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Intracellular machinery for the transport of AMPA
receptors
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AMPA-type glutamate receptors are one of the most dynamic components of excitatory synapses. Their regulated addition and
removal from synapses leads to long-lasting forms of synaptic plasticity, known as long-term potentiation (LTP) and long-term
depression (LTD). In addition, AMPA receptors reach their synaptic targets after a complicated journey involving multiple
transport steps through different membrane compartments. This review summarizes our current knowledge of the trafficking
pathways of AMPARs and their relation to synaptic function and plasticity.

British Journal of Pharmacology (2008) 153, S35–S43; doi:10.1038/sj.bjp.0707525; published online 19 November 2007

Keywords: membrane trafficking; synaptic plasticity; cytoskeleton; PDZ protein; endosomes; exocytosis; spine; hippocampus

Abbreviations: ABP, AMPA receptor-binding protein; AMPA, g-amino-3-hydroxy-5-methylisoxazole-4-propionic acid; CaMKII,
Ca2þ /calmodulin-dependent protein kinase II; ER, endoplasmic reticulum; GRIP1, glutamate receptor-
interacting protein 1; LTD, long-term depression; LTP, long-term potentiation; MAGUK, membrane-associated
guanylate kinase; NMDA, N-methyl-D-aspartate; NSF, N-ethyl-maleimide-sensitive factor; PDZ, PSD95/Discs-
Large/ZO-1; PICK1, protein interacting with C-kinase 1; PSD, postsynaptic density; SAP97, synapse-associated
protein 97; TARP, transmembrane AMPAR regulatory protein

Introduction

Intracellular membrane trafficking is an essential process in

all eukaryotic cells, but it is particularly critical at synaptic

terminals, where a large number of specific ion channels,

scaffolding molecules and multiple signal transduction

regulators have to be precisely targeted to ensure proper

synaptic function (McGee and Bredt, 2003; Ziv and Garner,

2004). At the level of the postsynaptic terminal, local

membrane trafficking is now appreciated as major factor

controlling synaptic function (Kennedy and Ehlers, 2006). In

particular, the regulation of neurotransmitter receptor

transport and targeting is crucial for the maintenance of

synaptic strength, and for the activity-dependent changes

associated to synaptic plasticity (Collingridge et al., 2004).

Three types of ionotropic (ion-channel type) glutamate

receptors are present at excitatory synapses in the brain:

g-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA),

N-methyl-D-aspartate (NMDA) and kainate receptors. AMPA and

NMDA receptors (NMDARs) are responsible for most excitatory

transmission in CNS (Hollmann and Heinemann, 1994;

Dingledine et al., 1999), whereas kainate receptors play

important roles in the modulation and plasticity of the

synaptic response (Lerma, 2006). AMPA receptors (AMPARs)

mediate fast excitatory (depolarizing) currents in conditions

of basal neuronal activity, and hence, they have a major

influence in the strength of the synaptic response. NMDARs,

on the other hand, remain silent at resting membrane

potential (Nowak et al., 1984), but they are crucial for the

induction of specific forms of synaptic plasticity, such as long-

term potentiation (LTP) and long-term depression (LTD) (Bear

and Malenka, 1994). Although AMPARs and NMDARs reside

in the same synapses in most brain regions, they reach their

synaptic targets through quite different programs. In the

brain, soon after birth, most excitatory synapses in the

hippocampus (Durand et al., 1996; Hsia et al., 1998; Petralia

et al., 1999) and other brain regions (Wu et al., 1996; Isaac

et al., 1997; Feldman et al., 1999; Losi et al., 2002) contain

only NMDARs, whereas the prevalence of AMPARs increases

gradually over the course of postnatal development. In fact,

the delivery of AMPARs into synapses is a regulated process

that depends on NMDAR activation and underlies some forms

of synaptic plasticity in early postnatal development (Zhu

et al., 2000) and in mature neurons (Hayashi et al., 2000;

Sheng and Lee, 2001; Barry and Ziff, 2002; Malinow and

Malenka, 2002; Song and Huganir, 2002).

Synaptic plasticity is thought to underlie higher cognitive

functions, such as learning and memory (Hebb, 1949; Bliss
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and Collingridge, 1993; Chen and Tonegawa, 1997; Elgersma

and Silva, 1999; Martin et al., 2000), and is also critical for

neural development (Constantine-Paton, 1990; Katz and

Shatz, 1996; Cline, 1998). Thus, it is not surprising that

alterations in synaptic plasticity have been implicated in

the pathology of several neurological disorders, including

Alzheimer’s disease (Rowan et al., 2003; Turner et al., 2003;

Esteban, 2004), schizophrenia (Konradi and Heckers, 2003;

Stephan et al., 2006), Down’s syndrome (Galdzicki and

Siarey, 2003) and other forms of mental retardation (Newey

et al., 2005). Consequently, there is considerable interest

in understanding the underlying mechanisms of synaptic

plasticity, among which the regulation of AMPAR trafficking

plays a prominent role.

This review will summarize our current knowledge of the

membrane trafficking pathways that steer AMPARs from

their biosynthesis at the endoplasmic reticulum (ER) to their

destination at excitatory synapses, with special emphasis on

the regulatory steps that contribute to synaptic plasticity.

Most of the experimental observations that are the basis for

this chapter have been obtained from hippocampal principal

neurons, although it is expected that most of the principles

described here will be applicable for the regulation of AMPAR

trafficking in multiple brain regions.

AMPA receptor assembly and exit from the endoplasmic reticulum

AMPA receptors are hetero-tetramers (Rosenmund et al.,

1998) composed of different combinations of GluR1, GluR2,

GluR3 and GluR4 subunits (Hollmann and Heinemann,

1994). In the mature hippocampus, most AMPARs are

composed of GluR1–GluR2 or GluR2–GluR3 combinations

(Wenthold et al., 1996), whereas GluR4-containing AMPARs

are expressed mainly in early postnatal development (Zhu

et al., 2000). These oligomeric combinations are formed in

the ER, possibly assembling as dimers of dimers (Tichelaar

et al., 2004) via interactions between the luminal, N-terminal

domains of the subunits (Kuusinen et al., 1999; Leuschner

and Hoch, 1999; Greger et al., 2007). After assembly, exit

from the ER is tightly regulated by quality control mechanisms

that monitor the competency of newly synthesized receptors

for ligand binding and gating (Fleck, 2006).

Interestingly, AMPAR trafficking through the ER is sub-

unit-specific. Thus, GluR1–GluR2 hetero-oligomers exit the

ER rapidly, and traffic to the Golgi compartment where they

become fully glycosylated (Greger et al., 2002). In contrast,

GluR2–GluR3 heteromers take much longer to exit (that is,

are retained longer in) the ER. In fact, a fraction of the GluR2

subunits seems to remain unassembled within the ER, in a

manner that depends on the presence of an edited arginine

residue (R607) at the channel pore region (Greger et al., 2002,

2003). These immature AMPAR subunits appear to associate

with molecular chaperones residing at the ER (Greger et al.,

2002; Fukata et al., 2005). Interactions with cytosolic

proteins also seem to control trafficking through the ER.

For example, the GluR2 C terminus has a PSD-95/Discs-

Large/ZO-1 (PDZ) consensus motif (-SVKI) that interacts with

the PDZ domain-containing protein interacting with

C-kinase 1 (PICK1) (Dev et al., 1999; Xia et al., 1999; Perez

et al., 2001). This interaction is required for GluR2’s exit from

the ER (Greger et al., 2002).

In addition, export of AMPARs from the ER and surface

expression is also facilitated by direct interaction with a

family of ‘transmembrane AMPAR regulatory proteins’

(TARPs) (Vandenberghe et al., 2005; Ziff, 2007). In fact,

TARPs may well be considered auxiliary subunits of AMPARs

(Fukata et al., 2005), which assist in their proper folding and

affect channel kinetics (Priel et al., 2005; Tomita et al., 2005;

Turetsky et al., 2005; Bedoukian et al., 2006) and rectification

properties (Soto et al., 2007). Interestingly, the modulatory

role of TARPs on AMPAR function depends on the specific

combination of AMPAR subunits and TARP family member

(Cho et al., 2007; Kott et al., 2007; Milstein et al., 2007).

AMPA receptor trafficking along the microtubular cytoskeleton in

dendrites

Although the dendritic synthesis of AMPARs has been

recently reported (Ju et al., 2004), most receptors are likely

to be synthesized in the neuronal body. Therefore, newly

synthesized receptors will have to travel long distances from

their point of biosynthesis to their final synaptic targets. The

long-range dendritic transport of AMPARs is likely to depend

on the microtubular cytoskeleton that runs along dendritic

shafts. The transport of membrane organelles on micro-

tubule tracks is an active process powered mainly by motor

proteins of the kinesin and dynein superfamilies (Goldstein

and Yang, 2000). Therefore, membrane compartments bearing

AMPARs are likely to be recognized and transported by some

of these motor proteins. The molecular mechanisms under-

lying these processes are still being elucidated.

The PDZ domain-containing protein glutamate receptor-

interacting protein 1 (GRIP1) interacts directly with the

heavy chain of conventional kinesin, as revealed by yeast

two-hybrid screening (Setou et al., 2002). GRIP binds to the

C-terminal PDZ motif of GluR2 and GluR3 (Dong et al., 1997;

Srivastava et al., 1998), and hence, may serve as the link

between AMPARs and microtubular motor proteins. In fact,

the ternary complex formed by GluR2, GRIP1 and kinesin

can be immunoprecipitated from brain lysates, and domi-

nant-negative versions of kinesin reduce the presence of

AMPAR at synapses (Setou et al., 2002).

AMPA receptors have also been shown to associate with a

different neuron-specific kinesin motor, KIF1 (Shin et al.,

2003). In this case, the adaptor molecule seems to be liprin-a,

which interacts with GluR2–GRIP (Wyszynski et al., 2002)

and with KIF1 (Shin et al., 2003). Another member of the

liprin-a–AMPAR–GRIP complex is GIT1, which is also

involved in AMPAR trafficking (Ko et al., 2003). Therefore,

it seems that the GRIP1–AMPAR complex can be transported

along dendrites by more than one type of kinesin motor.

In addition to this microtubular-dependent transport, it

has recently been reported that the export of AMPARs from

the cell body into the dendritic surface is powered by a

specific actin-based motor protein, myosin Vb (Lise et al.,

2006). Interestingly, this transport system was specific for the

GluR1 subunit, and required the small GTPase Rab11,

possibly acting as a linker between the motor protein and

its membrane cargo. From these combined studies, it seems
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likely that multiple links between AMPARs and cytoskeletal

motor proteins will be discovered in the future, possibly

mediated by specific scaffolding molecules.

Actin-dependent trafficking in spines

Most excitatory synapses in the adult brain occur on small

dendritic protuberances called spines (Hering and Sheng,

2001). Dendritic spines lack microtubular cytoskeleton,

but they are rich in highly motile actin filaments (Fischer

et al., 1998). Therefore, at some point, AMPAR-containing

organelles, trafficking along microtubular tracks, must be

transferred to the actin-based cytoskeleton for their final

delivery into synapses. The importance of the actin cyto-

skeleton for local AMPAR trafficking is underscored by the

observation that pharmacological depolymerization of actin

filaments leads to the removal of AMPARs from dendritic

spines (Allison et al., 1998) and from synapses (Kim and

Lisman, 1999).

The molecular mechanisms that may mediate the actin-

based movement of AMPARs are largely unknown. Never-

theless, AMPARs can be linked to the actin cytoskeleton

through several scaffolding proteins, such as 4.1N (Shen

et al., 2000) and RIL (Schulz et al., 2004). The different

members of the protein 4.1 family are known to couple the

spectrin–actin cytoskeleton to different membrane-associated

proteins (Hoover and Bryant, 2000). In particular,

the neuronal isoform 4.1N interacts directly with GluR1

(Shen et al., 2000) and GluR4 (Coleman et al., 2003) through

the juxtamembrane region of their cytoplasmic C-terminal

tails. The other potential actin linker for AMPARs, RIL, is a

multi-functional protein that interacts with an internal

region of the GluR1 C terminus through its LIM domain,

and with a-actinin through its PDZ domain. Interestingly,

only AMPAR subunits with long C tails (GluR1 and GluR4)

have been shown so far to couple with the actin cyto-

skeleton. Since these long-tail subunits are the ones involved

in regulated (activity-dependent) delivery at the synapse

(Malinow et al., 2000), it is tempting to speculate that actin-

dependent transport may be particularly critical for AMPAR

insertion into synapses during plasticity.

The transport of AMPARs along the spine–actin cyto-

skeleton is likely to be bidirectional, since AMPARs are

known to move in and out of synapses in a very dynamic

manner. This expectation has been recently confirmed by

the identification of an actin-based motor protein, myosin

VI, as a mediator of the endocytic removal of AMPARs from

synapses (Osterweil et al., 2005). Myosin VI interacts with

the GluR1-binding protein SAP97 (synapse-associated pro-

tein 97) (Wu et al., 2002), providing a mechanistic link

between AMPARs (again through a long-tail subunit) and the

motor protein that drives their internalization. Undoubt-

edly, further studies will be required to unravel what is likely

to be a network of interactions mediating the transport of

AMPARs along the actin cytoskeleton in synapses.

TARPs and AMPA receptor surface trafficking

Transmembrane AMPAR regulatory proteins are the only

known transmembrane proteins found to be associated with

AMPARs. The first TARP to be identified was stargazin, which

was found as a spontaneous mutation in the stargazer mouse

(Letts et al., 1998) and is critically required for cell surface

expression of AMPARs in cerebellar granule cells (Chen et al.,

2000). By sequence and structural homology, stargazin

belongs to a large group of proteins that includes g-subunits

of Ca2þ channels and the claudin family of cell-adhesion

molecules. Nevertheless, only five of these proteins have

been described to bind AMPARs and affect their trafficking:

stargazin, g-3, g-4, g-8 (Tomita et al., 2003) and, more

recently, g-7 (Kato et al., 2007). Therefore, these are the

proteins collectively known as TARPs. Interestingly, different

TARPs display specific expression patterns in brain, which

are to some extent complementary (Tomita et al., 2003).

Transmembrane AMPAR regulatory proteins associate with

AMPARs early in their biosynthetic pathway, as mentioned

above, and are able to combine with all AMPAR populations

irrespective of their subunit composition (Tomita et al.,

2003). The most striking property of TARPs is their critical

role in the expression of AMPARs at the extrasynaptic

neuronal surface. Genetic ablation of stargazin, the TARP

member most abundantly expressed in cerebellum, results in

a virtual depletion of AMPARs from the extrasynaptic surface

in granule cells (Chen et al., 2000). Similarly, removal of g-8,

a TARP member that is almost exclusively expressed in

hippocampus, precludes AMPAR surface expression in hippo-

campal pyramidal neurons (Rouach et al., 2005). Interest-

ingly, TARPs seem to be a limiting factor for AMPAR cell

surface delivery, since overexpression of the appropriate

neuron-specific TARP leads to a marked increase in the

number of AMPARs expressed on the plasma membrane

(Chen et al., 2000; Rouach et al., 2005). The role of these

extrasynaptic surface receptors is still debated, although

morphological evidence indicates that they are highly

mobile and can reach the postsynaptic membrane through

lateral diffusion (Borgdorff and Choquet, 2002; Choquet and

Triller, 2003; Tardin et al., 2003; Groc et al., 2004).

Transmembrane AMPAR regulatory proteins also partici-

pate in the trafficking of AMPARs into the synaptic

membrane. TARPs contain a PDZ consensus sequence at

the C terminus, which can bind the PDZ domain of

membrane-associated guanylate kinase (MAGUK) proteins,

such as postsynaptic density proteins 95 and 93 (PSD95 and

PSD93) (Chen et al., 2000). MAGUKs are synaptic scaffolding

molecules, which have been shown to be critical regulators

of AMPAR delivery and/or stabilization at synapses

(El-Husseini et al., 2000; El-Husseini Ael et al., 2002; Elias et al.,

2006; Schluter et al., 2006). Therefore, TARPs are thought to

be the molecular linkers between AMPARs and MAGUKs. In

particular, the association between TARPs and MAGUKs has

been recently shown to be critical to retain AMPARs at

synapses. Thus, impairment of the PDZ interaction between

stargazin (TARP) and PSD95 (MAGUK) leads to increased

receptor diffusion out of the synaptic membrane (Bats et al.,

2007). Therefore, a major function of the TARP–MAGUK

interaction appears to be the stabilization/anchoring of

AMPARs at synapses.

The dual role of TARPs in extrasynaptic surface expression

and in receptor stabilization at synapses has led to the

hypothesis that AMPAR synaptic delivery occurs in two
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steps: insertion in the extrasynaptic surface followed by

lateral diffusion and synaptic trapping. Indeed, there are

morphological (Passafaro et al., 2001) and electrophysiolo-

gical (Adesnik et al., 2005) observations supporting this

scenario. However, there are also indications that extra-

synaptic surface receptors are not a necessary source for

synaptic delivery. For example, genetic ablation of the

hippocampal TARP (g-8) produced a virtual depletion of

extrasynaptic AMPARs, with only a modest effect on the

accumulation of AMPARs at synapses (Rouach et al., 2005).

Conversely, TARP overexpression produces a massive in-

crease in extrasynaptic AMPARs without any detectable

effect on AMPAR-mediated synaptic transmission (Schnell

et al., 2002; Rouach et al., 2005).

Clearly, more work will be required to decipher the

anatomical details of AMPAR synaptic trafficking. It is also

worth keeping in mind that the precise mechanism of

AMPAR delivery may vary among different synapse types and

developmental stages.

Subunit specificity for constitutive and regulated synaptic delivery

of AMPA receptors

It is now well established that the final steps in the synaptic

trafficking of AMPARs depend on their subunit composition,

and specifically, on cis signals contained within their

cytosolic C termini (Passafaro et al., 2001; Shi et al., 2001).

In hippocampus, hetero-tetramers formed by GluR1–GluR2

and GluR2–GluR3 subunits, together with a smaller con-

tribution from GluR1 homomers, represent the most com-

mon combinations in excitatory synapses (Wenthold et al.,

1996). On the basis of experiments expressing recombinant

AMPAR subunits in hippocampal neurons, it has been shown

that GluR2–GluR3 hetero-tetramers continuously cycle in

and out of synapses in a manner largely independent of

synaptic activity (Passafaro et al., 2001; Shi et al., 2001). This

process (constitutive pathway) preserves the total number of

receptor at synapses, and therefore, it has been proposed to

help maintaining synaptic strength in the face of protein

turnover (Malinow et al., 2000). This constitutive cycling is

very fast (half-time of minutes) and it requires a direct

interaction between GluR2 and N-ethyl-maleimide-sensitive

factor (NSF) (Nishimune et al., 1998). The precise role of NSF

in this trafficking pathway is not fully understood yet. NSF

assists in the dissociation of GluR2 from the PDZ domain

protein PICK1 (Hanley et al., 2002). The disassembly of the

GluR2–PICK1 complex may be required for AMPARs to cycle

back into synapses or, alternatively, it may prevent PICK1-

driven endocytosis. The continuous synaptic cycling of

AMPARs also requires the molecular chaperon Hsp90 (Gerges

et al., 2004b), although the mechanistic link between

AMPARs and Hsp90 has not been elucidated yet.

In contrast with this constitutive trafficking, AMPARs

containing GluR1 (Hayashi et al., 2000), GluR2-long (Kolleker

et al., 2003) (a splice variant of GluR2; Kohler et al., 1994) or

GluR4 (Zhu et al., 2000) are added into synapses in an

activity-dependent manner during synaptic plasticity (AMPAR

removal from synapses can also be regulated by activity, as

discussed below). The regulated insertion of receptors is

triggered transiently upon induction of LTP, and results in a

net increase in the number of AMPARs present at synapses

(Malinow et al., 2000). The synaptic delivery of GluR1 is also

regulated by physiological stimulation in living animals, as it

has been reported for neocortical neurons upon sensory

stimulation (Takahashi et al., 2003), and in the lateral

amygdala after fear conditioning (Rumpel et al., 2005). The

subunit composition of the endogenous AMPARs that

participate in regulated synaptic delivery has been more

difficult to establish. Thus, both GluR2-lacking receptors

(presumably GluR1 homomers) (Plant et al., 2006) and

GluR2-containing receptors (presumably GluR1–GluR2

heteromers) (Bagal et al., 2005; Adesnik and Nicoll, 2007)

have been proposed to be rapidly inserted into synapses

upon NMDAR activation in hippocampal slices. Although

the details remain to be clarified, the importance of subunit

composition for the regulation of synaptic delivery is well

established. This has been recently corroborated by in vivo

studies, which demonstrated that sensory stimulation (Clem

and Barth, 2006) or deprivation (Goel et al., 2006), as well as

cocaine administration (Bellone and Luscher, 2006), can

alter the prevalence of AMPARs with different subunit

assemblies at synapses.

The activity-dependent synaptic delivery of AMPARs is

regulated by several protein kinases, such as CaMKII (Ca2þ /

calmodulin-dependent protein kinase II) (reviewed in

Lisman and Zhabotinsky, 2001), PKA (Ehlers, 2000; Esteban

et al., 2003; Gomes et al., 2004; Gao et al., 2006; Man et al.,

2007), PKC (Boehm et al., 2006; Ling et al., 2006; Gomes

et al., 2007) and phosphatidylinositol 3 kinase (Man et al.,

2003). Interestingly, the signalling cascades controlling the

delivery of AMPARs to synapses, as well as the AMPAR

subunits involved, change during development. Thus, early

in postnatal development of the hippocampus, the regulated

delivery of AMPARs involves GluR4-containing receptors

(Zhu et al., 2000), and PKA-mediated phosphorylation of this

subunit triggers receptor delivery (Esteban et al., 2003).

Around the second postnatal week, LTP is mostly mediated

by the synaptic delivery of GluR2-long (Kolleker et al., 2003).

Then, later in development, the regulated addition of

AMPARs requires both GluR1 phosphorylation by PKA and

CaMKII activation (Esteban et al., 2003). These develop-

mental changes in the regulation of AMPAR synaptic

delivery fit very well with the switch in signalling cascades

that are required for LTP induction at different postnatal ages

(Yasuda et al., 2003).

Local intracellular trafficking of AMPA receptors: role of Rab

proteins and the exocyst

It is well established that rapid exocytic events can mediate

the delivery of AMPARs into synapses (Luscher et al., 1999;

Lu et al., 2001; Pickard et al., 2001; Kopec et al., 2006). In this

sense, it may come as a surprise that very little is known

about the subcellular organization of the membrane trafficking

machinery that mediates AMPAR synaptic delivery. This

picture has started to change recently, with the identification

of local endosomal compartments in close proximity to

synapses, or even within dendritic spines, that mediate the

delivery of AMPARs into the synaptic membrane (Gerges

et al., 2004a; Park et al., 2004, 2006). These new reports are
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starting to offer a glimpse of the complexity of the

membrane trafficking machinery operating at postsynaptic

terminals, and how it may relate to the subunit-specific

synaptic delivery of AMPARs.

Most intracellular membrane sorting in eukaryotic cells is

governed by small GTPases of the Rab family (Zerial and

McBride, 2001). Therefore, the identification of specific Rab

proteins involved in AMPAR trafficking may give us some

clues as to how the intracellular sorting and synaptic

targeting of AMPARs is organized in neurons. It was recently

proposed that recycling endosomes driven by the small

GTPase Rab11 mediate the activity-dependent delivery of

GluR1-containing AMPARs into synapses (Park et al., 2004).

In addition, Rab8, which controls trans-Golgi network

trafficking (Huber et al., 1993) and a separate endosomal

population (Hattula et al., 2006), is also required for GluR1

synaptic insertion and LTP (Gerges et al., 2004a). Therefore,

it seems that the activity-dependent delivery of AMPARs

involves a relay of at least two distinct membrane compart-

ments, whose sorting is controlled by Rab11 and Rab8

possibly acting in separate trafficking steps. Rab11-containing

endosomes have recently been localized at the base of

dendritic spines (Park et al., 2006), whereas ultrastructural

studies have detected Rab8 in close proximity to the

postsynaptic membrane (Gerges et al., 2004a). According to

these morphological observations, we propose a model in

which AMPARs enter spines through Rab11-dependent

endosomes. Subsequently, an additional endosomal popula-

tion, controlled by Rab8, would drive their insertion into the

synaptic membrane (see model in Figure 1).

As mentioned above, in addition to their activity-dependent

synaptic delivery, AMPARs are engaged in constitutive

trafficking in and out of synapses. This continuous cycling

is thought to involve endocytic and exocytic events (Luscher

et al., 1999). However, very little is known about the

intracellular machinery that controls this process. It has

been shown that Rab proteins typically associated with

recycling endosomes, such as Rab4 and Rab11, do not

participate in constitutive AMPAR synaptic cycling (Gerges

et al., 2004a). In contrast, Rab8 appears to be critically

required (Gerges et al., 2004a). Since Rab8 is also involved in

activity-dependent trafficking (see above), these results

indicate that there is a partial overlap between the endo-

somal machinery mediating constitutive and regulated

delivery of AMPARs at synapses (see model in Figure 1).

The endocytic arm of this continuous cycling of receptors is

even less characterized. The prototypic Rab protein for endo-

cytosis, Rab5 (Bucci et al., 1992), does not participate in

constitutive AMPAR internalization (Brown et al., 2005).

Dynamin was shown to be required for this process (Luscher

et al., 1999), but the role of clathrin has not been directly

tested yet. Obviously, more work will be required to elucidate

the cellular basis of this very dynamic aspect of the

intracellular trafficking of AMPARs.

The final step in the intracellular trafficking of AMPARs

involves their functional insertion and stabilization at the

postsynaptic membrane. As mentioned before, several

members of the MAGUK family of scaffolding proteins are

critical factors for the synaptic targeting of AMPARs (Elias

et al., 2006). Interestingly, these synaptic scaffolding mole-

cules associate with the exocyst (Riefler et al., 2003; Sans

et al., 2003), a known effector of Rab-dependent exocytic

trafficking (Guo et al., 1999; Novick et al., 2006). Therefore,

the exocyst may act as a link between incoming AMPAR-

containing vesicles and the synaptic scaffold. In agreement

with this scenario, it has recently been shown that the

exocyst acts within the dendritic spine to mediate the

insertion of AMPARs into the postsynaptic membrane

(Gerges et al., 2006). In particular, interference with the

Exo70 subunit of the exocyst leads to the accumulation of

AMPARs within the postsynaptic density, before fusion with

the synaptic membrane (Gerges et al., 2006). This observa-

tion suggests that AMPAR membrane insertion occurs

directly at the level of the postsynaptic density (see model

in Figure 1).

Activity-dependent internalization and sorting of AMPA receptors

Synaptic AMPARs are internalized in an activity-dependent

manner, leading to LTD. This process requires clathrin-

mediated endocytosis (Carroll et al., 1999; Man et al., 2000;

Lee et al., 2002) (see also review in Carroll et al., 2001).

Interestingly, and in contrast with constitutive endocytosis,

the small GTPase Rab5 drives the regulated internalization of

AMPARs during LTD (Brown et al., 2005) (see model in

Figure 1). In fact, Rab5 is rapidly and transiently activated

upon NMDAR activation during LTD induction (Brown et al.,

2005). Therefore, these results suggest that constitutive and

regulated AMPAR internalization may engage different

components of the endocytic machinery.

Figure 1 Schematic model for the endosomal membrane trafficking
machinery operating at postsynaptic terminals. The activity-
dependent entry of GluR1-containing AMPARs into spines is
controlled by Rab11 upon LTP induction. Once within the spine,
both GluR1–GluR2 and GluR2–GluR3 AMPARs are driven into
synapses in an exocytic process controlled by Rab8 and the exocyst
subunit Exo70. In addition, GluR2–GluR3 receptors are engaged in
constitutive cycling in and out of the postsynaptic membrane. The
activity-dependent internalization of AMPARs is mediated by Rab5,
acting on the lateral (extrasynaptic) membrane within the spine. Re-
entry of internalized receptors into the Rab11–Rab8 delivery circuit
may require the participation of NEEP21 and GRIP. AMPARs, AMPA
receptors; GRIP1, glutamate receptor-interacting protein 1; LTP,
long-term potentiation; NEEP21, neuron-enriched endosomal protein.
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In contrast to the subunit-specific rules for AMPAR

delivery, the contribution of different receptor populations

to activity-dependent removal still remains controversial.

Hippocampal neurons lacking both GluR2 and GluR3

subunits display normal LTD, suggesting that GluR1 removal

contributes to synaptic depression (Meng et al., 2003). On

the other hand, GluR2 subunits are removed during LTD in

hippocampal neurons (Seidenman et al., 2003), and cerebellar

LTD requires PKC phosphorylation of GluR2 (Chung et al.,

2003). Therefore, both GluR1- and GluR2-containing recep-

tors seem to participate in the synaptic trafficking associated

with LTD. In fact, most experimental evidence is compatible

with an initial indiscriminate internalization of all AMPAR

populations upon LTD induction. However, it is increasingly

appreciated that AMPARs undergo complicated intracellular

sorting and recycling events after synaptic removal, which

may involve significant subunit specificity (Lee et al., 2004).

The molecular mechanisms that organize postendocytic

sorting of AMPARs and potential reinsertion into synaptic

and/or extrasynaptic membranes are still far from clear.

Nevertheless, the balance between GRIP/ABP (AMPAR-binding

protein) and PICK1 interactions with GluR2 after PKC

phosphorylation seems to be a critical factor (Kim et al.,

2001; Perez et al., 2001; Hanley, 2006). In hippocampal and

parallel fibre-Purkinje cell synapses, PICK1 appears to drive

the synaptic removal of phosphorylated GluR2 receptors

(Kim et al., 2001; Chung et al., 2003; Steinberg et al., 2006).

This role is facilitated by the calcium-dependent interactions

between GluR2 and PICK1 (Hanley and Henley, 2005).

Subsequently, a fraction of these internalized GluR2 subunits

recycles back into synaptic sites, in a process probably

mediated by direct GRIP/ABP–PICK1 interactions (Lu and

Ziff, 2005) and NSF-mediated dissociation of the GluR2–

PICK1 complex (Hanley et al., 2002). The connection

between these AMPAR-binding proteins and the intracellular

membrane trafficking machinery is still being elucidated, but

it has been recently proposed that the return of AMPARs to

synaptic sites may be mediated by phosphorylation-regu-

lated interactions between GRIP/ABP and the endosomal

protein NEEP21 (neuron-enriched endosomal protein of

21 kD) (Steiner et al., 2005; Kulangara et al., 2007) (see model

in Figure 1).

Conclusions

The field of AMPAR trafficking is advancing at a fast pace.

New proteins interacting with AMPARs or with the AMPAR

trafficking machinery are constantly being identified. These

new investigations are uncovering an intricate choreo-

graphy, in which AMPARs are assembled, sorted and targeted

throughout the neuronal secretory pathway. We are starting

to identify the core cellular machinery that transports

AMPARs, as well as the regulatory molecules that orchestrate

their dynamic behaviour close to the synapse, where

bidirectional AMPAR movement results in long-lasting

changes in synaptic strength. These are exciting times, when

the fields of AMPAR trafficking and synaptic plasticity have

begun to be integrated within the realm of cellular biology.
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