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ABSTRACT

Glycosaminoglycans (GAGs) are the most abundant group of heteropolysaccharides

found in the body. These long unbranched molecules contain a repeating disaccharide

unit. GAGs are located primarily in the extracellular matrix or on the surface of cells.

These molecules serve as lubricants in the joints while at the same time providing struc-

tural rigidity to cells. Sulodexide is a highly purified glycosaminoglycan composed of a

fast mobility heparin fraction as well as dermatan sulfate. Sulodexide differs from other

glycosaminoglycans, like heparin, by having a longer half-life and a reduced effect on sys-

temic clotting and bleeding. In addition, sulodexide demonstrates a lipolytic activity that

is increased in comparison to heparin. Oral administration of sulodexide results in the re-

lease of tissue plasminogen activator and an increase in fibrinolytic activities. An in-

creasing body of research has demonstrated the safety and efficacy of sulodexide in a wide

range of vascular pathologies.

INTRODUCTION

Glycosaminoglycans (GAGs) are a naturally occurring group of compounds that have

found clinical use in the prevention of thrombotic events. This group of molecules makes

up the most abundant group of heteropolysaccharides in the body. GAGs are negatively

charged molecules characterized by long, unbranched polysaccharide chains that contain a

repeating disaccharide unit. The disaccharide units contain either of two modified sugars,

N-acetylgalactosamine or N-acetylglucosamine, and a uronic acid such as glucuronate or

iduronate (26,43,56).
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Clinical usage of GAGs for the treatment of thrombotic diseases is not without risks

however. For example, heparin has been shown to have various side effects including he-

parin-induced thrombocytopenia. Therefore, efforts to develop alternative therapies have

resulted in the introduction of low molecular weight heparins and small molecules tar-

geted to selective sites in the coagulation cascade.

One of these alternatives, sulodexide, is a highly purified GAG that is composed of two

distinct fractions. The mixture of GAGs is obtained from the porcine intestinal mucosa by

a patented process (37). The chemical composition of sulodexide is defined as 80% fast

mobility heparin (FMH) and 20% dermatan sulfate (DS). FMH fraction is described based

on its electrophoretic mobility. The FMH component is present in commercial unfractio-

nated heparin together with a slower electrophoretic mobility fraction. FMH and DS are

further characterized by having a lower degree of sulfation and lower anticoagulant ac-

tivity than unfractionated heparin.

The low molecular weight of both sulodexide fractions allows for extensive oral ab-

sorption compared to heparin. In rats, pharmacodynamic effects were observed within

three hours of oral administration and a cellular distribution of fluorescent material was

observed in the kidney, liver and endothelium of veins and arteries (21,67). The pharma-

cokinetics in man has been evaluated using deuterium-labeled sulodexide (12). A single

100 mg dose of deuterated sulodexide was administered to healthy volunteers intrave-

nously or orally. After intravenous dosage the elimination half-life of the FMH was 1.0 h

and DS was 1.6 h. Peak plasma levels were 20 mg�L and 8 mg�L, respectively. Oral admi-

nistration of sulodexide resulted in peak plasma levels of both compounds ranging from

0.2–1.0 mg�L approximately 1–10 h after dosing.

Sulodexide (Vessel™), a product developed by Alfa Wassermann, has been marketed

for more than twenty years in Italy, Spain, Eastern Europe, South America, and Asia for

the treatment of various cardiovascular conditions. Currently, Keryx Biopharmaceuticals

is developing sulodexide (Sulonex™) as a treatment for diabetic nephropathy in North

America. Sulonex™ is currently in Phase III and Phase IV clinical trials under a Special

Protocol Assessment with the United States Food and Drug Administration.

PHARMACOLOGY AND CLINICAL STUDIES

Anticoagulant and Antithrombotic Activity

Survivors of acute myocardial infarction are at high risk for the recurrence of throm-

bosis and sudden cardiac arrest is a major health problem, causing about 330,000 deaths

each year among U.S. adults either before reaching a hospital or in an emergency room.

Major research efforts in academic settings and pharmaceutical companies have focused

on investigating various antithrombotic agents for the secondary prevention of acute cor-

onary syndrome. The goal is to develop agents that can be administered by the oral route

with minimal potential for inducing marked alterations in hemostasis.

GAGs exert an antithrombotic action by interacting with naturally occurring serine

protease inhibitors such as antithrombin III (ATIII) and heparin cofactor II (HCII) (3,17).

As a result of these interactions, the inhibition of activated serine proteases in the coagu-

lation cascade by ATIII and HCII is accelerated more than 1000 fold (38,42,69). Thrombin

is the central serine protease of the coagulation system as it promotes cleavage of fibrino-
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gen into fibrin, which then polymerizes leading to the formation of occlusive arterial or

venous thrombi (58,59) or thromboemboli originating from the left atrium in patients with

atrial fibrillation. Thrombin can also exert positive feedback on itself by activating factor

VIII and factor V (30). The inhibition of thrombin formation and its proteolytic action are

the primary mechanisms by which GAGs exert their anticoagulant and antithrombotic ef-

fects (57,71).

Thrombin is the essential serine protease of the coagulation cascade that promotes the

deposition of thrombi by cleaving fibrinogen to fibrin, which then polymerizes, under

the influence of thrombin-induced activation of FXIII thereby forming a stable occlusive

intravascular thrombus. Thrombin also exerts a positive feedback on its own generation

by activating FVIII and FV.

The FMH and DS fractions of sulodexide accelerate the inhibition of thrombin by their

simultaneous interactions with ATIII and HCII, respectively (10,52). As a result, they di-

rectly inhibit thrombin and also thrombin generation by inhibiting the feedback activation

of prothrombin (30). Sulodexide prolongs the thrombin clotting time and the activated

partial thromboplastin time (aPTT).

The heparin-induced activation of ATIII retards thrombus growth and thrombus

formation along with the induction of a hypocoagulable state. A major limitation to the

efficacy of heparin is its inability to inhibit the proteolytic activity of thrombin that is

bound to fibrin or incorporated into the thrombus. In contrast, the inhibition of fibrin-

bound thrombin by the HCII�DS complex is not impaired (50). In an in vivo study (8), it

was determined that pretreatment with heparin, 10 antithrombin units per 1 kg (10 U�kg),

inhibited clot formation to the same extent as 5 U�kg of sulodexide. Thus, sulodexide ad-

ministered in half the antithrombin dose of heparin was equally as effective in preventing

thrombus formation. The results are consistent with the hypothesis that thrombin inhi-

bition by the simultaneous activation of ATIII and HCII has a greater efficacy than

heparin. The synergistic effect is evident by the observation that a lower dose of

sulodexide achieved an equivalent antithrombotic effect as a higher dose of heparin in pre-

venting thrombosis (7,8,18). The greater efficacy of sulodexide derives from its dual

action of catalyzing the inhibition of thrombin by ATIII and by HCII with the added ad-

vantage of a limited potential for inducing increased bleeding. The latter may be related to

the absence of an influence on aPTT as indicated by the lack of interference of sulodexide

on the intrinsic coagulation pathway (53). The different sites in the coagulation cascade

where sulodexide exerts anticoagulant effects are illustrated in a review by Davie and Kul-

man (22).

In an acute experimental model where the thrombus formation was induced in the ca-

rotid arteries of rats by electrical stimulation, sulodexide significantly prolonged the time

to vessel occlusion (maximum fall in temperature) in a dose-dependent manner after intra-

venous bolus administration, with an efficacy similar to that of heparin or aspirin (2). The

study results also demonstrated the ability of sulodexide to prevent ex vivo platelet aggre-

gation in response to thrombin, but not to arachidonic acid. The ability to preserve partial

platelet reactivity might account for the fact that sulodexide exhibits a limited potential to

induce uncontrolled bleeding.

Using a chronic rat model of arterial thrombosis, sulodexide was compared to heparin

to analyze the ratios of the antithrombotic�bleeding effects of the respective anticoagu-

lants (40). At doses that were equally as effective at preventing arterial thrombosis, hepa-
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rin-bleeding time was 2 times longer than baseline, while sulodexide produced a 25% pro-

longation in bleeding time.

Clinical trials have demonstrated the beneficial effects of sulodexide in the treatment of

deep vein thrombosis. Errichi et al. reported that after 6, 12, and 24 months of oral sulode-

xide treatment (50 mg daily) the recurrence of deep vein thrombosis was significantly at-

tenuated (p < 0.05) in high-risk subjects (27). A more recent trial compared sulodexide

with acenocoumarol in the secondary prophylaxis of patients with deep vein thrombosis

(14). In this study a fixed dose of sulodexide (30 mg, four doses per day) was compared

with adjusted doses (international normalized ratio) of acenocoumarol. There were no dif-

ferences in either clinical evolution of the disease or the number of venous recurrences

over the course of the treatment period between groups. In the group treated with sulode-

xide there were no hemorrhagic complications. In the acenocoumarol group, however, one

major hemorrhage (requiring discontinuation of the anticoagulant) and nine minor hemor-

rhages (not requiring discontinuation of the anticoagulant) were recorded. The difference

in adverse events was statistically significant (p = 0.014). These results coupled with the

high cost of acenocoumarol monitoring reinforce the benefits of sulodexide in the man-

agement of certain thrombotic diseases.

Sulodexide has also been found effective in the treatment of venous leg ulcers (15).

Chronic venous stasis of the lower extremities results in endothelial damage causing the

formation of thrombi. Impairment of the microcirculation of the skin induces chronic in-

flammation and ulceration. In this study 235 patients undergoing local treatment of leg

ulcers were randomized to either sulodexide (60 mg daily i.m. for 20 days, followed by

100 mg�day p.o. for 70 days) or placebo treatment groups. The proportion of patients with

complete ulcer healing was higher in the sulodexide group at 2 months (p = 0.018) and 3

months. Additionally, ulcer surface area and fibrinogen levels were significantly reduced

in the sulodexide group compared to placebo (p = 0.004 and 0.006, respectively).

Similarly, the beneficial effects of sulodexide have been seen in the treatment of inter-

mittent claudication. Intermittent claudication is defined as painful cramping in the legs

that is present during exercise or walking and occurs as a result of decreased blood flow

to the legs. This phenomenon occurs in individuals with peripheral arterial obstructive

disease. In a randomized, double-blind, placebo controlled trial (16), sulodexide (60 mg

daily i.m. for 20 days, followed by 100 mg�day p.o. for 6 months) successfully doubled

the pain free walking distance in 23.8% of patients while only 9.1% achieved a doubl-

ing in the placebo group (p = 0.001). The pain-free walking distance increased by

83.2 ± 8.6 m (mean ± standard error) with sulodexide and 36.7 ± 6.2 m with placebo.

In addition to the antithrombotic effects of sulodexide, administration of the compound

to animals with preexisting thrombi demonstrates a dose dependent reduction in thrombus

size (4). It was suggested that this effect could be attributed to the activation of tissue plas-

minogenic activator and�or the inhibition of plasminogenic activator 1 (12,20).

Prevention of Reperfusion Injury

The restoration of myocardial blood flow to a previously ischemic region is associated

with a complex series of events leading to tissue injury greater than that which is at-

tributed to the original period of flow deprivation, an event referred to as “reperfusion

injury.”
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The complement system is a component of the innate immune system consisting of

a group of proteins circulating in the blood. The components of the complement system

act together to recognize and destroy foreign pathogens. Activation of the complement

system, however, can also have adverse effects on host tissues. In the setting of myo-

cardial reperfusion injury, the complement system represents an integral mechanism

through which the ischemic tissue undergoes injury leading to irreversible tissue injury

and cell death (45,61). Previous studies provided evidence for the role of complement by

demonstrating the deposition of the terminal complement complex, or the membrane

attack complex (MAC), in irreversibly injured myocardial tissue (68). The authors offered

the suggestion that the initial period of ischemia may cause loss of the ability of the heart

muscle cells to regulate complement turnover at the membrane level. The resulting depo-

sition of C5b-9 (membrane attack complex) on the cell membranes may contribute to

functional disturbance and irreversible damage of myocardial cells during the infarction

process. It is hypothesized that pharmacological inhibition of complement activation

would be beneficial in reducing tissue injury associated with ischemia and reperfusion.

Various GAGs have been reported by our laboratory to be of benefit to the ischemic

myocardium by preserving contractile function and reducing tissue injury (6,29,35,46,70).

In addition, selective GAGs are known to possess anti-complement activity in addition to

their classical roles as anticoagulants. Recently we reported that sulodexide effectively re-

duced myocardial infarct size after ischemia and reperfusion in the rabbit heart when ad-

ministered periodically throughout the four hour reperfusion period (48) (Fig. 1). Sulode-

xide was demonstrated to inhibit complement activation, possibly through the inhibition

of C-reactive protein (CRP), resulting in a reduction in the extent of myocardial injury as-
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FIG. 1. Effects of sulodexide on myocardial infarct size after 30 min of left anterior descending coronary artery

occlusion and 4 h of reperfusion compared with saline vehicle. Infarct size after reperfusion is expressed as a

percentage of the area at risk. The areas at risk were similar between groups. This indicates that the degree of the

insult was similar. Data are presented as means ± S.E.M.; vehicle group, n = 10 (white bars); sulodexide group,

n = 10 (black bars); *p < 0.05 vs. vehicle. Figure was adapted from ref. 48 with permission of the American So-

ciety for Pharmacology and Experimental Therapeutics.
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FIG. 2. Representative fluorescent images of a heart from a control animal (A and C) and an animal treated with

sulodexide (B and D) after 30 min of ischemia and 4 h of reperfusion. Prepared heart sections were immunofluo-

rescently stained for C-reactive protein (CRP) and for the membrane attack complex (MAC). Each section was

quantified using a fluorescent stereoscope with the accompanying software. In the vehicle-treated animal,

staining for CRP (A) and MAC (C) is present in areas of infarction. In sulodexide-treated hearts, little or no

staining for CRP (B) or MAC (D) can be observed in areas of infarction. (E), graph illustrating the comparison of

mean fluorescence intensity per heart section. Values are presented as mean ± S.E.M.; vehicle group, n = 3

(white bars); sulodexide group, n = 3 (black bars); *p < 0.05 vs. vehicle control. Figure was adapted from ref. 48

with permission of the American Society for Pharmacology and Experimental Therapeutics.



sociated with ischemia�reperfusion (Fig. 2). The data indicate that there is a separation be-

tween the anticoagulant and anti-complement effects of sulodexide by utilizing a dose of

the compound that was found previously to have little or no effect on coagulation (37)

while retaining the ability to protect the ischemic myocardium.

Heparin and related non-anticoagulant glycosaminoglycans are reported to reduce the

extent of myocardial injury. This effect has been attributed to an anti-inflammatory action

mediated in part through complement inhibition (50,60). However, heparin possesses

other pharmacodynamic properties that could explain its cytoprotective actions. A com-

parison between heparin and an o-desulfated non-anticoagulant heparin with greatly re-

duced anti-complement activity administered at the time of coronary artery reperfusion in

a canine model of myocardial infarction, equally reduced neutrophil adherence to ische-

mic-reperfused coronary artery endothelium, influx of neutrophils into ischemic-reper-

fused myocardium, myocardial necrosis, and release of creatine kinase into plasma (72).

The authors report that heparin or o-desulfated heparin also prevented dysfunction of en-

dothelial-dependent coronary relaxation following ischemic injury. In addition, heparin

and o-desulfated heparin inhibited translocation of the transcription nuclear factor-kappaB

(NF-êB) from the cytoplasm to the nucleus in human endothelial cells and decreased

NF-êB DNA binding in human endothelium and ischemic-reperfused rat myocardium.

Thus, it was observed that heparin and non-anticoagulant heparin decrease ischemia-re-

perfusion injury by disrupting multiple levels of the inflammatory cascade, including the

novel observation that heparins inhibit activation of the proinflammatory transcription

factor NF-êB. That a similar mechanism(s) might apply to sulodexide is suggested by the

many studies involving the anti-inflammatory actions attributable to a wide range of gly-

cosaminoglycans (39,63).

It is understood that heparin and other GAGs have therapeutic uses beyond their tradi-

tional role as anticoagulants (63). The parenteral administration of sulodexide results in

a decrease in myocardial infarct size in a model of in vivo regional ischemia�reperfusion

(48). The results are in accordance with previous studies in which it was found that other

glycosaminoglycans have the ability to reduce infarct size in vivo (6,29,34,47,70). The

chemical composition of sulodexide is defined as 80% low molecular mass (7000 Da)

heparin fraction and 20% DS. Low-molecular mass heparin contains the same dimeric

components as unfractionated heparin, but has a lower degree of sulfation and shorter

polysaccharide chain length. DS is a polysaccharide made up of many various disaccha-

ride units with a mean molecular mass of 25,000 Da. As a result of the presence of both

fractions, sulodexide potentiates the antiprotease activities of both antithrombin III and

heparin cofactor II simultaneously. Although structurally similar, sulodexide has major

differences from unfractionated heparin including prolonged half-life, reduced effect on

global coagulation, and oral bioavailability (8,9). Low-molecular mass heparin has previ-

ously been shown to reduce infarct size following ischemia and reperfusion (34,51); how-

ever, DS has yet to be individually investigated. Due to their ability to inhibit the com-

plement cascade, it is hypothesized that GAGs may prevent the adverse events associated

with complement activation associated with ischemia� reperfusion. Activation of the com-

plement cascade leads to the assembly of the MAC on cell membranes. Deposition of a

sufficient number of the lytic membrane attack complexes on a nucleated target cell re-

sults in disruption of the cell membrane and ultimately cell lysis. Intravenous adminis-

tration of 0.5 mg�kg sulodexide, commencing immediately upon reperfusion and at

hourly intervals during reperfusion was associated with a significant decrease in myo-

Cardiovascular Drug Reviews, Vol. 24, No. 3–4, 2006

220 D. A. LAUVER AND B. R. LUCCHESI



cardial infarct size expressed as a percentage of the area at risk when compared with ve-

hicle-treated control rabbits (48).

Analysis of platelet reactivity, as determined by ex vivo platelet aggregation, demon-

strated a decrease in thrombin-induced platelet aggregation in platelet rich plasma pre-

pared from whole blood obtained from sulodexide-treated animals as compared with ve-

hicle-treated animals. These data agree with previously reported findings (13,63) that

indicated that sulodexide inhibits thrombin-induced platelet activation. Interestingly, eval-

uation of the effects of sulodexide on coagulation, using the aPTT, demonstrated that at

the dose found to be cytoprotective in the reperfused heart sulodexide produced little or no

change in hemostasis (48).

As another method of quantifying cardiac injury after ischemia�reperfusion, we mea-

sured the serum concentration of a biochemical marker of tissue injury. Cardiac-specific

troponin I (cTnI) is a component of the contractile machinery within myocytes. Upon cell

lysis, the cardiac muscle protein is released into the blood and can be quantified using a

specific immunoassay. As would be predicted, based on infarct size data, it was found that

sulodexide significantly reduced the concentration of cTnI during reperfusion.

As is the case with other GAGs, the precise mechanism by which sulodexide achieves

myocardial protection after ischemia�reperfusion remains to be determined. Since sulode-

xide affects several aspects of reperfusion injury, various hypotheses may be drawn con-

cerning its role in cardioprotection. Previous studies have indicated that GAGs are ef-

fective inhibitors of the complement system. Therefore, we sought to investigate the

likelihood that sulodexide acts to protect the myocardium through inhibition of the com-

plement cascade.

C-reactive protein (CRP) is an acute phase protein that has been demonstrated to be a

sensitive, but nonspecific, marker of inflammation. Not only is the plasma concentration

of CRP increased in inflammatory diseases, increased CRP concentrations are associated

with increased mortality due to cardiovascular events (78). Thus, CRP may be an indicator

of myocardial injury, as well as being involved in the pathogenesis of irreversible myo-

cardial injury (23,64,65,76,78). The proposed mechanism of CRP involvement is through

local activation of the complement system (73,74). Systemic administration of human

CRP was found to increase the extent of myocardial necrosis, through a complement-de-

pendent mechanism, in an experimental model of acute myocardial infarction (36). The

endogenous production of CRP in response to a remote inflammatory dermal lesion like-

wise resulted in an increase in the extent of myocardial injury after ischemia�reperfusion

(5). CRP has been shown to activate the classical complement pathway providing a pos-

sible mechanism linking CRP to mortality due to myocardial infarction (44,55,75,77).

Using an immunofluorescent method to determine the presence of tissue bound CRP and

MAC, it was possible to show that sulodexide significantly reduced the deposition of both

CRP and the MAC, which were found localized within the area of infarction. The results

of this study demonstrate that sulodexide reduces infarct size after reperfusion of the

ischemic myocardium. The mechanism by which sulodexide protects the myocardium ap-

pears to involve modulation of the complement cascade, possibly through the inhibition of

CRP. Previous studies (48) provide evidence that there is a clear separation between the

anticoagulant and anticomplement effects of glycosaminoglycans.

We showed that a dose of sulodexide, previously found to have little or no effect on co-

agulation (37) retains the ability to inhibit activation of the complement cascade and to
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protect the ischemic myocardium. Therefore, sulodexide may have utility as a cytoprotect-

ive agent with a reduced risk of adverse effects on hemostasis.

Antiatherosclerotic and Antilipemic Effects

It is established that upon administration of heparin and low molecular weight heparin

there is a release of lipoprotein lipase (12). Sulodexide also was demonstrated to be ef-

fective in bringing about the release of lipoprotein lipase activity after intravenous, sub-

cutaneous or oral administration (19). Thus, sulodexide is often rated on its lipasemic ac-

tivity (as Lipoprotein lipase Releasing Units, LRU). In cholesterol-fed rabbits, sulodexide

significantly reduced the concentration of plasma cholesterol and cholesterol accumu-

lation in the rabbit abdominal aorta compared to controls (62). The disappearance of ra-

diolabeled low-density lipoproteins was enhanced after addition of sulodexide in rat liver

perfusates of healthy, lipidemic or hypertriglyceridemic rats. Sulodexide was shown to in-

teract with very low density lipoprotein by decreasing lipoprotein uptake into the rabbit

aorta and by increasing the hepatic metabolism in normal and hypertriglyceridemic

animals (21).

Diabetic Nephropathy

The incidence of diabetic nephropathy (DN) and correlated end stage renal disease in

the United States is increasing (66) and the survival of renal disease patients on dialysis is

low. DN involves the thickening of the glomerular basement membrane and mesangial ex-

pansion with hyalinosis, both in the mesangium and capillary lumen (32). The end result is

fibrosis of the glomerulus, which disrupts the renal filtration unit and eventually results in

renal failure. One of the first clinical markers of DN is microalbuminuria (54), either of

hemodynamic origin (41), due to endothelial dysfunction (28), or biochemical, due to al-

teration in glomerular basement membrane GAG composition leading to abnormal perme-

ability (24).

Glycemic control and angiotensin converting enzyme inhibitors are effective in re-

ducing albuminuria and slowing the progression from DN to renal failure (25,49). How-

ever, new and innovative approaches to the prevention and treatment of DN are needed

because strict metabolic control in the diabetic patient can be difficult. In addition, even

diabetic patients responding to angiotensin converting enzyme inhibitor therapy and

metabolic control show progressive renal damage and eventually develop end-stage renal

disease (25,49).

GAGs are particularly interesting because they can repair endothelial lesions and the

metabolic defect in matrix and basement membrane synthesis, which are responsible for

DN (11,31,33). A loss of GAGs has been demonstrated in this condition and sulodexide

was reported to be effective in the prevention of morphological alteration and in the re-

duction of albuminuria in experimentally diabetic animals (31). This behavior has been

confirmed in humans with either type I or type II diabetes who were randomly assigned to

4 groups and administered different oral doses of sulodexide for 4 months, T4, and fol-

lowed for additional 4 months, T8 (Table 1) (32). During treatment, the rate of albumin

excretion decreased, but was found again to increase 4 months after cessation of treat-

ment. Similarly, Achour et al. reported that in patients with type 1 and 2 diabetes mellitus

treated with oral sulodexide (50 mg daily), albuminuria was significantly reduced com-

pared to matched controls (p = 0.0001) (1).
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CONCLUSIONS

Sulodexide is a standardized extractive glycosaminoglycan containing 80% “fast

moving” heparin and 20% dermatan sulphate. It has a high bioavailability after intramus-

cular, intravenous or oral administration. The agent is tolerated well in humans and in an-

imals. Sulodexide has been shown to reduce infarct size and inflammation during reper-

fusion in animals with myocardial ischemia. The administration of sulodexide results in

the release of lipoprotein lipase and has been shown to decrease the concentration of cir-

culating lipids as well as to reduce the deposition of lipids in the vascular wall in experi-

mental animals of hypercholesterolemia. Sulodexide has also been shown to slow the pro-

gression of diabetic nephropathy by reducing microalbuminuria. A review of the current

literature demonstrates the efficacy, safety, and efficiency of sulodexide as an effective

therapeutic intervention in peripheral arterial disease, cardiovascular events, in

postphlebitic syndrome and on albuminuria in nephropathy without concern for adversely

altering normal hemostasis.
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