2,3: for js4:

cl1r3< < < < Ž Ž .. Ž Ž ..m s2c l 1q o 1 , 1q o 1 ,j cq1 Ž .10.10
l1r3< < < < Ž Ž .. Ž Ž ..m y l s2c l 1q o 1 , 1q o 1 ,j cq1

3< < < <Ž .Ž Ž .. < <Ž Ž ..m y l s l 1q2c 1q o 1 , l 1q o 1 .j

Using these estimates, we find that since g Fd 2r3 in Regime II when S2

is nonempty, for each case B1, B2, and B3 we have

g G F Cd 1r3. 10.11Ž .i j

` y <g s < Ž . Ž .Since H g e dss2, from these estimates and 10.8 and 10.6 we findy`

that

1r3D l,g y1 F Cd .Ž .

This proves Proposition 5.5. B
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Proof of Proposition 5.7 for cases B1 and B2: According to Proposition
6.5, for 0-g Fg and lgS , the following estimates hold uniformly as0 4

d ª0:

for js1,4: for js A2,3:
< < Ž . < <Ž Ž ..m s1q o 1 , l 1q o 1 ,j Ž .10.12y1< < < <Ž Ž .. Ž .m y l s l 1q o 1 , c q o 1 ,j

33< < < <Ž Ž .. < < Ž Ž ..m y l s l 1q o 1 , l 1q o 1 .j

Ž .Using these estimates in 10.9 , it is straightforward to verify that for all i, j
we have that for some constant C, if d is sufficiently small, then

g G F Cg . 10.13Ž .i j

As previously, this implies that

D l,g y1 F Cg .Ž .

This completes the Proof of Proposition 5.7 for the cases B1 and B2. B

Proof of Proposition 5.7 in the case B3: In the case B3, corresponding to
Ž . Ž .10.13 , it appears that we can obtain only from 10.9.B3 , the bound

< <G FC l when js2,3, which is insufficient to prove Proposition 5.7,i j
` < Ž . < Ž .because in this case H F s dssO lg does not tend to zero as g ª0y`

uniformly for lgS .4

A more delicate approach is necessary. Roughly speaking, instead of
Ž .using Lemma 10.1, we work with a variant, with B in 10.1 replaced by

adding to it a variable coefficient symmetric matrix, which accounts for the
Ž .O lg terms in F.
Toward this end, we write Rs Ay A`s RŽ1.q RŽ2., F s F Ž1.q F Ž2.s

WRŽ1.V qWRŽ2.V, where

0 0 0 0
0 0 0 01Ž1.R s h l ,2c3 0 0 0 y 1ygŽ .� 0
0 0 0 1
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< Ž2. < 2 y <g s < Ž2.and note that R FCg e E , wherei j i j

0 0 0 0
0 0 0 0Ž2.E s . 10.14Ž .g 1 0 g� 0
g 1 0 g

The part RŽ2. is estimated as in the cases B1 and B2; we find that

< Ž2. < < Ž2. < 2 y <g s < Ž2.F ' w R v F Cg e G ,i j i j i j

where

mm l jiŽ2. < <G s 1q g q m qg .i j j3 ž / ž /lym m y lm y l i ji

Ž . < Ž2. <Using the estimates in 10.12 , it follows that G FC, uniformly fori j
< < y10-g Fg and l Gd , for d sufficiently small.0

Next, we compute that

mm m ji i1Ž1. Ž1. 2< <F ' w R v s y h l 1yg .Ž .i j i j c6 3 m y l m y lm y l i ji

Using the expressions in Proposition 6.5, one may calculate that, for lgS4

sufficiently large,

F Ž1. s s w RŽ1. s vŽ . Ž .i j i j

O 1 if either i or j is 1 or 4,Ž .
1s h s ?Ž .c6 iq j½ l y1 qO 1 if both i and j are 2 or 3.Ž . Ž .

Now define

0 0 0 0
0 m ym 0 02 1

B̃ s sŽ . 0 0 m ym 03 1� 00 0 0 m ym4 1

0 0 0 0
0 1 y1 01q h s l . 10.15Ž . Ž .c6 0 y1 1 0� 0
0 0 0 0
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Then we have that

˜ ˜W Aym I V s B q F s s B s q F s ,Ž . Ž . Ž . Ž .1

where

2 y <g s <F̃ s F Cg e 10.16Ž . Ž .

for lgS if d is sufficiently small.4
q Ž q m1 s Ž q ..Note that the equation for ¨ recall y s e V e q¨ can be written1

as

d¨q
q q˜ ˜s B s ¨ q F e q¨ . 10.17Ž . Ž .Ž .1ds

˜Ž . Ž .This is as in 10.1 except that B is replaced by B s . The nonconstant part
Ž̃ .of B s is of the form l times a positive definite matrix. This structure now

is exploited to give a bound on the fundamental matrix for the system:

da ˜s B s a . 10.18Ž . Ž .ds

Ž̃ . Ž . Ž .LEMMA 10.3. If B s is gï en by 10.15 and if X s,t is the fundamental
Ž . Ž .matrix of 10.18 , satisfying X t ,t s I, then if g and d are sufficiently small,

for all lgS we ha¨e4

4< <X s,t r F r , for all s F t , r g C . 10.19Ž . Ž .

< Bs <For case B3 this bound plays a role analogous to the bound e FC for
Ž .sF0 in the cases B1 and B2. In fact, with the bound 10.19 in hand, the

q Ž q . y Ž y .construction and estimation of ¨ y and w z go through, using
˜ Ž syr .BŽ . Ž . Ž . Ž .10.3 with F s replaced by F s and e replaced by X s, r . We then

Ž .have the analogue of 10.6 , namely

`
˜D l,g y1 F C F s ds. 10.20Ž . Ž . Ž .H

y`

Ž . Ž .Use of the estimate 10.16 in 10.20 completes the proof for the case B3.
Ž . Ž .It remains then to prove Lemma 10.3. Let a s s X s,t r. First note

Ž .that one can solve explicitly for the first and fourth components of a s to
get

Ž m ym .Ž syt .4 1< < < < < <a s s r , a s s e r F r .Ž . Ž .1 1 4 4 4
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Ž . tTo estimate a' a , a , we note that2 3

m ym 0da 2 1s aq lSa,ds ž /0 m ym3 1

where

1 1 y1S s h s .Ž .c ž /6 y1 1

2² :With the notation a ,b sÝ a b for the inner product on C , we havei i i

1 d ² : ² : ² :a s ,a s G min R m ym a s ,a s q Rl a s , Sa s .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .j 12 ds js 2, 3

< Ž . < 2 Ž .Since S is a nonnegative matrix, and S s FCg , with m l, g s*
Ž .min R m ym , we evidently havej)1 j 1

0 for RlG0,1 d ² :a s ,a s GŽ . Ž . 22½2 ds m y« Cg a s for y« -Rl-0.Ž .Ž .* 0 0

Ž . < <From Proposition 6.5 we deduce that m sRlq1q o 1 as l ª` with*

y« -Rl. Therefore if g and d are sufficiently small, we conclude that0
< Ž . <a s is nondecreasing in s, which completes the proof of the lemma. B

11. Convective linear stability

Using the results obtained so far, concerning the absence of eigenvalues
Ž .with respect to the weighted norm in 1.3 , we establish a convective linear

stability result as described in the introduction, of the type used in proving
w xthe asymptotic stability of solitary waves in generalized KdV equations 17

w xand in the RLW equation 28, 29 .
Ž .To proceed, one writes the linearized evolution equation from 3.l in an

abstract form

­ z s AAz 11.1Ž .t

Ž . 2 2 2for zs h,¨ on a Hilbert space such as X s L = L , where L is defineda a a a
2 Ž .using the weighted L norm in 1.3 . One then shows the following, for

sufficiently small g and a suitable value of a:

Ž .R1 The initial value problem for 11.1 is well posed in that AA is the
generator of a C semigroup on X .0 a
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R2 Zero is an isolated eigenvalue of AA of algebraic multiplicity two.
Ž .y1R3 The resolvent ly AA is uniformly bounded in the right half-plane

Rl)0, outside any neighborhood of the origin.

w xIt is a direct consequence of a result given by Pruss 26, Corollary 4 , applied¨
Ž .to the semigroup exp AAt restricted to the spectral complement of the

generalized kernel of AA, that these facts yield the following convective linear
stability result for solitary waves.

Ž .THEOREM 11.1. Consider 11.1 in the cases B1 and B3. If g )0 is
Ž Ž ..sufficiently small, there exists a)0 of order O g and positï e constants C

Ž .and b with the following property. Gï en initial data z 0 s z g X whose0 a

spectral projection onto the generalized kernel of AA ¨anishes, we ha¨e

ybt 5 5z t F Ce z , t ) 0. 11.2Ž . Ž .aa 0

The projection onto the two-dimensional generalized kernel corresponds
Ž .to infinitesimal shifts in phase and wave speed or amplitude among the

two-parameter family of solitary waves. So the result in this theorem
corresponds to the linearized version of an orbital asymptotic stability result

Ž .for solitary waves as described in 1.2 .
It remains to establish the properties R1]R3 for each case B1 and B3.

We omit case B2 because of complications in formulating a well-posed
initial value problem in this case.

11.1. Con¨ectï e linear stability for the case B1

Ž . Ž .The linear evolution equation for h s, t from 3.1.B1 is second order in
time and corresponds to the first-order system

­ y­ h q S¨ s 0, S 1yg 2 qh h q ­ y­ ¨ s 0, 11.3Ž . Ž . Ž .˜Ž .t s c t s

Ž 2 .y1r2 Ž .where Ss­ Iy­ is an operator of order zero. With zs h,¨ , thes s
Ž .operator in 11.1 is given by AAs AA q BB , where* *

­ yS 0 0s
AA s , BB s .* *2 ž /ySh 0˜ž /yS 1yg ­ cŽ . s

Studying the resolvent of AA on X s L2 = L2 is equivalent to studyinga a a

the resolvent of AA s easAAeya s on X s L2 = L2, since the map z¬ easz isa 0

an isometry of X onto X . AA may be obtained by replacing ­ by ­ y a ina 0 a s s

the definitions of AA and S. AA is a bounded perturbation of the operator ­a s

with domain H 1 = H 1; therefore AA is the generator of a C semigroup ona 0

X . This implies that R1 is true.0
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We study the resolvent of AA using perturbation theory and the Fouriera

transform. The resolvent of the constant coefficient operator AA s easAA eya s
*a *

Ž .y1is given by the following formula. If zs ly AA z with z g X , then*a 0
ˆŽ . Ž . Ž .z j s RR ij y a, l z j , whereˆ

ˆlym S mŽ .1
RR m , l s 11.4Ž . Ž .

2ly PP m ly PP mŽ . Ž . ˆž /Ž . Ž . S m 1yg lymŽ .q y Ž .

2Ž̂ . Ž . Ž .'with S m smr 1ym . Here PP m are as in 6.1 , with the depen-" "

dence on g suppressed.
5Ž .y1 5 < Ž . <The norm of the resolvent of AA is ly AA ssup RR ij y a, l .*a *a j

Ž . Ž .From 6.1 it is clear that this is finite if and only if l/ PP ij y a for all" "

real j . For 0- a-1 the proof of Lemma 6.1 implies that with ms ij y a,

R PP m - Rm s ya - R PP m . 11.5Ž . Ž . Ž .q y

y2r3 1r2 'Ž .Moreover, Lemma 6.3 implies that for 0- a-ym s 1yc fg r 3 ,m

R PP ij y a F PP ya - 0Ž . Ž .y y

Ž .for all j . Therefore, for such a, the half-plane Rl) PP ya lies in they
5Ž .y1 5resolvent set of AA . Moreover, it is not hard to show that ly AA is*a *a

< Ž . < < Ž . <uniformly bounded for Rl)0, since then ly PP ij y a G PP ya )0" y
uniformly for j real.

Ž .Henceforth, we restrict our attention to values of a in 0,ym . Now, wem
Ž .y1Ž .claim that the operator ly AA AA y AA is compact, which implies that*a a *a

Ž .the spectrum of AA in the half-plane Rl) PP ya is discrete, consistinga y
Ž w x.only of isolated eigenvalues of finite multiplicity cf. 64 . We compute that

y1
ly AA AA y AA s QQh , 11.6Ž . Ž . Ž .˜*a a *a c

where QQ is the pseudodifferential operator with symbol

2ˆyS m 0Ž .1
Q̂Q m s , 11.7Ž . Ž .

ly PP m ly PP mŽ . Ž . ž /Ž . Ž . ˆq y y lym S m 0Ž . Ž .

Ž̂ . Ž .where ms ij y a. We have that lim QQ ij y a s0 and lim h s s0˜< j < ª` < s < ª` c

and that these functions are continuous. This immediately implies that QQh̃c
w xis compact; see 65 for a short proof.

It is not hard to show that if l is an eigenvalue of AA in the half-planea
Ž . Ž .Rl) PP ya , then the eigenvalue equation in 3.1.B1 has a nontrivialy
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Ž m1 s. Ž .solution, which is o e as sªy` and is o 1 as sªq`, and therefore l
Ž .is a zero of the Evans function D l,g . Therefore, as a direct consequence

Ž Ž ..of Corollary 5.2, if g )0 is sufficiently small depending on s in 5.1 , then
AA has only one eigenvalue in this half-plane, namely zero.a

Consider the multiplicity of zero as an eigenvalue of AA on X . Recall thata

the solitary wave profile h satisfies˜c

12 2 2y 1y­ h q 1yg h q h s 0. 11.8Ž .Ž .˜ ˜ ˜Ž .s c c c2

Ž 2 . Ž 2 .Hence if the operator Lsy 1y­ q 1yg qh , we have˜s c

1 2L­ h s 0, L­ h s 2gh , Lh s h . 11.9Ž .˜ ˜ ˜ ˜ ˜s c g c c c c2

It is convenient to define

12 2 2x s 1yg h q h s 1y­ h ,Ž .˜ ˜ ˜Ž .c c s c2

y2 y12 2 2h s 1yg ­ 1yg h s 2gh q 1yg ­ h ,Ž . Ž . Ž .˜ ˜ ˜ž /1 g c c g c

1r2 y1r22 2 2¨ s 1y­ h qgh s 1y­ 1yg qh h ygx .Ž .˜ ˜Ž . Ž . Ž .ž /1 s 1 c s c 1

We find that Lh s2gx , and with the definitions1

y1r2y1 2z s ­ h , Sx , z s g h ,¨ , w s x , 1y­ x ,Ž .Ž .˜ Ž .ž /0 s c 1 1 1 0 s

we compute that

AAz s 0, AAz s z , AA*w s 0. 11.10Ž .0 1 0 0

Here z and z are elements of X , and w is in X , which is the dual of0 1 a 0 ya

X with respect to the L2 pairing.a

It is straightforward to show that if AAzs0 then the first component of z
is a multiple of ­ h and then that the kernel of AA is one dimensional. To˜s c

show that zero is an eigenvalue of algebraic multiplicity exactly two for AA on
² : ŽX , it suffices to show that w , z /0. If the algebraic multiplicity werea 0 1

greater than two, there would exist z g X with AAz s z , and hence2 a 2 1
² : ² : . Ž . 2 Ž .w , z s AA*w , z s0. But, using that explicitly h s sg Q g s from˜0 1 0 2 c

Section 2, so that g­ h s2h q s­ h , we can compute that˜ ˜ ˜g c c s c

`
2² :g w , z s g x h q x h qghŽ .˜H0 1 1 1 c

y`

`
2 2 2s 1y­ h 4qg h q2 1yg s­ h dsŽ . Ž .˜ ˜ ˜Ž . Ž .H s c c s c

y`

` 22 2s 3q2g h q5 ­ h ) 0.Ž .Ž .˜ ˜H c s c
y`

This establishes property R2.
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To establish R3 using a perturbation argument, it suffices to show that
there exists a positive constant C such that if g )0 is sufficiently small and*

a has a suitable value depending on g , then

y1 1ly AA AA y AA F 11.11Ž . Ž . Ž .*a a *a 2

< < Ž .provided only that l )C with RlG0. For, from 11.11 it follows that the*

resolvent

y1y1 y1 y1
ly AA s Iy ly AA AA y AA ly AAŽ . Ž . Ž . Ž .ž /a *a a *a *a

< <is uniformly bounded for l )C with Rl)0. Provided that we show that*

the resolvent set contains all nonzero l with RlG0, since the resolvent is
analytic in l it follows that the resolvent is uniformly bounded outside of
any neighborhood of the origin.

Ž . Ž . Ž .To establish 11.11 , we use the representation in 11.6 and 11.7 . The
norm of the operator of multiplication by h is bounded by C g 2 from˜c 1'Theorem 2.1. We claim that if 0-c -1 3 , there exists C )0 such that if0 2

we take asc g , then0

y1ˆsup QQ ij y a F C g 11.12Ž . Ž .2
y`- j -`

< < 5 5 Ž .if l )1 with RlG0. Then it follows that QQh FC C g , so 11.11 holds˜c 1 2

for sufficiently small g .
ˆŽ . Ž .To prove 11.12 , we note that S ij y a is uniformly bounded, and let

ˆŽ Ž .. Ž . Ž .q s1r ly PP m . Then since PP m sm"S m rc, we have" " "

c q y q 0Ž .q y1ˆ ˆQQ m s y S m .Ž . Ž .2 ž /q q q 0q y

Hence we may infer that

Cˆsup QQ ij y a F .Ž .
inf ly PP ij y aŽ .j yy`- j -`

Ž .Here 11.5 was used. From Lemma 6.3 and Taylor’s theorem we deduce
< < Ž . Ž .that if j )1 then R PP ij y a -R PP iy a -yar2 for sufficientlyy y

< <small a)0. Hence for l )1 with Rl)0, the infimum above is greater
Ž .than ar2sc g r2, and 11.12 follows. This finishes the proof of R3 in the0

case B1.
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11.2 . Con¨ectï e linear stability for the case B2

Ž . Ž .The linear evolution equation for zs h,¨ from 3.1.B3 may be written as
Ž .­ zs AAzs AA q BB z, wheret * *

­ y­s s
AA s ,y1* 2 2ž /y 1yg 1y­ ­ ­Ž . Ž .s s s

11.13Ž .
u h˜ ˜c c1

BB s y ­ .y1* s3 2ž /1y­ u 0˜Ž .s c

The constant coefficient system ­ zs AA z admits the conserved quantityt *

` 1 1 1 22 2 21yg h q ¨ q ­ ¨ ,Ž .Ž .H s2 2 2y`

which can be used to show that the initial value problem is well posed on the
space X s L2 = H 1, in the sense that AA is the generator of a C semigroup0 * 0

on this space. For this reason we seek to establish properties R1]R3 for AA

on the space X s L2 = H 1, where H 1 is the Hilbert space of functions fa a a a

such that eas f is in H 1. The operator BB is not bounded on this space, due*
Ž .y1to its first diagonal entry, and ly AA BB is not compact, so the methods* *

used in case B1 do not apply. To establish R2 and R3, we make direct
Ž .estimates of Green’s function for the resolvent equation ly AA zsz .

First consider property R1. The function u is smooth and rapidly˜c
1Ž .decaying, and it is not hard to prove that 1y u ­ is the generator of a C˜c s 03

semigroup on L2, by using characteristics to solve the differential equation
1Ž .­ hq 1y u ­ hs0 for smooth initial data, and making energy estimates.˜t c s3

Now, the operator AA s easAAeya s is a bounded perturbation of the diagonala
1ŽŽ . .operator diag 1y u ­ , ­ in the space X . Hence AA is the generator of˜c s s 0 a3

a C semigroup in X , and R1 follows.0 0

Next, we show that ls0 is an eigenvalue of AA on X with geometrica
Ž .multiplicity one and algebraic multiplicity at least two. Let z s ­ h , ­ u ,˜ ˜0 s c s c

then AAz s0, and if AAzs0 with zg X , then using the asymptotic theory0 a

of ordinary differential equations and Lemma 9.2 one may deduce that z is
Ž .a constant multiple of z . We may find z g X by observing from 2.1.B30 1 a

Ž . Ž .that h, u s h , cu satisfy˜ ˜c c

y11 1 2yc­ h q ­ uq hu s 0, 1y­ ­ hq u y c­ u s 0.Ž .Ž . Ž .s s s s s3 6
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Ž 2 .y1r2Differentiating with respect to c s 1yg , we find that z s1
Ž Ž ..c­ h , ­ cu satisfies AAz s z and that z and z are in X provided˜ ˜c c c c 1 0 0 1 a

0F a-g .
For further progress, we describe a solution formula for the resolvent

Ž .equation ly AA zsz . It suffices to consider z to be smooth and have
Ž .compact support, since the set of such functions is dense in X . If z s f , g ,a

we may reduce the resolvent equation to a first-order system for ys
Ž 2 .¨ , ­ ¨ , ­ ¨ , h and write it in the forms s

­ y y A s, l,g y s x s f q ­ c , 11.14Ž . Ž .s s

Ž .where A is given by 7.2.B2 and

t1 12f s 0,0, g q 1yg 1q h f ,y 1q h f ,Ž . ˜ ˜Ž . Ž .Ž .c c3 3
11.15Ž .

t
c s 0,0,y­ g , 0 .Ž .s

Ž . w xThe system 11.14 has the solution formula 60, p. 65

`

y s s K s, s , l x s ds ,Ž . Ž . Ž .H
y`

where the matrix-valued Green’s function K may be determined by solving

­ K s A s, l,g K , K sq, s , l yK sy, s , l s I ,Ž . Ž . Ž .s

11.16Ž .q yy s , l z s , lŽ . Ž .
K sq, s , l s .Ž . D lŽ .

We have suppressed the dependence of K on g . We note that ­ K qs

Ž .KA s , l s0, and also

yq s, l zy s , lŽ . Ž .
K s, s , l s for s ) s ,Ž . D lŽ . 11.17Ž .

zy s, l K s, s , l s 0sK s, s , l yq s , l for s - s .Ž . Ž . Ž . Ž .
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2 ` Ž . Ž .The norm of an integral operator on L given by f ¬H k s, s f s dsa y`

may be bounded by

`
aŽ sys .N k s sup k s, s e dsŽ . Ž .Ha

y`y`- s-`

`
aŽ sys .q sup k s, s e ds, 11.18Ž . Ž .H

y`y`- s -`

w xusing the generalized Young’s inequality 66, p. 13 . To bound the resolvent
Ž .y1 asŽ . asŽ .ly AA on X , it is enough to bound the map e f , g ¬ e h,¨ , ­ ¨a s

2 1 Ž 2 .3from L = H to L , and since

` `

K s, s , l ­ c s ds s c s y ­ K s, s , l c s ds ,Ž . Ž . Ž . Ž . Ž .H Hs s
y` y`

5Ž .y1 5clearly the norm of the resolvent on X may be bounded by ly AA Fa
Ž Ž ..5F K l , wherea

F K l s max N K l q max N ­ K l . 11.19Ž . Ž . Ž . Ž .Ž . Ž .Ž .a a i j a s i3
is1, 2, 4, js 3, 4 is1, 2, 4

Ž . Ž .In 11.19 the s, s arguments of K have been suppressed.
Ž . Ž .From the expressions in 11.16 and 11.17 we see that the Green’s

Ž . gfunction K s, s , l is meromorphic in l on the domain V of the Evans
Ž .function and that zeros of the Evans function D l induce poles in the

Žresolvent formula. This is exactly why such zeros are called resonance poles
.if they are not eigenvalues in X . Our Corollary 5.2 implies that if g )0 is0

1 1 33 gsufficiently small and ls g Lg g SS , then there is only one such pole2 2

possible, at ls0.
Regarding the Green’s function K, we establish the following estimates.

'LEMMA 11.2. Suppose asc g , where 0-c -1r 3 , and g )0 is suffi-0 0

ciently small. Then the following hold.

˜Ž .a There are positï e constants C and C such that whene¨er Rl)0 and
˜< <l )C,

F K l - C.Ž .Ž .a

Ž . Ž .b If l/0 and Rl)yb, where 0- b-yPP ya , theny

F K l - `.Ž .Ž .a

Ž . < <c There are positï e constants C and d such that whene¨er 0- l -d ,

2
D l F K l - C.Ž . Ž .Ž .a
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Ž .Part b of this lemma implies that l is in the resolvent set of AA on X , ifa
Ž .l/0 with Rl) PP ya . The resolvent is analytic on its resolvent set, soy

Ž . Ž .property R3 follows from parts a and b of the lemma.
Ž .We next use part c to prove property R2. Since ls0 is a zero of order

Ž . 4Ž .y1two for D l , it follows that l ly AA is analytic at ls0. It is evident
Ž . 3 Ž . Ž .from 11.16 that l K s, s , l ª0 as lª0, uniformly for s, s in compact

4Ž .y1sets. We infer that the first two terms of the Taylor expansion of l ly AA

Ž 4Ž .y1vanish e.g., for x of compact support, l ly AA x ª0 weakly, hence
.strongly, hence the first term vanishes .

So the resolvent of AA has the expansion

D Py1 0 0ly AA s q q R l ,Ž . Ž .02 ll

where R is analytic. The operator P is the spectral projection on the0 0

generalized null space of A. The meaning of R2 is that P has rank two. We0
Ž . Ž . Ž .can find an explicit representation of P . Let K s, s , l s D l K s, s , l ;0 *

Ž .then clearly K is analytic in a neighborhood of ls0. From 11.16 we see*

that K is continuous at sss when ls0, and in fact for all s and s we*

have

K s, s , 0 s yq s, 0 zy s , 0 ,Ž . Ž . Ž .*

­ K s, s , 0 s yq s, 0 zy s , 0 q yq s, 0 zy s , 0 .Ž . Ž . Ž . Ž . Ž .l * l l

Here yqs­ yq, zys­ zy. Expansion of K and D then reveals that therel l l l *

are constants b , b such that0 1

`

P x s s b ­ K q b K x dsŽ . Ž .H0 0 l * 1 *
y`

`
q ys y s, 0 b z s , 0 x s dsŽ . Ž . Ž .Hl 0

y`

`
q y yq y s, 0 b z q b z s , 0 x s ds .Ž . Ž . Ž .Ž .H 0 l 1

y`

Clearly P has rank two at most. But we have shown above that the0

generalized kernel of AA is at least two dimensional. Therefore P has0

exactly rank two, proving R2.
It remains to prove Lemma 11.2. To obtain the estimates we seek

regarding the Green’s function K, we make considerable use of results
concerning exponential dichotomies for systems of ordinary differential

w xequations, as described by Coppel 66 .
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Ž .Let us first prove part a . As in Section 10, we change variables to
` Ž .diagonalize A , letting V sV l be the associated matrix of right eigenvec-

tors and W sVy1 the matrix of left eigenvectors. Define

K a s, s , l s eaŽ sys .WK s, s , l V ;Ž . Ž .

then K a is Green’s function for the system

­ ¨ s B s ¨ q x ,Ž . ˜s a

where we may write

˜ ˜B s s WA s, l,g V q aI s B s q F s .Ž . Ž . Ž . Ž .a a

Ž . Ž .Here, as in 10.15 and 10.16 ,

m q a 0 0 01

0 m q a 0 02B̃ s sŽ .a 0 0 m q a 03� 00 0 0 m q a4

0 0 0 0
0 1 y1 01q h s l ,Ž .˜c6 0 y1 1 0� 0
0 0 0 0

and we have the estimate

2 y <g s <F̃ s F Cg e 11.20Ž . Ž .

for lgS if d is sufficiently small.4

Now note that

eaŽ sys .K s, s , l s etV K a s, s We ,Ž . Ž . Ž .Ž .i j i j

e aŽ sys .­ K s, s , l s y etV K a s, s B s We .Ž . Ž . Ž .Ž . Ž .s i j i 0 j

Ž .Using the asymptotic estimates in 10.12 for m and the representation ofj
Ž . Ž .the eigenvectors in 7.4 and 7.5 , one may deduce without difficulty that

t t< < < < < <max e V We F C , max e V B s We F CŽ .i j i 0 3
is1, 2, 4, js 3, 4 is1, 2, 4

uniformly for lgS and y`- s-`, if d is sufficiently small.4
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Ž .To prove part a , it suffices to show that if g is sufficiently small, then
Ž < aŽ . <. < <N K l is uniformly bounded for l large with Rl)0. We derive this0

˜bound from the analogous bound on the Green’s function K of the simpler
system

˜­ ¨ s B s ¨ q x , 11.21Ž . Ž .˜s a

by exploiting Coppel’s analysis of the ‘‘roughness’’ of exponential di-
w x Ž .chotomies 66 . To explain, let F s be the matrix satisfying

­ F s B s F , F 0 s I.Ž . Ž .s a

Ž .y1 q Ž . y Ž . 2Define P s D l Wy 0, l z 0, l V. The matrix P s P and is the pro-
jection on the space of initial conditions at ss0 for solutions of ­ ¨ s B ¨s a

Ž Ž . .that are O exp m q a s as sªq`. Also, Iy P is the corresponding1
Ž Ž . .projection for solutions that are O exp m q a s as sªy`. The Green’s*

function K a is given by the formula

y1
F s PF s for s)s ,Ž . Ž .aK s, s sŽ . y1½ yF s Iy P F s for s-s .Ž . Ž . Ž .

Ž .The dependence on l,g has been suppressed here, but we claim that, for
sufficiently small g )0 and asc g as described above, there are positive0

constants C and a independent of l such that0

y1 ya Ž sys .F s PF s F C e for s ) s ,Ž . Ž . 0
11.22Ž .

y1 ya Žsys.F s Iy P F s F C e for s - s ,Ž . Ž . Ž . 0

< < Ž .for any l with l sufficiently large and Rl)0. Part a of the lemma follows
Ž .directly. The inequalities 11.22 assert that system ­ ¨ s B ¨ admits ans a

exponential dichotomy with projection P, having structure constants C and0

a independent of l.
Ž .Because of the estimate 11.20 and Coppel’s results on the persistence of

Žexponential dichotomies see Proposition 1 on p. 34 and the end of chapter 2
w x. Ž .in 66 , the claim in 11.22 is a direct consequence of corresponding

˜Ž . Ž .estimates for the simpler system 11.21 . To get such estimates, let F s
satisfy

˜ ˜ ˜ ˜­ F s B s F , F 0 s I ,Ž . Ž .s a
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˜ t ˜ Ž .and define P s e e . The Green’s function K for 11.21 is1 1

y1¡˜ ˜˜F s PF s for s)s ,Ž . Ž .~K̃ s, s sŽ . y1¢ ˜ ˜ ˜yF s Iy P F s for s-s .Ž . Ž .Ž .

˜ ˜ Ž .Clearly K has the same block diagonal structure as B s , and in fact,a

exp m q a sys , s)s ,Ž . Ž .1K̃ s, s sŽ .11 ½ 0, s-s ,

0, s)s ,
K̃ s, s sŽ .44 ½ yexp m q a sys , s-s .Ž . Ž .4

The 2=2 matrix

˜ ˜K K22 23G s, s sŽ . ˜ ˜� 0K K32 33

Ž .satisfies G s, s s0 for s)s and, for s-s , satisfies

m q a 02 1 y11­ G s G q h l G, G s y0, s s I.Ž .˜s c6 ž /ž /0 m q a y1 13

Since Rm )0 for Rl)0 if j)1, using the energy method as at the end ofj

Section 10 we find that

t aŽ sys .tr G G s, s F 2 e for s - s .Ž .

1 < <We infer that, since Rm q a-y for l large with Rl)0,1 2

y1 yŽ sys .r2˜ ˜˜F s PF s F C e for s ) s ,Ž . Ž . 0

y1 yaŽsys.˜ ˜ ˜F s Iy P F s F C e for s - s ,Ž . Ž .Ž . 0

where C is independent of l and g . As we have mentioned, from this, the0
Ž . w xchoice asc g , the estimate in 11.20 and Proposition 1 of 66 , follow the0

Ž . Ž .inequalities in 11.22 . This finishes the proof of part a .
Ž . Ž .It remains to prove parts b and c of Lemma 11.2. We do this by using

w xresults in 66 to establish the existence of an exponential dichotomy for

­ y s A s, l q aI y 11.23Ž . Ž .Ž .s



R. L. Pego and M. I. Weinstein370

with appropriate bounds on the structure constants that correspond to C0
Ž .and a in 11.22 .

' Ž .Suppose asc g where 0-c -1r 3 and 0- b-yPP ya and g is0 0 y
Ž .sufficiently small so that D l,g /0 whenever l/0 and Rl)yb. Fix any

compact set V in the half-plane Rl)yb. Supposing Rl)yb, we have0

that Rm q a-0-Rm q a, j)1. Hence, the constant coefficient system1 j

­ y s A` l q aI yŽ .Ž .s

has an exponential dichotomy with projection P s¨ w , uniformly for0 1 1
Ž .lgV . That is, if F s is the fundamental matrix of this system satisfying0

Ž . Ž .F 0 s I, then positive constants C and a exist, such that estimates 11.220

hold, uniformly for lgV .0

Using Coppel’s Proposition 1 and the decay properties of the deviator
Ž . `Ž .A s, l,g y A l,g , which were established in Section 7, it follows that

Ž .there exist exponential dichotomies for 11.23 on semi-infinite intervals
Ž x w . Ž .y`,y s and s ,` with s independent of lgV and thence on0 0 0 0
Ž x w . w x Xy`, 0 and 0,` 66, p. 13 . The respective projections, Q0 and Q , are such
that QX has the same nullspace as P s¨ w , and IyQ0 has the same0 1 1

nullspace as Iy P. In fact, QX is a matrix of rank one, given by

yq 0 w F sŽ . Ž .X 1 0Q s .qw F s y 0Ž . Ž .1 0

Ž Ž . q Ž . q Ž . .Note w F s y 0 sw y s /0. The structure constants for these ex-1 0 1 0
Ž .ponential dichotomies may be fixed independent of lgV . That is, if F s0

Ž . Ž .is the fundamental matrix of 11.23 satisfying F 0 s I, then positive con-
stants C , a exist, such that for all lgV we have1 1 0

y1X ya Ž sys .1F s Q F s F C e for s ) s G 0,Ž . Ž . 1

y1X ya Žsys.1F s IyQ F s F C e for 0 F s - s ,Ž . Ž . Ž . 1

y1 ya Ž sys .1F s Q0 F s F C e for 0 G s ) s ,Ž . Ž . 1

y1 ya Žsys.1F s IyQ0 F s F C e for s - s F 0.Ž . Ž . Ž . 1

The range of QX is the space of initial conditions at ss0 for solutions of
Ž . w . q Ž .11.23 , which remain bounded on 0,` ; this space is spanned by y 0 . The
range of IyQ0 is the space of initial conditions at ss0 for solutions that

Ž x y Ž .remain bounded on y`, 0 ; this is the space orthogonal to z 0 . Provided
Ž . y Ž . q Ž .D l s z 0 y 0 /0, these two spaces do not intersect, and the projection

yq 0 zy 0Ž . Ž .
P s

D lŽ .
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has the same range as QX and the same nullspace as Q0. By the discussion in
w x Ž . Ž x66, p. 16 , this means that 11.23 admits exponential dichotomies on y`, 0

w .and 0,` , with the same projection in each case, namely P. This change of
projections in each case requires a change in the structure constants, which

w xis analyzed by Coppel 66, p. 17 . The result is that we may assert that for
lgV we have the estimates0

y1 X ya Ž sys .1F s PF s F C l e for s ) s G 0,Ž . Ž . Ž .2

y1 X ya Žsys.1F s Iy P F s F C l e for 0 F s - s ,Ž . Ž . Ž . Ž .2

y1 Y ya Ž sys .1F s PF s F C l e for 0 G s ) s ,Ž . Ž . Ž .2

y1 Y ya Žsys.1F s Iy P F s F C l e for s - s F 0,Ž . Ž . Ž . Ž .2

where

y1X X< <C l s 1qC P yQ C F C D lŽ . Ž .Ž .2 1 1 3

for some constant C independent of lgV . There is a corresponding3 0

expression and estimate for CY.2

Since the projection is the same for each half-line, there is an exponential
Ž . w xdichotomy for 11.23 on the whole line 66, p. 19 . We estimate the structure

constants by writing, for s)0)s , for example,

y1 y1 y1
F s PF s s F s PF 0 F 0 F s .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

Then it follows that for lgV we have0

y1 ya Ž sys .1F s PF s F C l e for s ) s ,Ž . Ž . Ž .4

y1 ya Žsys.1F s Iy P F s F C l e for s - s ,Ž . Ž . Ž . Ž .4

Ž . 2 < Ž . <y2where C l sC D l .4 3
Ž .The point of these estimates is that the Green’s function K of 11.14

satisfies

y1
F s PF s for s)s ,Ž . Ž .aŽ sys .e K s, s sŽ . y1½ yF s Iy P F s for s-s .Ž . Ž . Ž .

Ž . Ž .From these estimates it is easy to verify parts b and c and Lemma 11.2.
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