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ABSTRACT
We have compiled a new sample of 240 halo objects with accurate distance and radial veloc-
ity measurements, including globular clusters, satellite galaxies, field blue horizontal branch
(FHB) stars and red giant stars from the Spaghetti survey. The new data lead to a significant
increase in the number of known objects for Galactocentric radii beyond 50 kpc, which allows
a reliable determination of the radial velocity dispersion profile out to very large distances.
The radial velocity dispersion shows an almost constant value of 120 km s−1 out to 30 kpc and
then continuously declines down to 50 km s−1 at about 120 kpc. This fall-off puts important
constraints on the density profile and total mass of the dark matter halo of the Milky Way.
For a constant velocity anisotropy, the isothermal profile is ruled out, while both a dark halo
following a truncated flat (TF) model of mass 1.2+1.8

−0.5 × 1012 M� and a Navarro, Frenk &
White (NFW) profile of mass 0.8+1.2

−0.2 × 1012 M� and c = 18 are consistent with the data. The
significant increase in the number of tracers combined with the large extent of the region probed
by these has allowed a more precise determination of the Milky Way mass in comparison to
previous works. We also show how different assumptions for the velocity anisotropy affect the
performance of the mass models.

Key words: Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure – dark
matter.

1 I N T RO D U C T I O N

The determination of the total mass of the Galaxy has been a sub-
ject of considerable interest since the work of Kapteyn in the early
1920s (see Fich & Tremaine 1991 for an introductory review on
the subject). Since then, the mass of the Milky Way has seen its
estimates grow by factors of 10 to 100, with some dependence on
the type of mass tracer used: H I kinematics, satellite galaxies and
globular clusters, or the Local Group infall pattern. The most recent
determinations yield fairly consistent values for the mass within
50 kpc, with an uncertainty of the order of 20 per cent, for a given
mass model (Kochanek 1996; Wilkinson & Evans 1999, hereafter

�E-mail: gbattagl@astro.rug.nl

W&E99; Sakamoto, Chiba & Beers 2003, hereafter SCB03). How-
ever, even today, the total mass of the Galaxy is not known better
than within a factor of 2.

Whatever method is used, be it the H I kinematics, globular clus-
ters, satellite galaxies, or halo giants, it is only possible to determine
the mass enclosed in the region probed by these tracers (Binney &
Tremaine 1987). This implies that the rotation curve derived from H I

will only constrain the mass within roughly 18 kpc from the Galactic
Centre (Rohlfs & Kreitschmann 1988; Honma & Sofue 1997), a
region which is baryon dominated. Globular clusters and satellite
galaxies are, in principle, better probes of the large-scale mass dis-
tribution of the Galaxy, because they are found out to distances
beyond 100 kpc. However, there are only 15 such objects beyond
50 kpc (Zaritsky et al. 1989; Kochanek 1996). Only six of these
have proper motion measurements, which, despite the large errors,
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can further constrain the shape of the velocity ellipsoid. Using this
data set, W&E99 favour isotropic to slightly tangentially anisotropic
models, although 1σ contours for the velocity anisotropy β give
−0.4 � β � 0.7. SCB03 have added to the sample used by W&E99
field blue horizontal branch (FHB) stars with proper motions and
radial velocities. While this is clearly an improvement, these stars
are located within 10 kpc of the Sun, which strongly limits their
constraining power at larger radii. In their models, the velocity el-
lipsoid is tangentially anisotropic, with β ∼ −1.25 as the most likely
value.

It is clearly important to measure the total mass of the Galaxy in
order to constrain its dark matter content. However, it is also criti-
cal to determine its distribution: density profile, flattening, velocity
ellipsoid, etc. One of the most fundamental predictions of cold dark
matter (CDM) models is that the density should follow a Navarro,
Frenk & White (NFW) profile throughout most of the halo (Navarro,
Frenk & White 1997).

The density profiles derived from the gas rotation curves of large
samples of external galaxies do not always follow the NFW shape
(de Blok, McGaugh & Rubin 2001). Tracers at larger distances are
rare, but objects such as planetary nebulae or globular clusters could
yield powerful constraints on the mass distribution at those radii;
for example, for elliptical galaxies as shown by Romanowsky et al.
(2003).

In the case of the Milky Way, the situation is not dissimilar.
The distribution of mass inside the Solar circle has been studied
extensively (see e.g. Dehnen & Binney 1998; Evans & Binney
2001; Bissantz, Debattista & Gerhard 2004). A common conclu-
sion is that there is little room for dark matter in this region of the
Galaxy.

However, does the dark matter beyond the edge of the Galac-
tic disc follow an NFW profile? How does the most often as-
sumed isothermal profile perform in this region of the Galaxy (e.g.
Sommer-Larsen et al. 1997; Bellazzini 2004)? Is the velocity el-
lipsoid close to isotropic as found in CDM simulations (Ghigna
et al. 1998)? Modelling of the kinematics of halo stars by Sommer-
Larsen et al. (1997) favoured an ellipsoid that became more tan-
gentially anisotropic towards larger distances, while Ratnatunga &
Freeman (1989) found a constant line-of-sight velocity dispersion
out to 25 kpc.

These fundamental issues can only be addressed when a suf-
ficiently large number of probes of the outer halo of the Galaxy
are available. Ideal tracers are red giant stars or blue horizon-
tal branch stars, which can be identified photometrically also at
large galactocentric distances (Morrison et al. 2000; Clewley et al.
2002; Sirko et al. 2004a,b). Spectroscopic follow-up allows both
the confirmation of the luminosity class as well as the determina-
tion of radial velocities with relatively small errors (Morrison et al.
2003). With the advent of wide field surveys, such as the Sloan
Digital Sky Survey, or the Spaghetti survey, the numbers of such
outer halo probes have increased by large amounts, making this an
ideal time to address the mass distribution of our Galaxy in greater
detail.

This paper is organized as follows. In Section 2.1, we describe
the observational data sets used to determine the radial velocity
dispersion curve. In Section 2.2, we introduce several mass models
for the dark halo of our Galaxy and derive how the line-of-sight
velocity dispersion depends on the model parameters. In Section 2.3,
we compare the data to the models and derive the best-fitting values
of the parameters using χ2 fitting. Finally, we discuss our results
and future prospects in Section 3.

2 T H E R A D I A L V E L O C I T Y D I S P E R S I O N
C U RV E

2.1 The observational data sets

Our goal is to derive the radial velocity dispersion profile of the
Milky Way stellar halo in the regime where it is dominated by the
gravitational potential of its dark matter halo. Hence, we restrict
ourselves to tracers located at Galactocentric distances greater than
10 kpc, where the contribution of the disc is less important.

We use a sample of nine satellite galaxies, 44 globular clusters,
57 halo giants and 130 FHB stars. The various data sources of this
sample are listed in Table 1. It is worth noting that there are 24 objects
located beyond 50 kpc in our sample and that we have enough
statistics to measure radial velocity dispersion out to 120 kpc as
shown in the top panel of Fig. 1. This covers a significantly larger
radial range than many previous works, including e.g. Sommer-
Larsen et al. (1997), whose outermost point is at 50 kpc.

The red halo giants are from the Spaghetti survey (Morrison et al.
2000). This is a pencil beam survey that has so far covered 20 deg2

Table 1. Characteristics of the data used in this paper. In all cases, position
in the sky, heliocentric distance and line-of-sight velocities are available.

Objects Number of objects Source

Globular clusters 44 Harris (1996)
FHB stars 130 Wilhelm et al. (1999),

Clewley et al. (2004)
Red halo giants 57 Spaghetti survey
Satellite galaxies 9 Mateo (1998)

Figure 1. The top panel shows the number of objects per bin in our sample.
The bottom panel shows the Galactocentric radial velocity dispersion of the
Milky Way halo. The squares with error bars correspond to the dispersion
profile for the whole sample. The diamonds indicate the Galactocentric radial
velocity dispersion if the satellite galaxies are not included in the sample.
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Figure 2. Heliocentric line-of-sight velocities corrected for the Solar mo-
tion and the LSR motion (V GSR) for the sample used in this work (triangles,
red giants; asterisks, globular clusters; diamonds, field horizontal branch
stars; filled squares, satellite galaxies).

in the sky, down to V ∼ 20. It identifies candidate halo giants using
Washington photometry, where the 51 filter1 allows for a first lumi-
nosity selection. Spectroscopic observations are then carried out to
confirm the photometric identification and to determine the radial
velocities of the stars.

We have derived the heliocentric distance for the FHB stars from
Wilhelm et al. (1999) using the relation

MV (HB) = 0.63 + 0.18([Fe/H] + 1.5)

(Carretta et al. 2000).
In all cases, accurate distances and radial velocities are avail-

able: the average error in velocity ranges from a few km s−1 (satel-
lite galaxies and globular clusters) to 10–15 km s−1 (FHB stars
and red giants); the typical relative distance error is approximately
10 per cent.

When transforming the heliocentric line-of-sight velocities, V los,
into Galactocentric ones, V GSR, we assume a circular velocity of
V LSR = 220 km s−1 at the solar radius (R� = 8 kpc) and a solar
motion of (U , V , W ) = (10, 5.25, 7.17) km s−1, where U is radially
inward, V positive in the direction of the Galactic rotation and W to-
wards the North Galactic Pole (Dehnen & Binney 1998). Hereafter,
we refer to: the radial velocity (dispersion) measured in a heliocen-
tric coordinate system as the line-of-sight velocity, V los (dispersion,
σ los); the line-of-sight velocity (and its dispersion) corrected for
the solar motion and the LSR motion as the Galactocentric radial
velocity, V GSR (dispersion, σ GSR); the radial velocity (and its dis-
persion) in a reference frame centred on the Galactic Centre as the
true radial velocity, V r (dispersion, σ r). Fig. 2 shows V GSR as func-
tion of the Galactocentric distance r for all the objects used in this
work.

The bottom panel in Fig. 1 shows the Galactocentric radial veloc-
ity dispersion as function of distance from the Galactic Centre. This
is computed in bins whose width is approximately twice the average
distance error of objects in the bin. This implies that our bin sizes
range from 3 kpc at r ∼ 10 kpc to 40 kpc at r ∼ 120 kpc. The error
bar on the velocity dispersion in each bin is calculated performing

1 The 51 filter is centred on the Mgb/MgH feature near 5170 Å.

Monte Carlo simulations. We assume the velocity and distance er-
rors are gaussianly distributed in the heliocentric reference frame.
In practice, this means that we randomly generate velocities and
distances for each one of the stars, whose mean and dispersion are
given by the observed value and its estimated error, respectively. We
then convert the heliocentric quantities into Galactocentric ones. We
repeat this exercise for 10 000 sets and, for each of these, we mea-
sure σ GSR in the same bins as the original data. We use the rms of
this velocity dispersion, obtained from the 10 000 simulations, as
the error on the velocity dispersion we measured in the bin.

One may question whether the satellite galaxies can be considered
fair tracers of the gravitational potential of the dark matter halo of
the Milky Way (e.g. Gao et al. 2004; Taylor et al. 2004). To get
a handle on this issue, we compute the velocity dispersion profile
both with and without them (squares and diamonds, respectively, in
Fig. 1). Because the trend is similar in both cases, we may consider
the satellites to be reliable probes of the outer halo potential.

2.2 The models

2.2.1 Jeans equations

If we assume that the Galactic halo is stationary and spherically
symmetric, we can derive the (expected) radial velocity dispersion
profile σ r,∗ of the stars from the Jeans equation (Binney & Tremaine
1987):

1

ρ∗

d
(
ρ∗σ 2

r ,∗
)

dr
+ 2βσ 2

r ,∗
r

= −dφ

dr
= − V 2

c

r
, (1)

where ρ ∗(r ) is the mass density of the stellar halo, φ(r ) and V c(r )
are the potential and circular velocity of the dark matter halo, and β

is the velocity anisotropy parameter, defined as β = 1 − (σ 2
θ /σ 2

r ),
and assuming σ 2

θ = σ 2
φ . Note that β = 0 if the velocity ellipsoid is

isotropic, β = 1 if the ellipsoid is completely aligned with the radial
direction, while β < 0 for tangentially anisotropic ellipsoids.

The Jeans equation allows us to determine a unique solution for
the mass profile if we know σ 2

r,∗(r ), ρ ∗(r ) and β(r ), although this
solution is not guaranteed to produce a phase-space distribution
function that is positive everywhere. However, we are faced with
two uncertainties: the velocity anisotropy and the behaviour of the
stellar halo density at very large distances. The latter has been de-
termined to vary as a power law ρ ∗(r ) ∝ r−γ with γ ∼ 3.5 out to
∼50 kpc (Morrison et al. 2000; Yanny et al. 2000) and we shall
assume this behaviour can be extrapolated all the way out to our
last measured point. More crucial is the unknown variation of the
velocity anisotropy with radius, which is difficult to determine be-
cause of the lack of tracers with accurate proper motions beyond the
Solar neighbourhood. In principle, this implies that large amounts
of kinetic energy can be hidden to the observer, an effect known as
the mass–velocity anisotropy degeneracy. For the sake of simplicity,
and given that the situation is unlikely to change until the advent of
new space astrometric missions such as SIM and Gaia (Perryman
et al. 2001), throughout most of this work we shall make the as-
sumption that β is constant, i.e. independent of radius r.

To derive equation (1), we have assumed that the stellar halo
can be considered as a tracer population of objects moving in an
underlying potential. This is justified by the negligible amount of
mass present in this component, compared with, for example, that
in the disc and the dark halo.

The (expected) radial velocity dispersion for the tracer population
σ r,∗ may be thus derived by integrating equation (1). This leads
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to

σ 2
r ,∗(r ) = 1

ρ∗ e
∫

2βdx

∫
x

∞
ρ∗ V 2

c e
∫

2βdx ′′
dx ′, x = ln r . (2)

Here, we have used that r 2βρ ∗σ r,∗|∞ = 0. Note that the radial veloc-
ity dispersion of the tracer population depends on the particular form
of the circular velocity of the underlying (gravitationally dominant)
mass distribution.

Because proper motions are not available for the whole sample
and we only have access to heliocentric velocities, the quantity that
we measure is not the true radial velocity dispersion but σ GSR,∗.
When comparing this quantity to model predictions, we must take
into account a correction factor for the lack of information on the
tangential component of the velocity. Following the procedure de-
scribed in Appendix A, we find that the Galactocentric radial veloc-
ity dispersion, σ GSR,∗, is related to the true radial velocity dispersion,
σ r,∗ as

σ GSR,∗(r ) = σr ,∗(r )
√

1 + 2 (1 − β)H (r ), (3)

where

H (r ) =
r 2 + R2�

4r 2
−

(
r 2 − R2�

)2

8r 3 R�
ln

r + R�
r − R�

. (4)

The above equation for H(r) is valid at Galactocentric distances r >

R�. For a purely radial anisotropic ellipsoid (β = 1), σ GSR,∗ and σ r,∗
coincide. For a tangentially anisotropic stellar halo, the correction
factor becomes negligible at distances larger than about 30–40 kpc.

2.2.2 Specifing dark matter halo models

We adopt three different models for the spherically symmetric dark
matter halo potential:

(i) Pseudo-isothermal sphere. This model has been extensively
used in the context of extragalactic rotation curve work. The den-
sity profile and circular velocity associated to a pseudo-isothermal
sphere are:

ρ(r ) = ρ0
r 2

c(
r 2

c + r 2
) (5)

and

V 2
c (r ) = V 2

c (∞)

(
1 − rc

r
arctg

r

rc

)
, (6)

where rc is the core radius and ρ0 = V 2
c (∞)/4πGr 2

c . We set V c(∞)
= 220 km s−1 as the asymptotic value of the circular velocity. At
large radii, the density behaves as ρ ∝ r−2 giving a mass that in-
creases linearly with radius.

(ii) NFW model. In this case the dark matter density profile is
given by

ρ(r ) = δcρ
0
c

(r/rs)(1 + r/rs)2
, (7)

where rs is a scale radius, ρ0
c the present critical density and δc a char-

acteristic overdensity. The latter is defined by δc = 100 c3g(c)/3,
where c = r v/r s is the concentration parameter of the halo and
g(c) = 1

ln(1+c)−c/(1+c) . The circular velocity associated with this den-
sity distribution is

V 2
c (s) = V 2

v g(c)

s

[
ln(1 + cs) − cs

1 + cs

]
, (8)

where V v is the circular velocity at the virial radius rv and s = r/r v.
The concentration c has been found to correlate with the virial mass
of the halo (Navarro et al. 1997; Bullock et al. 2001; Wechsler et al.
2002). However, the relation presents a large scatter. For example,
for a halo of mass 1.0 × 1012 h−1 M� the predicted concentration
ranges between 10 and 20. Hence, we cannot consider the NFW
density profile as a one-parameter family; we need to describe it by
the concentration c and by the virial mass or the circular velocity
at the virial radius. At large radii (for r � r s), the density behaves
as ρ ∝ r−3 and, therefore, the total mass diverges logarithmically.
However, we can impose that the particles must be bound at the
virial radius, and so when integrating equation (2), we set the upper
integration limit to rv and we use r2βρ ∗σ r,∗|rv = 0.

(iii) Truncated flat model. This density profile was recently intro-
duced by W&E99 to describe the dark matter halo of Local Group
galaxies. It is a mathematically convenient extension of the Jaffe
(1983) model. The form of the density profile of the truncated flat
model (hereafter TF) is

ρ(r ) = M

4π

a2

r 2(r 2 + a2)3/2 , (9)

where a is the scalelength and M the total mass of the system. For
r � a, the density falls off as ρ ∝ r−5. The circular velocity due to
this density distribution is

V 2
c (r ) = V 2

0 a

(r 2 + a2)1/2
. (10)

We set V 0 = 220 km s−1 (W&E99). The resulting rotation curve is
flat in the inner part, with amplitude V0 = √

G M/a, and becomes
Keplerian for r � a. Having fixed the amplitude of the circular
velocity (V 0), this model is reduced to a one parameter-family char-
acterized by the scalelength a, or the mass M.

2.3 Results

2.3.1 Models with constant velocity anisotropy

The methodology we use consists of comparing the measured Galac-
tocentric radial velocity dispersion σ GSR,∗ for each of the distance
bins with that predicted for the different models discussed in Sec-
tion 2.2. For the latter, we explore the space of parameters that define
each model and determine the χ 2 as

χ 2 =
Nbins∑
i=1

[
σGSRi ,∗ − σGSR,∗(ri ; β, p)

εr

]2

. (11)

Here, the variable p denotes a characteristic parameter of each model
(e.g. scalelength or total mass), while ε r is the error in the observed
radial velocity dispersion as estimated through the bootstrap sam-
pling technique described before. The best-fitting parameters are
defined as those for which χ 2 is minimized.

In the case of the isothermal sphere, the free parameters are the
dark matter halo core radius, rc, and the stellar velocity dispersion
anisotropy parameter, β. The left panel of Fig. 3 shows the χ 2 con-
tours for this model. The minimum χ 2 value is χ2

min = 23 for rc =
1.6 kpc and β = −0.4, with 1σ contours encompassing 0.6 �
r c � 2.6 and −0.7 � β � −0.1. This corresponds to a best-fitting
mass M = 1.3 × 1012 M� (note that, because the mass for the
pseudo-isothermal model is not finite, we quote the mass within our
last measured point, at r = 120 kpc). The 1σ errors on the mass,
calculated from the 1σ errors for the core radius, lead to a relative
error of the order of 1 per cent. The reason for this small value
is due to the fact that the best-fitting core radius is very small and
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Figure 3. Left: contour plot of �χ2 corresponding to a probability of 68.3, 95.4, 99.7 per cent (1σ , 2σ , 3σ ) for the isothermal sphere model with constant
anisotropy. The asterisk indicates the location of the minimum χ2 (whose value is shown in the upper right corner). Right: observed radial velocity dispersion
(squares with error bars) overlaid on the best-fitting model for the isothermal mass distribution (solid line).

hence variations in its value (even by 100 per cent) will barely affect
the mass enclosed at large radii. On the right panel of Fig. 3, we
plot the Galactocentric radial velocity dispersion for this best-fitting
model. As expected, this model predicts a velocity dispersion that is
roughly constant with radius. However, the observed σ GSR,∗ shows
a rather strong decline at large radii, which is not reproduced by the
pseudo-isothermal halo model.

The top panels of Fig. 4 show the χ 2 contours for the NFW model
for four different concentrations (c =10, 14, 16 and 18). Note that the
minimum χ 2 value decreases for increasing concentrations. Because
the concentration is defined as c = r v/r s, for a fixed mass (or virial
radius rv) a larger c implies a smaller scale radius. This results in a
radial velocity dispersion that starts to decline closer to the centre in
comparison to a halo of lower concentration, reproducing better the
trend observed in the data. Our χ2 fitting technique yields for c =
10 a best-fitting virial mass of 1.2 × 1012 M� (χ 2

min = 36), while for
c = 18, M v = 0.8 × 1012 M� (χ 2

min = 12). We find that the velocity
anisotropy for the minimum χ2 is almost purely radial in all cases.
In the bottom panel of Fig. 4, we show the observed Galactocentric
radial velocity dispersion overlaid on two of the best-fitting NFW
models. Note that beyond 40 kpc, the model with c = 10 is clearly
inconsistent with the data at the 1σ level at r ∼ 40 and 50 kpc and at
the 2σ level in the last two bins. On the other hand, the c = 18 model
gives a good fit of the data out to 30 kpc but overpredicts the velocity
dispersion at large radii at the 1σ level. We thus consider the NFW
model with M v = 0.8+1.2

−0.2 × 1012 M� and c = 18 as producing the
best fit. Fig. 4 also shows the favourite model of Klypin, Zhao &
Somerville (2002) with M v = 1.0 × 1012 M� and c = 12 (dotted
curve). Because no velocity anisotropy was given in the source, we
performed a χ 2 fit to our data using the parameters from Klypin
et al. (2002) and leaving β as a free parameter. This favoured once
again an almost purely radial anisotropy. The fit obtained in this
case is very similar to that found in our c = 10 model.

Because our last measured point is at r last ∼ 120 kpc, the con-
straining power of our data is stronger in the region enclosed by this
radius. The value of the virial mass we just derived is an extrapo-
lation of the model at larger distances. For completeness, we quote
here the mass within 120 kpc for our best-fitting NFW model with
c = 18, M(< 120 kpc) = 5.4+2.0

−1.4 × 1011 M� (the errors are calcu-
lated from the 1σ errors in the best-fitting mass).

The left panel of Fig. 5 shows the contour plot for the TF model.
Our best fit has a mass of 1.2+1.8

−0.5 × 1012 M� and β = −0.50 ± 0.4

(χ 2
min = 25). The mass enclosed in 120 kpc is M(<120 kpc) = 9.0+6.0

−3.0

× 1011 M�. Our results are compatible with the work of W&E99:
they find a mass of M = 1.9+3.6

−1.7 × 1012 M�, even though they
favour a slightly radially anisotropic velocity ellipsoid. The right
panel of Fig. 5 shows the data overlaid onto our best-fitting model
(solid line). Visual inspection shows that the large value obtained for
the minimum χ 2 is driven by the discrepancy between model and
data in the bins at 11.5 and 33 kpc. However, at large radii, our TF
model with M = 1.2 × 1012 M� provides a good representation of
the data. Fig. 5 also shows that the favourite W&E99 model (dashed
curve), having a larger mass and a more radially anisotropic velocity
ellipsoid, overpredicts the Galactocentric radial velocity dispersion.
On the other hand, the TF model of SCB03, for which M = 2.5 ×
1012 M� and β = −1.25, i.e. a heavier halo whose ellipsoid is much
more tangentially anisotropic, declines too quickly in the inner part
and tends to flatten at large radii (dotted curve), not following the
trend shown by the data.

The comparison of the fits produced by the constant anisotropy TF
and NFW models shows that the latter reproduces better the trends in
the data as a whole, from small to large radii. However, at very large
radii, it tends to overpredict the velocity dispersion. In this regime,
the TF model provides a much better fit. This can be understood as
follows. In the region between 50 and 150 kpc, where σ GSR,∗ shows
the decline, the slope of the TF model ranges between −3 and −4
whilst the slope of the NFW density profile is around −2.5. This
means that, in models with a constant velocity anisotropy, a steep
dark matter density profile at large radii is favoured by the data.

2.3.2 Toy models for the velocity anisotropy

We will now briefly relax the assumption that β is constant with
radius. We shall explore the following models for β(r ):

(i) Model β-rad (radially anisotropic). Diemand, Moore & Stadel
(2004) have found in N-body �CDM simulations that the anisotropy
of subhalo velocities behaves as

β(r ) 
 0.35
r

rv
, for r � rv. (12)

We will use this cosmologically motivated functional form to study
the effect of an increasingly radially anisotropic velocity ellipsoid
in our modelling of the radial velocity dispersion curve.

(ii) Model β-tg (tangentially anisotropic). Proper motion mea-
surements of the Magellanic Clouds and Sculptor, Ursa Minor and
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Figure 4. Top: contour plot of �χ2 corresponding to a probability of 68.3, 95.4, 99.7 per cent (1σ , 2σ , 3σ ) for the NFW model at four different concentrations.
The value of the concentration and minimum χ2 are shown in the upper right corner of each panel. The asterisk indicates the location of the minimum χ2 and
hence of the best-fitting parameters. The virial mass is given in units of 1012 M�. Bottom: observed radial velocity dispersion (squares with error bars) overlaid
on two of the best-fitting models for the NFW mass distributions (dashed line, c = 10; solid line, c = 18). The dotted curve corresponds to the Galactocentric
radial velocity dispersion profile obtained using the preferred model (B1) of Klypin et al. (2002).
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Figure 5. Left: contour plot of �χ2 corresponding to a probability of 68.3, 95.4, 99.7 per cent (1σ , 2σ , 3σ ) for the TF model. The asterisk indicates the
location of the minimum χ2 (whose value is shown in the upper right corner). Right: observed radial velocity dispersion (squares with error bars) overlaid on the
best-fitting model for the TF mass distribution (solid line). The dashed line shows the Galactocentric radial velocity dispersion obtained using the best-fitting
parameters from previous works (dashed, W&E99; dotted, SCB03).

Fornax dwarf spheroidals suggest that the tangential velocities of
these objects are larger than their radial motions (Schweitzer et al.
1995; Kroupa & Bastian 1997; Schweitzer, Cudworth & Majewski
1997; Dinescu et al. 2004). If confirmed, this would have as a conse-
quence that the velocity ellipsoid should be tangentially anisotropic
at large radii. To explore the effect on our dynamical models of
a velocity ellipsoid that becomes increasingly more tangential, we
consider the following toy model:

β(r ) = β0 − r 2

h2
, (13)

where we set the scale factor h = 120 kpc. We choose two values
for β 0: in the first case (model β−tgtoy); we arbitrarily fix it to 1
in the second model (β−tgSN), we use a sample of 91 nearby halo
stars from Beers et al. (2000) within 0.5 kpc from the Sun and with
[Fe/H] < −1.5 to normalize our model. In this case, we find that
β(R�) = 0.33 and, therefore, β 0 = 0.33 + R2� h−2.

Using the models for β(r ) described above, we perform again the
χ 2 best-fitting procedure for an NFW model of c = 18. There is,
therefore, in all cases, only one free parameter: the virial mass. The
results of this new analysis are shown in the bottom panel of Fig. 6.
The β−rad model, for which the velocity ellipsoid becomes more
radially anisotropic with radius, has χ2

min = 15. Even though the
predicted radial velocity dispersion of this model does decrease with
radius, this decline is of insufficient amplitude to reproduce the trend
shown by the data. Note that this model, motivated by dark matter
simulations, provides a poorer fit than the constant β model. Models
where the velocity ellipsoid becomes more tangentially anisotropic
with radius, β−tgtoy and β−tgSN, follow very well the data and have
χ2

min = 6 and 7, respectively. We find that, for model β−tgtoy, the
best-fitting virial mass is M v = 8.8 (±0.7, ±1.2) × 1011 M� (at the
1σ , 2σ level) and, for β−tgSN, M v = 1.5 (±0.1, ±0.2) × 1012 M�
(at the 1σ , 2σ level). For the β−tgtoy model, we find that mass
enclosed in 120 kpc is M(< 120 kpc) = 5.9 ± 0.5 × 1011 M�; for
the β−tgSN model, M(< 120 kpc) = 9.0 ± 0.6 × 1011 M�. Table 2
summarizes the best-fitting parameters for our favourite models.

This analysis highlights the mass–velocity anisotropy degener-
acy, because it shows that, even for the same functional form of β, the
best-fitting value of the virial mass can differ by a factor of 2. Note

Figure 6. Top: the solid and dashed curves correspond to two toy models
for a velocity ellipsoid that becomes more tangentially anisotropic with
radius. The dashed-dotted line shows a model for an increasingly radially
anisotropic ellipsoid from Diemand et al. (2004). Bottom: best-fitting models
for an NFW halo of concentration c = 18 corresponding to the β profiles
shown in the top panel.

that the best-fitting values of the virial mass for the β−tgtoy model
and the β = constant are very comparable, but this is a reflection
of the fact that the two anisotropy parameters are not too simi-
lar throughout a fair range of the distances probed by the sample.
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Table 2. Values of the parameters for our favourite best-fitting models; the
scalelength corresponds to a for the TF model and rv for the NFW.

χ2
min β Mass Scalelength

[1012 M�] [kpc]

TF model 25 −0.5 1.2+1.8
−0.5 105

NFW model 12 0.94 0.8+1.2
−0.2 255 (c = 18)

NFW model (β−tgSN) 7 β ′(r ) < 0 1.5±0.1 312 (c = 18)

However, because the value of β in the Solar neighbourhood is in the
range 0.5 ± 0.1 (Chiba & Yoshii 1998), this would tend to suggest
that, given that the ellipsoid needs to be tangentially anisotropic at
large radii to give a good fit to the data, a higher value of the total
mass is more likely.

If we apply the same kind of analysis to the pseudo-isothermal
sphere mass model, it is clear that β has to decrease more strongly
with radius than the above β−tg model used in combination with
the NFW profile in order to give a reasonable fit to the data. This is
in line with the results of Sommer-Larsen et al. (1997). By assuming
a logarithmic potential for the dark matter halo, they found a veloc-
ity ellipsoid radially anisotropic at the Solar circle (β ∼ 0.5) and
tangentially anisotropic for r � 20 kpc. At r ∼ 50 kpc, the expected
value of β ∼ −1. The Sommer-Larsen et al. (1997) model is consis-
tent with our findings out to ∼50 kpc; however, if we extrapolate the
predicted trend for β to larger Galactocentric distances, we notice
that β does not decrease sufficiently rapidly to explain the decline
observed in our data (see also Appendix B).

From the above analysis, it is evident that assumptions on β for
a particular mass model can strongly influence the performance
of the mass model. However, not all functional forms of β for a
given mass model produce a good fit to the data. More accurate
proper motion measurements for a larger number of halo tracers
and covering a larger range in Galactocentric distances will enable
us to understand which trend in radius β is following and, therefore,
to establish more uniquely which mass model is preferred by the
data.

In addition to varying the velocity anisotropy parameter β as
a function of radius, it is also possible to consider the effect of
changing the slope γ of the stellar density profile of the Galactic
halo. In this case, however, the data is much more restrictive in the
choice of possible models, because it is well known that γ ∼ 3–3.5
out to ∼ 50 kpc (Yanny et al. 2000). Equation (2) shows that possible
variations of the stellar halo power law γ with radius can ‘conspire’
with variations of β to reproduce the same radial velocity dispersion
profile. We examine this issue further in Appendix B.

3 D I S C U S S I O N A N D C O N C L U S I O N S

We have derived the radial velocity dispersion profile of the stel-
lar halo of the Milky Way using a sample of 240 halo objects
with accurate distance and radial velocity measurements. The new
data from the Spaghetti survey led to a significant increase in the
number of known objects for Galactocentric radii beyond 50 kpc,
which allowed a more reliable determination of the dispersion pro-
file out to very large distances. Our most distant probes are located at
∼120 kpc, which in comparison to previous works (e.g. Sommer-
Larsen et al. 1997) corresponds to an increase of 70 kpc in probing
the outer halo. The Galactocentric radial velocity dispersion mea-
sured is approximately constant (σ GSR,∗ ∼ 120 km s−1) out to 30 kpc

(consistent with Ratnatunga & Freeman 1989) and then it shows a
continuous decline out to the last measured point (50 ± 22 km s−1

at 120 kpc). This fall-off has important implications for the density
profile of the dark matter halo of the Milky Way. In particular, in the
hypothesis of a constant velocity anisotropy, an isothermal sphere
can be immediately ruled out as model for the Galactic dark halo as
this predicts a nearly constant radial velocity dispersion curve.

We have also considered two other possible models for the dark
halo: a TF and an NFW profile. We have compared the radial ve-
locity dispersion observed with that predicted in these models for
a tracer population (stellar halo) embedded in a potential provided
by the dark halo. By means of a χ2 test, we were able to derive the
characteristic parameters and velocity anisotropy of these models
that are most consistent with the observed data.

In the case of a TF profile, the favourite model for the Milky
Way dark matter halo has a mass M = 1.2+1.8

−0.5 × 1012 M�, with a
corresponding velocity anisotropy β = −0.50 ± 0.4. The data are
also compatible with an NFW dark halo of M v = 0.8+1.2

−0.2 × 1012 M�
and −0.3 � β � 1 for a concentration c = 18. The comparison of the
fits produced by the constant anisotropy TF and NFW models shows
that the latter reproduces better the trends in the data as a whole,
from small to large radii. However, at very large radii it tends to
overpredict the velocity dispersion. In this regime, the TF model,
having a steeper density profile, provides a much better fit.

Our determination of the dark halo mass of the Milky Way is
consistent with previous works: the preferred TF model of W&E99
gives a mass M = 1.9 × 1012 M�, with a 1σ range of 0.2 <

M[1012 M�] < 5.5 and −0.4 < β < 0.7; the favourite model from
Klypin et al. (2002) gives M = 1.0 × 1012 M� with c = 12. How-
ever, the radial velocity dispersion predicted by these two models
is larger than the observed one. The discrepancy between the ob-
served low values of the radial velocity dispersion at large radii and
that predicted for heavy dark haloes raises the question of whether
the velocity dispersion in the two most distant bins may be affected
by systematics, such as the presence of streams, which could lower
their values.

The two bins in question are centred at ∼ 90 and ∼120 kpc and
contain six and three objects, respectively: four satellite galaxies
and five globular clusters. The minimum angular separation of any
two objects in these bins is 40◦, for the satellites and 49◦ for the
GCs. When considering the sample with nine objects, only two of
these objects appear to be close on the sky: one globular cluster and
one satellite galaxy that are located at (l, b) ∼ (241◦,42◦). Although
these are at similar distances of 96 and 89 kpc, respectively, their
line-of-sight radial velocities differ by more than 140 km s−1, thus
making any physical association extremely unlikely.

We have also investigated the effect of a velocity anisotropy that
varies with radius on the velocity dispersion σ GSR,∗ in the case of
an NFW halo of concentration c = 18. We find that the velocity
anisotropy, which is radial at the Solar neighbourhood, needs to
become more tangentially anisotropic with radius in order to fit the
observed rapid decline in σ GSR,∗. In the case of an isothermal dark
matter halo, the β profile needs to decline even more steeply than
in the NFW case in order to fit the data.

We conclude that the behaviour of the observed velocity disper-
sion can be explained either by a dark matter halo following a steep
density profile at large radii and constant velocity anisotropy, or by a
halo with a less steep profile whose velocity ellipsoid becomes tan-
gentially anisotropic at large radii. In order to distinguish between
an NFW profile and a TF model, proper motions are fundamental be-
cause they enable the direct determination of the velocity anisotropy
profile. Proper motions of GCs and satellites are becoming available
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(Dinescu, Girard & van Altena 1999; Piatek et al. 2003; Dinescu
et al. 2004) albeit with large errors because of the very distant loca-
tion of these objects. We may have to wait until Gaia is launched to
determine the density profile of the Galactic dark matter halo.
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A P P E N D I X A

The Galactocentric radial velocity vGSR (i.e. the line-of-sight helio-
centric velocity V los corrected for the solar motion and LSR motion)
is related to the true Galactocentric radial, V r, and tangential, V t,
velocity by

VGSR = Vr ε̂r · ε̂R + V t ε̂t · ε̂R (A1)

where ε̂r is the unit vector in the radial direction towards the object
as seen from the Galactic Centre, ε̂t is the unit vector in tangential
direction in the same reference frame and ε̂R is the unit vector in the
radial direction from the Sun to the object. The two scalar products
depend on the heliocentric and galactocentric distances (d and r)
and position on the sky of the object (φ, θ ). For a given distribution
function f (r̄ , V̄ ), the velocity dispersion profile (seen from the Sun)
is given by

√
〈V 2

GSR〉 and can be found by squaring equation (A1)
and integrating over all the velocities and averaging over the solid
angle:

〈
V 2

GSR

〉∣∣

−av

= 1∫
d2


[∫
d2
 k(r , θ, φ)

∫
d3V V 2

r f (r̄ , V̄ ) +

∫
d2
 h(r , θ, φ)

∫
d3V V 2

t f (r̄ , V̄ )

]
,

or

〈
V 2

GSR

〉∣∣

−av

= 1

4π

[∫
d2
 k(r , θ, φ)

〈
V 2

r

〉 +

+
∫

d2
 h(r , θ, φ)
〈

V 2
t

〉]
, (A2)

where we have defined

ε̂R = r̄ − R̄�
d

,

k(r , θ, φ) = (ε̂r · ε̂R)2 =
(

r + R� cos φ sin θ

d

)2

and

h(r , θ, φ) = (ε̂t · ε̂R)2 = R�2

d2
(cos2 θ cos2 φ + sin2 φ).

Equation (A2) can thus be expressed as〈
V 2

GSR

〉∣∣

−av

= 〈
V 2

r

〉
K (r ) + 〈

V 2
t

〉
H (r ).
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If we assume that 〈V 2
θ 〉= 〈V 2

φ〉 and from the definition of the velocity
anisotropy β, we find 〈V 2

t 〉 = 2 〈V 2
r 〉 (1 − β), then it follows that〈

V 2
GSR

〉∣∣

−av

= 〈
Vr

2
〉

[K (r ) + 2(1 − β)H (r )]. (A3)

By assuming 〈Vr〉 = 0 and 〈V t〉 = 0, it follows that 〈V GSR〉 = 0;
by performing the above integrals for r > R�, we find that the
Galactocentric radial velocity dispersion is related to the true radial
velocity dispersion by

σ GSR(r ) = σr (r )
√

1 + 2 (1 − β)H (r ), (A4)

where

H (r ) =
r 2 + R2�

4r 2
−

(
r 2 − R2�

)2

8r 3R�
ln

r + R�
r − R�

. (A5)

A P P E N D I X B

Equation (2) shows that the radial velocity dispersion profile de-
pends on the circular velocity given by the dominant mass compo-
nent (i.e. the dark matter halo), the velocity anisotropy parameter β

and the power γ of the density profile of the tracer population. For
constant β and γ , we can rewrite equation (2) as

σ 2
r ,∗(r ) = 1

r 2β−γ

∫
r

∞
V 2

c (r ′) r ′ 2β−γ−1 dr ′. (B1)

In our work, we assumed γ = 3.5 at all Galactocentric distances,
but the above equation shows also that, for a fixed mass distribution
(i.e. fixed circular velocity), models with the same value for 2β −
γ give rise to the same radial velocity dispersion profile. In this

Figure B1. First panel: observed Galactocentric radial velocity dispersion (squares with error bars); the dotted line is a straight line fit for r > 40 kpc. Second
panel: relation β and γ should satisfy to result in the same σGSR,∗. Third panel: variation of β with radius fixing γ = 3.5. Fourth panel: variation of γ with
radius fixing β to the β−tgSN model.
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section, we explore how β or γ have to vary together in order to
reproduce the observed Galactocentric radial velocity dispersion.In
this analysis, we restrict ourselves to Galactocentric distances larger
than 40 kpc, where: the value of γ starts to become more uncer-
tain; the observed Galactocentric radial velocity dispersion declines;
and the correction factor between the Galactocentric and the true ra-
dial velocity dispersions is negligible.

At these distances, the Galactocentric radial velocity dispersion
profile is well represented by a straight line, σ GSR,fit = a r + b, with a
=−0.6 and b =132 (Fig. B1, first panel). We assume that the circular
velocity for the dark matter halo is constant and we fix it to V c(r ) =
V c = 220 km s−1. By solving equation (2), we obtain

σ 2
r ,∗ = V 2

c

γ − 2β
. (B2)

For all the values of β and γ that satisfy this relation (at every r),
the predicted radial velocity dispersion curve will be the same. By
imposing σ 2

r,∗ = σ 2
GSR,fit in equation (B1), it follows

γ − 2β = Vc
2

σ 2
GSR,fit

. (B3)

Fig. B1 (second panel) shows the above relation for the assumed
model. The third panel in Fig. B1 shows how β has to vary with
the Galactocentric distance for this model if we fix γ = 3.5, whilst
the panel on the right shows how γ has to change if we use the
β−tgSN model for β. Clearly, for this model, the values the γ should
assume in order to reproduce the data are unrealistic.The same kind
of relation between β and γ can be derived for different circular
velocities in the regime where they can be approximated by power
laws.
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