Convective Linear Stability of Solitary Waves
for Boussinesq Equations

By Robert L. Pego and Michael 1. Weinstein

Boussinesq was the first to explain the existence of Scott Russell’s solitary
wave mathematically. He employed a variety of asymptotically equivalent
equations to describe water waves in the small-amplitude, long-wave regime.
We study the linearized stability of solitary waves for three linearly well-posed
Boussinesq models. These are problems for which well-developed Lyapunov
methods of stability analysis appear to fail. However, we are able to analyze
the eigenvalue problem for small-amplitude solitary waves, by comparison to
the equation that Boussinesq himself used to describe the solitary wave,
which is now called the Korteweg—de Vries equation. With respect to a
weighted norm designed to diminish as perturbations convect away from the
wave profile, we prove that nonzero eigenvalues are absent in a half-plane of
the form A > —b for some b > 0, for all three Boussinesq models. This
result is used to prove the decay of solutions of the evolution equations
linearized about the solitary wave, in two of the models. This “convective
linear stability” property has played a central role in the proof of nonlinear
asymptotic stability of solitary-wave-like solutions in other systems.
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1. Boussinesq’s equations

In several works presented to the Paris Academy of Sciences in 1871 and
1872, Boussinesq addressed the problem of the persistence of solitary waves
of permanent form on a fluid interface [1-4]. This problem had been raised
to prominence in the 1840s by the observations of Scott Russell [5] and the
objections of Airy [6] and Stokes [7].

Starting from Euler’s equations for two-dimensional, inviscid, irrotational
flow beneath a free surface, Boussinesq introduced approximations appro-
priate for long waves of small amplitude. To describe the nature of Boussi-
nesq’s approximations, we follow modern practice and nondimensionalize as
follows. Let a denote a typical surface wave amplitude, /,, the uniform fluid
depth when the fluid is at rest, and /, a characteristic length of a surface
wave. Introduce the dimensionless ratios of lengths

a=a/hy, B=h}/P

The Boussinesq scaling is defined by taking o« =8=¢ to be a small
parameter, corresponding to studying long waves of small amplitude. A
formal expansion may be carried out in powers of &, neglecting terms of
high order—see the book by Whitham [8]. The result of this procedure is a
system of equations governing the time evolution of the nondimensional,
scaled variables n(x,f), the elevation of the free surface, and u(x,t), the
vertically averaged horizontal component of fluid velocity.

The most well known of Boussinesq’s equations obtained in this way may
be written

— 3 2 1
Mt = T + 58(7’ )xx + 3EMxxxe

This equation is intended to describe waves moving basically in one direc-
tion, for which n, + n, = O(¢). It gives a satisfactory description of steady
long waves of small amplitude, has solitary-traveling-wave solutions, and
admits an associated inverse scattering formalism, cf. [9, 10]. The solitary
waves may be written explicitly, and they are unimodal and decay to a
constant at +oc. This Boussinesq equation has not been found suitable for
the purpose of describing unsteady wave propagation, however, because its
initial value problem is linearly ill posed. Linear plane waves e’**~'“’ obey
the dispersion relation w?=k? — ;&k*, which permits unbounded growth
rates for high-frequency waves.

We concern ourselves with three other systems connected with Boussi-
nesq’s work for water waves, which have the advantage of being linearly well
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posed. These systems are treated in parallel in this work, and it will be
convenient to refer to cases B1, B2, or B3, indicating to which system a
particular equation corresponds.

The first equation may be obtained from that above by a modification that
produces the same order of approximation. Since formally n,, =7, + O(s),
one obtains, to within terms that are O(&?),

ntt = T’xx + %3("’72)” + %Snxxtt' (11B1)

The linearization of this equation has a real dispersion relation, w =
+k/y1+3ek?, and the initial value problem has a rather simple local
existence theory. Regarding global existence, it is known that some solutions
develop singularities in finite time [11]. The sort of modification made in
(1.1.B1) is a type of approximation made frequently by Boussinesq, although
we have not found an equation exactly equivalent to (1.1.B1) in Boussinesq’s
works. The regularization in (1.1.B1) resembles that used by Benjamin et al.
[12] to regularize the KdV equation, and (1.1.B1) has been derived by
Rosenau [13] to model the (bidirectional) propagation of nonlinear waves in
lattices.

The equations above are valid approximations for water waves only for
waves propagating in one direction, but Boussinesq also derived related
systems of equations that are appropriate for describing the bidirectional
propagation of long waves of small amplitude. We are particularly interested
in two systems that are described by Whitham [8], which have exactly the
same linear dispersion relation as (1.1.B1). The first system' is

nt + ux + 3("’7”)x = 07

(1.1.B2)
u, +mn, + euu, + %annx = 0.

The initial value problem for (1.1.B2) has not been studied, to our
knowledge. However, if one invokes the approximation m, + u, = O(¢), one
obtains a variant mentioned by Whitham [8, p. 466], which also appears in a
paper of Peregrine [14]. This variant again has the same linear dispersion

'This system is nearly identical to one that received substantial attention by Boussinesq [15],
consisting of his equations (270bis) and (276fer). The system (1.1.B2) differs only in that Boussinesq
retained a nonlinear coefficient in front of the 7,,, term. But Boussinesq does approximate this term
as linear on page 391, in passing.
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relation as (1.1.B1) and is given by the system?

T’t + le + S(nu)x = Oa

(1.1.B3)

u, +m + euu, —zeu,, = 0.

txx

The well posedness of the initial value problem for (1.1.B3) has been
established, globally in time, by Schonbek [15] and Amick [16].

In deriving Equations (1.1) these days, one might prefer to proceed in
reverse order. Whitham derives (1.1.B3), then relates it to (1.1.B2). Using
the formal approximations u, + u, = O(¢&), n, + n, = O(e), which are appro-
priate for unidirectional propagation, from (1.1.B3a) one finds u =n + O(¢).
Then (1.1.B1) can be derived, and from that, (1.1).

Each system of Boussinesq equations (1.1) has a two-parameter family of
solitary-wave solutions that travel to the right—we describe these in Section
2. We are interested in stability properties of these waves, i.e., in the
long-time behavior of solutions initially close to such a wave. Let us first
discuss the physical heuristics that motivate our analysis. A small perturba-
tion of a solitary traveling wave is expected to generate small-amplitude
dispersive waves, and possibly small-amplitude solitary waves. We approxi-
mately describe small-amplitude dispersive waves as superpositions of plane
waves exp(ikx — i wt), where o = w(k) is a branch of the dispersion relation
for the linearized equation. For the equations at hand, the group velocity of
linear dispersive waves, dw / dk, is always strictly less than the speed of any
solitary wave traveling to the right. Furthermore, small solitary waves travel
slower than larger ones.

Thus, we expect that a slightly perturbed solitary wave will outrun the
distortions generated by a small perturbation and recover its shape, after
allowing for some adjustment of phase and amplitude. Equivalently, in a
rightward-moving frame of reference in which the solitary wave is at rest,
small disturbances should appear to convect away to the left, due to the
mismatch between the solitary-traveling-wave speed and the admissible
speeds of small disturbances. In this situation, we call the solitary traveling
waves convectively stable.

How can we formulate the notion of convective stability mathematically?
The heuristics above suggest that one introduce a weighted norm defined in
terms of a frame of reference moving with the unperturbed solitary wave,

2 The system (1.1.B3) has been associated with Boussinesq by several authors. As with (1.1.B1), we
have not been able to find the system (1.1.B3) in Boussinesq’s work. However, it is not unreasonable
to associate these equations with Boussinesq. The approximations leading to (1.1.B1) and (1.1.B3)
are entirely consistent with his method and style, which involved many fairly freely made approxima-
tions.



Convective Linear Stability 315

designed to diminish as perturbations travel to the left. The solitary waves
may be called convectively stable if they are asymptotically stable with
respect to such a norm, modulo small adjustments of phase and amplitude.

To be more precise, suppose that the wave evolution equation can be
written as a system ¢, = #(¢) and that a solitary wave traveling with speed ¢
is given by ¢.(x — ct). We anticipate that if initial data ¢(x,0) are close to
¢ (x), then the solution approaches a solitary wave traveling with a nearby
speed ¢, with perhaps a small phase shift o, in the sense that

p(x,t) = @ (x—c,t—o, )+ z(x—c,t,1),
where z(s,t) - 0ast - (1.2)

in the weighted norm.

In our work on solitary wave stability for generalized KdV equations [17],
we proved a convective stability result of just this type, finding that a
convenient weighted norm is an exponentially weighted L? norm of the form

1/2
11l = lle®fllz = ( / e“slf(s)lzds) : (1.3)

where a> 0 is sufficiently small. Note that for a function f(s+ Ct) being
convected to the left (C>0), the norm [ f(-+ Ct)|l, >0 as t > at an
exponential rate.

An important part of the analysis in [17] is to establish what we call
convective linear stability for the solitary waves. Suppose that in a frame of
reference moving with the speed of the unperturbed solitary wave, the
linearized evolution equation for the solitary wave perturbation, z(s,?), is
written in the form

d,z = Yz. (1.4)

This equation has a two-parameter family of secular (nondecaying) solu-
tions, corresponding to infinitesimal shifts in phase and changes in solitary
wave speed. One wishes to show that Equation (1.4) is asymptotically stable
with respect to the weighted norm in (1.3), modulo this two-parameter
family.

The main purpose of this article is to prove this convective linear stability
property for the small-amplitude solitary waves of the Boussinesq equations
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in (1.1), in cases B1 and B3. The main result is Theorem 11.1. In effect, we
show that, with respect to a Hilbert space defined using the weighted norm in
(1.3):

(i) The initial value problem for (1.4) is well posed, in that .« is the
generator of a Cj-semigroup (strongly continuous semigroup).
(ii) Zero is an isolated eigenvalue of ./ of multiplicity two.
(iii) Given initial data z(s,0) = z,(s) for (1.4) whose spectral projection
onto the generalized kernel of ./ vanishes, we have

”Z('st)”a < Ce_bt”ZoHa, t > 0.

Something less is achieved in the case B2, due to the lack of a theory of
well-posedness in that case. What is proved in all three cases (see Theorem
5.3) is the absence of nonzero eigenvalues satisfying \A > —b for some b > 0,
with respect to the weighted norm. This is the major part of proving
convective linear stability in the cases B1 and B3.

In these cases, introducing the weighted norm has the effect of shifting
the continuous spectrum of &/ from the imaginary axis into the left half-plane.
Any nonzero eigenvalues that appear, which satisfy A <0, correspond to
what are called resonance poles® for .o/ with respect to the unweighted norm,
and serve to limit the decay rate that may be obtained in (iii). In effect, we
show that resonance poles are absent in a strip —b < A < 0 containing the
imaginary axis.

To study the eigenvalue problem, we make use of the Evans function [23,
24], a Wronskian-like analytic function whose zeros in the right half-plane
correspond to unstable eigenvalues. For the problems at hand, the natural
domain of the Evans function extends some distance into the left half-plane.
To locate its zeros, our strategy is to exploit the fact that in the small-ampli-
tude, long-wave regime for unidirectional wave propagation, each of the
Boussinesq equations (1.1) is asymptotically related to a fundamental and
famous equation, the so-called Korfeweg—de Vries equation:

TI: + nx + %87771): + éanxxx = O (15)

We prove that the Evans function for each eigenvalue problem from (1.1)
converges (uniformly in a domain containing the closed right half-plane) to

3The term “resonance pole” is drawn from a phenomenon arising in quantum scattering theory [18].
The same phenomenon gives rise to the scattering frequencies in classical scattering theory [19] and
“Landau damping” in plasma physics [20, 21, 22].
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that from the KdV equation, taken with an appropriate scaling. For the KdV
equation, the Evans function is known explicitly, and it vanishes only at the
origin. By means of the argument principle for analytic functions, we
deduce, for small-amplitude solitary waves of each of the Boussinesq equa-
tions (1.1), that there are no nonzero eigenvalues satisfying MA > —b, for
some b > 0.

Of course, it is insufficient to prove the absence of eigenvalues with
A > —b, in order to prove a stability estimate such as (iii) for the C,-semi-
group exp(.«t), regarded as restricted to the spectral complement of the
generalized kernel of .. The spectrum of the operator .2/ will not consist of
eigenvalues only. And anyway, the location of the spectrum does not
determine stability—examples are known in which the operator norm of a
C,-semigroup grows exponentially in time, while the spectrum of the genera-
tor lies in the left half of the complex plane.

Indeed, to infer the stability estimate (iii), we make use of a relatively
recent result in semigroup theory, derived from Gearhart’s strong spectral
mapping theorem [25]. As is elegantly shown by Priiss [26] (also see [27]),
given a C,-semigroup exp(#/¢) on a Hilbert space, a necessary and sufficient
condition for uniform asymptotic stability is that the norm of the resolvent
(A — )" be uniformly bounded for R\ > 0. For the cases B1 and B3, we
establish such uniform bounds in Section 11.

Convective stability, in the sense we have described, has recently been
proved for solitary waves in a number of nonlinear dispersive systems. We
have already referred to our results for generalized KdV equations [17].
Miller [28] and Miller and Weinstein [29] obtained similar results for solitary
traveling waves of the regularized long-wave (RLW) equation. Dodd [30] has
proved a convective stability result for shock profiles in a modified KdV—
Burgers equation with cubic nonlinearity. In all these works, exponentially
weighted Sobolev norms were used, similar to the norm in (1.3). For a class
of nonlinear Schrodinger equations (NLS), such as arise in nonlinear optics
and plasma physics, a closely related approach was introduced by Soffer and
Weinstein [31-33] to prove the nonlinear asymptotic stability of solitary
standing waves. Soffer and Weinstein used polynomially weighted L* norms
and L? norms with p > 2 to measure the transport and decay of dispersive
waves in NLS.

In some dissipative systems, traveling waves that are unstable in a uniform
norm may be convectively linearly stable and play a large role in the
dynamics of solutions generally. One class of examples concerns model
equations for gravity-driven waves on thin liquid films; see [34, 35] for
reviews of work in this area. In certain parameter regimes, the uniform film
is unstable to sufficiently long-wave perturbations, and solitary-traveling-wave
solutions that are unstable for that reason exist. However, it is observed that
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typical solutions develop an irregular train of weakly interacting solitary
pulses, with each pulse suppressing instabilities that grow slowly in the wake
of the pulse preceding. Related problems are studied by Chang et al. [36]
and Ogawa and Suzuki [37].

A further motivation for pursuing the present approach to stability for the
Boussinesq equations (1.1), in particular, is the dramatic failure of a now-
classic method of proving nonlinear stability (modulo translations) for soli-
tary waves. This classic method, introduced by Benjamin [38], is based on
using a conserved functional associated with a Hamiltonian structure as a
Lyapunov function for solutions constrained by other conserved functionals
(“momenta”). At the heart of the success of the method is a variational
characterization of the wave profile of interest as a constrained minimum of
the Hamiltonian subject to fixed momenta. It has since been developed with
considerable success to obtain orbital stability results in a wide variety of
nonlinear systems; cf. [39, 40, 41, 42, 43-46] for example. The work of
Cazenave and Lions [47] is closely related. Lyapunov-type stability argu-
ments have been used in many other fluid problems; see [48, 49, 50]. For the
Boussinesq systems under consideration, the Lyapunov method fails be-
cause, as a critical point of the appropriate constrained variational problem,
the solitary wave is a saddle point of infinite index. The failure of this
method for solitary waves in the case B1 for (1.1) and a related system is
discussed by Smereka [51] and by Pego et al. [52]. The mode of failure is
similar to that which occurs for the full Euler equations, as mentioned by
Bona and Sachs [53].

Historical remarks on the origin of the KdV equation

It is a remarkable fact, and apparently little known, that Equation (1.5)
appears explicitly in Boussinesq’s massive 1877 Memoir, as Equation (283bis)
in a footnote on page 360 (with a different, but recognizable, notation).
Moreover, Boussinesq based his description of the solitary wave, and his
account of its stability, on a pair of equations exactly equivalent to (1.5),
written in his notation as

dh  dho

E-ﬁ- ax =0, (16)
L—1+£+H_2ﬂ 17
JeH  4H T 6h g (1.7)

In this notation, H is constant and represents the depth of the fluid at
infinity, & represents the elevation of the wave, and g is the gravitational
constant. These are Equations (5a) and (7a) of [2], Equations (29) and (34)
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of [3], and Equations (283) and (291) of [4]. (single) Equation (40) of [3] and
(292) of [4] is also exactly equivalent to (1.5).

The solitary waves obtained by Boussinesq [2-4] were exactly traveling
wave solutions of his pair of equations (1.6)—(1.7), obtained by requiring that
o be constant in (1.6)—(1.7). It seems that in 1895 Korteweg and de Vries
[54] were unaware of these works of Boussinesq. They refer only to the first
Comptes Rendus note of Boussinesq [1], which sketches a different, less
satisfactory treatment.

In addition to his discovery of (1.5), Boussinesq’s rationale for the stability
of the solitary waves of (1.5) has had a major influence on modern develop-
ments on the topic. Benjamin [38] credits Boussinesq for the idea that a
certain conserved functional, which Boussinesq called the “moment of
instability,” is relevant for explaining the stability of solitary waves. This
functional is now known as a Hamiltonian energy for (1.5). One hundred
years after Boussinesq introduced this quantity, Benjamin [38] and Bona [55]
used it as a Lyapunov functional to construct a rigorous proof of orbital
stability for the solitary wave solutions of (1.5). Boussinesq’s argument that
the moment of instability is constant in time rests exactly on his version of
Equation (1.5), namely Equations (1.6)—(1.7).

It is curious that, until now, no one seems to have noted the important
role that (1.5) itself plays in Boussinesq’s work, with one exception being
Miles [56], who gives a rather thorough account. We refer the reader to that
paper for further information. Miles did not press Boussinesq’s priority for
deriving (1.5), however, most likely because he appears not to have been
aware of its explicit appearance in the 1877 Memoir.

2. The KdV scaling and solitary waves

We begin by developing the properties of the solitary waves of the Boussi-
nesq equations (1.1) that are subsequently useful. It is convenient to rewrite
the equations in a frame of reference moving with some (nondimensional)
speed c, in which solitary waves appear as equilibria. In addition, we unscale
(1.1) to obtain equations where the parameter ¢ does not appear. To do this,
define

1. c . 3 3
=z u=zg4, T=c|t s=)(x—c).

Carrying out this change of variables in (1.1) for each case gives respectively

(I-92)(9, = 3,)’7— 9 (c R +17*) = 0 (2.1.B1)
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(0 = a) i+ a(@+57@) = 0,
(2.1.B2)
(0 = a)a+afc 0 +5i*+(d, = 4)"7) = 0,
(0, =)+ d,(a+50i) = 0,
(2.1.B3)

(I=37)(0, — a)a+d(c*p+gi*) = 0.

(In (2.1.B1) we have used the definition n = ¢* /3¢ instead.)
We study the stability properties of solitary traveling waves in the so-called
Korteweg—de Vries (KdV) limit. We introduce the parameter y by defining

¢t =1-y2 (2.2)

The parameter ¢ corresponds to the Froude number in the exact theory of
water waves. We presume that ¢ > 0, without loss of generality. The Kdl/
limit corresponds to taking ¢? — 1, or y — 0. In this process, ¢ is regarded as
fixed.

The KdV scaling is defined by

0 =vym(&T), G=vy>u.(&T), where é =ys, T =3y'r. (2.3)

In the KdV limit, for the Boussinesq equations in (2.1), one finds that
formally u.=7.+ O(y?) and that up to terms formally of order O(y?), 7.
satisfies the Korteweg—de Vries equation in the form

Irm — Jem- + (?g(%n*z) + dfn. = 0. (2.4)

Solitary waves of (1.1) moving with speed ¢ correspond to time-indepen-
dent solutions of (2.1) that vanish in the limit s — +o. Seeking solutions
n=mn/s), a=1u,/s) (where subscripts no longer denote derivatives), we
require respectively

e =y +30 =0, (2.5.B1)
1_, 9427 7
" 2~ ~2 c ~ c
nwY Nty —5 =0, i, = —, (2.5.B2)
2% 3+4,) 1437,
_ 1., (A=vy*)al 3 i
"o 2 —~2 A )T _ ¢
Ue = yuU. +guc + 3-a, 0, Ne —1a (2.5.B3)

The solitary wave for the case B1 is given explicitly by ,(s) = 3y2 sech?(3ys).
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Introduce the KdV scaling

no=vn(&y), i, =yu(€,y). (2.6)

In the KdV limit y — 0, we find that u. =n. + @(y?) for the cases B2 and
B3, and in all cases it turns out that

n!. —m. +3m7 = O(ym?). (2.7)
The solitary wave n. = O(¢) of the KdV equation (2.4) satisfies
0" —0+160% =0. (2.8)
It is given explicitly by
O(€) = 3sech?(5¢).

Note that for the case B1 we have 1. = O exactly. For the other two cases,
the properties of solitary wave solutions are summarized by the following
result.

THEOREM 2.1. In the cases B2 and B3, for any nonzero y €[0,1), Equa-
tion (2.5) has a unique solution (7,,i,) with positive, even components that
approach 0 as s — . In the KdV scaling (2.6), the functions . and u. are real
analytic in their arguments (£,y) € RX[0,1). When y = 0 we have n. = u. = 0.
Furthermore, for vy in any compact subset of [0,1),

dm-(€,y)e*(sgné) > Ki(y)  asé - +o, forj = 0,1,2, (2.9)

uniformly in vy, where K; is a nonvanishing continuous function of vy, for
j=0,1,2.

Proof: First consider case B2. Let v =1, and suppose y # 0. Then we
require

v" —vy*v+ F'(v) =0, (2.10)

where F(v)= 1v°/(3+ v). In the phase plane of this equation, the origin is

a saddle point. Equation (2.10) has the first integral E = 10> — 1y2p? +
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F(v). There is a unique v, = v,(y) > 0 such that F(v,)— 1y?v2 =0, given
explicitly by v, =3y?/(1—+y?). The solution of (2.10) having v(0)=v,,
v'(0)=0 has E=0 and it follows that this solution is even, positive, and
approaches zero as s — +. In the KdV scaling v(s) = y?v.(&,7), it is easy
to see that v. is real analytic in & and y for (&,y)eRX[0,1), and
v.(£,0)=0(¢).

That the limits K(y)=1lim, , ., e*%/v.(£,7) exist is a standard conclu-
sion of the stable manifold theorem. By following a standard proof of this
theorem (cf. [57] for example), it is straightforward to verify that the limit is
attained uniformly on compact sets, so K; is continuous.

Finally, consider the case B3. We proceed in a similar way as above, this
time with v = i,. The function F in (2.10) is now determined from F'(v) =
02t +(1—=1v92)/(3— ). We have F(0)=F'(0)=F"(0)=0, F' is an increas-
ing convex function, and F(v) increases from 0 to o as v goes from 0 to 3. It
follows that a unique v,, exists as above, depending analytically on vy, with
0 <v,, <3. The remainder of the proof goes the same as above. H

COROLLARY 2.2. Given a compact interval [0,y,]1C[0,1), there exists a
constant K. such that for y €[0,vy,], we have
|aim-(€)] < Kee ™1 forj=10,1,2, —oo< <o,

or equivalently

|0im,(s)| < K.y?*ie ! forj=0,1,2, —< s <o,

3. The eigenvalue problem

In this section, we display the eigenvalue problems associated with the
solitary waves of the Boussinesq equations in (2.1), and we observe, at a
formal level, how the eigenvalue problem for the KdV solitary wave emerges
in the KdV limit.

For each of the Boussinesq equations in (2.1), we substitute

n(s,7) = n.(s) + h(s,7), i(s,7) =i, (s)+v(s,7),

and obtain linearized evolution equations for A(s,7) and v(s,7) by retaining
only terms that are linear in 4 and v. We then seek solutions of the
linearized evolution equations of the form A(s)e*™ and v(s)e*". Correspond-
ing to each equation in (2.1) respectively, we obtain the following eigenvalue
equations:

(1= 92) (A=)’ h—9>(c 2 +#.)h = 0, (3.1.B1)
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A=3d)h+dp +3d,(ah+n0) =0,
(A=4) sl ) (3.1.B2)
(A= d)v+(c 2+ (x=a)°)ah+5d,(iiv) = 0,

(A=3d)h+dv+5d(ah+n0) =0,

3.1.B3
(I1—92)(A—d,)v+c h+3d(an) = 0. ( )

The corresponding linearized evolution equations for 4(s,7) and v(s,7) may
be written down by replacing A by d, in (3.1). Each eigenvalue problem in
(3.1) admits a symmetry usually associated with Hamiltonian systems. One
may replace A by —A and reflect in space, replacing s by —s. It follows that
if A is an eigenvalue (with respect to an unweighted or symmetrically
weighted norm), then —A is also.

Now we introduce a KdV scaling of these eigenvalue problems. Recalling
the scaling in (2.4), let

A=3yA, h(s) =y H(E), v(s) =y*V(¢), where ¢ = ys.

(3.2)
The eigenvalue problems in the KdV scaling are given by
| AH + 32H — 3. H + ,(OH)| = y*[Ad? + A2 (1—y%2)|H, (33.B1)

G (H—V)=vy?[3AH +50,(u-H +n.V)],
sA(H+V)+ H = 6, H + 39, (u.H+ (u. +7.)V)  (3.3.B2)
= yzA&;H +%y4A2(9§H,

d(H—=V)=vy?[3AH +50,(u-H +n.V)],
sANH+V)+ 3V = 6, H+ 59, (uH+(u.+m.)V)  (3.3.B3)
= %yzA(?;V.

The second equation in (3.3.B2) (resp. in (3.3.B3)) is obtained by adding
the equations in (3.1.B2) (resp. in (3.1.B3)), then scaling. This is done to
make more clear how the KdV eigenvalue problem emerges in the limit
v — 0. Indeed, in this limit it is simple to observe that each of the
eigenvalue problems in (3.3) formally reduces to the equation

AH + ¢’H — 9,H + d,(®H) = 0. (3.4)

This is the eigenvalue problem that arises from linearization of the KdV
equation (2.4) about its solitary wave, O( £), the solution of (2.8). It is known
from previous work [17, 58, 59, 60] that if A # 0 and $hA > 0, then (3.4) has
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no nontrivial solution H in L?. Regarding the eigenvalue problems in (3.1),
our objective is to use what is known about the KdV eigenvalue problem to
deduce that for sufficiently small y >0, and some a> 0, the eigenvalue
problem in (3.1) has no solution with e¢**4 and e“*v in L?, for any nonzero A
in a half-plane of the form HA> —b,b > 0.

4. The Evans function

To analyze each eigenvalue problem displayed in Section 3, we define an
Evans function D(A,y), an analytic function designed so its zeros correspond
to eigenvalues when A > 0. This function was introduced by J. W. Evans
[24] to study traveling wave stability in reaction—diffusion systems modeling
nerve impulses; further applications were given by Jones [61] and Alexander
et al. [23]. A systematic development of the basic properties of the Evans
function was given by Pego and Weinstein [60], whose analysis was applied
in particular to the single equation (3.1.B1), regarding ¢ > 1 as fixed. Here
we are interested in studying D(A,y) as a function of both A and v, in the
singular limit y — 0 corresponding to the limit ¢ —1*. We begin with a
general description, then proceed to detail the results we need in Section 5
for stating the main results of this article.

To describe the Evans function as it may be defined for the eigenvalue
problems in Section 3, we begin with the observation that each of these
eigenvalue problems can be written, by a standard reduction, as a first-order
homogeneous system of ordinary differential equations, e.g.,

d
= A(s, M)y (4.1)

Since the solitary waves decay exponentially as s — +%, the coefficient
matrix in Equation (4.1) converges rapidly, as s — +o, to that of a constant
coefficient system

dy w
7 = A(Ay)y. (4.2)

Equation (4.2) has the solution y = e*'v whenever w is an eigenvalue of the
matrix A*(A,y) and v is a corresponding eigenvector. Our systems have the
feature that when JMA > 0, the matrix 4”(A,y) has a unique eigenvalue with
negative real part. Thus the eigenvalues of 4”(A,y) may be labeled so that
for A >0,

Rpi(A,y) <0 < minRy;(A,y). (4.3)
j>1
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Corresponding to the solution e**v, of (4.2), Equation (4.1) has a unique
solution that decays to zero as s — o, denoted y* (s, A,y), with a normaliza-
tion chosen so that

yi(s,A,y) ~ ey, ass = +oo, (4.4)

For 9iA > 0, then, any solution of (4.1) that decays to zero as s — o must be
a constant multiple of y*. The Evans function D(A,y) may be characterized
by the property

yr(s,A,y) ~ D(A,y)e*’v,  ass - —oo, (4.5)

That is, the Evans function serves as a transmission coefficient for y*. It turns
out that, for HA>0, y*(s,A,y) > 0 as s > —o if and only if D(A,y)=0.
From this, we find that, for A >0, A is an eigenvalue with respect to an
unweighted norm if and only if D(A,y)=0.

In this article, the Evans function is defined in a vertical strip containing
the imaginary axis, in addition to the right half-plane. According to the
theory developed in [60], for y fixed, an Evans function may be defined
naturally for (4.1) for all A belonging to a simply connected domain Q7 in
the complex plane, provided that the following four hypotheses hold:

H1 A(s, A,vy) is continuous in (s, A) and is analytic in A for fixed s.

H2 A(s,A,y) = A°(A,y) as s — 4+, uniformly for A in any compact
subset of ()”.

H3 The integral [*_ [A(s, A, y)— A"(A, y)lds converges for all A€ Q7,
uniformly on compact subsets.

H4 For every A€ Q?, A”(A,y) has a unique eigenvalue of smallest real
part, which is simple.

For the eigenvalue problems in (3.1), the structural hypotheses H1, H2,
and H3 are straightforward to verify—see Section 7, where we display
explicitly the matrices A(s, A,y) and A”(A,7y) corresponding to each case.
Compared with (4.3), hypothesis H4 simply requires that the eigenvalues of
A”(A,y) can always be labeled so that

R (A, y) < pe(A,y) = i_r;irllﬁ}mj(/\,y). (4.6)

It takes some trouble to describe a suitable domain ” on which (4.6) holds,
because of a singular property of the KdV limit—as it turns out, A has the
quadruple eigenvalue u =0 when (A, y) =(0,0).

If we suppose that we have a domain )" on which hypotheses H1-H4
hold, then for A€ Q7 the Evans function D(A,y) is characterized by (4.4)
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and (4.5), exactly as above. In general, what happens when the Evans
function vanishes is described by the following result, drawn from [60].

ProrosITION 4.1. Suppose H1-H4 hold on Q. Then for A€ Q?, the
following are equivalent:

(i) D(A,y)=0.
(i) y* (s, A, y)=o0(e™*) as s > —,
(i) y*(s,A,7)=0Ce**5|s| ") as s > —on.

(In part (iii) of this proposition, r = r(A,y) denotes the maximum algebraic
multiplicity of any eigenvalue u; of A”(A,y). Generally the eigenvalues are
distinct and simple so r=1. When r > 1, however, one must strengthen
assumption H3 slightly by multiplying the integrand by |s|"~ ')

For the eigenvalue problems in Section 3, it turns out that w.(A,y) has
the same sign as NA. This is why y*(s,A,y) = 0 as s > — if and only if
D(A,y) =0, for RA> 0. It will follow that if HA > 0, A is an eigenvalue with
respect to the unweighted L? norm if and only if D(A,y)=0.

With respect to the weighted norm in (1.3), we show that for A in a
half-plane of the form MA> —b,b>0, A is an eigenvalue if and only if
e”y*(s,A,y) =0 as s > +o. By Proposition 4.1, this is true if and only if
D(A,y) =0, provided (A, y) is such that

Np, +a <0 <Ry, +a forj > 1.

Below, we describe suitable conditions under which this relationship holds,
whenever HA > —b.

In the remainder of this section, we study the Evans functions specifically
associated with the eigenvalue problems in (3.1) and (3.3) respectively, with
particular emphasis on the domain. Also we describe the properties of the
Evans function, for the eigenvalue problem (3.4) arising from the KdV
equation, which have been proved previously in [17, 60].

4.1. The Evans function in unscaled variables

Consider the eigenvalue problems in (3.1). For each system in (3.1) respec-
tively, the reduction to the form (4.1) is defined by setting

y' = (h,dh,d7h,37h), (h,dh,d7h,v),or (v,d0,d7v,h). (4.7)

s N

(Here y' denotes the transpose of the vector y.) The characteristic polyno-
mial of the corresponding matrix A*(A,y) is determined by the linear
dispersion relation of the equations in (2.1). The latter are all precisely the
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same, and we find that in each case, the characteristic polynomial of
A”(A,y) is given by

P(w) = 2(w;Ay) = (W -D(A-p)"+(1=y)u’  (48)

Some basic facts about the eigenvalues u; of A”(A,y) are summarized as
follows. The proof is in Section 6.

LEMMA 4.2. (a) Suppose 0 <y < 1. Then for an appropriate labeling of the
zeros w; of P( ), we have:

() Ry, <0< Ry, forj=2,3,4, when RA> 0.
(i) Np, <0 =NRu, = Ry < Ru,, when RA=0.
(i) Mp; <0 < NRu, for j=1,2,3, when R <0.
(b) Ifa=c,y where 0<c,<1/V3, and if v > 0 is sufficiently small, then
there exists b > 0, such that if RA> —b then

Np, < —a < Ny, forj = 2,3,4.
It turns out that the two eigenvalues of smallest real part meet when

A= A(y) = —2PA(n), Ay = 2 (1=(1=90)) L (49)

(Note that A. is continuous for y €[0,1) if we define A.(0)= \/zz .) This
collision of eigenvalues largely explains why the domain ()7 is defined as it is
in the following proposition, with a cut along the negative real axis.

PROPOSITION 4.3. Put &, = 0.7. There exists y, €(0,1), such thatif 0 <y <
Yo, then hypothesis H4 holds with Q" defined by

Q7 = (AR —e ) \(—=, ~A.(7)].

That is, for A€ Q7 the matrix A”(A,y) has a unique eigenvalue of smallest real
part, which is simple.

This proposition is proved in Section 6. Note that 0 ¢ Q°! The numbers
v, and g, described in Proposition 4.3 may be regarded as fixed in the
remainder of this article apart from Section 6.

Now the domain and regularity of the Evans function may be described as
follows. The proof is completed in Sections 7 and 8.

PROPOSITION 4.4. For the system (4.1) corresponding to each system in (3.1),
the Evans function D(A,vy) is analytic in A, and jointly continuous in (A,vy), in
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the set Q) defined by
Q={(ry)|0<y<y,and A€ Q}.

PROPOSITION 4.5. If a=c,y, where 0 < ¢, <1/V3 and y > 0 is sufficiently
small, then there exists b> 0, such that if A > —b, then each eigenvalue
problem in (3.1) has a nontrivial solution such that ||h||, and ||v||, are finite, if
and only if D(A,y) = 0.

Proof: By Lemma 4.2(b), if y > 0 is sufficiently small then there exists
b >0 as stated, such that whenever MA > —b, the conclusions of Lemma
4.2(b) hold. By Proposition 4.1, if HA > —b and D(A,y) =0, it follows from
(4.7) that (3.1) has a solution with ||4]|, and [[v]l, finite. Conversely, if (3.1)
has such a nontrivial solution, it is rather straightforward to show that
eyt (s,A,y)=0(1) as s — +oo, utilizing results from [62] regarding the
theory of asymptotic behavior of solutions of systems of ordinary differential
equations with asymptotically constant coefficients. By Proposition 4.1, it
follows that D(A,y)=0. W

4.2. The Evans function for the KdV equation

The Evans function for the eigenvalue problems above, taken in the KdV
scaling, will be related to the Evans function for the KdV equation itself, so
it is appropriate to discuss the latter at this point. In Section 3 we observed
how the scaled eigenvalue equations in (3.3), for Boussinesq solitary waves,
converge formally to the eigenvalue problem for KdV solitary waves:

AH + ’H — 9,H + 9,(OH) = 0,  where O(¢) = 3sech2(%§).

(4.10)

One may associate an Evans function Dy,,(A) with this equation, and it
may be characterized as follows. See [17, 60] for the proofs. The characteris-
tic polynomial that we associate with (4.10) is

Prav(m) = A+ 1 — p. (4.11)

For A in the complex plane, except for real A < —v/5 , it turns out that

Prqv has a unique zero of smallest real part, which we denote by u = k,(A).
Equation (4.10) has a unique solution H* (&, A) satisfying H* (&, A) ~ e 1¢
as & —» 4. The Evans function D4, (A) is the “transmission coefficient”
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for this solution, with the property that
H"(&,A) ~ Dygy(A)e¥é  as § > —o, (4.12)

The following theorem is a summary of the properties of D,y .

THEOREM 4.6. (i) The domain, Qy,,, of D, is equal to the complex

plane, cut along the negative real axis from — to —A.(0) = — \/ > .

(ii) The Evans function Dy ,,,(A) is given by the explicit formula

K +1)°
Dyay(A) = (Ki_l) >

where w = k,(A) is the root of smallest real part of Equation (4.11).

(iii) The only point at which Dy ,;,,(A\) vanishes is A =0, which is a zero of
order two.

(iv) Dgyy(A) =1 as [Al > with A€ Qg .

Remark 4.7: The zeros of the cubic polynomial, %,,, may be given
explicitly as

w=r-+ %, where r = 0'/%e*™%/3 k= 0,1,2,
do = lA 1/ A2 4 4.13
an =3 + —27 | ( . )
For A < — \/ %, the zero of smallest real part is not unique. At A = —y/ 5,

the two smallest zeros are equal, having the value u= -1/ V3.

Remark 4.8: The fact that A=0 is a zero of order two is closely
connected with the existence of a two-parameter family of solitary wave
solutions for the KdV equation (2.4). For a full discussion, see [17].

4.3. The Evans function in the KdV scaling

In Section 4.1 we studied the Evans function associated with each of the
eigenvalue problems in (3.1). In an entirely analogous way, we may introduce
the Evans function D.(A,y) associated with each of the scaled eigenvalue
problems in (3.3). The function D. is directly related to D, but what is of
interest is the direct relation of D. to Dy, in the limit y — 0.

Each of the equations in (3.3) is written by standard reduction as a
first-order system

dy
aE = A& Y. (4.14)
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The reduction is defined for each system in (3.3) respectively by
Y'=(H,3:H,02H,0H), (H,3,H,02H,V ), or (V,3,V,02V,H). (4.15)

Let AXA,y)=lim,, ,. A.(& A,y). The characteristic polynomial of
AZ(A,y) works out to be

P(v) = Pu(v,A,y) =y *P(yv;A,y)
= vPyav(v) = Y (VA +A2) + sy A (4.16)

(As usual, A= 3y°A.) The zeros of #.(v) will be denoted v;. Clearly, these

are related to the zeros u; of & and the zeros k; of Py4y. We have

v(A,y) = v wm(ry) fory > 0. (4.17)

For y = 0, however, the zeros of . simply consist of the three zeros k; of
Prav, together with the value v = 0.

To define an Evans function for (4.14), we need to verify that hypotheses
corresponding to H1-H4 hold on an appropriate simply connected domain
Q2. Hypotheses H1-H3 will be easy to verify once we describe in Section 7
the specific structure of the matrices arising from the eigenvalue problems in
Section 3. To verify H4, however, we must identify a domain in which we
may always label the eigenvalues of A%(A,vy) so that

Rwy(A,y) < mindiy(A,y). (4.18)
j>

As an immediate consequence of Proposition 4.3 and the behavior of the
zeros k; that was discussed following (4.11), an appropriate domain is given
as follows. Compare Proposition 4.3.

PROPOSITION 4.9. For 0 <y <v,, define the set QY =2y 3O, so that
Q7 = (AR > =26y /¥ ]\ (=, —A.(y)].

For vy =0 define Q%= Q,, =C\(—, —\/;]. Then if 0 <y <vy,, for all
A€ QY the matrix AX(A,y) has a unique eigenvalue of smallest real part,
which is simple.

Just as in Section 4.32, for A € QY Equation (4.14) has a unique solution
Y*(€,A,y), which is o(e”*¢) as ¢ > + o, with the normalization

YY(E,A,y) ~e"év.  as § > +oo. (4.19)
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Here v,. is an eigenvector of A%, which we take in the form v,. = (1, v, vZ,0.).
Then the Evans function D.(A,y) is characterized by

YY(&A,y) ~ D.(A,y)e"év,.  as § > —o. (4.20)

Note that by Proposition 4.9, the domain of D.(A,y), Q2, approaches
Q 4y, the domain of Dy, (A), as y — 0. In a manner entirely analogous to
the proof of Proposition 4.4, one may prove:

PROPOSITION 4.10. The Evans function D.(A,y) is analytic in A and jointly
continuous for (A,vy) in the set

Q. ={(A,y)|0<y<y,and A € Q7}.

4.4. Relations among the Evans functions

For each system in (3.1) and the corresponding scaled system in (3.3), the
Evans functions D(A,y) and D.(A,y) are related to each other and D,y
in the following way.

THEOREM 4.11. With A= 3vy°A, we have
D.(A,y) = D(A,y) fory > 0andD.(A,0) = Dy, (A). (4.21)

Proof: Consider the case 0 <y <1. Because of the relationships w, = yv,
and ¢ =1ys, we have ;s = v, ¢ From (3.2), (4.4), and (4.19) it then follows
that since

yi(s, A7) ~e*  and Y] (&,A,y) ~ et
as s, & — +oo, it must be (recalling (4.7), (4.15), and (3.2)) that

yi(s,Ay) =Y (& A,y).

Then D.(A,vy)= D(A,vy), because of the characterizations of these Evans
functions in (4.5) and (4.20).

In the case y =0, we note that v,(A,0) = k,(A) (see (4.16) and Theorem
4.6). Furthermore, the solution H* of the linearized KdV equation (4.10),
which satisfies H* (£, A) ~ e 1€ as & — + oo, yields a valid solution Y of the
system derived from (3.3) with Y,(£,A,0)= H* (&, A). It follows that Y] =
H". Because of the characterization of Evans functions in (4.12) and (4.20),
we deduce that D.(A,0) = Dy4y(A). W
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5. Main theorems on absence of nonzero eigenvalues

A central technical result of this article is the following. It concerns the
convergence of the Evans function D. for each scaled eigenvalue problem
in (3.3) to the Evans function D, for the KdV eigenvalue problem in
(3.4), in the limit y — 0. The convergence is uniform in the whole domain
Q7 outside a sectorial neighborhood of the branch cut along the negative
real axis. To describe the domain of convergence, recall that ¢,= 0.7 from
Proposition 4.3. Let o > 0 be an arbitrary small number, and define regions
in the complex plane by

A = {A‘Either|arg(A)|STr—a or M= —+v/5 +a}, (5.1)
Y _ 0 - 3
7 =S n{A|M= 260 /9%, 0<y <L (5.2)
(See Figure 1.)
THEOREM 5.1 (Convergence of the Evans Function). Fix o > 0, and define

Y as above. Then

sup |D.(A,y)— Dygv(A)| = 0 asy — 0.
Ae&F”

Figure 1. Domain of uniform convergence.
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In Section 9, we prove that for 0 <y <vy,, A =0 is a zero of D.(A,vy) of
order at least two, a fact that is related to the symmetries of spatial
translation and changing wave speed for the family of solitary waves. From
this fact and Theorems 5.1 and 4.6, one may easily deduce the following,
using Rouché’s theorem on zeros of analytic functions under perturbation.

COROLLARY 5.2 (Zeros of D.). For sufficiently small y > 0, the only zero of
D.(A,y) with A €. is A =0, which is a zero of order two exactly. Conse-
quently

D.(A,y) = Dxav(A)(1+0(1))

as y — 0, uniformly for A € 7.

At this point, we may deduce our main result concerning the eigenvalue
problems in Section 3, considered with respect to the exponentially weighted
norm in (1.3). This result follows immediately from Corollary 5.2 and
Proposition 4.5.

THEOREM 5.3. Suppose a = c,y, where 0 <c, < 1/V3 and y > 0 is suffi-
ciently small. Then there exists b > 0, such that if A+ 0 with RA> —b, then
each eigenvalue problem in (3.1) has no nontrivial solution such that ||hll, and
loll, are finite.

The proof of Theorem 5.1 and its corollary are organized as follows. In
the rest of this section, we outline the proof of Theorem 5.1. In Section 6 we
establish a number of fundamental properties of the roots u; of the
characteristic polynomial 2( w; A,7y), proving Lemma 4.2, Proposition 4.3
(which verifies hypothesis H4), and some auxiliary estimates. In Section 7 we
describe the matrices A and A” specifically in each case and verify the
hypotheses H1-H3, which ensure that D(A,vy) is defined on Q7?; also we
obtain some asymptotic estimates for the eigenvectors of A”. In Section 8
we explain the joint continuity of D(A,7y), and in Section 9 we show that
A=0is a zero of order at least two, which yields Corollary 5.2. Finally in
Section 10 we study the Evans function in two regimes corresponding to
large values of A and A, finishing the results needed to prove Theorem 5.1.

5.1. Four regimes for the eigenvalue parameter

The proof of Theorem 5.1 involves the study of D(A,y) in four overlapping
regimes for the values of A= 1y°A and y. For some suitably small §> 0,
which shall be fixed later, these regimes correspond to the sets S,...,S,
defined as follows.

Regime I: S, ={Al|Abv <26 "} N7
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In this regime, A is bounded and is bounded away from the branch cut in
the domain of D.(A,vy) on the negative real axis. It turns out to be
surprisingly easy to study the limit y — 0 in this regime.

PROPOSITION 5.4. Let & > 0 be given. Then

lim sup |D.(A,y)— Dyg(A)|=0.
Y= 0Aes,

Proof: This is a simple consequence of the joint continuity of D.(A,y),
the fact that D.(A,0) = Dy4,(A), and the fact that S, is a fixed compact
subset of the domain 7 for sufficiently small y >0. ®

In the remaining three regimes, the idea is that since D4, (A)—1 as
|A| = o, we wish to show that D(A,y)—1 is small if § and vy are sufficiently
small. In Regimes II and IV, this is accomplished using Lemma 10.1, which
is related to the results of [60, Section 1(g)], concerning the behavior of
D()) for large A. To use this lemma, some careful estimates of the roots M
and their associated eigenvectors will be needed.

Regime II: S, ={A|y3 ' <|A <& and larg A| <7 — o}

Regime II represents a “crossover” regime; A is large but A is small. In this
regime we obtain the following estimate.

PROPOSITION 5.5. There exists positive constants C,, 8,, and vy,, such that
for 0<y<vy,, 0<8<86,, we have

sup |D.(A,y)—1| < C,8'3,  where 37\ = A.

AES,

Regime III:  S;={A|8 <INl <& ! and M > —¢, and larg \| <7 — o}

In Regime III, A lies in a fixed compact set bounded away from infinity and
from the branch cut on the negative real axis. From Proposition 4.4, we infer
that D(A,y) is jointly continuous in (A,y) for (A,y) € S, X[0,y,]. Since
D(,0) is the Evans function for a problem in the form (4.1) with constant
coefficients, the characterization (4.5) immediately yields

D(),0) = 1.
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Therefore we obtain the following.
PROPOSITION 5.6. Let & > 0 be given. Then

lim sup |D(A,y)—1|=0.

Y20 es,

Regime IV: S, ={A|8 ! <|Aland R > —g}

Here | Al is large. Curiously, this regime is technically by far the most difficult
to treat. The strategy is similar to that for Regime II. We need to prove the
following result, whose proof is concluded in Section 10.

PROPOSITION 5.7. There exist positive constants C,, vy,, and 6,, such that if
0<6<6, and 0 <y <v,, then we have

sup [D(A,7)~1] < C,y.

AES,
Proof of Theorem 5.1: Let &> 0. Then by invoking Theorem 4.6 and

Propositions 5.5 and 5.7, we may assert that there exist 6 >0 and y, >0
such that

1
|DKdV(A) _1| <

78 for |A| > 8_1,

sup|D*(A,y)—1|<%a for/\=%y3A,0<ysyl,

rES,

sup|D()\,‘y)—1|<%s for0 <y < vy,.
AES,

With & now fixed, by Proposition 5.6 we have

sup |D(A,y) 1] < 5o

AE S3

for y sufficiently small. Finally, using Proposition 5.4 and the fact that
U ?=1 §; =7, we deduce that

sup |D*(A77)_DKdV(A)| <e
ANe P

for y sufficiently small. This proves Theorem 5.1. ®
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6. Characteristic roots

In this section we study the characteristic roots w;(A,y) of the polynomial
given in (4.8), namely

P(pshy) = (W2 —1)(A—p) + p2/c?.

(Recall ¢ = \/ 1/(1—v?).) We prove Lemma 4.2 and Proposition 4.3 and
develop estimates for the roots u; that are needed in Regimes II and IV
described in Section 5.2.

Proof of Lemma 4.2(a): Note that 2( u) never vanishes for uw= +1, and
therefore, satisfying the equation . = 0 is equivalent to satisfying one of the
equations

M %

—F— A=Z_ (wy)=Eu- .
cy1— u? ( ) cy1—p?

(6.1,)

A=P (wy)=npt

(Below, we frequently suppress the dependence of %, upon vy.) Clearly, if
A+ 0, there are no solutions w of (6.1,) with u = 0. Therefore, the
number of solutions of (6.1, ) in the right half-plane or left half-plane may
change only if the sign of A changes.

To calculate this number, first note that &_(+vy,y)=0. Second, it is
easy to check that the functions ¢ — — i (it,y) are both strictly increasing
functions, which map the real line onto itself. So, for A= 0, there are
exactly two zeros w with Hu = 0. From these two facts it follows that if
NAA =0, then there is one root w in the left half-plane and one root in the
right half-plane.

Finally, since d,%# ,(0,y)=1+1/c¢ >0, as A moves into the right (respec-
tively the left) half-plane, so do both imaginary roots. The lemma
follows. ®

Proof of Proposition 4.3: From Lemma 4.2(a), we infer that it suffices to
establish the result for A < 0. For real values of A, the result is compara-
tively easy to prove. Suppose A < 0. The function %, monotonically maps w
in (—1,1) onto the real line, so Equation (6.1, ) has a unique solution, which
we label u,, and this solution clearly satisfies A < u, < 0. The function %7_
is odd in w, vanishes at =0 and — v, and is strictly convex on (—1,0). It
has a minimum at w,=—(1—c¢"?/?)"/2, with minimum value equal to
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— A(y), where

P (1) = = M) = = 37N (y) = —(1=c)7 (62)

(See Figure 2.) We note that as y—0, w,~—7v/V3 and A.(y)~
—v3/V27. For — A.(y) < A< 0, Equation (6.1 _) has three real solutions
that satisfy

My <, <A<0 < ps.
It remains to study the situation when A > 0, since the case I A <0 can

be reduced to this one by taking the complex conjugate. We proceed via a
series of lemmas, first analyzing Equation (6.1 ).

LEMMA 6.1. Suppose —1 <RA<0 and JA> 0. Then (6.1, ) has a unique
solution, labeled = p,, and this solution satisfies

M < NRuy <0, 0 < Juy < JA (6.3)

Proof: Consider the function defined by

O(n) = p/Vi-p2.

0.1} :
) S RN NI T SRR "
: 1
]
+
1
1
1
1
1
-0.1 s M 1
-1 08 -06 04 -02 0 02 04 06

Figure 2. P_(t)vs t (c=1.2).
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Then Q is analytic for u in the half-plane fu < 0 minus the cut (—o, —1],
is odd in u, and is bounded outside any neighborhood of the set {—1,1}.
Also, note that Q(u)? is real only if wu? is. It follows that Q leaves each
quadrant of the complex plane invariant. That is, the sign of RQO(w) (resp.
the sign of IQO( w)) agrees with the sign of Ny (resp. the sign of Jw).

From this last property of O, we may infer that, given A as supposed, any
solution of (6.1, ) must satisfy (6.3). To see that a unique solution exists,
consider the rectangle

B = {pn|R<Nu<0,0<Iu<IA}.

Because Q leaves each quadrant invariant, the image of this rectangle under
&, contains the rectangle, i.e., 2, (B) D B, and furthermore, one may infer
that the image of the boundary of the rectangle, %, (JB), has winding
number 1 about A. Therefore a unique solution of (6.1, ) exists. B

Now we turn our attention to Equation (6.1_). Because of the equiva-
lence between (6.1) and the polynomial equation % =0, it follows that if
—1<9MA <0, Equation (6.1_) has three solutions. It turns out that these
solutions lie in three different quadrants. To characterize them, we use the
following result.

LEMMA 6.2. Suppose —1<RA <1, that A* is not real, and that \ is not in
the fourth quadrant of the complex plane. Then there exists a unique = ()
lying in the third quadrant, which satisfies (6.1_).

Proof: We show that for certain contours I', which consist of a sufficiently
large quarter-circle in the third quadrant, with a small semicircle “cut out”
near u = —1, the winding number of the image &#_(I") about A is 1. This
proves that (6.1_) has a unique solution inside T'.

Let B(z,r) denote the disk in the complex plane with center z, radius r.
For &> 0 sufficiently small, consider the set obtained by intersecting
B(0,e ")\ B(—1, &) with the third quadrant. The contour I' shall be the
boundary of this set. (See Figure 3a.) That is,

I'=o{pRu<0,Iu<0,lpul<e ! lpn+ll> e}
The contour I' is the union of five curves:
[ ={t|]0=2t>-1+¢&}, D,={-1+ee|0<t<m},
y={t—0i|-1-e>1>—¢&""},

I, = {—.9_16”|0£t§%77}, I ={it| e~ ' <t <0}.
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(@)

®
Figure 3. (a) The contour T (& = 0.15). (b) Image of T (¢ =1.25).
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To compute the winding number of &_(I") about A, we make the following
observations: First, #2_(I")) lies on the real axis. For p €T, let u=—1+
ge ', where 0 <t <. Then we compute

P (—1+ge™™)

i eit/2 1 L2 eit/Z
=(—1+se")|1- (1—— *”) = — 1+ 0(Ve).
(-t o1 S i-3ee) ) = S 100

For ueT;, we have R¥_(u) < —1, since

9{(t+0i)=t+L fort < —1.

eVt —1

For weTl,, u lies in the third quadrant, so Q(u)=—i(1—u ?)"1/2
Therefore as | u| = in the third quadrant, #_(u)=pu+i/c+ o(1). Fi-
nally, for peT’s, R#_(n)=0.

With these observations, it is straightforward to deduce that, if A is fixed
and satisfies the hypotheses of the Lemma, and ¢ is sufficiently small, then
the winding number of %_(I") about A is 1. (See Figure 3b.) This finishes
the proof. W

Now, assume —1<JA <0 and JA>0. We claim that the solutions of
(6.1_) may be labeled so that the following relations hold:

NRu, <0, NRu, <0, Ru, > 0,
(6.4)
Sy <0, [y, >0, Juy < 0.

To prove these relations, we exploit the symmetries &#_(—u) = =2_(pu),
P_(w)=2_( ). It suffices to invoke Lemma 6.2 and define u; = w;(A,y)
for j=1,2,3 via

py = R(A), My = m, py = — i( _7\) : (6.5)

This establishes (6.4). Because 1Q( ) <0 when Ju <0, the relations in
(6.3) and (6.4) imply that

R, < M < Rpy <0 < Ruy,  forj=1,2. (6.6)

To prove Proposition 4.3, then, it will be enough to show that for 7y
sufficiently small, if WA > — g, = —0.7 and FA> 0, then

Ru, < NRu,.
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By (6.5), proving this inequality is equivalent to showing that
Ri(A) < Ra(A). (6.7)

Our strategy for proving this is as follows. For a <0, let M, be the open
vertical half-strip defined by

M, ={pla<Apn<0and Ju<0}.

As a decreases from 0, the images %_(M,) increase. For negative a of
sufficiently large magnitude, M, contains both @(A) and [(A), so that the
image #_(M,) contains both A and A. To establish (6.7), what we must
show is that as a decreases, A is “eaten” before A is. That is, we must show
that there exists @ < 0 such that A€ .#_(M,) but A& .Z_(M,).

To carry out this strategy, we study the image of the vertical half-line on
which Ru =a and Ju < 0. The results that we have obtained are restricted
to the case when a > —1, however. See Figure 4a for a plot of the image
P _(M,), for the sample case ¢ =1.2, with a = —0.7. In Figure 4b the image
of the half-line corresponding to a = —1 is also indicated, as a dashed curve.

LEMMA 6.3. Suppose 0 <7y <1. Suppose —1<a <0, and define A(r)=
P_(a—it). Recall that w, =—(1—c*?)"? is the value at which Z_( )
attains its minimum for —1< w <0. Then

() MA(t) decreases as t increases fort>0, and lim, _, RA(L) = a.
() If p,, <a<O0, then X A1) decreases as t increases for all t >0, and
lim, ., JA(1) = —oo.
(i) If —1<a< pw,, then for some t,> 0, X A(t) increases on (0, t,), and
decreases on (t,,%), and lim, ,, JA(t) = — o,

Proof: For uw=a—it, X)) =—i7 ( w), so to prove (i) it suffices to show
that J.%" (u) < 0. We compute

P () =1-c '(1-p2) " (6.8)
It is easy to check that if —1 <M <0 and Ju <0, then 1— u? lies in the
fourth quadrant, and therefore 3.2 (u) <0.

To prove (ii) and (iii), we must show that N2’ (a — it) is always positive
in case (ii) and changes sign once from negative to positive in case (iii). We
have already seen that, for t+ =0, %"_(a) is in fact positive for a €(u,,,0)
and negative for a €(—1, u,,). Since from (6.8), SN =-NRP(a—it) >
—1 as t >, it is enough to show that R.#" (a —it) may change sign at
most once. By (6.8), this is equivalent to showing that for >0 and
w=a—it, R(1— u?)"3/? = ¢ has at most one solution.



342 R. L. Pego and M. I. Weinstein
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Figure 4. (a) Half strip M, with a=—0.7. (b) Image of half strip with a=—0.7 (c=1.2).
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With u=a—it, if we write (1— u?)3/? as p(t)e’’®, it can be checked
that p(¢) is strictly decreasing for ¢ >0, and that 6(¢) is increasing for
0 <t<t, and decreasing for ¢, <t, where ¢,= V1—a?. It follows that g:
t—(1- 2)’3/ > has decreasing real part for 0 <t <t, Moreover, with
w,=a—it,, we find W1 — u2)"'=1, and one may compute that for all
t>0,(d/d)R(1— u?)~ ' <0. It follows that R g(t) < 1 for t > ¢,.

Note that g(0)=(1—a?)"3/% For —1<a<p,,, we have g(0)>c>1.
From the above considerations, we infer that R(1— u?)™*/?=c holds
exactly once for >0 if —1<a < u,,. This 1mphes (iii). On the other hand,
if a> p,, we have g(0) < ¢ and therefore J A7) is decreasing for ¢ > 0, the
statement in (ii). M

Before we conclude the proof of Proposition 4.3, we observe that for the
special values

—v0.96 — iv0.84, Ay = —V0.54, y =0,

we have Z( uy; Ay,0) = 0. In fact, for (A,y)=(A,,0) we have u,=u, = u,,
and u; = V0.06 + 0.6 for j=3 and 4. Clearly A\, < —0.7, so for the value
a=a,=—0.96, the segment [—0.7, —A.(y)) lies below the curve #_(a —
it), and this remains true for 0 <y <1v,, for some sufficiently small y, > 0.

Indeed, the segment [—0.7, —A.(y)) lies in the image %_(M,, ). It is not
hard to prove this by computing a winding number. For ¢ > 0and —1<a <0,
let M? be the rectangle M7= M,N{u|Ju> —e"'}. For sufficiently small
g,if Ju=—e"!,then IZ_(u)<—e ' +2. Also Z_(u) > —A.(y) is real if
w€la,0], and % _( ) is purely imaginary if w is. So it is easy to see that the
winding number of the curve #_(dM; ) about any point of the segment
[—0.7, —A.(y)) is one.

We are now ready to finish the proof of Proposition 4.3. Assume 0 <y <7,
and —0.7 < MA <0 with IA> 0. Suppose at first that RA €[ —0.7, —A.(y)).
Then there exists a complex number « +iB € M, such that fid=2_(a +
iB). Since I A > 0, from the results of Lemma 6.3, and the argument of the
preceding paragraph, we have that A€ . % (M), but A¢ .2 (M,). The
inequality (6.7) follows.

The remaining case to consider is when A €[ —A.(y),0). But this case is
easier—we may take a= u, and deduce that the image #_(M,) lies
entirely in the third quadrant and contains A but not A. So Nu, < w,, < Ru,,
giving (6.7) in this case also. This finishes the proof of Proposition 4.3. ®

Remark: Numerical computations indicate that one may take ¢, = —1 in
the statement of Proposition 4.3, for any y €[0,1), but we have not found a
proof.

Proof of Lemma 4.2(b): Let a=c,y where ¢, €(0,1/V3); then u,, < —a
<0 for sufficiently small y. Choose b so that 0 <b < =%(— a). Suppose
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HA> —b. If A is real the desired result follows from Lemma 4.2(a) and the
first part of the proof of Proposition 4.3. Without loss of generality we may
assume JA> 0. By Lemma 6.3 and the last part of the proof of Proposition
4.3, it is clear that if —b < NA <0, then

Ry < —a < Ny,

since #_(M_,) contains A but not A. Now (6.6) yields the desired conclu-
sion for such A. If JIA>0 and JA >0, then Ry, <, < —a and 0 <Ry,
for j > 1. This finishes the proof. m

Our next result establishes approximations to the roots u; in Regime II,
where |A| is large but |A| is small.

PROPOSITION 6.4. Let w; = w,(A,y) denote the four roots of the quartic
equation P( u; A,y)=0.

(@) There exists a positive constant vy,, such that for (A,7y) satisfying
Y8, <IN <8,,0<y <y,:

p = (—2c1) 7?23 (14 0(1))  forj = 1,2,3, (6.9)

uniformly as 6, = 0*.
(b) For |Al < 8 sufficiently small,

_CcA
e |

1+ (%)), (6.10)

uniformly in y €[0,1).

Proof: To prove (6.9), write (1— u?)™ /2 =1+ 1u? + u*r( ) where r( u)
is analytic near zero. Then (6.1_) is equivalent to

I +ed=(c—)u— ur(pw). (6.11)

For j=1,2,3, let v;=(-2c))'/’¢*""/* and seek a solution of (6.11) in the
form w=v,(1— B)"/>. Then Equation (6.11) is equivalent to

(c—=1D)y 1/3 v 5/3 1/3
B="—n =B+ 5 (1=8)"r(n(1-8)").
Since (¢ —Dv; /cA= O(y2|A"*?) and VjS/C/\= O(IA*?), it is clear that for
small 8, >0 we may solve for B8 by fixed point iteration, and that B =
O(yzl)\lfz/3 +1A¥ =0(1) as 8, = 0. This proves (6.9). The expansion
(6.10) is more easily proved using (6.1,). ®
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Finally, for large A, corresponding to Regime IV, we have the following
approximations to the roots.

PROPOSITION 6.5. Suppose 0 <y, <1; then the four roots of 2( ) may be
labeled so that the following approximations are valid, uniformly for 0 <y <vy,,
as |A| = oo

= —1+0(IA?), my =1+ O(IN7?),

o =A—i/c+O(N?), wy=A+i/c+O(N?).

This result was proved for fixed values of y > 0 in [60], and it is a simple
matter to check in the proof that the error terms can be bounded uniformly
for 0 <y <,, for any y, €(0,1).

7. Eigenvectors and eigenvalues at infinity

Here we describe explicitly the matrices A(s, A,y) and A™(A,y) in (4.1) and
(4.2) for each of the Boussinesq eigenvalue problems in (3.1). We also verify
that the structural hypotheses H1-H3 hold, which are needed to define the
Evans function D(A,y) in Section 4. Furthermore, we describe the left and
right eigenvectors of A”, which are needed in the proofs of Propositions 5.5
and 5.7.

In this section we simplify slightly the notation regarding the solitary-wave
profile, writing simply 7, in place of 7, and u, in place of i, and 1, = .7,
etc. We make considerable use of the following identity for the solitary-wave
profiles of (2.1) in cases B2 and B3, which follows from integrating the
equations in (2.5) for the steady state:

(1—%u0)(1+%m) -1 (7.1)

Corresponding to the definition of the 4-vector y in (4.7), the matrix
A= A(s, A, y) derived from (3.1) is given respectively as

0 1 0 0
0 0 1 0

M—nl —2A-2m y*P-A -7, 2)
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0 1 0 0
0 0 1 0
_ A+ (1/3)u; 1 3_ 2_ 2 _ 1, _lni/c
4 = 7(1-%(1/3)7&)2 (1 3uc) I+y =A% 2A ()\+ 3uc) 3 (1+(1/3)m)2
A+ (1/3)u, 1 \? 1, 1
_—1+(1/3)1](: (1—§uc) 0 _§n(‘(1_§u(,‘)
(7.2.B2)
0 1 0 0
0 0 1 0
1, 1 m(1-v?) 1 1—y? (A+(Q/3)ur)
A= ‘(”?”C)‘? 1= (1/3)u, (1‘?”0)_(”(1/3)7%)2 YO,
1 (1 1 )2 M(1/3)u
?nc(l_'—gnc) (1+§nc) 0 17(1/3)1/[6
(7.2.B3)
The corresponding matrix A4” = A"(A,y) is
0 1 0 0 0 1 0 0
o 0 0 1 0 0 0 1 0
{0 0 0 LPl—=a y2=2 20 =A)
A=20 yP= N 2A) |- 1 0 0
0 1 0 0
0 0 1 0 73
Ayt A —(1=yH)A| (7:3)
0 1 0 A

In light of the expressions above for A(s, A,y) and A”(A, y), the estimates
in Corollary 2.2 for n, =7, and its derivatives, and the relation (7.1), it is
easy to deduce the following.

LEMMA 7.1. (i) The matrices A(s, A,y) and A*(A,y) are jointly continuous
functions of their arguments for (A,y) € CX[0,1), and are analytic in A.

(ii) Given any compact set Q, C CX[0,1), there exists a constant K. such
that for any (A, y) € Q,,

[A(s, A7) = A" (A, )| < Kiy?e™™l, —o <5 <oo,

From this result, it is evident that the hypotheses H1-H3 (in Section 4)
hold on any domain ()”. Taken together with the results of Section 6 and
the treatment in [60], we may conclude that the Evans function is defined as
asserted in Proposition 4.4, except that the joint continuity will be proved in
Section 8.
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We omit the explicit description of the matrices 4.(&,A,y) and A%(A,y),
which correspond to the system (4.14) arising from the eigenvalue problem
in the KdV scaling. It is evident from the structure of Equations (3.3) and
the estimates of Corollary 2.2 that they have the following properties,
however. From this we deduce that the Evans function D.(A,vy) is defined
as asserted in Proposition 4.9 (except for the joint continuity).

LEMMA 7.2. (i) The matrices A.(€,A,y) and AZ(A,y) are jointly continu-
ous functions of their arguments for (A,y) € CX[0,1) and are analytic func-
tions of A.

(ii) Given any compact set Q, C CX[0,1), there exists a constant K. such
that for any (A,vy) € Q,

|A.(E,A,y)— AZ(A,y)| < KieT!¥l, —0 < € <o,

It is straightforward to compute that for each case B1-B3, the determi-
nant of A*(A,y)— ul is 2(u; A,y) as defined in (4.8), so the eigenvalues
are given by the u; discussed in Section 4. Next, we describe the eigenvec-
tors of A%, corresponding to eigenvalues that are simple and nonzero; this
shall suffice for the analysis we shall perform.

Given a simple eigenvalue u;, the corresponding right eigenvector, de-
noted by v;, is given (respectively for cases BI-B3) by

1 1 1
M M M
1 (k= A/ m mi /(1= A)

The left eigenvector corresponding to u; will be denoted w;, and is taken to
be normalized so that w;v; = 1. Then w, is given (respectively), for i=1...4,
as follows:

W [(A AMA-2u)

_ A —A) A
w; M ,u,-z ’

S —2A1 | ———————, ;= 2,1, — —
w-za] -2, A

A AM1—=7y?)
BT AR i ey

i

). (7.5)
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Here the normalizing factors w, are given respectively by

— Mi i M
w: =

ST 7y ey R 71y G y R g

. (7.6)

8. Joint continuity of the Evans function

Here we briefly explain why the Evans function D(A,y) corresponding to
the system (4.1) is jointly continuous in (A,vy). This will complete the proof
of Proposition 4.4. Proposition 4.10 is proved in the same way.

First, we need to recall the precise definition of the Evans function as
studied in [60]. (This is necessary for the considerations in Sections 9 and 10
as well.) Recall that for A€ Q7, the system (4.1) has a unique solution,
which is o(e***) as s >, given by y* (s, A,y), with the normalization

y (s, y) ~ ey, ass — 4o, (8.1)
Associated with (4.1) is the transposed system

dz
7 = “ZA(s, A y), (8.2)

in which z is regarded as a row vector. Let w, be a left eigenvector of —A4”

corresponding to the eigenvalue —pu,, normalized by requiring w, v, = 1.
Then (8.2) has a unique solution z~ (s, A, y) satisfying

z7(s,A,y) ~ e Fw, as s —> —o, (8.3)
The definition of the Evans function is
D()‘”Y) zzi(s’)\”)/)er(s’A’FY) (84)

This scalar product is independent of s. According to the results of [60],
because the hypotheses H1-H4 hold on the domain Q” for 0 <y <v,,
D(1, y) is well defined for A € Q7 and is analytic in A.

It remains to explain the joint continuity in (A, y). Introduce the notation
¢ = ¢(s,A,v), B=B(A,y), and R = R(s, A,7y), by requiring

y (s) = e (vy+¢(s)), B=A"—ml, R(s)=A(s)— A".
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(Here the dependence on (A, 7y) is suppressed.) Then d,¢ =(B + R)(v, + ¢)
and Bv, = 0. Following the analysis in Section 1 of [60], we have that

d(s) = v, — /we“”)BR(r)(v1 + ¢(r))dr. (8.5)

N

The function ¢ is determined from this equation using fixed-point iteration.
Now, it is evident from Lemma 7.1 that the quantities B, R(s), and v,
depend continuously on (A,y) in , and that in any compact subset of Q,
we have |e’?| < C for all s<0, and [, |R(s)lds — 0 as L — o, uniformly
in (A, y). Now, it is straightforward to prove that since B, R, and v, in (8.5)
are jointly continuous in (A, y), then so is ¢(s, A,y), for any fixed s.

Therefore, y* (s, A,7y) is jointly continuous in (A,y) for any fixed s. In a
similar manner one may prove that z~ (s, A, y) is jointly continuous in (A, y)
for fixed s. Then by the definition (8.4), the Evans function D(A,y) is jointly
continuous. N

9. Order of the zero at the origin

Here we study the behavior of the Evans function at the origin, as promised
in Section 5. The value A=0 is always an eigenvalue for (3.1), as a
consequence of the invariance of (1.1) under spatial translations. A corre-
sponding eigenfunction may be obtained by differentiating the correspond-
ing equation for the solitary wave profile from (2.5). From this we deduce
that the Evans function vanishes at the origin. Additionally, we employ an
integral formula for derivatives of the Evans function, derived by Pego and
Weinstein [60], to deduce the following result, which is needed in the proof
of Corollary 5.2. Recall that for y >0, D(A,y)= D.(A,y).

PROPOSITION 9.1. For 0 <+ <y, the value A= 0 is a zero of order at least
two for the Evans function D(A,y). That is,

D(0,v) = 4D(0,y) = 0.

Proof: The proof is done for the case Bl in [46]. For cases B2 and B3, we
show that D(0,y)=0, then use the formula (1.22) of [60] (see also [63]).
Using the definitions in Section 8, this formula yields an expression for the
derivative of the Evans function at the origin, namely

D'(0) = —/:z*(s,O)%(s,O)w(s,O) ds. (9.1)
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Here and throughout the rest of this section, the y argument is suppressed,
and vy is regarded as fixed. To prove Proposition 9.1, we identify y* and z~
and use the characterization (4.5) and the formula (9.1) to show that
D(0)=0 and D'(0)=0.

LEMMA 9.2. For each case B2 and B3, there exists a number B # 0 such
that y* (s,0) = BJ(s), where (respectively):

.)7 = (3s”’7c"9s277c, s3nc’asuc) or (asuc’aszuc’&guc’asnc)' (92)

Proof: Since (n,,u,) are stationary solutions of (2.1), by differentiating
with respect to s, it follows that (h,v) = (d,m,, d,u,) satisfies (3.1) with A= 0.
If y(s) denotes the right-hand side of (9.2), then from (4.2) it follows that J
satisfies (4.1) with A = 0. Now the lemma follows, because y(s) and y* (s,0)
both decay exponentially as s = +». B

To determine z™, it is useful to write the system y’' = Ay in an equivalent
form when A =0, namely as

(Bi(s)y) = B,y,  where B '(B,— B}) = A(s,0). (9.3)

The matrices B,(s) and B, may be chosen as follows, in cases B2 and B3
respectively. (B, is the same in both cases. Compare (3.1).)

1 0 0 0
0 1 0 0
By(s) = 1—v? 0 1 _(1_%%) or
—(1-%u,) 0 0 1447
1 0 0 0
0 1 0 0
—(1-3u.) 0 1 1-y2 |
1+3m, 0 0 —(1-3u)
0 1 0 0
o0 1 0
B:=10 0 0 of
0 0 0 0

To find z satisfying z' = —zA, it suffices to find Z so that

ol ]

£'B, = —£B,, (9.4)

and then let z = ZB,.
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LEMMA 9.3. For each case B2 and B3, there exists a number B such that
27 (s5,0) = BZ(s)B,(s), where respectively:

Z(s) = (z?sznc,—ﬂsnc,nc,uc) or
(07u,, —du.,u.,3(1—y?*)log(1+3m,)). (9.5)

Proof: Because (h,v)=(dm,, d,u,) satisfies (3.1) for A=0, it is easy to
verify that Z(s) defined as above satisfies (9.4) in each case. Since Z(s)B,(s)
— 0 as s > —oo, it follows that Z is a scalar multiple of z~. ®

Proof of Proposition 9.1: From Lemma 9.2, it is clear that y*(s,0) - 0 as
s > —oo, By the characterization of the Evans function in (4.5), it follows
D(0) = 0, since u,(0)<0.

We use the formula (9.1) to compute D'(0). For each case B2 and B3,
respectively, we compute

0 0 0 0
0 0 0 0
HhA(s,0) = _(1_%%)2 0 2 - or
—(1-3u.) 0 0 O
0 0 0 0
0 0 0 0
-1 0 1 —(1=-y)(1+3m)|
0 0 0 1+1n,

To show that D’(0) = 0 it suffices to integrate the expression ZB,d, Ay, from
Lemmas 9.2 and 9.3. We find that this expression equals, for cases B2 and
B3, respectively,
B o A7 = — (1= 3u.) n.am, +2m.0%0, — n.du, — u(1—3u)dm,
or
3 2 1
—u du, +u du, —3(1—y )log(l + §77c) am,-

Since u, can be replaced by n, and vice versa using the relation (1— Ju )(1+

1m.) =1, every term in these expressions is a perfect derivative, so it follows
that

fjoj(s)BKS)t?AA(s,O))?(s) ds = 0.

Therefore D'(0)=0. =
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10. Large values of the eigenvalue parameter

In this section we complete the proof of Theorem 5.1, by proving Proposi-
tions 5.5 and 5.7. For this, we need to obtain appropriate estimates on
ID(A,y)—1| in Regimes II and IV. In all cases but one, the necessary
estimates are obtained from the following lemma.

LEMMA 10.1. Consider the n X n system

& Bo(s)+ F(s)(e, +o(s)), O <s<we  (10.)
Here e, =(1,0,...,0)". Assume that B is a diagonal matrix with B;, =0 and
RB;>0 for j>1, and that the matrix F(s) is continuous in s with
lim, ., F(s)=0 and [;|F(s)|lds <«. Then there exist positive constants §,
and C,, such that if [J|F(s)lds <$§,, then (10.1) has a solution v(s) with

lim, . v(s) =0, and this solution satisfies

sup |U(s)|sC0f0w|F(s)|ds. (10.2)

0<s<oo

Proof: The solution v(s) is obtained by fixed-point iteration using the
equation

o(s) = (Fv)(s) = = [ €“PF(r) (e, +v(r))dr,  (103)
N
along with the estimate |e®’| < C for s <0, and the estimate

(7v)(s)] < cfsw|F(r)|dr(1+ sup [u(r)). (10.4)

<r<ow

From (10.3) and (10.4) it is easy to establish the bound (10.2) m

To obtain a bound on |D(A, y)— 1|, we use Lemma 10.1, with the matrices
B and F constructed as follows. B is obtained by diagonalizing A4* — u,I.
Because of Propositions 6.4 and 6.5, the eigenvalues of A4, are distinct in
Regimes IT and IV. Let V' be the matrix containing the right eigenvector v;
from (7.4) in column j, and let W be the matrix containing the left
eigenvector w; from (7.5) in row i. Then WV = I. Suppressing the depen-
dence on (A,7y), we set

B = W(A" — 1)V =diag{ p; — n},

F(s) = WR(s)V=W(A(s)— A")V.
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Recall the characterization of y*(s) in (4.6), and define v (s) from
yo(s) = e"’V(e +v7(s)).

Then v =v™* satisfies (10.1) and v*(s) = 0 as s > . In similar fashion we
define w™(s) from z7(s) using z~(s)=(w~(s)+ e} )We . Then w=w"
satisfies

sz_vsv = —w(s)B—(w(s)+e))F(s), —=<s<0,

and w (s) = 0 as s - —oo, Taking the transpose and reflecting in s, we may
conclude that if [~ [F(s)|ds < §,, from Lemma 10.1 we obtain the estimate

sup |v*(s)|+ sup |w‘(s)|sCf_o;|F(s)|ds. (10.5)

0<s<o —0<s<0

Therefore, since D(A,y)=z"-y" =(ej +w™ )e, +v"), we have:

CoroOLLARY 10.2. Consider the system (4.1) under the hypotheses of Section
4 and assume A*()) is diagonalizable with V and W being the matrices of right
(respectively, left) eigenvectors. Let F(s)=W(A(s)— A*)V. There exists a
number 8,> 0 such that if [~ |F(s)|ds < §,, then

ID(A,y)—1] < cf:|F(s)|ds. (10.6)

This estimate is used to prove Propositions 5.5 and 5.7, except in one
case, that of B3 in Regime IV, which requires special treatment.

Because of the structure of the matrices A in (7.1) and A* in (7.2),
and the estimates for 7, and @, from Corollary 2.2, it is evident that
for 0<y<vy, A€C, we have the following estimates on the deviator
R(s, A, y) = A(s, A, y)— A*(A,y):

|R;(s,A,7)| < Cy’e™E,, (10.7)

where for each case B1, B2, B3, respectively,

0 0 0 0 0O 0 0 0)[0 0 0 0

0 0 0 0 o 0 0 0||0o 0 0 o
E=10 0 0 of|y+IAN 