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SUMMARY
Wahba and co-workers introduced the smoothing spline analysis-of-variance (SS ANOVA) method for data from
exponential families. In this paper, we estimate the odds ratios based on an SS ANOVA model for binary data and
construct Bayesian confidence intervals. We give a calculation using a real data set from the Wisconsin epidemiological
study of diabetic retinopathy. We conduct simulations to evaluate the performance of these estimates and their Bayesian
confidence intervals. Our simulations suggest that the odds ratio estimates are quite reasonable in general but may be
biased towards 1 when comparing estimates at peaks with those in troughs. A bootstrap procedure is proposed to
correct possible biases and it works very well in our simulation.

Keywords: Bias correction; Bootstrap; Odds ratio; Smoothing spline analysis of variance

1. Smoothing spline analysis-of-variance models

Binary data occur very often in medical science and other areas. Suppose that for each
individual the response Y takes two possible values: Y � 0 or Y � 1. Each individual is
associated with a vector of covariates: t � (t1, . . ., td). Let

P(Yi � 0jti) � 1ÿ p(ti), P(Yi � 1jti) � p(ti), i � 1, . . . , n: (1)

Define the odds at t as p(t)/{1 ÿ p(t)}. A logistic regression model

log
p(t)

1ÿ p(t)

� �

� f (t) (2)

is often used to investigate the relationship between the response probability p(t) and the
covariate vector t. Furthermore, a linear logistic regression model assumes that

f (t) � C �

X
d

j�1

â j t j, (3)

i.e., when other covariates are fixed, the effect of an increase in t j from t1
j to t2

j is to increase the
odds ratio by an amount exp {â j(t2

j ÿ t1
j)}, which depends on the difference between t1

j and t2
j

only. This model is easy to explain, but too restrictive in some applications. To build more flexi-
ble models than a linear regression surface, many researchers have used nonparametric methods.
O’Sullivan et al. (1986) and Gu (1990) used the penalized likelihood method with smoothing
splines and thin plate splines. Hastie and Tibshirani (1990) used additive models. Wahba et al.
(1995) introduced the smoothing spline analysis-of-variance (SS ANOVA) models using the
penalized likelihood and SS ANOVA methods. See also Wahba et al. (1994a, b), Wang (1994a)
and Wang et al. (1995, 1996) for details of SS ANOVA models.
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An SS ANOVA model assumes that t j 2 T ( j), where T ( j) is a measurable space. f belongs
to a subspace of tensor products of reproducing kernel Hilbert spaces (Aronszajn, 1950;
Wahba et al., 1995). More precisely, the model space M of an SS ANOVA model contains
elements

f (t) � C �
X

j2J1

f j(t j)�
X

( j1, j2)2J2

f j1, j2 (t j1 , t j2 ) � . . .�

X

( j1, ..., jd )2Jd

f j1,:::, jd
(t j1 , . . . , t jd

), (4)

where Jk is a subset of the set of all k-tuples {( j1, . . ., jk): 1 < j1 , . . . , jk < dg for k � 1,
. . ., d. Identifiability conditions are imposed such that each term in the sums is intergrated to 0
with respect to any one of its arguments. Each term in the first sum is called a main effect, each
term in the second sum is called a two-factor interaction, and so on. As with ANOVA higher
order interactions are usually eliminated from the model space to reduce the complexity of the
model. See Wahba et al. (1995) for details on model construction. When a model has been
chosen, we can regroup and write the model space as

M � H 0
�

X
q

j�1

H j, (5)

where H 0 is a finite dimensional space containing functions which will not be penalized,
usually lower order polynomials. An SS ANOVA estimate is the solution to the variational
problem

min
f 2M

ÿ

X
n

i�1

[yi f (ti)ÿ log f1� exp f (ti)g]�
n

2

X
q

j�1

λ j iPj f i2

 !

: (6)

The first part of expression (6) is the negative log-likelihood. It measures the goodness of fit. In
the second part, Pj is the orthogonal projector in M onto H j and iPj f i2 is a quadratic
roughness penalty. The λ j are a set of smoothing parameters. They control the trade-off between
the goodness of fit and the roughness of the estimate. See Wahba et al. (1995) and Wang et al.
(1995) for details on how to calculate an SS ANOVA estimate and how to choose smoothing
parameters based on data.

The solution to problem (6) is approximately equal to the posterior mean of the following
Bayesian model. Let the prior for f(t) be

Fî(t) �
X

M

ν�1

τν φν(t)� b1=2
X

q

â�1

Zâ(t)
p

θâ, (7)

where τ � (τ1, . . ., τM )T , N(0, îI), Zâ are independent, zero-mean Gaussian stochastic
processes, independent of τ, with

E Zâ(t) Zâ(s) � Râ(t, s):

Râ is the reproducing kernel of H â. With î !1, Wahba et al. (1995) proved that the posterior
means of the overall function and its components are approximately equal to the solution to
problem (6) and its components. Posterior covariances are listed in theorem 1 in Wahba et al.
(1995). These posterior covariances can be used to construct Bayesian confidence intervals for
an SS ANOVA estimate and its components.

2. Estimation of odds ratios and bias correction

The SS ANOVA estimate of the probability function for binary data can be used to
calculate the odds ratios. For any two points t and s, the odds ratio of t and s is

OR(t=s) � exp f f (t)ÿ f (s)g, (8)
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where the function f is the logit of the probability function. It depends on both t and s since we
do not assume a linear relationship. A natural estimate of OR(t/s) is

cOR(t=s) � exp f^f (t)ÿ ^f (s)g: (9)

Often, we are interested in how one covariate affects the odds when other risk factors are
fixed (at their medians or means). Suppose that the covariate we are interested in is t1. For any
two possible values t1

1 and t2
1 of t1, the log-odds ratio of t � (t2

1, t2, . . . , td) and s �
(t1

1, t2, . . . , td) equals

log cOR(t=s) �
X

12J1

f f 1(t2
1)ÿ f 1(t1

1)g �
X

(1, j)2J2

f f 1, j(t2
1, t j)ÿ f 1, j(t1

1, t j)g

�

X

(1, j2,:::, jd )2Jd

f f 1, j2,:::, jd
(t2

1, t j2 , . . . , t jd
)ÿ f 1, j2,:::, jd

(t1
1, t j2 , . . . , t jd

)g:

Note that the odds ratio depends on t j, j � 2, . . ., d, if there is an interaction between t1 and t j

in the model space M .
Often, the SS ANOVA estimate of the probability function has relatively large biases at

peak and trough points. These biases add if we pick t1
1 at a peak and t2

1 at a trough. This effect
is obvious from the simulations in Section 4. A correction to the possible biases is necessary
for these cases. We propose a bootstrap procedure to correct these biases:

(a) generate bootstrap samples of binary data from the SS ANOVA estimate of the
probability function p;

(b) calculate SS ANOVA estimates of odds ratios from these bootstrap samples and denote
the median of them as cOR�(t/s);

(c) estimate the bias of the log-odds ratio by

dbias � ln cOR(t=s)ÿ ln cOR�(t=s);

(d) calculate the bias-corrected estimate by

cORcorrected(t=s) � exp f2 cOR(t=s)ÿ cOR�(t=s)g:

Similar bias correction in a nonparametric regression setting using the bootstrap has been
studied previously by Gu (1987) and Fan and Hu (1992). These studies are primarily theoretical
and it is not clear whether this technique will necessarily work in practice. Simulations in
Section 4 indicate that this procedure works very well.

On the basis of the same Bayes model (7), we can approximate the posterior distribution of
f(t) ÿ f(s)|y by a Gaussian distribution with mean ^f (t) ÿ ^f (s) and variance

δ2
� var f f (t)ÿ f (s)jyg

� var f f (t)jyg � var f f (s)jyg ÿ 2 cov f f (t), f (s)jyg: (10)

δ2 can be calculated from the formulae in theorem 1 in Wahba et al. (1995). See Wang (1994b)
for details on calculations of posterior covariances. Hence we can approximate the distribution
of OR(t/s) by a log-normal distribution and construct the 100(1 ÿ α)% Bayesian confidence inter-
val as

(cOR(t=s) exp (ÿzα=2δ), cOR(t=s) exp (zα=2δ)): (11)

It is well established that the Bayesian confidence intervals for the function f have good
frequentist properties (Wahba, 1983; Nychka, 1988; Wang and Wahba, 1995). It is not clear
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whether the Bayesian confidence interval (11) for the odds ratio has similar frequentist
properties since it involves two points. Our simulations in Section 4 indicate that the answer is
that it does.

3. Practical example

In this section, we use a data set from the Wisconsin epidemiology study of diabetic
retinopathy (WESDR) to demonstrate the SS ANOVA method and odds ratio estimation. See
Klein et al. (1988, 1989) and references therein for a detailed description of the data and some
analyses using linear logistic regression.

In brief, the data set contains 256 insulin-dependent diabetic patients who were diagnosed
as having diabetes before 30 years of age (‘younger onset group’). None had diabetic
retinopathy at the base-line. At the follow-up examination, all 256 patients were checked to
see whether they had diabetic retinopathy. The response Y � 1 if an individual had diabetic
retinopathy at the follow-up and Y � 0 otherwise. Several covariates were recorded. We only
list the variables that are pertinent to our analyses:

(a) age, age in years at the time of the base-line examination;
(b) duration, the duration of diabetes at the time of the base-line examination;
(c) glycosylated haemoglobin, a measure of hyperglycaemia;
(d) pressure, systolic blood pressure in millimetres of mercury.

The following model was used in Wang (1994a) (model IV):

logit fP(age, duration, glycosylated haemoglobin, pressure)g

� µ� f 1(age) � a1 duration� a2 glycosylated haemoglobin� a3 pressure: (12)

The main effect of age is plotted in Fig. 1(a). We see that patients between 20 and 30 years
of age are at higher risk. To compare the risk at some particular ages, we may want to calculate
the odds ratios at these ages. Suppose that we fix the variables duration, glycosylated haemoglobin
and pressure at their median values and pick age � 25 years as the base and compare its risk
with the other ages. The estimated odds ratios and their 90% Bayesian confidence intervals are
plotted in Fig. 1(b). We see that the odds at age � 25 years are significantly higher than the
odds at age < 13 years.

From Fig. 1, the odds at age � 25 years are not significantly higher than the odds at age �
40 years. However, since age � 25 years is a peak point, it is likely that cOR overestimates the
true OR. This is supported by our simulations in Section 4, where cOR � 0.45 and cOR� � 0.73
in Table 1. We can estimate the bias of the log-odds by

Fig. 1. (a) Estimates of the main effect f1(age); (b) estimates of odds ratios OR{age/(age � 25 years)} (– – – –, 90%
Bayesian confidence intervals)
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dbias � ln cOR ÿ ln cOR� � ln 0:45ÿ ln 0:73 � ÿ0:48:

Then we can correct this bias in the original estimate:

cORcorrected � 0:45 exp (ÿ0:48) � 0:28:

The 95% Bayesian confidence interval for the corrected estimate of the odds ratio becomes
(0.07, 1.00), which is just significant.

4. Simulations

We conducted three simulations to evaluate the performance of the estimates of the odds
ratios and their Bayesian confidence intervals. We also conducted a simulation to evaluate the
performance of the bias correction procedure.

In the first two simulations, cases A and B, we used the univariate logit functions

f (t) � 1
2
â10,5(t)� 1

2
â7,7(t)� 1

2
â5,10(t)ÿ 1,

f (t) � 3f105 t11(1ÿ t)6
� 103 t3(1ÿ t)10

g ÿ 2

respectively, where 0 < t < 1. â p,q is the beta function:

â p,q(t) �
Γ( p� q)
Γ( p) Γ(q)

t pÿ1(1ÿ t)qÿ1
:

The true probability functions of these two cases are plotted in Fig. 2. Bernoulli responses yi

were generated on grid points ti � (i ÿ 0.5)/n, i � 1, . . ., n, according to the true probability
function, where n is the sample size. Two sample sizes were used: n � 100 and n � 200. In case
A, we used t � 0.2 as the base and calculated odds ratios at points t � 0.4, t � 0.6, t � 0.8 and
t � 1. In case B, we used t � 0.5 as the base and calculated odds ratios at points t � 0.1,
t � 0.2, t � 0.3 and t � 0.4.

In the third simulation, we used the estimated probability function (12) as the true model.
The design is the same as for the data. We call it case C. As in the above odds ratio
calculations, we used age � 25 years as the base and calculated odds ratios at points age �
10, age � 15, age � 35 and age � 40 years.

We repeated all three simulations 100 times. In Table 1, the true odds ratios are listed in
rows as OR; medians of the 100 estimates of the odds ratios and the standard deviations are
listed in the rows labelled cOR with standard deviations in parentheses; the number of times in
the 100 replications that the 90% and 95% Bayesian confidence intervals covered the true odds
ratios are listed in the rows labelled coverage with the 95% coverage number in parentheses.
We conclude from Table 1 that these odds ratio estimates and their Bayesian confidence
intervals work well. Estimates of OR are generally biased towards 1 if one of the two points of

Fig. 2. Probability functions used in the simulations: (a) case A; (b) case B
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the OR is at the peak and/or the other is at the trough (for instance, 0:4=0:2 from case A).
This is because the SS ANOVA estimate ^f may underestimate f at a peak and overestimate f
at a trough. The coverages of Bayesian confidence intervals at high bias points are lower than
the nominal value, whereas the coverages are higher at other points. So these Bayesian
confidence intervals behave similarly to the Bayesian confidence intervals for the estimates of
probabilities on the logit scale.

To evaluate the performance of the bias correction procedure, we use case C as our true
model. At each of 100 replications the bootstrap bias correction procedure with 100 bootstrap
samples is used to obtain bias-corrected estimates of odds ratios. Fig. 3 shows the true odds
ratio function (full curve), the average of the odds ratio estimates (dotted curve) and the
average of the bias-corrected odds ratio estimates (broken curve). The bootstrap correction
procedure works very well.
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