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Abstract

We consider the class of linear programs that can be formulated with infinitely
many variables and constraints but where each constraint has only finitely many
variables. This class includes virtually all infinite horizon planning problems mod-
eled as infinite stage linear programs. Examples include infinite horizon production
planning under time-varving demands and equipment replacement under techno-
logical change. We provide. under a regularity condition, conditions that are both
necessary and sufficient for strong duality to hold. Moreover we show that. under
these conditions, the Lagrangean function corresponding to any pair of primal and
dual optimal solutions forms a linear support to the optimal value function, thus
extending the shadow price interpretation of an optimal dual solution to the infi-
nite dimensional case. We illustrate the theory through an application to production
planning under time-varying demands and costs where strong duality is established.

1 Introduction

Consider the following doubly infinite linear programming problem:

o

min Z ciz; (P)

1=1

subject to
.4i,,'_lI|—1 + .41.1'1 2 bl' (l = 1,2,. . ) (1)
r, > 0 (1=1,2,...)
r € X
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and its dual

o
mabeﬁ-y; (D)
1=1
subject to
A:‘iyi+A:'+1.iyi+l < ¢ (l =12,...) (2)
v > 0 (1=1,2,...)
y €Y

where ¢;.z; € R™ and b;,y; € R™ are all column vectors, and A;; is an (m; X n;)-matrix,
with Ajp = 0 and zo = 0. The set X (resp. Y) is precisely the set of points in [[;-, R™
(H‘;’;l R™) for which the primal (dual) objective function is well-defined and finite. Note
that X and Y are linear subspaces of [[;Z, R™ and [];Z, R™.

Since every (countable) constraint system having the property that every constraint
contains at most a finite number of variables may be transformed into an equivalent lower
staircase system of the form (1) (see the appendix), (P) includes virtually all infinite
horizon planning problems modeled as infinite stage linear programs. Examples of the
latter are infinite horizon production planning under time-varying demand and cost data,
equipment replacement under technological change, and capacity expansion under non-
linear demand for capacity. In this paper we explore conditions under which optimal
solutions 2~ and y* exist for (P) and (D) which satisfy strong duality. We also extend
the interpretation of y~ as a vector of shadow prices to this infinite dimensional domain.

Although there is an extensive literature on the semi-infinite linear programming case
where either the number of variables or the number of constraints is allowed to be infinite
(see for example Charnes. Cooper. and Kortanek [3], Borwein [1, 2], and Duffin, Jeroslow,
and Karlovitz [3]), there has been correspondingly little published work on the doubly
infinite case. Notable exceptions include Grinold [7, 8, 9], Grinold and Hopkins [10],
Jones. Zydiak and Hopp [12]. and Romeijn. Smith, and Bean [13]. Grinold [7] provides
conditions for existence of optimal dual solutions for a special class of doubly infinite
linear programs and in [8] establishes weak duality for a stationary infinite stage linear
program. The latter work is extended to convex programs in [9]. Jones, Zydiak, and Hopp
[12] apply the general theory developed in Grinold and Hopkins [10] to a cost stationary
infinite horizon equipment replacement problem with time-varying demand to establish
the existence of an optimal dual solution. Romeijn. Smith, and Bean [13] establish strong
duality for doubly infinite linear programs with bounded variables under a transversality
condition that dual component values are asvmptotically zero. In this paper, we extend
the results of Romeijn. Smith. and Bean [13] to the unbounded variable case and provide
economic interpretations of the resulting optimal dual solutions. Our approach, as in
Grinold [7. 8. 9] and Romeijn. Smith. and Bean [13] is to derive properties for (P) and
(D) indirectly through their inheritance from finite dimensional approximations (P(N))
and (D(N)) of (P) and (D). We form these by truncating (P) and (D) keeping only the
first N vector variables and constraints from each. This approach avoids the potential
failure of interior point or closedness properties to hold in the infinite dimensional space.
Viewing the index i in (P) as corresponding to the ¢*M period in a multiperiod planning
problem. the above truncation of ( P) corresponds to a finite horizon approximation to an
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infinite horizon problem. Within infinite horizon optimization, this method is termed a
planning or solution horizon approach to approximating the infinite horizon solution (see
for example Schochetman and Smith (14, 15]).

2 Mathematical preliminaries

Following Romeijn, Smith, and Bean [13], we equip the product spaces [[;-, R™ and
[1<, R™ for the primal and dual problems with the corresponding product topologies
inherited from their component Euclidean spaces. Thus the sequence {z"} C []-, R™
converges precisely when its components z? converge in the ordinary Euclidean metric for
each 1. That is,

2" —>rasn—oooifand only if 27 - z;asn s> oo foralli=1,2.....

Similarly for {y"} C []i=; R™. We note that this product topology is in fact metrizable
since we have a countable product of metric spaces (see Dugundji [6], p. 191). For
example, we may set d(z.z') = sup, min{dx(zx,z}),1/k) where di(-,-) is the ordinary
Euclidian metric on R™ and z.2’ € [[;-, R™, and similarly for the dual space [];_, R™.
Such infinite dimensional spaces share a disturbingly large number of what would be
viewed as pathological properties in the finite dimensional context. For example, for any

must equal those spaces R™ (see e.g. Dugundji (6], p. 99, example 4). Therefore. all
compact sets, as well as the nonnegative orthant, have empty interiors. In particular.
the unit closed ball is not compact. We intend to avoid potential difficulties arising from
these properties by taking the indirect approach of approximating (P) and (D) by finite
dimensional surrogates (P(N)) and (D(N)). We then demonstrate the inheritance of
conventional finite dimensional duality properties for (P) and (D) by taking the limit
as N converges to infinity. The finite dimensional subproblems (P(N)) and (D(N)) are
formed by dropping all vector variables and constraints beyond the first N of (P) and
(D). respectively. That is. (P(N)) is the finite dimensional linear program

N
min Y _cjz, (P(N))
1=1
subject to
‘4i.l—111—1 + A,‘,J‘, Z 1 (1 = 15 . sN) (3)
r, > (1=1....,N)
and (D(N)) is
N
mabeﬁyi (D(N))
1=1
subject to
4;1y1 + ‘4:+l.iy1+l S ¢ (2 = 17 (R N - 1) (4)
Avnvuy < en (5)
yi > 0 (t=1,...,N)



As in Romeijn, Smith, and Bean [13], note that when (P(N)) admits an optimal solution.
since (D(N)) is the ordinary linear programming dual of (P(N)), we have classical weak
and strong duality holding for the pair ((P(N)),(D(N))). In the next section. we develop
conditions that, under a regularity assumption, are both necessary and sufficient for strong
and hence weak duality to hold for (P) and (D).

We end this section with a summary of the notation we will use. It will at times
be convenient to think of the feasible region X(N) of (P(N)) as embedded in []Z, R™

instead of H R™. This can be accomplished without loss of generality by arbitrarily
extending the ﬁrst N elements to elements of H —; R™. We shall use the notation X'(\)
for both where the proper interpretation should be clear from the context. Similarly for
the dual feasible region of Y'(N) of (D(N)). In the same way, feasible elements #(/N') and
y(N) of X(N) and Y(N), respectively, can be viewed as finite or infinite vectors.

oo

Clz) = Z ciz;

=1
Bly) = Y b
=1

X = set of points for which C(z) is well-defined and finite
Y = set of points for which B(y) is well-defined and finite
X = feasible region of (P)
Y = feasible region of (D)
X(N) = feasible region of (P(N))
Y(N) = feasible region of (D(N))
C* = optimal value of (P)
B = optimal value of (D)
X = {zeX:C(x)=C"}
Y* = {yeVY:B(y)=B"}
C*(N) = optimal value of (P(N))
B*(N) = optimal value of (D(N))
X*(N) = {z€X(N):Clz)=C(N))
(V) B

= {y e Y(N):B(y) = B'(N)}

3 Weak and strong duality

Romeijn. Smith. and Bean [13] provide an adaptation of the example from Grinold and
Hopkins [11], where a pair of linear programs of the form (P) and (D) is given for which
not only strong duality fails to hold but also weak duality. We will impose the following
assumption on (P) for most of the results that follow to help eliminate such pathological
cases.



Assumption 3.1 Forallz € X,y €Y

ligglfy;cﬂ-‘lkﬂ.kl'k 2 0.

Remarks:

1. All of the results to follow that invoke assumption 3.1 remain valid under the al-
ternative assumption that the condition in assumption 3.1 holds for all y in some
subset Y’ C Y such that Y/ NY~ # 0.

o

Assumption 3.1 is satisfied in the important special case where the off-diagonal

whenr € X,y €Y.

In view of remark 1, and the fact that we will demonstrate later that optimal dual vectors
can be interpreted as shadow prices, assumption 3.1 roughly requires that one be no
worse off in the long run with respect to the infinite dimensional problem by ending
the N-th period in any N-th period feasible state than by ending it in the O-state (see
Schochetman and Smith [15] for the formal definition of states in this context). This
assumption is clearly met for problems where the state variables denote some kind of
inventory, as in production planning problems.

In order to establish weak duality under assumption 3.1, we begin with a lemma,
proven in the appendix.

Lemma 3.2 Forallz € X.y €Y

C(x) > Bly) + liin SUP Yy Akt 14Tk
Theorem 3.3 (Weak duality) Under assumption 3.1, any feasible value C(z) of the
primal problem (P) is bounded from below by any feasible value B(y) of the dual problem
(D), ie.
B(y) < C(x)

foralze X andy €Y.
Proof: This follows immediately from lemma 3.2 and assumption 3.1. O

Remark: Theorem 3.3 continues to hold if assumption 3.1 is relaxed to the requirement
that
lim sup yZ.HAkH.kxk 2 0

A=

forallze X.yeY.

Our goal now is to provide conditions that are both necessary and sufficient for strong
duality to hold. i.e. that optimal solutions ™ and y~ exist to (P) and (D) respectively with
C'(z7) = B(y™). As we shall see. the conditions are analogous to those of finite dimensional
duality (namely, primal feasibility. dual feasibility, and complementary slackness) but with
the exception of an additional necessary condition we term transversality.
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Definition 3.4 The pair (z,y) € X X Y is said to satisfy the transversality condition if

liminfyj,; Aks1e2k = 0.
k=00

We begin with a lemma and its corollary.
Lemma 3.5 Forallz € X, y € Y the following three statements are equivalent:

(i) = and y satisfy the complementary slackness conditions, i.e.
(Aiic1icr + Aiizi = b)'yi =0 fori=1,2,...

and

(ci— Ay — Alpyin)zi=0  fori=12,...
(i) C(z) = Bly) + lim yipy Arrszi.
(iii) C(z) = B(y) + ligglfyLHAkH.kzk.

Proof: See appendix. O

Corollary 3.6 Forallz € X,y € Y that satisfy the transversality condition the following
two statements are equivalent:

(i) = and y satisfy the complementary slackness conditions;
(1) C(z) = B(y).
We are now ready to state conditions for strong duality to hold.

Theorem 3.7 (Strong duality) Let assumption 3.1 be satisfied. Then for all 2™ € X,
Yy~ €Y the following two statements are equivalent:

(1) x~ is primal feasible, y™ is dual feasible, and they satisfy the complementary slackness
and transversality conditions.

(i1) 2~ is an optimal solution of (P). y~ is an optimal solution of (D), and C(z~) =

B(y™). i.e. strong duality holds in (P) and (D):

Proof: (ii) = (i)
By corollary 3.6 we have that C(z)
optimal for (P) and y~ is optimal for

= ( *). But then weak duality implies that =~ is
(D

(1) = (u)

By assumption 3.1, together with lemma 3.2 and the fact that C(z*) = B(y*), we have

that
0< hkmlnfka Akp142; <limsupyjy, Akrixzy < C(z%) = B(y™) =0

k=00



so that
lim infy;H'Ak“,kx; =0
k=oc

i.e. the transversality condition is satisfied. Now by corollary 3.6 we have that 2~ and y~
satisfy the complementary slackness relations. ]

Remark: The implication (i) = (ii) in theorem 3.7 continues to hold if assumption 3.1
is relaxed to the requirement that weak duality holds.

Theorem 3.7 provides a criterion for strong, and hence weak, duality to hold. Using
this theorem, it can be verified that an educated guess of the primal and dual solutions
(obtained using for instance economic insights; see section 5 for an example) are indeed
optimal solutions.

We now turn to establishing sufficient conditions for strong duality that are more read-
ily verifiable from the problem data. The challenge of invoking the criterion in theorem
3.7 is to propose candidates r € X. y € Y for testing the conditions in (ii). The following
theorem establishes that strong duality holds for certain accumulation points of finite
dimensional optima for (P(/N)) and (D(N)) respectively. These are termed algorithmic
optima by Schochetman and Smith [15].

Theorem 3.8 Suppose assumption 3.1 holds. Suppose z* € X, y* € Y, and (z*,y") €
lim sup,\ 2o XT(N) X Y™(N)) (the set of all accumulation points of sequences drawn from
{X~(N)xY*(N)}). and transversality holds for the pair (z*,y*). Thenz™ € X~, y* € ¥~
and C( *) = B(y™). i.e. strong duality holds for (P) and (D)

Proof: It is easily shown that the following result holds. Suppose z*(N) € X*(N).
y*(N) € Y*(N) are optimal solutions for (P(N)) and (D(N)), respectively. for N =

1.2..... Furthermore. assume that for some subsequence {N\} of the positive integers
that is independent of 7. we have

lim 7] (Ny) = 2] (1=1.2....)

k=
and

lim y (Ne) = y7 (1=1,2,...).

k=
Then z~ satisfies the primal linear inequality constraints, y* satisfies the dual linear in-
equality constraints. and r” and y~ satisfy the complementary slackness conditions. The
desired result now follows immediately from theorem 3.7. o

The following application of the above result provides sufficient conditions for strong
duality to hold. including a guarantee of ezistence of primal and dual optimal solutions,
that should in practice be easily checked.

Corollary 3.9 Suppose that (P(.\')) is feasible for all N and that there exist vectors
u; < oc such that [].[0.w,] C X and \ (N)Nn Hl A0, u] # @ for all N, and vectors
v; < oc such that [[[0.v;) CY and ¥~ ﬂH _1[0 vi] # O for all N. Moreover, suppose
that

lim vy [ Aigrifui = 0



where |A;y1;| is obtained by taking the absolute value of all entries in Aiyy;. Then strong
duality holds for (P) and (D). i.c. there ezist optimal primal and dual solutions z~ and
y* with C(z*) = B(y").

Proof: Without loss of generality we may assume that X*(N) x Y*(N) C []:Z,[0. u;] x

o21[0,v;]. Moreover, since (P(N)) is feasible for all N, X*(N) x Y*(N) # 0 for all
N. Now let {(z*(N),y*(N))} be a sequence of optimal solutions to (P(N)) and (D(N)).
Le. (2*(N),y"(N)) € X*(N) x Y*(N) for all N. Since this sequence is contained in the
compact set [[c,[0,u;] x [[o,[0,vi], it has a convergent subsequence

(@*(Ne),y"(Ny)) = (27,y7) as k = o0

so (z7,y7) € (X x Y)Nlimsupp_ .. (X*(N) x Y*(N)).
Now consider without loss of optimality the pair z € X, y € Y. Then

i Azl < Wil Al - |l
/

yi+1|Ai+l,i|xi

l’zl'+1|Ai+1vi|ui

0as 1 — oo.

1l IA

Hence assumption 3.1 holds without loss of optimality, as well as transversality for the
pair (z7,y*). Now by theorem 3.9. strong duality holds. O

Note that while the upperbounds that are used in corollary 3.9 have to be satisfied by
some primal and dual optimal solution. it is not necessary to explicitly take them into
account in the problem formulation of the primal. This would necessitate the introduction
of dual variables corresponding to the primal upperbounds - with the corresponding
complications in establishing transversality, and thus strong duality (see Romeijn. Smith.
and Bean [13]).

Since the existence guarantee offered by corollary 3.10 for a pair ™ and y* satisfying
strong duality is not constructive. in practice, we are lead to their numerical approximation
by 2*(N) and y*(N) respectively. The following theorem provides a condition. which is
satisfied for example when the off-diagonal matrices {44, x} are eventually nonnegative
(see remark 2 following assumption 3.1). that assures that 2*(N) and y*(N) will be close
to r™ and y~ in value for N large. This result is perhaps surprising since, even when z*(N)
converges to 7~ in policy. the failure of ('(z) to be continuous in general prevents us to
thereby conclude value convergence.

Theorem 3.10 (Value convergence) Let r* be an optimal solution of (P), let y* be
an optimal solution of (D). and suppose strong duality holds, i.e. C(z*) = B(y*). Fur-
thermore. suppose that y= € NX_; Y (N) for some M < oo. Then

lim C*(N)=C"=B"= lim B*(N)

Nox N-ooo

1.€. value convergence holds in both the primal and dual problem.

o0



Proof: Since B*(N) = C*(N) for all N by ordinary finite dimensional duality, we have

lim B*(N) = lim C*(N)

N—=o0 N-ooo

< lim C(z*; N)

N-=oo :

(since 2~ € X*(N))

Cl

B!

lim B(y™; N)
N-ooo

< lim B(y*(N); N)

N-=oo

(since y™ € Nx=prY (N) for some M < o0)
= lim B*(N)

N-ooo
so that all of the above relations are satisfied as equalities. )

In instances where strong duality holds, one is led to ask whether the standard economic
interpretations of dual variables as prices continues to hold. The answer is affirmative as
we prove in the next section.

4 Optimal dual solutions as shadow prices

Much of the power of duality in linear programming derives from the insights provided
from the economic interpretation of dual solutions as bounds on optimal buying and selling
prices of resources or. as in this case, requirements. The precise statement of this property
in the finite dimensional context is that the Lagrangean functional is a linear support to
the optimal value function of the problem. We now state and prove the corresponding
relationship in the infinite dimensional case.

Define the Lagrangean function corresponding to (P) and (D) as follows:

L(z,y)=C(r) - ny(flz.i—l»’ri—l + Aiiz; — b;)
1=1

o

for (z.y) € S. where S is the subset of pairs in [], R™ x []i=; R™ where L is well-
defined on the extended reals. Note that X' x {y:y >0} C S, since z € X assures that
C'(r) is well-defined and finite. while y > 0. together with feasibility of z, assures that
the sequence of partial sums in the definition of L(z,y) is nondecreasing.

We may also replace the right hand side vector b of (P) by the vector variable = and
implicitly incorporate dependence of the Lagrangean on = so that, in an abuse of notation,

we also write
- S

L(z,y:z) = Z ¢z — Z yi(Avicizioy + Az — =)

1=1 1=1

Ne)



for (z,y,z) € T, where T is the subset of triplets of [Jo2, R™ x [[o2, R™ x []iz, R™ for
which L is well-defined. L(z,y:b) will simply be denoted by L(z,y).
Now define, for all z € [];o; R™, the optimal value function of (P) as
v(z) =inf{C(z): z € X.}
where X, = {r € X: 2 >0, A;;-12i-1 + Ajiz; > z; for all 1} and inf @ = .
Lemma 4.1 The optimal value function is convez.

Proof: Define the function V' : X x [[72, R™ — RU {+oo} as follows:

. B C(x) ifzeX,
V)= { +00 otherwise.

Then the value function can be written as:

v(z) = ig( V(z,z).

The result now follows immediately if V' is jointly convex in z and =. .

First. note that the domain of V' is convex. Now let z!, 22 € X, 21,22 € Hzl R™ and
0 < A< 1. Then
C(Az! + (1 = N)z?) if d' 4+ (1-X)z?eX

400 otherwise.

VA 4+ (1 =022 0+ (1-0)2?) = {

Now first suppose that 2! € X,1,2? € X_2. Then, for all 4,

-41'.{-1()\13-1 +(1- /\)T?-x) + A,’,‘()\J‘} +(1- /\)1’?) =
)\(.4,',,‘_11‘3_1 + 4,,1‘,1) + (1 - /\)(Ai,i—lx?-l + Ai,‘l‘?)
> Azl +(1-2):2

Hence M\z! + (1 = \)z? € X:s14(1-2)22, and

VI 4+ (1 =022 0+ (1 =02 = COzt 4+ (1= X)z?)
< AC(zh) + (1 = N)C(2?)
= MWL)+ (1= V(2 2.

If ' ¢ X.1, then V(z!) = +oc. so we have
VIS + (1 -2+ (1 =N <aviichah) + (1 = )V (R 2

and similarly for 22 € X.2. Thus V" is jointly convex. and the desired result follows. O

Theorem 4.2 Let 2* € X, y~ € Y, satisfy transversality and complementary slackness.
Moreover, let assumption 3.1 be satisfied. Then the function L(z™,y*; z) is a linear support
of the optimal value function v at = = b, i.e.

L(z%,y"z) < v(z)
for all = such that (z~.y".z) € T. and
L(z",y":b) = v(b).

10



Proof: Fix = o R™ such that (z7,y%,z) € T, and fix z € X,. We will first show
that L(z™,y™;z )SC( ) for all z € X.

L(z*,y5z) = Z (cix? — y'(bi — z;))  (by complementary slackness)

IN

lim supz ca; + i (AiiciTioy + Asizi — bi))

k=00

= lim supz i (Aiic1Tior + Aizi)

k=00

1=1

k
. =/ ! = !
= limsup Z (v Aiizi + Yiyy Air13%i) = Yigy Acs1xTk
k=00 =1
k
. =/ = !/ . . * !
lim supz (yi Aizi + Yy A,-+1,,-x,~) - hmmfyk+l Akt1 6Tk
k—oo 7 1 koo
1=

lim sup Z C;Ti

k=00

= C(z).

IN

IN

Thus. L(z*,y";z) < inf{C(z) : € X.} = v(z). Moreover,

L(z™,y™:b)

I
1]
0.
8
)

from the first equality above. O

We can also extend the standard saddle point property to the infinite dimensional setting.

Theorem 4.3 (Saddle point property) Let 2= € X, y* € Y, satisfy transversality
and complementary slackness. Moreover. let assumption 3.1 be satisfied. Then (z*,y") is
a saddle point of the Lagrangean L. i.c.

L(z%,y) < L(z",y") < L(z,y")  for all (z7,y),(z,y") € 5.

Proof: By theorem 3.7 strong duality holds, so z* is optimal for (P), y* is optimal for
(D). and C(z*) = B(y"). First observe that, by complementary slackness,

L(z",y") = C(z7) = B(y")

11



and in particular (z7,y") € S. Now, for (z,y") € S

L(z,y") = Z (cha; =y Aiizicy — y7 Az + y7'bi)

i=1
k
= Im () ((c = AGyl — Alyy i)z + 97'b:) +
y;+1,Ak+l,kmk)

oo
= D (e = Ayl = Al i)+ )b+ lim iy Arn

1=1 =1

1=1
= B(y")
= L(z",y").

Similarly, it can be proven that. for all (z*,y) € S,
L(z*,y) < C(z7) = L(z",y"). 0

5 An application to infinite horizon production plan-
ning

Consider the following linear programming infinite horizon production planning problem
(see Denardo [4)):

min Yo'~ (kP; + ki) (P)
=1
subject to
]i—l‘\LPz—]i Z d, (l=1,2....)
P >0 (1=1.2,...)
I, > 0 (1=1,2,...)
(P.I) € X

where X is the set of points where the objective function is well-defined. We assume
that (d.0) € X. so that X # ©. Furthermore. [; is the net inventory ending period ¢,
with [ = 0, P; 1s the production in period :. d; > 0 is the demand for production in
period i. k; > 0 is the production cost and h; > 0 is the inventory holding cost for period
1 =1.2,.... The factor a is the discount factor reflecting the time value of money, where
0 < a < 1. The dual (D) becomes

max Z d;w; (D)
1=1

12



subject to

where W is the set of points where the dual objective function is well-defined. As (d.0) €
X. it is feasible to produce the demand in every period, and to never hold any inventory.

and its cost
o<
Z o'~ kid; (
=1

exists and is finite. This. together with (6), implies that the constraint w € W in (D) is
redundant, i.e. the dual objective function is well-defined for all solutions satisfying the
first inequality constraints in (D).

In this section we will analytically derive the optimal solution to (D). Next we will
construct a feasible solution to (P) such that the pair of solutions satisfies the comple-
mentary slackness and transversality conditions. We then conclude from theorem 3.7 and
the remark following that strong duality holds, and thus that the primal feasible solution
thereby constructed is optimal.

First observe that we can regroup and rewrite the dual constraints as follows:

=1
~

wy < ky
and
w; < min(a' " k.o " 2hiy + wioy) (1=2.3....).

Then the optimal solution to (D) is clearly given recursively by
wy =k

and
wr = min(a' "k o' "?h oy + w_,) (1=2,3,...).

The objective is now to find a solution (P*. /") € X which. together with w”, satisfies the
complementary slackness relations. That is. we wish to find a (P*, ") satisfying

(@ Yk, —u )P = 0 (8)
(@' th+uwl —wi ) = (9)

and
(I, +P -I"=d)uw, =0 (10)

for 2 = 1.2..... Since w” > 0 for all 2 (since k; > 0 for all z), by equation (10) (P*,I~)
needs to satisfv

]1’-—l+})i-—1i-:di (ll)

13



for all i. So (P~,I~) will satisfy the primal inequalities as strict equalities. Hence if we
solve equation (8) for P~, then I~ is determined by (11). Now define N} = A] =1 and.
recursively,

Ny=argmin{i > Neoy + 1w < o hi_; + wi_,} ((=23....)
and .
N; =argmin{i > N_, +1:w] =o' 'k;} (£=23,...).

Furthermore, let

A’v = {]Vl, 'r2, .o }
and

N' = {N|,N,,...}.
Clearly. from the definition of w?.

NCN.

Now define a production epoch associated with a feasible production schedule P as a
period 1 where P; > 0, i.e. a period where we produce.

Theorem 5.1 Let M be the set of production epochs corresponding to a feasible pro-
duction schedule P* where N C M C N'. Then P* is an optimal production schedule.
Moreover, all optimal production schedules to (P) can be characterized by such a set M.

Proof: Let

Mygi-1

Pi= Y d

=M,

be the production associated with production epoch M, ({ =1,2,...) and

Pr=0  (igM).

The corresponding inventories follow from equations (11):

Mgy -1

=Y d,  (=Me. Myp-L=12..).

J=i+l

Note that [3;, . _; =0for / =1.2..... Itis easy to check (since N C M) that " satisfies
equations (9). Using M C .V’ we can also explicitly write the dual solution w*:

-1
wi= Y o h+aM Ty, (= Me My =1 (=1.2.).  (12)

J=M,

What remains to be shown is that (a) (P*,I*) € X, and (b) w* and (P~ I*) satisfy
transversality. We will show both of these simultaneously by rewriting the objective

14



function value of w™ in such a way that it can easily be seen to be equal to the primal
objective function value of (P, [7):

0 Myg1-1 i-1
Y diw} = { Y d < Y o lhi+ aMf-lkM,)}
=1

8

=1 =M, =M,

o Mz+11 My -1
B S P S P

(=1 1= M, 1=M,+1 =M,

S Myp1=1 My, -1

M,-1 -1

= Z a 't :1\, PAI[+ Z Z d,‘ O.'] h]

=1 j=M, =341

o Mg -1

-1 *

= Z My Py, + ) o

=1 =M,

o'~V (k:Pr + hiI7).

'M?

1

1

So we can conclude that (P~./*) € X. Furthermore, lemma 3.5 now says that w* and
(P, I") satisfy the transversality condition. Thus (P*, I*) is an optimal solution for ( P).

The second part of the claim follows easily from theorem 3.7, which states that any
optimal solution of (P). together with w™, must satisfy the complementary slackness
conditions. O

As in the finite dimensional variant of the production planning problem studied in
this section. the optimal primal solutions turn out to have the property that production
only takes place when inventories are zero. and always takes place for an integer number
of periods ahead.

Theorem 4.2 allows us to interpret the :th component w? of the optimal dual solution
as an upper bound on the optimal cost of meeting one more unit of demand in period 1.
In the case that d; > 0. it also represents a lower bound on the optimal cost reduction
resulting from one less unit of demand in period 1.
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Appendix

Lemma A.1 Every countable constraint system having the property that every constraint
contains at most a finite number of variables may be transformed into an equivalent lower
staircase system of the form (1).

Proof: First transform all inequality constraints to equality constraints by adding slack
and surplus variables. Note that this does not destroy the property that every constraint
contains at most a finite number of variables. Suppose that the constraints and variables
are labelled by the positive integers. The following algorithm accomplishes the desired
transformation (where index v denotes the current variable, index c the current constraint,
index ¢ the largest index of a variable having nonzero coefficient encountered so far, and
index k is the number of variable blocks created so far):

Transformation
Step 0. Setv=1,¢=1,1=0,k=0.

Step 1. Find the first constraint in the set {c,c+1,...} such that the coefficient of z,
is nonzero. Without loss of generality, assume that this is constraint c.

Step 2. If the last variable having nonzero coeflicient in constraint ¢ is z;, with 7 <1,
continue with step 3. Otherwise, set k = k + 1 and define the k*! variable block
to contain variables i +1....,7 (and thus ny = j—1), and set : = j and m; = 0.

Step 3. Use constraint c to eliminate z, from constraints {¢+1,c+2,...}. Set v = v+1.
c=c+ 1. my =my + 1. and return to step 1.

It is clear that all steps of the algorithm are well-defined. In particular, in step 2 there
is a last variable having nonzero coefficient in constraint r, since every constraint contains
at most a finite number of variables. Furthermore, since it is clear that the transformed
constraint matrix is lower block triangular. and also upper triangular (with respect to the
actual elements of the matrix). that the matrix is lower staircase. This can also be seen
from the fact that in step 3. the variable z. is always in the last or one before last variable
block.

Finally. if desired. the equality svstem can be rewritten as an inequality constraint
svstem of the form (1). o

Lemma 3.2 Forallz € X. yeY

C(x) > B(y) + limsupyy,, Aks1.4Tk.

k=00

Proof: We have
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k

= lim ) caz;
k=00 4
1=1
k
> limsup Z(Aﬁiy,- + Al iYin) T from (2)
k—o00

1=1

k
= limsup Z(:L‘;Af,-yi + T Al Vi)
i=1

k=00

k
. / ! 1 Al 1 Al
= limsup Z(Ii-l ii1¥i T TAY:) + T A pYen
k=00 =1

k
= limsup Z(A,',,-..lx,'_l + Auzi)'yi + $2A2+1,kyk+l)

k—oc =1

k—=oc

k
> limsup Z biy; + :rch;H'kka) from (1)

1=1

= B(y) + limsup 2 Aj 1 iYk+1

k=00

which proves the lemma. o

Lemma 3.5 For all z € X, y € Y the following three statements are equivalent:

(1) = and y satisfy the complementary slackness relations, i.e.
(Aiici1Tio +.4,',-:c,'—b,~)'y,- =0 fori=1.2....

and
(ci— ALyi — Al ¥in)zi =0 fori=1,2....

(1) C(z) = B(y) + kl_i_f?c T Ak 1kYk+1-

(iii) C(z) = B(y) + ligglfr'k‘ﬂ.*_l.kyﬂl.

Proof:

(i) = (ii)

Consider the proof of lemma 3.2. If the complementary slackness relations are satisfied
both inequalities are satisfied as equalities. Moreover, all infinite sums converge, implying
that ‘limsup’ can evervwhere be replaced by ‘lim’, yielding (ii).

(ii) = (i)
Once again consider the proof of lemma 3.2. By (ii), both inequalities have to be satisfied
as equalities. The first inequality is satisfied as an equality if

k
liminf » (c; — Ajyi — Aly¥i41) 2 =0

k=—oc
1=1
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which can only hold if (¢; — Aj;yi — Al ¥i+1)'z;i = 0 for all ¢ = 1,2,... since each of
these terms is nonnegative by (2) and the fact that z; > 0 for all i. We also have that
‘limsup’ in the proof of lemma 3.2 may be replaced by ‘lim’, so that the second inequality
is satisfied as an equality only if

k
lim Y (Aiic1zic1 + Aiizi = b;)'y; =0
k=00 -
which can only hold if (A;;—1z;-1 + Aiiz; — b;)'y; = 0 for all i = 1,2,..., i.e. the remaining
complementary slackness relations are satisfied.

(i1) = (i)
Obvious.

(i) = (ii)
(ii1) 1s equivalent to
li&gfILA;wl.kyk-H = C(z) - B(y).

By lemma 3.2
C(z) = B(y) > limsup 2} A} 1 yYk+1

k=00
SO
. . / / . ! /
h{nmkaAkH,kyHl 2> lim supzj Ay 4y kY1
—oc k=00

and thus

. . ! / . I !’ . ! !
hkm inf 2 Ap ) x¥ker = imsup i AL, (k1 = lim 2L A4 Ykt
—0C k=00 k=00
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