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Abstract

We consider the class of multistage linear programs with infinitely many variables
and constraints having the property that every constraint contains at most finitely
many variables while every variable appears in at most finitely many constraints. Ex-
amples include production planning and equipment replacement over an infinite hori-
zon. We form the natural dual linear programming problem and prove strong duality
under a transversality condition that dual prices are asymptotically zero. That is,
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we show, under this transversality condition, that optimal solutions are attained in
both primal and dual problems and their optimal values are equal. The transversality
condition, and hence strong duality, is established for an infinite horizon production
planning problem.
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1 Introduction

Consider the following doubly infinite linear programming problem:

min Y _ ¢z
1=1
subject to (P)
Apyzy 2 b
Aiiciziog + Auz; 2 b (1=23,...)
0<z; < y i=12,...)

and its natural dual

oo
max Z (bﬁyil - Uﬁyiz)

=1
subject to (D)
Ayya + A Vi —¥2 < G (t=1,2,...)
Yi; ?_ 0 (i=1,2,...;j=1,2)

where c;, u;, T, ¥io € R™ and b;,y;1 € R™ are all column vectors, and A;; is a (m; X n;)-
matrix. The problem (P) represents the class of all (bounded) linear programs having
the property that every constraint contains at most finitely many variables and (in a dual
fashion) every variable appears in at most finitely many constraints (Schochetman and Smith
(1989b)). Applications include infinite horizon production planning under nonstationary
demand, equipment replacement under technological change, and capacity expansion. In



this paper, we establish a theory of duality for (P) and (D) by providing conditions under
which both weak and strong duality hold.

Historically, abstract duality theory allowing for consideration of the infinite dimensional
case began with the fundamental paper of Duffin (1956). Charnes, Cooper, and Kortanek
(1963) subsequently stated and proved a strong duality theorem for semi-infinite linear pro-
gramming using an extension of Farkas’ lemma as proven by Haar. However, as later pointed
out by Duffin and Karlovitz (1965), they failed in that paper to explicitly include an interior
point condition without which a duality gap may exist. The failure of strong and even weak
duality to hold in the infinite dimensional case in the absence of interior point conditions
(Luenberger (1969, p. 217)) or, more generally, closedness (Anderson and Nash (1987, p.
52), Ponstein (1980)), has kept much of the literature at an abstract level. The difficulty
has been in establishing these conditions in concrete cases. Much of the success thus far has
in fact been limited to the semi-infinite case, introduced in Charnes, Cooper, and Kortanek
(1963), and subsequently developed in Ben-Israel, Charnes, and Kortanek (1969), Karney
(1981), Borwein (1981,1983), and Duffin, Jeroslow, and Karlovitz (1983). The so-called sepa-
rably infinite programs introduced in Charnes, Gribek, and Kortanek (1980) allow an infinite
number of variables and constraints, although no infinite subset of constraints is allowed to
contain more than finitely many distinct variables. Programs that are truly doubly infinite
are excluded and in particular, (P) is not included in this class.

Work on the doubly infinite case includes Evers (1973,1983), Hopkins (1971), Grinold
(1971,1977), and Jones, Zydiak, and Hopp (1988). Grinold (1971) provides sufficient con-
ditions for the existence of optimal primal and dual solutions for a special class of doubly
infinite problems and establishes a weak duality theorem for a stationary infinite stage LP
in Grinold (1977). This latter work was extended to convex programs in Grinold (1983).
Jones, Zydiak and Hopp (1988) applies the general theory developed in Grinold and Hop-
kins (1972) to a cost stationary infinite horizon equipment replacement problem with time
varying demand to establish the existence of optimal stationary dual solutions.

Our approach, as in Grinold (1971,1977,1983) is to establish properties for (P) and (D)
indirectly through the inheritance of such properties from finite dimensional approxima-
tions of (P) and (D). These are formed by truncating beyond finitely many variables and
constraints. This approach avoids the necessity of establishing closedness or interior point
properties for (P) or (D) directly. Viewing the index i in (P) as corresponding to the sth pe-
riod in a multiperiod planning problem, the above truncation to (P) becomes a finite horizon
approximation to an infinite horizon problem. This so-called planning (or solution horizon)
approach to the analysis of (P) has an extensive literature (for more recent work, see, e.g.,
Bean and Smith (1984), Bés and Sethi (1988), and Schochetman and Smith (1989a)).

Throughout the paper, we adopt the following



Assumptions
A. The set, X, of feasible solutions to (P) is nonempty, i.e., X # 0.

B. The objective function C(z) = Y32, ¢iz; in (P) is uniformly convergent over z, i.e.,
21 lleillo< 00 where ||¢i||oo = max{|ciz|: 0 < z < u;}.

A sufficient condition for Assumption B to hold is that each ¢; be of the form a'k; where
0 < a < 1, and the k; and u; are uniformly bounded (a corresponds here to a discount
factor).

In section 2, we establish topological spaces within which to embed (P) and (D) and
thereby establish that (P) has an optimal solution. We also formally define the finite dimen-
sional truncations (P(N)) and (D(N)) consisting of the first NV variables and N constraints
of (P) and (D) respectively.

In section 3, weak duality is established for the pair (P) and (D) under the condition that
the off diagonal submatrices A;41, are eventually nonnegative for all ¢. Moreover, whenever
weak duality holds, we show that no duality gap exists, i.e., the infimal value of the primal
program (P) equals the supremal value of the dual program (D).

In section 4, strong duality is established under a transversality condition requiring that
the optimal dual multiplier associated with the ith constraint converges to zero as ¢ goes to
infinity. Roughly speaking, we require that the optimal prices of future resources become
arbitrarily small. Under this condition, an optimal dual solution is shown to exist at which
primal and dual objective values are equal and complementary slackness holds.

Finally, in section 5, as an illustration of the general theory, we establish strong duality
under mild regularity conditions for a general nonstationary infinite horizon production
planning problem.

2 Mathematical Preliminaries

We begin by forming the product spaces []32; R™ and []32; R™*™ within which we embed
(P) and (D). Each is equipped with the corresponding product topologies inherited from
the underlying Euclidean spaces so that for example a sequence {z"} C [I32; R™ converges

precisely when its components z? converge in the Euclidean metric for all 7. That is,
" — z asn — oo if and only if 2] — z; as n — o0

for all i = 1,2,.... Similarly for {y"} C [I2, R™*™. Note that the nonnegative orthant
has an empty interior in both spaces, so that interior point conditions do not hold here.
Since the feasible region for (P), X, is closed and contained within the compact set

2.10,w;], it is also compact and, by Assumption A, nonempty. By Assumption B, the
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objective function C(z) = Y2, ciz; is a continuous function over X (Schochetman and
Smith (1989a)). It follows that an optimal solution z* to (P) exists.

Since the objective function in (D) may fail to converge for some feasible y € ]2, R™*™
we shall for now replace the objective function in (D) by

N
B(y) =limsup Y (byi — wyin).
=0 =1
We shall see later that the two objective functions are in agreement over a subset of the
feasible solutions Y to (D) known to contain any optimum.
We shall establish duality results for (P) and (D) by demonstrating their inheritance
from finite dimensional approximations (P(N)) and (D(N)). These are formed by dropping

all variables and constraints beyond the first N of (P) and (D), respectively. More formally,
we define (P(N)) by

N
min Y _ ciz;
=1
subject to (P(N))
Apzy 2 bl
Ajiciziog + Ay 2 b (:1=2,3,...,N)
OS‘T{ S Ug —1’2’ aN)
and (D(N)) by
N
max Y (biyin — ujyiz)
=1
subject to (D(N))
A:’iyil + A:'+1,iyi+l,1 —Yi2 S C; (l = 1, 2a ceey N - 1)
AynyYn —-yn2 < N
Yij 2 0 (?:=1,2,...,N;j=1,2).

Note that (D(N)) is the ordinary linear programming dual of (P(/V)) so that classical
weak and strong duality holds for each pair (P(N)),(D(N)) for all N. That is, by weak
duality, we have that B(y; N) < C(z;N) for all z € X(N),y € Y(N) and for all N, where
B(y; N) and C(z; N) and Y(N) and X (N) are the objective functions and feasible regions
of (D(N)) and (P(N)) respectively. Here X(N) is regarded as a subset of []2; R™ with

the first N elements arbitrarily extended to elements of [T72; R™. It will also, at times, be
convenient to think of X(N) as a subset of [, R™. We shall use the same notation for
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both where the interpretation should be clear from the context. Similarly, for Y/(N). Strong
duality provides that B*(N) = C*(N) for all N where B*(N) and C*(N) are the optimal
values to linear programs (D(N)) and (P(NV)) respectively. Note that (P(NV)) has an optimal
solution for all NV since its feasible region is nonempty and compact (since X C X(N) for
all N) and its objective function is continuous.

In the next section, we construct a counterexample to weak duality for the pair (P) and

(D) and provide a sufficient condition for weak duality to hold. We end this section with a
summary of notation.

X feasible region of (P)

Y feasible region of (D)
X(N) feasible region of (P(N))
Y(N) feasible region of (D(N))
C(z) = 121 G

C(z;N) = TN, ca

B(y) = limsupy_, B(y; N)
B(y;N) = T (blya — uiyia)

c* :  optimal value of (P)
C*(N) : optimal value of (P(N))
X* = {z € X|C(z) =C"}
X*(N) = {zeX(N)|C(z;N) = C*(N)}
B* : optimal value of (D)
B*(N) : optimal value of (D(NN))
Yr = {y€Y|B(y) = B"}

Y*(N) = {yeY(N)|B(y;N)=B"(N)}

3 Weak Duality

Because the feasible region to (D) is unbounded, weak duality for the pair (P) and (D) may
fail to hold. Consider for example the following instance of (P):

0 1 -1 i
man(-Q-) 2

1=1

subject to (P)



Ty 2 1

nt+ta 2 1
_2y1'—1+$i Z 0 (i=2)3’- )
—2:13,'_1+y,'+2,' 2 0 (i=2,3,. )
0<z < 21 (t=1,2,...)
0<y < 270 (1=12,..)
OSZi S 1 (i=1a27' )

so that (D) is given by

N
sup lilrvn sup (u1 DY (2ipi 420 + r¢)>

=0 1=2
subject to (D)
U — 2041 —pi < 0 (t=1,2,...)
Ui-2Ui+1—Qi < 0 (i=1a2a' )
- < B (=12
Uiy Uiy Piy Qiy T4 > 0 (7’= 1,2a' )

It is a simple matter to verify that (P) satisfies Assumptions A and B. However, the
following solution is optimal for (P) with value 0

T, = 2i-1 (Z =1,2,.. )
y = 21 (t=1,2,...)
% = 0 (=1,2,.),

while the following solution is optimal for (D) with value 2

u = (%)“1 (1=1,2,...)
V; %)'_1 (Z = 1,2,...)
pp = ¢ = T‘,'=0 (2":1,2,...).

Il
—

Hence weak duality fails for this instance of (P). It is interesting that weak duality holds
and is easily shown when (D) is defined as the algebraic dual of (P) (Anderson and Nash
(1987, p. 18)). However a concrete representation of algebraic duals is usually unattainable
in the infinite dimensional case. Evidently, (D) as given here is not such a representation.
In fact, its objective function is not a linear functional.

The pathology exhibited above can be eliminated by requiring that all feasible solutions
of (D) be feasible for (D(N)), i.e., Y C Y(N) for large N. The following theorem provides
a sufficient condition for this to occur.



Theorem 3.1 Suppose that A;.q; is eventually nonnegative, i.e. there exists a positive
integer N' such that A;1q; > 0 for allt > N'. Then

B(y) < C(x)
foralze X,yeY.

Proof:
If y €Y, then we have for all N > N”:

ey > Annynt + AnpiNYUN+11 — UN2
> Avnyni — Yna

since yn+1,1 = 0 and An4q v contains only nonnegative elements. Hence y is also feasible for
(D(N)),i.e.,y € Y(N), forall N > N'. By Weak Duality for finite dimensional LP-problems
we have:
B(y;N) £ mi i N)=C*(N
(W N) < _min Cla; N) = C*(N)
for all y € YN > N’. Our assumptions on the function C(-) imply that value conver-

gence holds for (P), i.e., limy_o C*(N) exists and is equal to C* (Schochetman and Smith
(1989b)). Therefore we have:

B(y) = limsup B(y; N) < jéim C*(N)=C* < C(z)
N_’m —+00
forallze X,y €Y. m

Fortunately, the nonnegativity condition on the off diagonal elements A;;; ; is not restric-
tive in most multistage planning problems where A;4;; corresponds to inventory carryover
from the previous period.

Theorem 3.1 tells us that every feasible value of the primal (P) will be an upper bound
to every feasible value of the dual (D). The next result shows that the supremum of the
later equals the infimum (i.e., minimum) of the former. We summarize this claim by saying
that no duality gap exists.

Theorem 3.2 (No Duality Gap) Suppose weak duality holds, i.e. B(y) < C(z) for all
€ X,y €Y. Then

B* = sup B(y) = minC(z) = C".
yeY z€X

Moreover, value convergence holds for (D), i.e. B* = limy_, B*(N).



Proof:
Consider y*(N) € Y*(N) ( y*(N) is an optimal solution of (D(N))). Then define 2 as:

2N = y5(N) (i=1,...,N;5=1,2)

ij
2l =0 (i=N+1,..)
zl = max(d,—¢;) (=N+1,..)

where f = max(d,e) (d,e, f € R") is defined as follows:
fi = max(d;, €;) (¢t=1,2,...,n)

and where § = (0,...,0)". Obviously, zV satisfies the first N — 1 constraints of (D). Fur-
thermore

NNZNL T AN+1,NZ1]\\J[+1,1 — 25y = Ay (V) = ypa(N) < ey
and
A;: 11\17 + Ac+1 i%i41,1 21\2{ = —max(f, —¢;) = min(,¢;) < ¢
for i = N +1,.... Thus, 2V € Y. Note also that 2% € Y*(N).

Now we have

B* = sup B(y)
y€eY
> B(z")
M
= hAr;lsup (Z (bi N u,zﬂ))
=0 i=1
N M
= limsup (E (b: Z) - u,2,2)+ Z (b: 2l — u;zg))
M- \;=1 t=N+1

N M
= Z(b’y,l(N)—uﬁyfg(N))+limsup (—- Z u:-max(G,—ci))

i=1 M—o0 i=N+1

M
= B(y*(N);N)—liminfM_.oo( Y. uﬁmaX(G,—ci))

i=N+1

= B*(N) —hmmf( Z Z u,]c,])

i=N+1 j:c;j<0
o0
= C(N)= > 2 (~wjey)
1=N+1 jic;;<0



for all N. In the last step we have used the absence of a duality gap for finite dimensional
LP, and the fact that —u;;c;; > 0 for all (¢, ) such that ¢;; < 0.
Since

Z Z —uijci;)

i=1 jici;<0
< max (Z E u,Jc,J,Z Z u”cw)
..1]c._1>0 1= 1]0.,<0

)

S Zmax Z Ui;Cigy Z (—uijc,-j)
i=1 7:¢ii>0 Jici; <0
)

= 2 lleilleo <00
1=1

we can conclude that

lim E Z —U;iCyy) =

N—eo t=N+1 jici;<0

Furthermore, limy_,o C*(NN) exists and is equal to C*. So now we have
B*>C"

By weak duality we have B* = sup,¢y B(y) < infzex C(z) = C*, so we can conclude that
B*=C".

Also,
Jim B*(N) = Jim C*(N)=C"=B". =

4 Strong Duality

In this section, we establish conditions under which an optimal solution, y*, exists to the
dual program (D). Under weak duality and Theorem 3.2, it will follow that optimal primal
and dual values are attained and equal, i.e. strong duality. The method will be to construct
a candidate solution for y* from the set Y*(oo) of accumulation points of finite dimensional
dual optima Y*(N).

We begin by establishing that every pair of accumulation points z* and y* of correspond-
ing finite dimensional optimal solutions are primal and dual feasible and moreover necessarily
satisfy complementary slackness.
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Lemma 4.1 Suppose z*(N) € X*(N), y*(N) € Y*(N) are optimal solutions for (P(N))
and (D(N)), respectively, N = 1,2,3,.... Furthermore, assume that for some subsequence
{Ny} of the positive integers that is independent of ¢, we have

klim g} (Ny) = af (i=1,2,...)
lm yi(Ny) =y (E=1,2,..),

i.e., ¥ € X*(00) and y* € Y*(0), the sets of accumulation points of X*(N) and Y*(N)
respectively. Then z* € X and y* €Y, i.e.

X*(00) C X and Y*(o0) C Y.
Furthermore, z* and y* satisfy complementary slackness, i.e.,
/
(Ai,i-le_l + Ayz] — bi) i =0
(ui — xf)'yfg =0
and
! % ! * * ! *
(Ci = Ay — Aipi¥ipn yiz) z; =0
fori=1,2,....
Proof
The fact that z* € X and y* € Y follows immediately from the fact that every constraint is a

linear function of finitely many variables. By complementary slackness for finite dimensional
linear programming we have, for all k:

(Asima@iy (Vi) + A (V) = 5:) 9N =0 (1=1,2,...,Np) (1)

(ui — 25 (Ne)) 93 (Nk) = 0 (t=1,2,...,Nk) (2)
and

(e = Al (Ne) = ALy w12 (V) +95(N0) f(Ne) =0 (i=1,2,..., Ne=1)(3)

(e — AU (V) + (Vi) @, (M) = 0 @
Taking the limit for £ — oo in, for example, equation (2) yields for all ¢:

11



Im (u; — 27 (Nk)) yi(Ne) =0

k—o0

or
(1= Jim 22(%%)) " ((im (M) =0
thus
(u; — 27) 'y, = 0.
Analogously we get for all ¢
(Ai,i—w:_l + Aiz} — bi>,yf1 =0
and

!/
( — Ay — Al Vi t yi2) ;=0 m

The next theorem provides a transversality condition that under weak duality guarantees

optimality for any pair of primal and dual feasible solutions that satisfy complementary
slackness.

Theorem 4.2 Suppose £ € X, § € Y satisfy complementary slackness. Furthermore, sup-
pose that

hm inf 37:~+171Ai+1',':f,' =0.
=0

Then

= Zc T; = hmsupz b’y,1 u; y,g B(?j)

N—oo =1

If, moreover, weak duality holds, then & is an optimal solution for (P), and § is optimal for
(D). Furthermore, if

. ~f ~
Lim §igy0 Aigri&i = 0

then
B(§) =Y (bifiiy — wifiag) -
1=1
Proof

By complementary slackness we have, for all s,

12



!
( — A — A:+1,z‘3/i+1,1 + in) ;=0
or equivalently
= Auyu + I; A;+1 iJir1 — &

Summation over all 7 on both sides yields:

(> x
AN S-S ~1 oAl ~ ~ ~
C(&) =) =), ( B AT + Zi Al b — xiyiz) .
1=1 =1

Also by complementary slackness:

~ 1

T Az t— lyzl + T; Anyzl b:'gil
and

0 = Wil
{e]

B(y)

= hmsupZ (bifiiy — uifiia)

N—oo ,'_1

= hm sup Z: (27: 1440~ lytl + T; Anytl :gﬂ)

N—ooo =1

N
_ . a~l Al ~ ~) a4l ~ ~l ~ ~t / ~
= limsup (E (l'iAiiyu + & A Y — 1‘1‘%‘2) - xNAN+1,NyN+1,1>

N=oo \i=z

o0

- ~l Al ~ ala TR .

= Y (#Alga + 8 Al g — i) — limin Sy Ay winan
1=1

( (Al + T A1 — 53:'@:'2) =C(2).

I
Ms

1)

1=1

Since weak duality holds, we have the optimality of £ and §. Furthermore, if
lim §iy114is168i =0

we can conclude

N N 00
B(g]) = lim SUPE (bggu - u:‘?jiz) = HNHiio%fZ (bggn - u:'yﬂ Z b/yu u; ?Jzz n
=1 =1

=0 =1

13



Note that the objective function values given for the dual formulation of Sections 1 and
2 are in agreement for § under the conditions of Theorem 4.2.
The following theorem is the main result of the paper.

Theorem 4.3 Suppose the following conditions on (P) hold:
(i) The constraint data Ait1;,u;,m; and n; for (P) are uniformly bounded over i, i.e.,
(u); LT < 00, (Aip1,)k ST < c0o,m; SM< 00 and n; <A < oo for all 1,7, k, 1.
(i) Weak duality holds for (P) and (D)
(iii) Transversality holds for (D), i.e.,

lim y5; =0
1—0

for some y* € Y*(0).
Then y* € Y* and strong duality holds, i.e., there exist optimal solutions z* € X* and
y* € Y* such that

C(e*) = B(y")-

Proof
Since y* € Y*(00), there exists a subsequence { Ny} such that

Jim y7(Ny) = yi
for all 7, where y?(Ni) € Y*(Ny) for all k. Choose z*(Nix) € X*(Ni) N X for all k. Then,
passing to a subsequence of { Ny} if necessary, we have

lim z}(Ng) = 2}
k—o0

for all ¢ for some z* € X by the compactness of [[2,[0,u;] in the product topology. By
Lemma 4.1, z* and y* satisfy complementary slackness. By assumption,

: 1o* _

Jim ;=0
So we have

y2‘+1,1'A,-+1,,-:c2‘

mi41 n;

= Y > W)k @)i(Airri)u
k=1 =1
mit+1 ng
Z E(yi+1,1)k“a
k=1 l=1
mi+1

= nua E (y:+1,1)k
k=1

nua (e'yf“,l)

IN

IN

14



which gives
. . * ! * —— —
liminfyiy,, Aipr2] STTT

1-—=+00

So, Theorem 4.2 says that z* is optimal for (P) and y* is optimal for (D), and the corre-
sponding objective function values are equal.

Remarks: 1) Condition (ii) by Theorem 3.1 may be replaced by the requirement in (i) that
0 < (Ait1,))k £@ < oo for all ¢,k,I. 2) From the proof of Theorem 4.3, we may relax the
requirement that m; < 7@ < oo in (i) by replacing condition (iii) with the requirement that
lime'yy =0.

The important condition in Theorem 4.3 for strong duality to hold is the transversality
condition that requires (in the language of Schochetman and Smith (1989a)) algorithmically
optimal prices of resources available in the ¢th period go to zero as ¢ goes to infinity. To this
point, it is not clear whether any nontrivial instance of (P) satisfies this condition. In the
next section, we prove that a classic production planning problem satisfies the transversality
condition and hence is an important problem for which duality holds.

5 An Application to Production Planning over an In-
finite Horizon

Consider the problem of scheduling production to meet nonstationary demand over an infinite
horizon. The problem may be formulated by the following linear program (Denardo (1982,

p. 87)):

min Y (k:P; + hil;)a' ™

i=1

subject to (Q)
Li+P -1 > d (=12...)
0<P < P, (i=12,..)
0<L < T, (=12,...)

where I; is the net inventory ending period j with I = 0, P; is the production in period j,
D; is the demand for production in period j, k; is the production cost and h; is the inventory
holding cost for period j, j = 1,2,.... The factor « is the discount factor reflecting the time
value of money, where 0 < a < 1. The dual (D) becomes

15



N
sup limsup Y _(dyw; — Pyu; — T;v;)

N—>00 1’=1
subject to (D)
W; — Us; < kiot?! (Z 1,2, )
—wi+wiyr —v; < het™t (1=1,2,..0)
Wiy Uiy V5 Z 0 (Z- 1’ ) )

Note that without loss of optimality, we have that demand is met exactly, i.e., [;_; + P;—I; =
d; for all ¢, in program (Q).
As in Schochetman and Smith (1989b), we make the following

Assumptions:

(i) inf,-(?; —d;) > 0.

() P,
I.

%

for all 2
for all 2.

ININA
e Bav |

< o0
< &

(i) ki, h; > 0 and max(k;, h;) < G4* for all i for some 0 < G < 00,0 < v < 1/a.

Note that (@) is of the form (P) under the identification z; = (P; L)', ¢; = (ki hi)a'™!, Ai;_1 =
(10),A45=(1 —1),b;=d;, and p; = (P; T,)".

It is easily verified that Assumptions A and B of Section 1 are satisfied. Moreover, since
the off diagonal submatrices A;_; = (1 0) > 0 for all ¢, we have by Theorem 3.1 that under
Assumptions (i), (ii), and (iii), weak duality holds for (@) and therefore there is no duality
gap by Theorem 3.2. Verification of the transversality conditions [or strong duality will be
considerably more difficult. We begin by establishing that we may restrict consideration
without loss of optimality to a bounded subset of the feasible solutions to (D) and (D(N)).

Set y; = (wi,ui,v;) € R® and y = (w,u,v).

Lemma 5.1 For the Production Planning Problem (Q), there ezists J; < oo for all ¢, such
that

sup B(w, u,v) = sup B(w,u,v).
yeY yey

where Y = {y € Y : y; <7; for alli}. Moreover, for all N:

sup B(w,u,v; N) = sup B(w,u,v;N)
yeY(N) yeEY(N)
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where Y(N) = {y € Y(N) : y; < 7; for all i}.

Proof See Appendix. m

Lemma 5.2 For the Production Planning Problem (Q), suppose y(N) € Y(N) for all N.
Suppose further that

Jim w;(Ng) = w;
exists for all i for some subsequence {Ni} of the positive integers. If
limsupw; > 0
=00
then

li}\r,ninf B(y(N); N) = —co.
Proof See Appendix. m

We are now ready to prove the main result of this section.

Theorem 5.3 Suppose the Production Planning Problem (Q) satisfies Assumptions (i), (i1),
and (iii). Then weak and strong duality hold for (Q) and (D), i.c.

B(y) < C(z)
forallz € X andy € Y and there exist z* € X* and y* € Y™ such that
B(y") = C(z").

Proof

Consider any sequence {y*(N)}, y*(N) € Y*(N) for all N. Without loss of generality we
can assume y*(N) € Y for all N. Since Y lies in the product of compact sets, it is compact
in the product topology. Hence there exists a subsequence of {y*(NN)} converging to some
y* € Y. Since no duality gap exists for (Q), we have that limy_., B(y*(N); N) = B* > —oo.
Thus, by Lemma 5.2,

lim w] = 0.
1—00
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Hence conditions (i) through (iii) of Theorem 3.3 are satisfied (with @ = max(P,I), @ = 1
and @ = 2). We conclude that strong duality holds for the production planning problem. m

Hence weak and strong duality hold for the Production Planning Problem under very
mild regularity conditions. One might expect the same result under comparable conditions
for a wide variety of investment planning problems including equipment replacement and
capacity expansion.

6 Conclusions

We have established weak and strong duality for a large class of doubly infinite linear pro-
grams under the key transversality condition that dual prices asymptotically converge to
zero. Moreover this transversality condition was shown to be met by a nonstationary infinite
horizon production planning problem.

Using weak duality, one can bound the optimal primal value thus providing a measure of
error to approximate solutions to (P). Moreover, under strong duality, it becomes possible in
principle to analytically establish optimality of a candidate primal solution by demonstrating
equality in value with a known optimal dual solution.
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Appendix

Lemma 5.1 For the Production Planning Problem (Q), there exist J, < oo for all i, such
that

sup B(w, u,v) = sup B(w, u,v).
vey yey

where Y = {y € Y :y; <7, for all i}. Moreover, for all N:

sup B(w,u,v;N)= sup B(w,u,v;N).
yeY(N) y€Y(N)

where Y(N) = {y € Y(N):y; <7; for all 1}.

Proof
We will prove that, for all 4, there exist W; < oo such that for all N > 7 the following holds:

sup  B(w,u,v;N) <0.
vEY (N)iwi 2W;

Combining this with

sup B(w,u,v;N)=B*(N)>0
yeY (N)

we can conclude that

sup B(w,u,v;N)=  sup  B(w,u,v;N)
y€Y(N) YEY (N)wi <w;

for all : and N > . Furthermore, we will have that

sup B(w,u,v) = sup B(w,u,v)
yey y€Y ;1w <W;

for all <.

Choose some index i. Then, for all N > i:

N
B(w,u,v; N) =Y (djll)j - Pju; — Tj’l)j)

i=1

< ﬁl:(dwJ Pw +Pw] Fjuj)

= f:( Pj)w; + Pj(w; J))

.
-t

<.
—
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IN
=
|
S
g
+
M=
>
g?r‘
Q&)
L

N
< (d, - P,')’w,' + Z?G"/(O{’)’)j_l

j=1
- PGy
< . — P\ )
< (di= Pijwi + 7 p
Thus, choosing e.g.
PGy
w; = = +1l1<
(1 - C!‘)’)(P,' - d,)
we get
sup B(w,u,v;N) < (d,'—-p-,‘)w,'+ PG’Y =d,'—?,' <0
veY (N)jw; >; 1 —ay

for ¢ < N. Since inequality (1) holds for all N > i, we also have

B(w,u,v) = limsup B(w,u,v; N) < (d; — -p';)w,- + PGy
N—oo 1—ay

and thus

sup  B(w,u,v) <0.

yEY ;wi >w;
We can now conclude that for all N:

sup  B(w,u,v;N)= sup B(w,u,v;N)

yEY (N);w; <W; y€Y (N)
and
sup  B(w,u,v) = sup B(w, u,v).
yeYw; <w; vey

Moreover, combining the results for all indices i:

sup B(w,u,v;N) = sup B(w,u,v;N)

y€Y (N);w; <w;Vi yeY(N)
and
sup  B(w,u,v) = sup B(w,u,v).
yeY wi <m,Vi yeYy
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Now, observe that in an optimal solution we will have
u; = max(0, w; — k,-a‘"l)
vi = max(0, —w; + wiy; — hia'™Y)

S0
u; < max(0,W; — k') = T

v; < max(0, Wiyy — h;ai‘l) =7

Combining the results gives:

sup B(y; N)= sup B(y;N)
yeY (N) VP (N)

for all N, and

sup B(y) = sup B(y). =
yey yeY

Lemma 5.2 For the Production Planning Problem (Q), suppose y(N) € Y(N) for all N.
Suppose further that

Jim () =

exists for all ¢ for some subsequence {Ni} of the positive integers. If
liin illp w; >0

then
liI\r[ILioréf B(y(N);N) = —c0.

Proof
By hypothesis, there is a subsequence {i;} such that

lim lim w;;(N;) > 6 > 0.

J=—=+00 k=00

Assume without loss of generality that § < co. This means:
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HIHAR INIIINHIIIlllllllllllIIIWIIIHHNI

2 6809
V0 <e<é 3J. such that for all j > J, : (lchm wi;(Ng) 26—¢€> 0)

and

V0 <e<$§ 3J, such that for all j > J, :
(V0 < n< 8—e 3K,(j) such that for all k > K,(j) : w;,(Ni) > 6—¢ =1 >0).

Choose some fixed 0 < € < §,and 0 < p < 6§ —¢. Let u = § — e —n. Without loss of
generality we assume K, (j + 1) > K, (j) for all j. Now define

Ti = {j > Je|wi;(Nk) > p,1; < Ni}.

Choose a positive integer M, arbitrary. Then, for k > K,(J. + M — 1) we have |Jx| > M.
Thus, since M was chosen arbitrarily, we can conclude

lim |Jk| = 00
k—o0

Now we have, for all :

Ni
B(y(Ni); Ny) = Z (diwi(Nk) — Piu;(Ny) — Tivi(Nk))
Ng
< 3 ((d = Poyws(Ni) + Pilwi( V) = wi( V)
< %(d _Pwi(Ni) +2Pka-1

1=1

N P
S —aZw; Nk sz
PG
< —auIJlir i
—ay

So:
lij\r,ninfB( y(N); N)
< lim B( (Nk) Nk)

k=00

PGy
< lim (—0ﬂ|Jk| + —&;>
PGy

l—ay

—ou kh—>n;lol“7k[ =—00.
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