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ABSTRACT

A Wigner representation is used for expressing the thermal average
occurring in the Van Hove formulism for slow neutron scattering from
macroscopic systems. For quadratic and lower degree potentials results
in closed form may be obtained, and in general, an asymptotic series
expansion in powers of A is still possible for the incoherent part of
the differential cross section for quasi-classical systems. The lead
term of this asymptotic expansion results in an expression relating the
cross section to a four dimensional Fourier inversion of the classical
space-time distribution GS(r,t) and, hence, to the classical motions of
the atoms in the scattering system.

Correction terms of ({#12) have been obtained explicitly and found
to be small for systems at ordinary temperatures. It is shown that be-
cause of the contact nature of the Fermi pseudo-potential the exact clas-
sical limit (#-0) for any system is the ideal-gas result. The deriva-
tion involves the application of "Weyl's rule," which is rederived in
a manner felt to be slightly more understandable than previous deriva-
tions and, in addition, extended to Heisenberg operators. In principle,
the results can be extended to all orders of £2. No similar asymptotic
expansion appears to exist, however, for the coherent cross section.

An alternate approach to the interpretation of slow neutron scattering
data, based on the use of a specific model Hamiltonian, is illustrated
for the case of a monatomic liquid. The model used, originally proposed
by Ookawa, is of the crystalline dislocation type and leads to a sum

of gas and oscillator Hamiltonians. The incoherent intermediate and
scattering functions were found very conveniently from such Hamiltonian
by using the Wigner representation previously introduced. The width of
the intermediate scattering function for liquid lead was then compared
with other models and available experimental results.

On the basis of the present investigation, suggestions for further
work are made.

ix






CHAPTER I

INTRODUCTION

With the advent of neutron reactors, and consequent high neutron
fluxes, slow neutron spectroscopy has been able to compare advantageously
with X-ray, electron, and infrared spectroscopy in providing information
about the dynamical structure of solids, liquids, and molecules. T

For light atoms, X-ray diffraction has the fundamental disadvantage
of the linear dependence of the scattering amplitude on the atomic num-
ber of the scatterer. This is not the case for neutrons which, within
a factor of two or three, are scattered equally well by most atoms.2

A further disadvantage of X-ray and electron scattering from atoms,
relative to neutron scattering, results from the fall-off, with increase
in angle of scattering, of the atomic form factor for the former as op-
posed to the angular independent scattering length for slow neutrons. -

Most important, however, is that for X-rays and electrons the energy
transfers associlated with the scattering process are negligible compared
to the energy of the scattered photon or particle, and the method, al-
though quite sensitive to target symmetry, provides no information on
the atomic motions.

Conversely, an infrared photon of 0.025 ev has a wavelength of the
order of 5 x 105A, and thus, infrared spectroscopy allows for just enough
resolution to see only atomic motions in which a very large number of

atoms move together as a group.



Neutrons, because of their large mass, may simultaneously have en-
ergles comparable to those characteristic. of the various modes of mo-
lécular motions as well as de Broglie wavelengths of the order of inter-
atomic spacings. It is in this respect that measurements of the energy
spectrum of initially slow monoenergetic neutrons, after scattering by
a specimen, provide considerable information about the dynamical struc-
ture of the scatterer.

A general theory of neutron scattering by arbitrary systems of atoms
has been presented by Van Hove,LL based on the Fermi pseudo-potential ap-
proximation.5 In this theory, the differential scattering cross section
is expressed as a four-dimensional Fourier transform of a space-time cor-
relation function G(g,t). Such a formulation appears, then, as a nat-
ural time dependent generalization of the Zernike-Prins "static approx-
imation,”6 in which the differential scattering cross section is given
in terms of the well-known pair distribution function g(z). In fact,
the latter function is equal to the nondiagonal component of G(z,t) eval-
uated at t = 0.

Accurate calculations of G(E)t) are, however, only possible for
systems where the many-particle Hamiltonian may be replaced by a sum of
many single-particle Hamiltonians. This is the case of dilute gases and
crystals, for which the predicted angular and energy distributions of
the scattered neutrons are, indeed, in good agreement with experiment.

For dense fluids, the complexity of the atomic dynamics is much

greater than in the above mentioned cases, and a calculation of G(E,t),



by reduction of the problem to a soluble one-body problem, necessitates
highly simplifying assumptions in the specific dynamical models used.

There is, however, an alternate approach to the analysis of neutron
scattering experiments based on the physical interpretation of the space-
time correlation function G(E,t) in the limit 4 - 0. In this limit, it
is the conditional probability density that given an atom at the origin
at time t = O there will be an atom (the same or another) a distance r
away at time t; i.e., it provides a "moving picture" of the motions of
the atoms in the system.

The plausibility of this approach is then subject to the existence
of a relationship between this classical Gp(z,t) and the differential
scattering cross section. Various semi-empirical prescriptions have
been proposed in an attempt to establish such a relationship. The most
intuitive of them all results simply from replacing G(r,t). in the Van
Hove formulism by its classical limit. This, as observed by V’ineyard,7
corresponds to a development in which the neutron is treated quantum
mechanically and the scatterer classically. It has the unsatisfactory
features that recoil effects are inadequately treated in that the aver-
age energy loss is set equal to zero. Also, as observed by Schofield,8
it violates the constraint of detailed balance. Schofield has suggested
a recipe to remedy these defects in which he sets GC(E,t) equal to
G(r, t+ Egé), where B = 1/kpT, instead of G(r,t) and asserts its validity

to first order in -A.



This assertion is wrong, hewever, as may be seen from the fact that
the prescription fails to yield the correct result for the ideal mona-
tomic gas, for which the cross section is, in terms of the significant
variables Ap and e€(Ap, € = momentum and energy transfer respectively),
actually independent of /.

Other existing prescriptions, which are discussed in more detail in
Chapter V, are again based on more or less intuitive arguments and leave
the problem of establishing an unambiguous connection between GC(E,t)
and the differential scattering cross section unsolved. It is the pur-
pose of this work to approach the subject in a deductive, rather than
inductive fashion with the hope of removing such ambiguities. In par-
ticular, and in order to relate the cross section to classical dynamical
variables, use is made of a Wigner representationds 10 for the thermal
average occurring in the expression for G(z,t).

This results in the replacement of the conventional quantum aver-
age by a phase-space average, over a Wigner distribution, of the "Weyl
equivalent" of the operator present in the thermal averagell For the in-
coherent cross section, this "Weyl equivalent" admits an asymptotic
series expansion in powers of # where the first contributing correction
to the leading term is shown to be of order #4 for randomly oriented
systems.

It is further noted that because of the presence of an essential
singularity in G(r,t) the above indicated procedure may not be applied

to the coherent component of the cross section, the exceptions being the



cases of harmonic and lower degree potentials. This limitation is not
considered too strong, however, because the interference scattering is
quite insensitive to target dynamics (see Chapter VII for elucidation
of this point).

For ordinary temperatures, the Wigner distribution may also be ex-
panded conveniently in powers of 62.15 The first term in this expansion,
of zeroth order in 4, is just the classical canonical joint distribu-
tion function. Combining this series with the above mentioned asymptotic
expansion results in an expression in which the first term, which we
have chosen to call the "quasi-classical' a,pproximation,12 is now the
classical thermal average of the leading term in the asymptotic expan-
sion, plus correction terms of order %2 and higher.

Additional rearrangement of the results obtained, preserving their
order of validity plus the use of time translational invariance, leads
to the desired relation between the cross section and the classical cor-
relation G°(r,t). It is found that the first term in this expression is
the same as the prescription proposed from empirical considerations by
Singwi and SjBlander.lu The correction terms of order A~ have been ob-
tained explicitly and shown to be small for systems at ordinary temper-
atures. It is also shown that the results obey the constraint of de-
tailed balancel® and satisfy the Placzek momentsl® to order #2. The
analysis is then used for deriving other existing prescriptions and for

examining their implications and range of validity. Numerical computa-

tions are presented in which the cross sections for some simple systems,



as calculated by the Vineyard prescription, are compared with the re-
sults of this work,Ll7

As an illustration of the rigorous attack provided by the formulism
to harmonic and gas-like Hamiltonians, a crystalline dislocation model
of a liquid, originally proposed by Ookawa,l8 is considered. 1In this
model, thermal agitation is represented by a superposition of longitu-
dinal waves plus shear waves that lead to either translational or vibra-
tional modes, depending upon the wavelength. The Hamiltonian is derived
in a less intuitive manner than in Ookawa's paper, and the parameters
entering this Hamiltonian are obtained fromfPhermodynamics. On the basis
of the model, expressions are obtained for the incoherent ¢ross sec-
tion.

In Chapter II, the general theory on neutron scattering from macro-
scopic aggregates is reviewed, and the Van Hove formulism is extended to
the case of polyatomic systems; although, for simplicity, only monatomic
and monoisotopic systems are considered in the subsequent chapters. 1In
Chapter III, several pertinent properties of the correlation function
G(r,t) are discussed. In particular, its physical meaning for various
limiting cases 1s established, and a fluctuation-dissipation theorem
which relates its real and imaginary componentsis obtained. Some prop-
erties of the Abelian type, relating the asymptotic behavior of the in-
termediate scattering function x(Ap,t) (obtained by spatial-Fourier in-
version of G(r,t)) to the behavior of its time-Fourier inversion S(Ap,e€)

for small energy transfers, are also considered. Finally, it is shown



that the cross section obeys the principle of detailed balencing, and
the Placzek moments of the scattering function S(Ap,e) are introduced.
These properties are investigated because they provide useful informa-
tion on the dynamics of the scatterer as well as for their utility as
checks on the approximate descriptions of the scattering cross section.
The isomorphism between the Weyl-Wigner quasi-probability distributional
formulation and the density matrix formulation of von Neumannl9 is de-
rived in Chapter IV in what is felt to be a somewhat simpler and more
self-contained manner. It is then generalized to Heisenberg opera-
tors and applied in Chapter V to the scattering problem, thus re-
sulting in an asymptotic expansion for the incoherent cross section in
which the leading term contains the classical self space-time correla-
tion Gg(z,t). The analysis is also shown to cast light on existing semi-
empirical prescriptionsfor relating Gg(z,t) to the cross section. In
Chapter VI, Ookawa's crystalline model for a monatomic liquid is dis-
cussed and formulae for the scattering cross section are obtained. The
width of the diagonal part of the intermediate scattering function is
computed for the case of lead, and the results are compared with those

for a stochastic model proposed by Rahman and Singwi and Sjﬁlander,go

as well as with Brockhouse and Pope's data obtained from experiments.21

A summary and concluding remarks are given in Chapter VII, and recom-

mendations are made for further work, both experimental and theoretical.



CHAPTER IT

NEUTRON SCATTERING BY NUCLEI IN AN ARBITRARY MACROSCOPIC AGGREGATE

2.1 THE FERMI PSEUDO-POTENTIAIZZ

A direct application of perturbation theory to the problem of slow
neutron scattering by nuclei* of chemically bound atoms is inadequate due
to the intensity of the nuclear forces involved. These forces, however,
have a short range of action compared to the relevant molecular dimensions,
and neutron-nuclear collisions may be described to a good approximation
by "contact interactions."

Moreover, for slow neutrons (energies < 1 ev), only S-wave scatter-
ing is important and the scattering amplitude for an individual atom is
independent of energy.

Thus, the elastic scattering cross section for an isolated atom is

isotropic in the center of mass coordinate system and is given by

Ul’d = )-H'(A!z (2.1)

A, is the scattering amplitude for the interaction, and though energy
independent, it is in general a function of the total spin angular mo-
mentum of the neutron and the nucleus.

Equation (2.1) can be formally obtained from the first Born approx-

imation by meking use of the Fermi pseudo-potential me'l:hod,5’5’23’2l+

*We neglect magnetic scattering and neutron-electron interaction.



which essentially consists of replacing a boundary condition on the wave

function of the system by the pseudo-potential

27h2  /Mitm
Wr-R) - 3 <‘ﬁj> Agp(z-Ry) (2.2)

introduced in the wave equation.*
In Eq. (2.2), Mj denotes the mass of the jth nucleus, rs its vector

position and m the mass of the neutron. The quantity
a: = —-'J—— A. (2'5)

is usually known as the bound scattering length while Aj is referred to

as the free-atom scattering length.

2.2 DIFFERENTIAL CROSS SECTION22,28-30

Consider an arbitrary macroscopic aggregate (thin enough, however,
so that multiple scattering is negligible) from which a monoenergetic
beam of meutrons with momentum ﬁgo and spin** state ITO > is scattered
into a group of spatial states with propagation vector in dk about k and
spin state |t > . Simultaneously the scatterer undergoes a transition

from an initial state |i.> to a final state |}/>.*** The transition rate

*Lippmann and Schwinger25 have derived Fermi's results by means of a
variational treatment of neutron scattering. A test on the reli-
ability of the Fermi approximation for the case of neutron scattering
from parahydrogen is given by Lippmann.26 See also Summerfield, et
al. -

*¥T1 denotes the z-component of the neutron spin. ,
***The spin states of the scatterer are also included in the kets |4 >
and |{.> .
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for such a process is given in the context of the first Born approxima-

tion by:

1 _m i(ky-K) .1
(ayaf)p(E)dSK = -%Eg e kdQde jil <}T u/\e ZXo-X).T
J
(2.4)

(%) V(r-Ry)a®r|rol>|® B(Ef+ey ~By-c ;).

Here E4; and E},are the initial and final energies of the scatterer and

e - ﬁ2k02 _ H2K2 B (2-5)
LT o YT Tm €T U

The factor L-° is due to box normalization of the neutron wave function.
Substituting Eq. (2.2) into (2.4) and dividing the result by the

total number (N) of scatterers in the sample and the probability current

density of the incident beam I = #ko/mL> yields

k

(o 5p)p(e)de ik:Rs,, 2
— <}T aj e~ =J|LTo>| 6(%&—E@—e)
NIdQde Nkqo 3 (2.6)

I

where

k = k -k. (27)

Note that the expression on the left side of Eq. (2.6) is the definition
of the differential scattering cross section per atom, per unit solid
angle, and per unit interval of neutron energy transfer for transitions
IiTO>-+|&T > of the neutron-scatterer system.. Hence, in the laboratory

system,
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3%, K ik-R 2

% _ k. > < e Ry e S12 s(m B - 5.8
30de Nko, | p fries e 7o > (E)L i), (2.9)

which upon introducing the Fourier representation of the delta function

and after some straightforward manipulations becomes

o ite itHg
%0 1 k f TR K+ Ry o B
= dat <AT, |8 -
300e o7h Nkg € olef e 7 f
Jrk
k.R. l'tHs
(x) <f¢|aj =33 e % |xno

(2.9)

Hg is used in the above expression to denote the molecular Hamiltonian
of the scattering system.

Moreover, since the incident beam of neutrons is usually not polar-
ized and the target system is in thermal equilibrium rather than in an
initially prepared state, we average (2.9) over all initial states of
the neutron + scatterer. Subsequently, we sum over all final states
]éT > since these are also not observed.

The appropriate expression to which experimental observations are

to be compared 1s then given

. T3
- 2 L
o0e TQ:-_!_-%— T BQBG
ite
o Liral L
P~ dt e <%Tolak ;€

Tt (2.10)

(x) eiﬁ'Bl(t)

LlTO >
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where

iHgt _ iHst
Ry(t) = e A R, e A (2.11)

and p, is the statistical weight of the initial states |},> of the scat-
terer.
In deriving (2.10) the states |éﬁ'> are assumed to form a complete

set, and use is made of the closure property

E:l T><#T| = 1, (2.12)
T,&, &

It is now convenient to consider the dependence of the scattering
length on the total angular momentum* j of the system neutron + scatterer
more explicitly. To this end, note that if i, is the spin of the [th

nucleus then

(2.13)

C
>
i
'_l
I+
=

where the (+) or (-) signs denote "parallel" or anti-parallel spin states.
The scattering lengths corresponding to these two possible values of j,

are ag+)and a(-).

) We thus construct an expression for a; such that it
(+)
JJ

is equal to a or a(-) for Jy =1y ¢ % respectively. This expression

is

8, = ag+%7)$+) + a$')6jg-) (2.14)

*In order to distinguish operators from their eigenvalues, we use upper
case to denote the former and lower case for the eigenvalues.
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where é7g+) and‘ﬂjg') are projection Operator322’29 defined by

(%) 1 A
X => = t =
CZDZ 5 |1 5> (2.15a)
and
. o— L
P iFss =0 (2.15b)
It can be readily verified that Egs. (2.15a) and (2.15b) are sat-
isfied by
J2-3% 2 L
(f/ﬁ("‘ ) Jl-é ) 22+2_:E'§+82'1 + T i+1+21.8 (2.16)
2 2i+1 21+l '
U1 2 13
and
2 .2
L g aers
= i (2.17)
J? .l-.-J? 1 2i+l
i-1 Y1+l
where § 1s the neutron spin operator.
Hence,
. 3
a(+) ip+1 ) ‘e (1£+l ip] (a(+)-a('))
I \oip+l 1/z+l 21+l £
1,.5
(x) —Lmn (2.18)

[(ig+1)ig 12

- A B 2R

[11(11+l)]

/$£ and 16; are the so-called coherent and incoherent scattering

amplitudes respectively.



1k

Noting that
Z < TolIp8lTe > = z I,0rSy, = O (2.19)

and

z < ol(Zy (L8 o> = Z E Tolif Iplg * '32: 5 (IxL) |To;—]

o~ 2 (2.20)
3
1 1 1
= 51, EkJ"éz (IxL) g, TrSa = 5 I,0L,
a=1
yields, when substituting (2.20) and (2.18) into (2.10),
52 0 ite /¢ A
o 1 k "R }: }: '
—_ = = — dt e p, <A
e 218 Nky Y, e T @ k4
(2.21)
‘gkﬁzlz'lk -ig-Ry  ik-Ry(t)
+ e e |L>

s s (o . -
[ikig(ig+l) (1g+1) 12
For a system with spin independent Hamiltonian, the eigenstates [,L>
may be expressed as a product of spatial and spin eigenstates. Moreover,

when exchange interactions are negligible
428
MEE <1, d« interatomic distanc%) ’

there is no correlation between spins and positions of the nuclei, and the
average in (2.21) can be split into a product of spatial and spin aver-

ages, l.e.,
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- © L ite
AN 2rh Nko v kY
N 1,k
’ (2.22)
BBy L -1e R 1K-Ry(t)
1 |m avg Tr e e »
[ipip(iyx+l) (1,+1) 12

]m > 1s a projection state of the nuclear spins, and f? denotes the von

Neumann density matrixt?

L
P-3 Z WY> <p¥| (2.23)
v=1

|¢V> is the state vector of the vth system in the Gibbsian ensem-
ble, and the summation is carried over all systems of the ensemble.
In the absence of exchange interactions, the directions of the spins

of the different nucleil are also uncorrelated and

<mlIpIelm >, = 101 )8y o (2.24)
Hence, Eq. (2.22) becomes*
x 1k o ite il N
. f X Z 2 z 4 d ot
= —— — [ dte I(k,t) + 19k,
ol B2 s, a3 ,0)
=1 Z,3=1
(2.25)
where
- -ik«R, 1ik-Ry(t
xi(_xg,t) = N lTr{ e — -1 e——ﬂ( )} (2.26)

*¥Equation (2.25) is essentially the same as that obtained by Van Hovel
and Zemach and Glauber,
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and*

d(k,t) = miTr {pe'iﬁ‘ﬁz eiﬁ'BJ(t} ) (2.27)

2.3 VAN HOVE FORMULISMM

In order to generalize the Zernike-Prins "static approximation"
formula6 to scattering processes where energy tranfers are not negligi-
ble in comparison with the energy of the incident particle, Van Hove

introduced space-time correlation functions defined by:

. l .
¢t d(x,t) = f ar exp(-ix-1) 1l 9(k,t) (2.26)
(2m) @
and
Gﬂ(r t) = 1 ‘/\dm exp( -ik.r) l(n t) (2.29)
sy’ - 3 phd 1Y KT)Xs oy .
(2n)
The differential cross section of Eq. (2.25) is then given by
N N
2ok Z 2.4 z £,
= — Ss(k,e) + F¢1S K,€) (2.30)
0¥k ko Bisals, Aot
=1 £,5=1
where

L = L (ke _E’E:| L .
85(k,€) o ffdt dr expE(ﬁz 7| Gs(x,t) (2.31)

*Note that x%r4(k,t) = x(k,t)
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and

Sz’j(ﬁ,e) = > o L/Lw/jdt dr exp[: (ker - Eé:}Gl’J( t) e (2.32)
Tt

Equation (2.30) may be expressed in terms of the contributions of
the different atomic species present in the system.7 For this purpose,
let pp denote the number of atoms belonging to the mth species and assume

there are v different species present. Then

N
Mm N v
Zﬁga“ﬁf x&(k,t) = z = B2 umz A(k,t)
=1
v (2.33)
= z 2152 xx,t)
m=1
and
N Hn  Hm
y %QN_A'#X’JKt=ZHmASA/ZZ (5,t)
— Hm
£,J=1 n,m=1 J=1 4=1
v
= }: %E g+m¢%1xn)m(ﬁft)’ (2.3h)
n,m=1
Hence,
1% v
2 5 M
da. - jli— Z ﬁ—mZBIi Sg(Ap,e) + Z ﬁm .¢q'm?4’n Sn’m(_A_p,e) (2.35)
A0 o
m=1 n,m=1

where the "scattering functions" Sg(Ap,e) are defined by
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(o]

1 | -iTe
S5(4p,e) = 5n /_:o dr e xe( Ap A7)
(2.36)
= L L[fd'r dr exp i(ég'r-ET) G r, )
2n - e sh=2
and
[e0]
n,m -1 ~iTe
57 (Mp,e) = 5 f ar e - x™( ap )
Ldee]
(2.37)
_ 1 . Ap n,m
= 5y dt dr exp 1(;;-- r-eT)| G 77 (r,ht)e
The new variables
Hk = Ap and AT =1 (2.38)

have been introduced for reasons which will become obvious in Chapter V.
For the sake of simplicity in the following chapters we shall con-
sider only monatomic and monoisotopic systems. The reduction of Egs.

(2.35)=(2.37) to such systems is straightforward.



CHAPTER III
SOME RELEVANT PROPERTIES OF THE FUNCTIONS
G(r,t), x(4p,t), AND S(Ap,e)

3.1 PHYSICAL INTERPRETATION OF G—(_l:,t)LL

The space-time correlation function G(E,t) was introduced in the
preceding chapter as a natural time-dependent generalization of the pair
distribution function g(z), familiar in X-ray scattering theory.

In particular, for a monatomic and monoisotopic system, the defini-

tion Egs. (2.27), (2.28), and (2.34) lead to

G(r,t) = (%;)3 %/ﬁ dxk L x(k,t)

(3.1)

N
3 -ik-r -ik.R ik-R.(t
<1—> z N-l<fdne——elﬁ—le——a( )>T
271 . -
J,i=1

where the bracket < >p, usually known as the "thermal average," stands

for

<Q> = TH(PO) - (3.2)

The Fourier transform of the product of (non-commuting) operators

in (3.1) may be expressed as a convolution of delta functions by noting

that

19
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=
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o
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.
ES
| =
[
Py
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N
o
1=
D

(2rr)3fd£' 8(r+R,-r')8(xr'-Rs(t))

Thus,
N

G(r,t) = >: Nt <fd£' (r+R,-r")8(z'-R;(t)) >,

J,i=1
Because of the non-commutativity of the operators Bz
spatial integration in (3.4) may not be performed. In the
limit % » O, however, the above mentioned operators may be

their corresponding classical dynamical variables 9 and gj

tively. These are commuting c-numbers and, hence,

N
lim &(r,t) = ¢%(r,t) = N-% j{: < 8(r+g-a4(t)) >
A0 = . sl T
J, =1

where < >TC denotes now the classical thermal average.
Equation (3.5) has a simple physical interpretation, i

the conditional probability density that given an atom at t

. (3.1)

and R:(t), the

J

"classical"
replaced by

(t), respec-

(3.5)

.e., it is

he origin at

time t = O there will be an atom (the same or another) a distamce r away

at time t.

Other instances where a physical meaning may be ascribed to G(r,t)

occur at t = O and for r > o,
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In the case t = 0, the operators reduce again to c-numbers and

N
G(_I’_,O) = 5({) + N-t Z <5(£+B£'Bj)>T .
JFI=1

Upon noting that the second term on the right of the above equation is

the definition of the ordinary pair distribution g(r), we have

&r,00 = 8(x) + glx) (3.6)

The asymptotic form of G(r,t) for r + « is readily obtained by mak-

ing the substitution Ry -~ r + R, in Eq. (3.4) and noting that, for suf-

1
Ticiently large r, the particle at R, +r is statistically independent of

all other particles in the system. Thus,

llm a( r, t) }: N~ u[\dr' j{: < W r+R [8 r+Ry-r r'+r |¢V(r+R£

- J, =1
(x) <U¥(BAR,) [8(z'-R;(t)) [v'(RAR,)>
(3.7)
A fdz' o(x'-r)p(r")
where p(f') is the average number density at r'. For an homogeneous
system, p is a constant and Eq. (3.7) becomes
. N
lin o(z,t) % p = 2 ¢ (5.8)

T->0

1
3.2 ASYMPTOTIC BEHAVIOR OF ( Ap,‘ﬁ'r)a
Assume it is possible to expand y(Ap,#iT) in a series in inverse

powers of T:
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=)
ap ’ (4p)
x( Ap, A7) -Z = - (e >0) (3.92)
oy (-17)
and
(Ap
x(sp,Hr) = Z an (e <0)> (3.9b)
lT)
Introducing these expansions into Eq. (2.37) yields
1 Hile|T
s(ap,xle]) = ;f ar otlel x( &p, )
T Y
(3.10)
1 }: JF -1|€|T ‘
= o an (Ap)
nol (-iT)
Furthermore, noting that 22
* -1€'Td
f S— = -nsgn(e) (3.11)

-0 it

and integrating both sides of this expression with respect to €' between

the limits of O and €, we obtain the general formula:

[¢¢]

-il lT n-
f e __ . oaelT (3.12)
-00 (-iT) 1 (n-1)!
Consequently,
= n-1
(e = %) o ST (20 (1)
n=1
and
1 - ) n-1
s(ap,€) = EZ aﬁl )(Ap) &F (e <0)o (3.14)
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The expansion coefficients a(i)(Ap) follow immediately from (3.13)

and (3.14) by successive differentiation, i.e.,

1) )n-l g(n-1)

ag = 2(#1 301 [S(Ap,€) ] =0, (3.15)

In particular, for the case

lim x(4p,HT) = 0O , (3.16)

T->c0

Equations (3.9) require that the expansion coefficients be bounded and,

hence,
Ae 4
lim S(Ap,e)de = 21im Ae[ag (ap) + a(-)(ép)] = 0o,
8670 s be>0 (3.17)

This implies that S(Ap,e) is also bounded and differentiable from the
left and from the right of € = 0. It precludes then the possibility of
S(Ap,e) having a 8(e€) singularity, although a pronounced but finite peak
about the incident energy may still exist.

It is also clear from Eq. (3.15) that the intensity and width of
this "quasi-elastic" peak depend on the expansion coefficients a(i).
That is to say,they depend on the rapidity with which x(4Ap,#it) goes to
zZero as T > o,

Conversely, the existence of an elastic component in the scattering

function, represented by a &(e) singularity, implies that

lim x(ap, A1) # O - (3.18)
T
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This case is characteristic of a system where every atom has a well
localized neighborhood in which it always moves, i.e., a solid. Thus we
see that the Abelian properties discussed above provide useful informa-

tion on the dynamics of the scattering system.

3.3 HERMITIAN SYMMETRY

Except for the limiting cases discussed previously, the non-Hermitian
character of the convolution of delta functions in Eq. (3.4) implies that
G(r,t) is generally complex. In fact, its complex conjugate has the Her-

mitian symmetry

G*(r,t) = &(-r,-t) (3.19)

which follows immediately from the reality of S(Ap,e) and the defining

Eq. (2.37).

3.4 THE PRINCIPLE OF DETAILED BALANCING

Consider the functionds33

o0

j 1 —iTe j igh
ime - = [ @ b ) o)

> 00

Egé ) is defined, in accordance with Eg. (2.27), by

2,J iph -1 i i iph ||
xtrd(apsT + =57 ) = NTMIr pexp|- = Ap°R, exp%ép.gj(hTJ,T)J
(

3,21)

where Xz’j(ép;ﬁT +

By taking the complex conjugate of (3.21) and rearranging the terms in-

side the trace, it follows readily that
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E(Z’J(Ap’ﬁT+£;éﬂ* = Xl (Ap,'ﬁ'r+ gﬁ) (3.22)

and, hence,
st d(ap,e) = st d(-ap,-e) o (3.23)

Moreover, writing (3.21) as

- B(E)-E) solm-mr
xb9( (Ap,BT + l{’) = N‘lz e E(Ef J)elT(E‘ﬁ‘ B
I (3.2%)

(x) <l|P exp[:— ;;—1 Ap,B;llf> <'e{,|exp|:% Ap-R; IJ:>

and inserting this expression into (3.20) leads to

SLid(spye) = & 2 e <,L|Pexp|i L R:I e
£ bé» (
3.25)

<},|exp[% _A_p-Ej |v(,> 5(E+—EJ':€) .

In a similar fashion, it can be shown that

(o]

dr e 1€ Xl"j(_ép,‘r’rr)

-00

mn
Xl

st29( ap,e)

is given by

Sl’j(Ap,e) = z<wlpexp[ ApR:l

of (3.26)

(%) <D(L|exp[2%l _A_p-_liﬂ Li> S(Ef-E;L-e)
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and, consequently,

-
std(ap,e) = e 2 s(ap,e)e (3.27)

Substituting this result into (3.23), after noting that SZ’J(Ap,e) is

real, yields
. Be .
shd(ap,e) = e sbI(-ap,-e)s (3.28)

We now use this identity to establish a relation between the neutron
scattering cross section given by formula (2.30) and its converse ob-
tained by interchanging the initial and final states of the neutron. To

this end, let

, N N
] .
2o . ole, ey i‘[ﬁ ), skame) +42) 58,0
=1

agfagf Z,3=1 (3.29)

and
o
oo, = de 32 s&(-Av, -€) +A’Z (-tp,-e)|
Q('/a::j,
=1
(3.30)
It then follows at once from (3.28) that
ko?  -Be

of € ve0) = 2 e 0(6,3(—51,,9,}) (3.31)

or

2 e—B%G(EL*Gf,Qf) = e“f’ ole ey, Q) (3.32)
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This last expression is usually referred to as the "principle of de-
tailed balancing" for a system of neutrons in thermal equilibrium with

a pure scatterer.

5.5 FLUCTUATION-DISSIPATION THEOREM
As a corollary of Eg. (3.22), it is possible to establish a rela-
tionship between the real and imaginary parts of G(r,t). For this pur-

pose, note that

exp[ G(r, %) ( >fd&'e = = x(k, AT + Bﬁ)o (3.33)

Taking the complex conjugate of this expression and using (3.22) leads

to
. ' - fl
exp [z %E %r-:| G*( r,47) <—-—> f lﬁ £ (k,87 + E‘S") (3.34)
Equating now (3.33) and (3.34) results in
i 3 _ By
exp | = Sﬂ (r,ht) = exp ': > 55 | Gz (3.35)
or
N o oeaN] [ .
Eos (.g _a_T> + 1 sin (g— g;_ Ef(}(z,fh*r) + 1QG(_1:,’E1TE| (5.56)
= Eos (2 —g—;) - 1 sin (2 —g—_r-_ IZ@G(E,'I&T) - i&G(E,'I’lTEl
i.e.,
Je(rmm) = -ten (5 2) oz ) - (5.57)
’ 2 T =’ )
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This result was first derived by Schofield8 by Fourier inversion of
S(Ap,e) and use of (3.28).* It is felt, however, that the above proof
is simpler and more straightforward.

Observing that the delta functions in (3.4) may be interpreted as
Heisenberg density operators‘éyb(z,t) and OEG(r,t) may be expressed, for
homogeneous systems, in terms of the average of the commutator and anti-
commutator, respectively, of these operators. By doing so, Van HoveBu
was able to relate the real part of G(E,t) to the time-correlation func-
tion of spontaneous fluctuations in the equilibrium density of the scat-
tering system. He also showed, by means of a perturbation analysis of
first order in the interaction potential between neutron and scattering
medium, that QQG(E,t) is connected with the local disturbance produced
by the neutron in the density of the medium.

We thus see, in view of the above given physical interpretation of
1€G(£,t) and élG(E,t), that Eq. (3.37) has the character of a fluctua-

tion-dissipation theorem.

3.6 THE PLACZEK MOMENTS.O

Aside from their intrinsic interest, the properties discussed in
the preceding sections constitute valuable checks when considering ap-
proximate descriptions of the scattering function. Another set of con-
sistency tests is provided by the moments of the scattering function for

a fixed momentum transfer, defined by

*See also Nelkin33 and Singwi and SjSlanderlu for similar proofs.
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el = enS(Ap,e)de . (3.38)

=00

A more explicit form for these moments can be obtained by express-

ing S(Ap,e) in terms of x(Ap,AT):

0 . 00
P %; de X(_A_p,’r’rr)f ™ BT ge (3.39)
-00 =00

and noting that

[o¢]
1 f n -ieT .n dn
— € e de = i* =— 38(T1) . pite)
= e (5.40)

=00

Tt then follows at once that

——

o= (1) & () (5.41)
arit T=0

i.e., the moments ef are just the coefficients Sn(Ap) in the power series

expansion

0

(bp,BT) = Z ;117 Sn(ap) (17" . (3.42)
n=0

Furthermore, from
-1 i ifdr i -1HT
X(ép,ﬁf) = N j{: < exp [} 7 AP'B%} e exp [% ép'Eg} e >III
Jsl

we have that

-t ) < LR (H (i R >
o= ) <on [-Eun] [Ben (fwa)] 5
Jsl = ’ B

(3.43)
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and (3.41) becomes

en = -t Z < exp lj-l- Ap-R] EIexp(i Ap'R.] > °
7 ARy (e (g 2 By)in
: | : ) T (3.

Js!

This expression was first considered by Placzek (hence the designa-
tion of ef as Placzek moments) in the analysis of the scattering cross
section for relatively high energy neutrons and heavy scatterers. For
£ =73, Eg. (3.44) is most easily evaluated by making use of the unitary

transformation55

o [ %Ap'ﬂ HEB) exp E%AP-E] = 2(Eap,B) (3.15)

where f(P,R) is an arbitrary function of the momentum and position ope-
rators. By doing so, and considering only randomly oriented systems,
one obtains for the first five Placzek moments of Ss(ép,e) the following

expressions:

e = 1
2
ps ) i
s oM
2 = %_Ap K>+ ( Ap2/2M)2
s .o (3.46)
—_— ( , Ap
€3 = ho{ ==~ <K>+ < V3y >
— hAp Ap® ApE\*
4 = 2 fouc?
€4 5M2 < K >+M3 <K>+(2M
12pp2 > 2 pp* s
e <VVS + —— < VTV >

K here denotes the kinetic energy of the scattering atom, and V is

the total potential energy of the scattering system.



CHAPTER IV

QUAST-PROBABILITY DISTRIBUTIONAL FORMULATION OF QUANTUM MECHANICS

By introducing a quasi-probability distribution in phase space,
which is essentially a Fourier transform of the density matrix of von
Neumann, it 1s possible to obtain a quantum mechanical analog to clas-

sical Gibbsian statistical mechanics for the calculation of the expec-

36,37

tation value of a function¥* Q(E,B). Explicitly,
<AP,R)> = Trlpa(B,R)]
(4.1)
= jfdgdﬂpw(P)Q;t) Qw(ﬁ:ﬂ.)
Here
3N i
- (1 i,. -k &
IJW(E)E;t) = ﬁ) de exp [ﬁ 4 E:I <g 5 |P Ig + 5 > (L.2)

is the phase-space distribution function initially introduced by Wigner,9
and f’ is the von Neumann density matrix defined in Chapter II [Eq.

(2.23) ].

The c-numbers p and g, on which p, and Qy depend, will be shown at
the end of the chapter to obey the Hamilton classical equations of motion

and thus may be interpreted as classical dynamical variables. This is

the basic utility of the present approach. , is related to Q in a cer-

¥R and P will be consistently used to denote sets of quantum mechanical
position and momentum operators and q and P tc denote their correspond-
ing variables in classical mechanics.

31
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tain specific way as we shall see below.
Upon noting that Eq. (4.2) gave the correct "marginal" distribu-
tions (see Appendix B), Wigner was able to prove Eq. (4.1) for functions

that separate as

2

ge]

%
i

Q4(

|d

) + 92(R) (k.3)

and for which

I

O(p,9) Q1(p) + Q2(Q) (.1)

()

It was also observed by Wigner that (4.2) is not the only bilinear ex-
pression in | which gives the expectation values correctly for a quantity

of type (4.3). 1In fact, any function

f(p,q,t) = P(p,t)a(q,t) + fi(p,gq,t) (L.5)

would be equally valid provided

ffl(g,g,t)dg = ffl(g,g,t)dg = 0 (4.6)

and P(p,t) and Q(g,t) are the momentum and configuration-space distribu-
. . X 38
tion functions respectively.

Introducing a phase-space distribution function defined as the

Fourier inverse of the so-called characteristic function

M(x,y,t) = @, ei(ﬁ'gq'g)w\) (4.7)
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Moyal®? showed that (4.2) also gave the correct joint distribution pro-

vided that Oy(p,q) is obtained from first defining a function by

k[7Nd§dz a(x,y) exp [% (§.£+X.Bﬂ (4.8)

(P, R)

and then setting

ﬂdédl o(x,y) exp [% (z'y_z-g_ﬂ . (L.9)

Equations (4.8) and (L4.9) are known as "Weyl's correspondence" and were

Olp,9)

first obtained by Weyl from group theoretical considerations.ll A re-
derivation of these equations, based only on the orthonormality and com-

pleteness of the set of operators

3N/2 5
(" oo g el

is given by Groenewold.
Moyal and Groenewold have also shown that the application of "Weyl's

correspondence" to the commutator

5 [02(B,R)92(B,R) - 2(E,R):(E,R) ]

results in

- —

: . . A
(01 Q2 = "(p,9)sin(z A)Q"(p,d) (k.10)
where A is the Poisson bracket operator

(k.11)
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with the arrows indicating the function which is being differentiated.

b1 proved that in order to obtain the

Conversely, Irving and Zwanzig
correct averages the use of "Weyl's correspondence"” between operators and
phase-space functions leads necessarily to p, as given by (k.2).

In the next section this latter approach is extended to the calcu-
lation of the average of a product of two operators, leading to a form-
ulation which envelopes the results of Groenewold, Moyal, and Irving and
Zwanzig in what is felt to be a somewhat simpler and more self-contained
manner,

Moreover, making use of the fact that any known quantum mechanical
function of P and R may be expressed as a series in which each term is
given by products of functions of R and P only, & knowledge of [Q1(P,R)(x)
Qz(P+R) ]y together with [Q(P) I, and [Q(R) ], is sufficient for the expli-
cit evaluation of the "Weyl correspondence" of any arbitrary function
A(E,R) -

The properties of the Wigner distribution function py are discussed

in detail in Appendix B, and for a system in thermal equilibrium an ex-

pansion, in powers of‘he, is obtained of the form
o, = fli.( 1HRE AR AL+ -0 0) (k.12)

where f§ is the classical canonical distribution function.
The coefficients in this expression can be derived, in principle,

by substituting (L4.12) into the quantum mechanical analog of Liouville's
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equation [see Eq. (B.16)]. TFor higher powers than 4%, however, their
complexity increases greatly and, hence, only Ao was obtained explicitly
in Appendix B.

Furthermore, owing to the positive powers of B which they contain,
the An's become very large at very low temperatures and Eq. (4.12) will
diverge near absolute zero. A different method of approximation appli-
cable to this latter case has been developed by Green.l5

For certain particularly simple systems, p, can be found explicitly
and in closed form. This is illustrated in Appendix C where we evaluate

p,, for an harmonic oscillator.

4.1 EXPECTATION VALUE FOR SCHRUDINGER OPERATORS

In order to derive the isomorphism between the Weyl-Wigner quasi-
probability distributional formulation and the von Neumann average of a
product of Schrddinger operators, we first introduce a coordinate repre-

sentation for the latter with
la> = 191,92, *++ > - (4.13)

Thus,

<Q Q2> = fdg<g|pﬂl Q2]q >

(b, 1k)

- ff dglg’ < gl@la’><a' [0 92lg >

Moreover, it has been shown in Appendix A that, due to the ortho-
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normality and completeness of the set of operators

l:(gﬂhYN/Q % (§.£+_3£._1;):|], y

it is possible to expand Qn(P,R,t) (n=1,2) in terms of this set as:

(28t = [ axoy gt oo f (| (129
1 VN
an(x,y,t) = <§:r—ﬁ> Tr {Qn(g, ) exp [ (x-P+y. _ﬂ * (4.16)

Substituting Eg. (4.15) into (L4.1L4) and meking use of the property (A.11)

with

Bﬂw

results in

<Qp Q2> = I[dgdg' <2|P |g'>Md§dXd§'dz'

(3 calzg,toelx' sy e | § (xyy)

: _ (4.17)
() f ag" <g'|exp [z z-% exp [ﬁ xP|la"

or since

exp [-ﬁ ¥ q:l <q' [exp [3 2] g >
exp I:% z~<_1] 5(a'-qtx)

it follows, after making the dummy variable substitution g - z, that

:i
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<0y Q2> = fd_z_MdEdldﬁ'dZ' al(_g,z,t)ag(ﬁ',’y_’,t)

(x) exp [ = @-M':zﬂ <zlglzx-x' > (4.19)

(x) exp E _Z.-(z+z€| exp [ 5 z-z] ’

Now defining a new quantity QX(_P_)E:T') by

an( (p,a,t J]dxdy on(X,y,t )explz?l (x-pty. qE| (4.20)
or by its Fourier transform
6N :
an(x,y,t) = (—%) ﬂdgdg exp l:_’% (5._+_._c1):|QW(£,g,t)
2 (4.21)

and substituting the latter into (%.20) yields:

1 \L2N
<0 Qo > = (——-—ﬂh> dz dpdqgdp'dq’ dxdydx'dy"
5 et SANE VA iV A

This result may be simplified further by noting that

3N x! 3N
dy' exp |: z-g' - "El = (2)7 &(2z-2q9'-x")
21r/f1> f 2 (4.23)
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5N .
(2;1 fdz =P l:%l y(z-x'-g - %] = (E)BN 5(2_2_'22'—2(_1-3(_).LL )
(k.2

Hence,

6N
1
<Qy Qo> = (E) deMdgdng’dg’ <E|P|_z_+2g-2g' >

(x) 0.(2,a,%) 02"(p',g' ,t) exp [—%gx-eyug'-egﬂ (1.25)

(x) exp |- %g'-(g-g’]

Upon setting

and g' =g -7 (L4.26)

Le?
]

e’
|

Juee

Equation (4.25) transforms into

6N
<Qy Q2> = <% fdgﬂ[fdgdgd_@_dn <5|p|_g+23>

(%) 929(p,0,%) E‘5°VP c1Ta Qew(g,g,tﬂ (k.27)

(x) exp[ pﬂ]exp[ &(qu]

or

<Qp Q2> = <%>6Nfdgmdgdgdgdﬂ < EIPI_Z."'EII >
(%) expE% 5-(5+@ 1¥(p,a,t) {xp E;’ji( pe1-g- gﬂ (4.28)

4
(x) exp [’é“ Vg p"vp V;| QZW(E:Q;JG)}
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If we now integrate the above equation by parts with respect to P

and g we get

< 0y Q2 > =<ﬁfﬁ/@lﬂf@@@ﬁ<ypgﬂn>
(x) exp [ Z+ﬂ-q€| epr: plzl [;ll 2{,
(4.29)
: Ga)mf o] oy <o l,mg'.g .
b oot

Finally, the additional transformation of variables

o= a-3 (1.50)
and
Z
29" - z' = g+7 (4.31)
yields
2 lwna -t lpiad
<0y Q> = (522) | dz dpdg <g - 5 I,,[g +t5 > .
.32
A, (4.32)
(%) eXPl: ][ (p,a,t)e 21 Qaw(g,g,tﬂ
or
g A
251
<Q 02> = ]fdpdq o(P,2,t) [ 21"(p,9,t) e j (L.33)
Specifically,

Equations (4.2) and (4.33) are thus our basic results

we have
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(01 Q2)y;, = Quw e Qo 0 (k.3L)

As indicated previously, the Weyl correspondence for an arbitrary func-
tion of P and R can be derived from (L4.3L4) by meking use of the follow-
ing results:
(1) If Q = C where C is any constant, then from Egs. (L4.16) and
(A.12)
o(x,y) = C8(x)8(y),

so that Eq. (L4.20) yields

@ = C (4.35)
(2) 1If Q= Q(R), i.e., independent of P, then from Egs. (L4.16) and

(4.20)

(x) Tr{;Q(R)exp - = (§'E+X _il} ( )
k.3
3N
= (ﬁ) [[dzc_d_z exp [E (5 Pty E)] qutg(gl)
(X) <<1"6XP - = (.}_( + ) ]g' > e

Furthermore, in view of Egs. (A.11) and (L4.18),

(e = A - (L.37)

(%) Finally, if @ = Q(P), i.e., independent of R, then Egs. (L.16)

and (L4.20) lead to



(4.28)

Moreover, noting that
-
<g'lp) |g™> = fdg 5(g-a") 0 (7 Vo) 8(g-2")

BN ﬁ i "
2:;1) j]dgdg 6(.5!-'&')9'(; V‘g) exp I};—g -(g-ggl (u59)

SN
2" st [ 101

and again making use of (A.11) and (4.18), yields

o(p) = 9p (L. 40)

after a few straightforward operations. As an example, consider the

Hamiltonian for a velocity independent potential:

P2
HP,R) = — + V(R
(2R - Z+vm.

In this case it readily follows from Egs. (4.37) and (L4.L0) that

9 = Hpd = L+Wg - (4.41)

Equations (4.34), (4.35), (L4.37), and (L.LO) are very convenient and
lead immediately to an expansion of {; in powers of A. Hence, a canonical
average can be obtained as a power series in fi. In principle, this can
be done to any power, but for most practical purposes the method will be

useful only when a small number of terms gives a good description of the
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system, i.e., for "quasi-classical" systems.

4.2 WEYL'S CORRESPONDENCE FOR HEISENBERG OPERATORS

Consider now the Heisenberg operator

o(P,R,t) = exp EHt] 9(P,R) e [ 1;% . (L. L42)

It is possible to obtain a prescription which relates QW(E,g,t) to
O"(p,q) by application of Weyl's correspondence [Egs. (L4.15) and (4.20) ]
To this end, note that expressing Eq. (4.16) in a coordinate representa-

tion and meking use of Egs. (A.1l1) and (L4.18) results in:

o x,y,t) = \) qu’ < g'|%B,R,t) [g'+x >
(L.b3)
(x) exp |- E—z-g exp -%z-g]
2h
Moreover, since
BQ -
L (BRt) = = [LA(B,R,)] (4. k)
it readily follows that
aa . 1 N
at (x,y, t) = %:(E;£> u/\@ﬂ' < gv|[H,Q]|g'f§ >
(4.45)

or

- 3N .
3 (BLt) = %(——) qu<q-g|[H9|q+ >exz>[;1«1-lz_:l

(4.46)
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where

ho
I

ha
+

Nl

The matrix element in (L4.46) can be evaluated in a straightforward

manner to give

2
<almely > = (579 <alala >
(4. %7)
+ < qlela> (@) -v(e)] .

In the particular case

@ = a-3
- =772
(14.48)
X
Q= g+‘§- )
the difference of Laplacian operators simplifies to
2 02 = 2y . bk
varla Vq'lx (4.49)
and
X -
Wats) = exp [ﬂg-@ %) (1.50)
Hence, Eq. (L4.L46) becomes
N
X 1 1>5f 1 s = x x
- t) = —{(~—~— - =y . <qg-Z=Qlqg += >
5 (505t) el o dg exp |- ¥ 14| VqTy <a-3lola+3

B =

. 2N ' |
1 1 x é

(@{ﬁp&&@]W%-&pE%i&V@%&~
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Furthermore, since

et
- <Z)Z?§quexp -%z-g:l<g-§‘lﬂig+‘§‘> (1.52)
N a
- () () p T, olxyt)

and

h =
=quexp -%Xg]<q-‘%m|q+%>exp -——VXV:}EIV(g)
o] (4.53)
= (2) ™" ofx,y,b) ex [—— V’J wd

1 S i - Eﬁ >
at=-b—dz-vxa-?la{exp[-zévl‘7]v -expl: VX]

Double-Fourier transforming the above equation and using (L4.20)

yields
W
oQ 1 =2
5 (at) = ﬁ_[f axdy ofx,7,8)p- Vg ex® .E*Z'g)]

- %ff dxdy ofx,y,t) exp El; (E'ETE)]

(x) [xp ‘VAX V(5) - exp( EqV)V(-—E',

z (

h

E

=

(4.55)
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or

For n > 1, it can be shown that

-— A e =  2n+l <
Hw( E'Vq- q'v ) = -Hw(vg

V) ) (L.57)

and

(5) (Vg V)
n-':l (2n+l) ! M q P
N (4.58)
- HWZ ﬁ)2n+l g_l)n (?V—A .;)21’1+l
: D 32 8 B
o0 (2n+l) !
= H,sin (g A)
Thus, Eq. (L4.56) takes the form
o 2 f
% (B2t = g Bysin (5 4)0%(p,g,t) (%.59)
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which, when solved formally, yields

M(p,q,t) = expE%E H,sin (g 4{] "(p,q,0). (L4.60)

As a corollary of Eq. (k4.60), together with Egs. (4.37), (4.40), and
(4.41), it can be shown at once than when Q¥(p,q,0) is set equal to p and

g respectively,

b = b0 = HAp(O) = -V (1.61)

and

4 = 4,00 = Ehgl0) = VpE . (L.62)

Thus, as asserted previously, the c-numbers g and p satisfy Hamilton's
equations of motion, and may be interpreted as classical dynamical var-

iables.



CHAPTER V

THE QUASI-CLASSICAL TREATMENT OF NEUTRON SCATTERING

5.1 INTERMEDIATE SCATTERING FUNCTION IN THE WIGNER REPRESENTATION
Because of the appearance of a trace in the intermediate scatter-

ing function

N
x(Ap,hT) = N-* }; Tr{}a exp [} % ép-R%]exp [% ép-Rj(h{ﬂ]-
i,j=1

introduced in Chapter II, the value of the function will be independent
of the choice of representation relative to which the matrix elements
are defined. Specifically, using the Wigner representation [Eq. (L.33) ]

discussed in Chapter IV together with Egs. (4.37) and (L4.60) yields*

N
: B
1 e
X(ép,hT) = N-1t }Z Jéf\dgdg pw(g,g) {}xp [E % AP'E%J e 21 QW(E’EfT{}

i,4=1
(5.1)

where

O(p,a,m) = expler stin(gl A) Jexp [% Ap-gﬂ . (5.2)

Or, since

h
. i 21 A
exp|- -f-l-_ép,gi e

1]
Y
Lo
I 1 I
][ Ol
=
R
v
o]
|
>
3
"d<
T

*Unless the contrary is explicitly indicated, all configuration and mo-
mentum coordinates are evaluated at t = O.

b7
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then
N
x( Ap,AT) = N-t Z ﬂdgdg p, (2,9 exp [— %Ap gl:l exp E Ap ’%;I
i,4=1
(x) ap,q,87). (5.3)

It is interesting to note that if V is quadratic or of lower degree

in g the operator

and Eq. (5.3) reduces to

N
x(Ap,hAT) = N~ z [[dgdg py(2,9) explz %Ap-ggl exp t:% Ap?l};]
(5.4)

i,j=1
(%) exp Elgp-gj(fnﬂ

where use has been made of the Taylor series expansion property

exp ETHWJJexp [% Apagﬂ = exp [% Ap-gj(’h{l : (5.5)

In these cases, the expression for p may be obtained in closed form
(see Appendix C) and the calculation of y(Ap,AT) is straightforward, This
is illustrated in Chapter VI, where Eq. (5.4) has been used to calculate
S(Ap,e) for a monatomic liquid based on a model which, in essence, con-

sists of a combination of harmonic and free gas-type motions.

5.2 ASYMPTOTIC EXPANSION OF y( Ap,HhT)

Except for the special cases mentioned previously, an exact solu-
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tion of Eq. (5.3) is impossible for the following reasons:

(1) The operator exp[27Hﬁsin(g A) ] acting on expl p-gj] yields

i

ﬁ——
an infinite series; and

(2) o, (p,9) can not be obtained in closed form, although for &
"quasi-classical" system a series expansion in powers of %2 is
possible. A similar expansion in powers of # for the rest of
the integrand in Eq. (5.3) is not possible, however, because
it contains an essential singularity at the point ¥ = O.

A1l of these considerations lead us to attempt, then, an asymptotic

expansion for Qu(p,q,T). The term expl- % Ap-g; ] is retained in toto.

To determine the form of this asymptotic expansion, we note that

exp 2'ersin(%l Aﬂ = exp[T(RHA+A) ] (5.6a)
where
- 2en+l
_ (-n)" (b TN
A = -22 m<5> (Vv vp)(\‘/fq-vp) . (5.6b)

n=1
Moreover, making use of the identity (A.1) and Egs. (A.2) and (A.3) as

proven in Appendix A, we get

ht T
cplr(bmarn) ] = o " er(n) (5.7)
and
A y(yr(,  r(r0) =1

oT

where
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-TA -1 .
Y o= el Z L pma, a0, &
(5.8)
(BHA,A), = [AHA(RHA, A 7]

and
(AEA,Al, = A

Equation (5.8) may be integrated formally, leading to the integral

equation

r(r) = l+f'r(T')P(T*)dT'

which is readily solved by Picard's process of successive approximations,

yielding

T

- i T1 m-1
r(r) = 1+ z fT(Tl)dTlf Y(Tz)dTo - (1) dmm, (To=1)°
m=l o © o (5.9)

Observing, however, that each term in the sum in Eq. (5.9), when
operating on eXpL% Ap.gj], generates an infinite series in powers of #,
of which the lowest is ﬁp, we can write

QW(E:E:T) = exp[T(hHA+A) Jexp l:i Apg:] = f£(7) [1+hF () -}vﬁaFg( )4 e ])
(5.10

where

£(1) = exp[ATHyAlexp l:% Ap- gﬂ (5.11)
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and

H
—
O
N
1l
i
ke}

o
el
o
(@)
N
|

exp —%Ap-q.
£

F,(0) = 0, for n>0

(5.12)

The terms in the expansion (5.10) may be evaluated by substituting this

equation into (4.59), obtaining:

£( 1) [AFy () +82Fo( 1) ++ v ] = £(T)AHA[LHEF (1) + - - ]

(5.13)
-Z LM 2m+1) ! {f( ) [1+8Fy (1) + BZFo(T)+ ]} = 0
m=1 :
where
. OF
Foo= S;E

Grouping terms with equal powers of %, by explicitly taking into

account that

_h2m+l.HwA2m+l [£( 7) Fn( ) ]

2m+1 S, ,e > . 2n i iT
%a) (VqV. Vp) ( Vg Vp) {Fn( T) exp l;ﬁ Ap-gst R Ap+pj;

(5.14)
1AT2 1R273 | o
o AP'quV - T (Q-Vq)(_éP'VqJV)+ ]}

F[C

yields the following set of differential equations for the first three

terms in the expansion (5.10):
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Fi(7) - HAF(T) = O
Fg(T) HAF(T) = | (5.15)
Fo(7) - ( . BECEAVEEICE

The solutions to these equations, with the initial conditions given by

Egs. (5.12), are

Fi(1) = Fz(1) = 0
(5.16)
. 4 .
Fg = - —— (4p"V_)2(4p-Vy V) o
3 e (4p qj) (4974 V)

Hence, Eq. (5.10) may be expressed as

O(p,a,7) = eXP[ Ap-g. ’ﬁT] l:- 6;123( Ap- Cl) *( sp- quV ) +0(8%)],

(5.17)
and inserting this result into Eq. (5.3) yields
x( Ap A1) = N-lZ <exp[% :‘exp[ Ap: V:lexpl: Ap- qJ(‘r’rr]
- yons \ (5.18)
JiaT V)% ap- 4
(x) [ T (T, ) a7, V80| S

where < >, denotes the phase space average over pg. Equation (5.18) is
the desired asymptotic expansion. As shown below, the contribution of
Eﬁ(ﬁo) from the term containing Fg(T) vanishes for randomly oriented sys-
tems. Retaining only the leading term in the asymptotic expansion, which
still contains #i, and using the ° term of p,, &ives what we call the

"quasi-classical" approximation,l2 The first correction is of ©{%2) and
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comes from the %2 term of p,- The next term is of B(B4) ; one contri-
bution comes from the #A* term in Py another comes from Fs and F,. How-
ever, we consider only terms as high as 72,

Note that Eq. (5.18) still contains an essential singularity which,
for the diagonal component of y, is only apparent since in this case
(i=3) ; the term expl|- % Ap.gj] is cancelled out by the first term result-
ing from a power series expansion of gj('frr) . It is shown in Appendix E
that only in this case is it possible to have a power series expansion
for x. Hence, the following discussion will be restricted to direct
scattering. This is not considered a strong limitation, however, since
all the information concerning target dynamics is contained in this por-
tion of the scattering function. (See Chapter VII for further discussion

of this point.)

5.3 RANDOMLY ORTENTED SYSTEMS

If in the term involving Fg(T) of Eg. (5.18) we write

o
Ap-V = Ap| ——
APy ulap| S
where
L= Aedy
|APHQJ'|
then

i 1 N — :
< exp EE _ép-g_gl exp I:-Q- _A_p-vpl Fq exp Eﬁl- Ap'gj(&‘m‘i—' >Tw
(5.19)

it 3 d% it iTADZ ,
v < 13| ap| . exp I:—M-— _A_p-_gﬂ Sy €XP %I%I-p_ + Ol8) -
J
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Moreover, for a randomly oriented system, X(épfﬁT) can depend only on

the magnitude of Ap. Consequently,

1
x(toAr) = (lselAm) = = fx( |ap| AT Ay, ¢

It follows readily from this that the first term on the right of (5.19)

vanishes, and (5.18) yields

xg(Ap,AT) = < exp [— -;; Ap-gﬂ exp EAPW\PJ exp [%Ap-gj(ﬁﬂ >y + O(0%)
(5.20)

Introducing now the expansion [Eq. (4.12)] of the Wigner distribution

function into Eq. (5.20) results in

: N ,
x(Ap,AT) = < exp E -;; Ap-ggl exp[% Ap-ijexpE-l Ap-gj(hT)jJ >0

2 i 1 N s
+h < equz 7 Ap-gﬂAg e@{:E Ap-vpj:l expEl-l Apogj(h-ril >TC

(5.21)
+ O(aY)-
Here the phase space average is performed with respect to f% and
l S
exp| 5 Ap-Vp,]qj(t) is the vector position of the jth particle at time t,
2 3

subject to an impulse at t=0 of the force

Ap
=imp T 5 8(t) -

The above result is extremely useful because the corrections of order
$2 to the "quasi-classical” limit come only from p,+ Note that this der-

ivation is quite self-consistent in that corrections of ff(ﬁ%) and higher
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could be obtained in principle by straightforward extension of the ma-
nipulations carried out so far. The analysis becomes laborious, but at
least the procedure is well defined. However, if correction terms of

&(8%) to our approximation are important (as is the case for near ab-

solute zero systemslB) , this approach is likely to be poor anyway.

5.4 CORRECTIONS OF Cf(#2) TO THE "QUASI-CLASSICAL" APPROXIMATION

As previously observed, the second term in Eq. (5.21) gives quantum
mechanical corrections to our "quasi-classical" approximation and con-
tains all powers of #, the lowest being of 6(‘1&2) . Note, however, that
retaining terms of order higher than 7% is senseless, since these terms
were neglected in the expansions of both Oy and p,. Thus, expanding
gJ.(’hT) in Eq. (5.21) in a Maclaurin series and ignoring terms beyond

@(ﬁ) yields

2 1 1 = i
A= < expEZ ép-gi] As exp I:E Ap-Vp:]exp [—:% Ap-gj(’fnﬂ >TC
_ iTAp2 2 it _18%® iTAp2
= exp EEM :] < A%As exp [ﬁ_ Ap P"jjl >ma et ey

iT
. — . + Zl‘l °
<(Ap ngv) Az exp | == Ap _Izﬂ > E(44)

Again, for a randomly oriented system, the term of J(%®) vanishes

and
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A2 < expl- L Apeq.|As e AV exp |= A >
p|- z 4p-gy|he e | 5 M- P | = Ap- gy -

= exp |iT Ap]<ﬁ2A2 exp 1TM -Ejjl me t + O(n%)

2M

. Ap# ir
- exp ET —E-—MJ < exp [M— _A_P',E;] >pe + O
B . Ap ; iT 3 3
= exp |iT F— | | 1(£j;gj)eXp pr'ép'gj d de 94

. Ap iT 4
- exp E_‘T ———gMj < exp [ﬁ_ Ap-ggj >po + O (A*)
where

3 - 27r
2 (F e [- PP |[ny(q « BB L _i_ ] )
tepa) = (B ow [- B jmtay + 2 v-1)

(X)fnz(qJ,HqJ VE Azt + jl

Ap2 i
= e@ iT ‘:'E-— <( l‘l"fl2A2+o ° o) exp [ﬁl _A_pegci, >TC
(5.22)

is the singlet specific distribution function evaluated in Appendix B

[Eq. (B.k2) 1.
Substituting this formula into (5.22) and performing the indicated

operations yields

/h2<exp[:";-ll\p ]Ag e@liApV]exrpii Ap- 43 h'r] oC
2
- -2 <ﬁTAp ETAP] e p[ Thp” (5.23)

(x) /f na(gy,r+ay)v 3 #(r)a’r a%q; + G5

where the classical specific doublet density distribution function ng has

been replaced to first approximation by the actual doublet density distri-
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bution function ny after noting that [see Appendix B, Eg. (B.26) ]
Nno = ng + @'()ﬁ?) 4
It is conventional to rewrite this quantity according tolL2

(N-1) ny( qJ,r+qJ)d3r quJ = (N—l)n(g_j)nz(gj |_1:+9_j)d3r quj (5.2

where

(N-1) ng(gj |£+_c_13) asr

is the probability of finding a second unspecified particle in d3r about
r given that the jth particle is in gj and n(c_lj)d?’q_j is the probability
of finding the jth particle in daqj about 4j- In a fluid, npo can depend

only on I_I_'*'_(ij"ﬂ_j‘ = r and Eq. (5.24) simplifies to

(N-1)np(r)dsr d3qj = n(gj) g(r)asr d3qj (5.25)

where g(r) is Just the familiar radial distribution function obtained ex-
perimentally from X-ray scattering. Substituting this expression into

(5.23) and integrating over 4; results in

N . ] l . .
412 < exp [— % Ap-gi Ao exp Eg- _A_p-vp;,exp E’—l_A_p-gj(/hTﬂ >TC
(5.26)
. =1 T2
/hTA> E%ﬁﬁ expl: AP:If V2 yﬁ(r)d r + O(8%) .,

Thus, the intermediate scattering function is given as
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1s(Ap,B7) = < exp {E 7 Ap-gﬂ exp [% Ap-'fp;l exp [% Ap- g (’ﬁTﬂ e
" (5.27)
_B < TA exp Ij :j [

2Ap]f V2 r)d3r +0(8) .

Since quantum mechanical corrections to certain thermodynamical quantities

contain the factor

fg(r)vi d(r)asr

it is possible to obtain an expression for (5.27) in terms of the devia-
tions of these quantities from classical behavior. 1In particular, the

observation tha.tl5

h25

c ¥ oy g(r)V§ #(r)d%r + o(a* (5.28)

where F 1s the Helmholtz free energy, leads to the following alternate

formula:

XS(Ap,‘flT) = <exp[% :l [: ApV]exp[ Ap- 93 ’frr:l e
_ TAP (FF)exp l:lTAp1 l: 2APj| 6

5.5 PLACZEK MOMENTS

(5.272)

A consistency check on the above results 1s provided by the moments

introduced in Chapter III [Egs. (3.41) ]

o'bl

n a¢
(-0" 55 naltp ) g ©
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Substitution of Eq. (5.27) into this expression yields

—

€8 = xs(4p,0)

and

::'—5 _ _(_i)n+lﬁn-l (

A
BAP] < exp [B p:l exp[ Ap- q]
(%) 2.7 3 .\;},_ln-

T a7V p| L’p AP—J eXPIﬁAp qJ_l C (5.29)

n =, a2 AT ,
2 . 16 Ap A
(X)——T—{\T eXp%—-(j __._) 2P l’r=0+ O(a7), forn>1o

The first few moments may be evaluated by tedious but straightforward

application of these equations, and are given by:

m
7))V
I
v
lro
=
Lo
o
I\N
+
n
rl N
=™
AN
<3
Q0
v
<3
o
lﬂ‘/
.i,
Y
Py
=4
D
L=
-+
4?‘|>
Le]
i
e

2 &P4 4
Ap <K>+@I§}+ 7(1*) (5.30)

4N

ool
0w
I
\ Y Q——,\‘——") (__/—.
3
'S
AN
=
A\
+.
3
0]
N
C>
kel
V]
A\
<J
V]
<
\Y%
>
+
X
&
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Equations (5.30) are indeed correct to eﬂﬁﬁ), as may be seen by com-

parison with Eqs. (3.46) of Chapter III.

5.6 TIME-DISPLACED PAIR DISTRIBUTION FORMULISM

In order to obtain further information from Egs. (5.27) on the atomic
motions of the scattering system, one may resort to specific dynamical
models leading to a soluble Hamiltonian. From these models, values for
the angular and energy distribution of the scattered neutrons can be pre-
dicted, and these predictions are then subjected to experimental test.uB’hh

There is, however, an alternate approach which does not require any
assumptions at this point on the dynamics of the scattering system and
is based on the physical interpretation of the function Gg(r,t) obtained
from Van Hove's Gg(r,t) according to Eq. (3.5). The plausibility of this
approach resides, then, in the possibility of establishing a relation-
ship, if only approximate, between the direct scattering cross section
and this "classical" GE(r,t).

One such relationship was suggested by Vineyard,7 who proposed that
the classical limit of the direct scattering differential cross section
could be obtained by substituting Gg(z,t) for Gg(r,t) in Eq. (2.36).

Thus, for a monatomic and monoisotopic system,

0
1 -1 e
SSv(AP;G) = .2—1.11\‘/\ «dT e leTX.g(_A_p}hT)
-00

(5.31)

(0]

i et
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That this approximation is unsatisfactory may be seen from the results
of Appendix D, where it is shown [Eq. (D.12)] that in obtaining G5(r,t)

by setting h

I

0 in Gs(fyt) zero momentum transfer is implied (since

k = Ap/h and k was kept finite). This is further illustrated, also in
Appendix D, by considering in particular the case of the ideal gas for
which it is shown that although the cross section is entirely classical
(in terms of the significant variables Ap and €), Eq. (5.31) yields the
incorrect result.

Equation (5.31) was physically interpreted by Vineyard as corre-
sponding to a development where the neutron is treated gquantum mechan-
ically and the scatterer classically. The frequency of the wavelets
contributed by each atom of the scatterer at each instant of past time
is given by the frequency of the incident wave modified by a Doppler
shift, which is occasioned by the velocity of the scatterer at that in-
stant without allowing any reaction of the neutron on the scattering
systemn.

Additional evidence of the inacceptability of (5.31) is provided by

observing that the symmetry condition

Gs(r,t) = G5(-z,-t) (5.32)

implies that the scattering function calculated from Gg(z,t) will obey

the relation

Se(sp,e) = S§(-Ap,-¢€) (5.33)
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thus violating (as shown by Schofield) the constraint of detail balance
and the Placzek moments. Nonetheless, an improved prescription which
relates the cross section to G5(r,t) and does not suffer from the above
mentioned difficulties may be obtained. To this end, we integrate (5.27)

by parts to get

1g(Ap,HT) = exp[—

BAPZ] < exp{fL Ap: —Q-(h’r) =g, - Eﬁé P]}>
B =P =) T oM = IC (5.34)
B (»mp [mp] . T;Aég] f g(r)Vz #(z)a’r+ G5 -

Furthermore,

_ig, igR\| - i z 1§f1 1l DA,
em[hépgj(gﬂ exp[hé ( E (5.35)

where
S-S
YT at™ gt )|t=o *
Therefore
1 iph _ i 15‘1’1
- 6%2 ) P ) 53ﬁ2 .—A .
128M7 (4p VqJ'V) L8M2 (p-Vg) (ap quv)_
(5.36)
+ @(‘ﬁaﬂ L4

Substituting this expression into (5.34) results in
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h 15°h
BAp]<exp{ Ap- [q(h’r) q(lB ):l}; + lgM Ap-vqjv

( P 53h2 -
8p-Vq, V)" - s (p-Vg) (4p-Vq,V) >, (5.37)

xg(&p,hT) = exp[

B4h2
128M2

ﬁ 2 D
) g’ (hgbAff) eXPErﬁp_] eXPEI:TAé—z] fg( r) V}%_é(z)dsr +O(n3)

or

- BAp= iph
xs(Ap,hT) = expE < exp{,fl El (Br) - -4; ( Z‘}>TC
BApZ | ig>A
+em)[ ] <APV%Vem>[ Appﬁ:ﬁc
_ Bup?| o, B2 B 2esp| 2 - 18) p-
+ exp._ 8MiJ(72 + 8 ) OE < (Ap.vng) exp EﬁT 5 ) Ap Ei %C
e _ pip?| pon2 <( v )(Ap-Vq. V) (T A .i8
- -t e e - _ o
® _ 8M:} L8MB L S ) £p- 2 TC

_g hTAp [_J_.lé;p_:l [ 2AP]fg( dSI' + Q(13)

By the same argument used to justify Eq. (5.20), it can be shown that
for a randomly oriented system the second term on the right of (5.38) and
terms of ©(h®) will vanish. The third, fourth, and fifth terms can be
combined into one since the mean values involved are connected by the

relation

. |
< VP> = = <v2vu> (5.39)
9 TC B 4 TC

which readily follows from applying Green's theorem to the identity

lff \ . lff o

- dadp V, (V4 V = = pdq (Vg V-V

7 q0p qj(qj e ") Q(qJ qJe )
+—/fdpdq(eBHV V) -

(5.40)

Thus,
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Béﬁz‘_”g exp{% Ap- E_lj(ﬁT) —gj(-i-gﬁ— {I} >
+ <ﬁ - iT - B) <h ls> eXP[ 1B 2Ap (5-hl)

(x)fg(r)V% é( r yasr + @/ﬁ‘l

xs( Ap,BT) = eXpE

Moreover, due to time translational invariance

< exp {% Ap- Eij(_ﬁﬂ -gj(i—gE il} oo = < exp {‘h Ap- E('ﬁ'r— —;ﬂ) - g;\}>TC

(5.42)

and after a simple transformation of variables, Eq. (5.41) becomes

xs(bp, BT + —i-g—f—l) = exp[— %%2-] {xg(Ap,’ﬁT) + Z)@M>
(5.43)
(x) expE T;ﬁg]f &(x) V% H(p)a’r + (1)
where

xs(hp,T) = < exp {% Ap- l:g_j(fw) -g;l} > (5. k44)

It is interesting to note at this point that the function
igh

xs(_A_p,‘ﬁ'r + ——2—) satisfies the required condition

iph i
r(op,Br + B o x(pp,mr + 2B

[see Eq. (3.22) ], and that the essential singularity in (5.44) is only
apparent and disappears, as indicated previously, when expanding gj(h’"r)

in a Maclaurin series. Furthermore, multiplying both sides of (5.43) by

1

5w exp(-ieT)dT, integrating over all values of T, and making use of Egs.
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(3.20), (3.27), and (5.31) yields

Ss(_:gp,e) = exp[%ﬁ}expl: 5APJ > fdr exp[ Ap- r] de e-ieTGg(f_,‘ﬁT)
bid -0

(23 BAp gils} € MB Ap 5
e [ :| l: ] 12 <21rMAp > (
(5.l+5)
:I f V2 dsr + 6 .
2Ap2

We thus obtain explicitly the factor exp (g§> essential to satisfy the

o o[ 2

condition of detailed balance. Equation (5.45) is our sought for con-
nection between Sg(Ap,e) and G§(r,t). The first term in this expression
is the form suggested by Singwi and Sj'o'lalrlder,llL who speculated that it
might be correct because it works exactly for the ideal gas. It differs

from the Vineyard prescription [Eq. (5.31) ] by the factor

o[£ 28]

The order of magnitude of this correction is illustrated in Figs. 1-L,

where a comparison is made between the direct differential scattering
cross section for some simple systems, as calculated by the Vineyard
prescription, and the cross section obtained from the first term in
(5.l+5).]‘7 The differences are seen to be significant, particularly at
high incident energy.

For sufficiently high temperatures the second term in (5.45) is
negligible and, in analogy with Eq. (5.27a), may be expressed in terms
of the deviation of the free energy from its classical value. Accord-

ingly, we get the following alternate result:
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-IDEAL GAS -

100 rrrrrr 71 1
frrrTrTr 1 1

—— Vineyard's Prescription

--- Eq. (5.45)

DIFFERENTIAL CROSS SECTION—-ARBITRARY UNITS

l .0l .00l
<+— OUTGOING NEUTRON ENERGY (ev)

Fig. 1. Differential scattering cross section versus outgoing neutron
energy for neutrons of incident energy 5 x 1072 ev scattered at 90°
by an ideal gas of mass 18 at 295°K.
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- IDEAL GAS -
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—— Vineyard's Prescription
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DIFFERENTIAL CROSS SECTION - ARBITRARY UNITS

Ol 0] 00!
<+—OUTGOING NEUTRON ENERGY (ev)

Fig. 2. Differential scattering cross sectlon versus outgoing neutron
energy for neutrons of incident energy 0.1 ev scattered at 90° by an

ideal gas of mass 18 at 295°K.
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-LANGEVIN DIFFUSION -

100
—— Vineyard's Prescription [\‘
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<— QUTGOING NEUTRON ENERGY (ev)

Fig. 3. Differential scattering cross section versus outgoing neutron
energy for neutrons of incident energy 5 x 10~ ev scattered at 90° by
a system of particles of mass 18 diffusing according to the Langevin
model at 295°K.
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—LANGEVIN DIFFUSION —
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—— Vineyard's Prescription
--- Eq. (5.h45) ]
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DIFFERENTIAL CROSS SECTION — ARBITARY UNITS

.0l | ol
<—OUTGOING NEUTRON ENERGY (ev)

Fig. 4. Differential scattering cross section versus outgoing neutron
energy for neutrons of incident energy 0.1 ev scattered at 90° by a
system of particles of mass 18 diffusing according to the Langevin

model at 295°K.
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SS(_A_p,e) = exp[-gg]expl: BAP:l {2“ fd rde exp[ Ap-T- e‘I’lT] Gc(r AT)

1
B (LN (p _ €2 APZB 4
+6<2WAP2> (F-Te) < 2 8M ]} - 0x)
(5.46)

T

Detailed Balance and Placzek Moments.-—Because of the symmetry con-

dition [Eq. (5.32)] on GS r,t), exg)[: :] s(Ap,e) in (5.45) is invar-
iant [at least to {J(B%) ] when interchanging the initial and final states

of the neutron, i.e.,

exp [— %] Ss( Ap,€)

Consequently, the condition (3.28) and its corollary, the principle of

E-E- Se(-Ap,-€). (5.47)

detailed balancing, are satisfied. Furthermore, as previously indicated,
Eq. (5.45) was derived essentially by adding a given quantity to the
first term in (5.27) and substracting the same quantity from the second
term. Therefore, Eqs. (5.45) and (5.46) will also satisfy the Placzek

moments [Egs. (5.30) ] to EﬂiFﬁ.

5.7 OTHER PRESCRIPTIONS
In the light of the above analysis, it is possible to critically
examine various other "prescriptions."

(a) Schofield's Prescription.-—From the observation that the time

correlation function F(r,t), defined by

1 Sf 3 I i iph
Fr,t) = (— aca - = Ap: Ap AT + — .48
(r,t) (2Tff1> P exp| - = Ap z:l xs(tp AT + =5=)  (5.48)
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is real and that its double Fourier transform satisfies the condition
(3.28), Schofieldd suggested that this function be made equal to GE(r,t).

This leads to an expression for Sg(Ap,e) which, with the exception of

the BAp2 . . .
e factor exp | - o | s equal to the first term in (5.45). There-

fore this approximation will be valid only for small momentum tr&nsfers
and heavy scatterers. Turnerh5 has attempted to justify Schofield's rec-
ipe by making use of an argument which is wrong for the following reasons:

(1) It incorrectly uses "Weyl's rule" for Heisenberg operators.
This results in an expression that can be obtained from (5.27) by expand-
ing the operator exp [% ép-%%é] in a formal power series and retaining
only the first two terms in the expansion.

(2) It attempts to expand a function in powers of 4 about an es-

sential singularity.

(b) Letting Sg(Ap,€) =~ Sg[Ap,e-(Apz/QM) ].53—Since (5.45) is an

asymptotic expansion, clearly it will not be unique. In fact, if in-

stead of integrating

< e}qu(;;L:l Ap-ggl exp I:% éP°—V>p;| eXpl:,ﬁi Ap.gj(’ﬁril >TC (5.48)

by parts in (5.27), gj(‘ﬁT) is formally expanded in a Taylor series and

is operated on by exp'{:%ép-vz)] , it can be shown that
J

L pp. 1 ppeq.( - L ppeg, 1apPr
exp l:_é Ap vpj exp ':ﬁ Ap gj(’ﬁ‘rzl expl__:E Ap gJ(‘I'ﬁil exp {:EM :I

(x) expE 1h7? (ap°¥,) (Ap-¥ '\;il [l + J(7,9 ApEl 929
T ==
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where J(7,q,Ap) is of (4% . 1In this case, the thermal average (5.L49)

becomes

< -1 pp.q. 17 | 1 Ap.q.(#T)
exp[ﬁép gJeXpI:g Ap pJ expEﬁ_p.gJ(’ﬁT) >ne

= exp EAPZT:I< exp[ = Ap- q:| exp[ Apg, (’h'r:,
1’f12 BA A ZA
2 o] of 5] a0

and

2 3 M
s - e 50 (9 () [8 b e - 870}
| (5.52)
(x) exp‘z Eé%;] EXPE§§:IGKP[E

ezMB
| [ a7z fxer + e
Although Eg. (5.52) is also correct to ff@ﬁz) and satisfies the Placzek

moments to this order, it differs from Eq. (5.45) in that, due to the
way the terms are grouped, it does not satisfy the condition (3.28). This
makes (5.45) preferable.

(c) zf Time Approximation.—Based on the fact that Schofield's

prescription does not satisfy the zeroth Placzek moment, it was suggested
by Egelstaffu6 and SchorieldT that, for an isotropic system, xg(Ap,t)

may be obtained from Xg(ép,t) by replacing t2 by y2 = t2-ihtp. In order
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to establish connection between this recipe and the quasi-classical ap-
proximation, note that for a randomly oriented system‘xg(ép,t) is real

and is given by

Xc(ép)t) = X%( lAp"t) = < exp [}_A_P_ (Z.(t) -z ﬂ S
° h :L J TC (5.53)
' 2n
- o[ i) - ) B ) e

where Zj is the component of gj along the direction of Ap and Ap is

chosen along the z-axis. Hence, the formal expansion in powers of épz

{XS )+ (2 + ) ex [ ; Ap] <y V7} z <Ap2 V" ol

5 5k)

is justified. The coefficients Cp(t) may be evaluated from (5.53) by

noting that

0+ g e - DL 3

(5.55)
yielding
Co(t) = 0O
and
Ca(t) = - % EM';_ ) 56; (t% 4112;52) < VIV > 520 5:; iaD TC
+ G9 (5.56)

for the first two terms. Consequently, Eq. (5.43) becomes
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2 2
i Ap® ‘:2 2 BZ h*( >+ %—) 5
In Ap AT+ =) = - ol + -
%g( AP, Sﬁ) P (% 3-) vy <V SV >,
. i (5.57)
a 2 B33 /7 VN
+ + < > o+ 2h8) | +J(apt
= (azazj> o *0029)] +8(ur)
or
— 2 2
Ap2 1 2 ys 5 V>)
JJ Ap AT) = - —— Ze = y4 VSV >+ < >
n xq( Ap A7) e _y o Y 371 T SR 22;) C
u (5.58)
+ g(r%°) | + G(ap?) -
That 1is,
1
2

] + correction terms of E(#2t2).
(5.59)

m xe(|apl,t) = n xC[|sp|,(t2-1%tp)

The first term on the right of the above equation is indeed the y2 time
approximation of Egelstaff and Schofield. Note, however, that because
of the nature of the correction terms, this approximation is valid only
for small values of t. The need for the small time constraint can be

easily verified by applying the recipe to the case of an isotropic har-

monic oscillator for which one obtains

o E Ap® ighw
tn xe[|apl,(t3-iptit) 2] = - —=—— [(1l-cos wt) - sin wt ]
st Mp( ) 2
. (5.60)
+ AP2B [w sin wt _ w2cos wt‘_l poree
Ry t

Here we see that the first term on the right is in fact the high tem-
perature limit of /n Xs( [Apl,t) . The additional terms, however, become

negligible only for small values of t.
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(d) The Rigorous Classical Limit.—In order to investigate the

limiting behavior of Ss(é\_p,e) as A » 0, it is convenient to expand

Xg(_A_p,/«ﬁ"r) in Eq. (5.44) in a power series in AT. Thus,

C =
xS( ap,h) <exp[: =—Ap- pi] o 2 HrE Ap. quv exp[; Ap- p;] C
iA2T3 | Y i
- < (pV)(ap-v Ve — Ap*p.| > .61
= (p o (Lp qj)xpEVI Ap g;l o (5.61)
.,62T4

2 iT . 3
- P <(Ap-vqu) exp [ﬁ— Ap Ej] >’I'C + 083

Performing the indicated thermal averages gives

' 2412 2,442
XS(p A7) = exp[— Tgﬁg + BT . exp[ i Aﬂ /g( )7z #(z) % +@”’ﬁ4 .
2BM 5 62

Substituting this result into Eq. (5.45) yields

1
_ (M \? Be BAp2 _ pMe
0 - (25 o[ ] oo ] o 23] o [
. (5.63)
2 2
] £ Jumrar] - oo
where
E
E = (e®M/8p®)
Ho(E) = E° -1 (5.64)
Hy(E) = E* - 68 +3 .

From Eq. (5.63) it immediately follows that

1

lim Sg(Ap,e) = z explzajexp{: ‘Ap] e plj BMe? (5.65)
A0 Qﬂ P
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That is, the exact classical limit of any system, defined in this way,

is the ideal-gas result. This is physically understandable since clas-
sically the neutron-nuclear collision is instantaneous; thus the neutron
never samples the potential which binds the scattering system (since the
Fermi pseudo-potential is a contact potential). In fact, since the quan-
tum mechanical corrections in (5.63) contain the factor B, the idealiza-
tion to a monatomic gas is not far from reality at sufficiently high tem-
peratures. The rapidity of convergence to this asymptotic behavior is
determined by the factor (M/BAp®) Hu(E), and therefore increases with

increasing momentum transfers.



CHAPTER VI

A CRYSTALLINE DISLOCATION MODEL FOR A MONATOMIC LIQUID

The complexity of atomic dynamics in liquids has been pointed out
in the preceding chapter. In fact, for dilute gases the movement of a
molecule may be considered independent of the movement of the other mol-
ecules. Conversely, for monatomic crystals atomic motions can be re-
solved into independent modes of vibrations. For monatomic liquids, how-
ever, both intermolecular interactions and spatial transitions of the
atoms must be considered. The neglect of either one of these factors
results in simplified models which describe correctly only a limited
group of properties of the liquid state.

It is presently accepted,h8 however, that at least in the neighbor-
hood of the crystallization point, the thermal motion of the molecules
in a liquid resembles that of a crystal more closely than that of a gas.
This 1s substantiated by’the following experimental facts.

(a) In melting a crystal, the increase in volume 1s relatively
small as a rule. Also, the latent heat of fusion is much smaller than
the latent heat of vaporization. These facts indicate only a small de-
crease in the cohesive forces between molecules in the process of fusion
and, consequently, a similarity between inter-molecular relationships
in the liquid and solid states.

(b) A similarity between specific heats of solids and liquids

near the crystallization point further indicates that a liquid, partic-

7
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ularly with regard to molecular motions and inter-molecular forces, re-
sembles a polycrystalline solid.

(c) The existence of a certain degree of local order in the rela-
tive distribution and orientation of the molecules in a liquid, as dis-
closed by X-ray and neutron spectroscopy,l again suggests that the '
character of the thermal motion of the molecules in a .liquid remains
fundamentally the same as in solids.

Conclusion (c) appears to lead to a contradiction. For crystals,
the conception that the thermal motion of the atoms reduces to slight
oscillations about fixed equilibrium positiong‘is in full agreement with
their rigidity. For liquids, on the contrary, this conception seems to
be in disaccord with their characteristic fluidity. Such an opposition
between the solid and liquid states is, however, of a quantitative rather
than qualitative nature, since liquids are known to display elements
of rigidity and order whereas elements of fluidity and disorder exist
in solids. 1In fact, various "quasi-crystalline" models for liquids may
be proposed which still account for their characteristic fluidity. Thus,
Frenkelu9 has suggested that the equilibrium positions of the atoms in
a liquid have a temporary character, each atom vibrating about its
equilibrium position for a certain time after which it would jump to a
new equilibrium position. If the time during which an atom performs an
oscillatory motion is large compared with its period of vibration, then
this jump diffusion cannot affect the magnitude of the specific heat of

the liquid, which remains, in this respect, solid-like.
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On the other hand, if this time is small compared with the time
during which the liquid is subject to a force of constant magnitude and
direction, it will yield to this force in the sense described by the
ordinary process of liquid flow. Conversely, when the time of oscilla-
tion is large compared with the time during which the force is acting,
the liquid will only suffer an elastic deformation, Jjust as in an ordi-
nary solid.

In other proposed modifications of Frenkel's model, the jump dif-
fusion of the atoms from one equilibrium position to another is replaced
by continuous diffusion (simple or of the Langevin type).SO The sta-
tistical character of these models leads naturally to a description of
the atomic motions in terms of the classical space-time correlation func-
tions introduced in preceding chapters;* the formulism of Chapter V for
relating these functions to the differential neutron scattering cross
section is most adequate. In this chapter, however, we illustrate a
different approach for the description of neutron scattering from
liquids. This approach is based again on a "quasi-crystalline" model
for a monatomic liquid, although in this case a soluble time-independent
Hamiltonian is obtained which does not necessitate the introduction of
the classical space-time correlation functions for analyzing the scat-
tering data. The use of the rigorous expression for the cross section

developed in Chapter V for quadratic and lower-degree potentials is ex-

*A self space-time correlation function for a combined vibration plus
continuous diffusion-type motion has been constructed by Singwi and
Sjﬁlander.5l
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tremely convenient here.

6.1 MODEL PROPOSED

It is known that a liquid can propagate sound waves with very little
attenuation or dispersion, but that it cannot support low frequency transwrse
elastic waves. This suggests representation of the thermal agitation of
a liquid by superimposing longitudinal (compression) waves treated as
in a solid and transverse shear waves, so that those with wavelength
above a certain critical value degenerate into translational modes while
those with wavelength below the critical value survive as vibrational
modes.

These features have been incorporated in a model proposed by
Ookawa18 which essentially assumes that the liquid consists of an ag-
gregate of crystallites, each behaving as a kinetic unit which is in
a state of self strain and is stabilized thermodynamically.

The outstanding characteristics of the model are:

(a) The "crystal" is threaded by a fine network of dislocations
in which the dislocation segments are expected to be neighboring at a
distance of the order of several atom spacings and the interaction be-
tween the constituent imperfections is expected to be very strong, to
an order seldom experienced in the field of crystalline solids. This
leads to a distortion in bulk of the lattice material rather than to a

localized distortion st the core of the dislocations.
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(b) The elastic shear strain energy associated with the thermal
shear waves is dissipated by forcing the dislocation segments to move,
thereby resulting in a kind of plastic flow of the material.

For the sake of simplicity, it is assumed that transversal shear
waves with wavelength longer than the average spacing 2 ¢ a (a being
the atomic spacing) between the like dislocation segments degenerate
into translational modes, while thermal shear waves with wavelength
smaller than 2 @ a survive as vibrational modes.

(c) The anharmonic modulation of eigenfrequencies of the trans-
versal waves, due mainly to the shear strain of the material, is tenta-
tively assumed, on the basis of symmetry considerations, to be given by

the functional relation

1
wpi (X)) = wpyy expl- 5 yx”] (6.1)

where x = a/aa is the shear strain, y is a constant coefficient, i =
1,2 specifies the polarization of the wave, and apyy is the natural
eigenfrequency for unstrained crystal corresponding to a wave number k.
This expression may be disputable because it neglects different modula-
tion for waves with different wave vector, dependence of y on the strain,
and its a posteriori variation with temperature. Therefore, it is pos-

sible to estimate only the probable value of y from experimental data.

6.2 MODEL HAMILTONIAN
The Hamiltonian for the model system may be obtained from that for

an imperfect crystal. The latter, in the context of the Born-Oppenheimer
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approximation,51 is given by

3N
p;?
B ) o+ T(Gge (6.2)
51

where ¢ and p denote nuclear coordinates and momenta respectively.
Following the standard treatment of developing the potential energy

in (6.2) as a Taylor series in powers of the displacements uj(j=l,2,...5N)

of the nuclei from their equilibrium positions yields

3N 3N
1
V = Vo + UO + Z <‘g—.§';> ui + '§ Z €i£uiuz +"“, (6.5)
i=1 © i,1=1

in which e, (52V/8qi5q£)o and U, is the configurational excess energy.
The constant V5 can be set equal to zero if the energy is measured from
the minimum of the potential function for a perfect crystal. The terms

linear in uj must also vanish since (dV/dqj), = O is the condition for

equilibrium. Finally, neglecting terms cubic in uy

j as well as higher

order terms results in

Vo= Utz Z €50y - (6.4)
i,1

Within this approximation, it is possible to resolve (6.2) into nor-

mal modes. BExplicitly, applying the orthogonal transformation¥*

UL -XQ (6.5)

to the quadratic form

e(W,W) - Zeizuiuz _Teu (6.6)
L,

*Bold letters will be used to denote matrices.
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~/
(U is the transposed matrix to (L) yields

(U, W = ﬁii’exa =5X'6XQ : (6.7)

Furthermore, if )( is chosen so that
-1
X€X = (nbdiy) (6.8)
(which is always possible because € is symmetric52), then

e(U,W) = ZMQﬁ (6.9)
1

where Ap are the eigenvalues of €.
In a similar fashion,
2 e
pj M « D2 M/;J' - M n 2
Z§M_=§Zuj = 3 W = QQ'E Q- . (6.10)
1

J J
Consequently, (6.2) becomes

=

5N
8- vr ), (B + L ofad) (6.11)
I=1

after making use of Egs. (6.9) and (6.10) and setting wf =N .
Resolving the above equation into longitudinal and transversal modes

yields

N N 2
B Gor) L@l ) ) LoPamPE)  (612)

where Cyp and Dy4 are the longitudinal and transversal normal momenta re-
spectively and Ay and Byj their corresponding normal coordinates. Now,

allowing the transversal modes with k <k, to degenerate into translations
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of the N/a® crystallites results in

2 N
—/ 2
H o= Uo + Z Z MQBKI +Z %}—4 (O AY)
e - (6.13)
1 2 12 2
* Z Z 2w (D M0y B3 )

k>ke i=1

Moreover, since each crystallite behaves as a kinetic unit,

N/a®
e 2 2i T P‘ﬁi
) = Z L (6.1%)
kke v=1

where Pvi is the component of the momentum of the center of mass of the
vth crystallite along one of the polarizations of the transversal waves,

and M> is the mass of each crystallite.

)
Hence N/a® o . N
Py 1 2 2 2
0 M VIR
v=1l i=1 k=

(6.15)

2
_ R
¥ Z Z _21_171 (03 ¥y B
Kk i=1

Equation (6.5) may also be expressed in terms of longitudinal and trans-

versal modes. Thus,

3N N ) 2
k 1 1 k_
(8 = ) Xp&(t) = ) am() +) ) biiBe(t)
k=1 k=1 k>ka i=1
¢ (6.16)
- 2
' ZZ 2538 (V)
ke T
where
gﬁ for longitudinal modes
X_jk = (6.17)

k
Eji for transversal modes.
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The first two terms on the right of (6.16) represent the instantaneous
vibrational displacement of the jth nucleus from its equilibrium posi-
tion. The third term represents the contribution, due to translation,
to the nucleus pesition at time t and is equal to the displacement of
the center of mass of the crystallite to which the nucleus belongs.
The position of the jth nucleus at time t (see Fig. 5) may now be

axpressed as

a,(t) = R (t) +by+ u.(t) (6.18)

where

() ¢ ) ) BB (6.19)

k=1 Kke i=1

[>~1=

uy(t)

§w(t) 1s the position vector of the center of mass of the vth crystal-
lite at time t, and EJ 1s the displacement of the equilibrium position

cf the Jth nucleus from the crystallite's center of mass.

6.3 THE INTERMEDIATE SCATTERING FUNCTION

We now use the above results to evaluated the intermediate scatter-
ing function x(ép,t) in terms of which neutron scattering experiments
mzy be analyzed. For this purpose, note that Eq. (6.15) satisfies the

cendition

(2m+1)
HA = 0 for m>1;

therefore x(Ap,t) may be obtained conveniently from Eq. (5.4) of Chapter

V. Thus, after resorting to the canonical invariance of the Poisson
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_—instantaneous
position of the
j-th nucleus

Fig. 5. DNuclear coordinates for a crystalline dislocation model
of a monatomic liquid.
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bracket, we get

Wept) = 1) <exp -%Ag'(gl(o)@fy_i(o)ﬂ =

or

_l N - .
dept) = 0 ) enpll ap (g2 < exs- 4 1p-2(0)| o 7

() expégp-uj<t> S

Direct Scattering.—In the case i=j, Eq. (6.21) yields

(6.20)

(6.21)
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or

iBh _ B p A 2.t
(AP, t +T) = exp[ ]exp[2w:l exp[ mgahz:'
(x) exp EI%{ [Z (A_P'E«_lj{)g i csch (ﬂﬁmlk> cos a)lkt
k ot 6.2L)
+ Z Z (AP'E§1)2 '—l,—' csch ( 5 kl) cos “)B'kit
K>k 1 Poki
where
ow| = o1 k- coth Bﬁ»lk>
exp[EW} =  exp o g (Ap gj) o1 .
(6.25)

+

- 1
2 coth .
LT et ()
T - _Jl 2ki 2

is the well-known Debye-Waller factor.
In order to obtain a normalization condition for the amplitude vec-
tors, use is made of the Placzek moments introduced in Chapter III; these

o

may be expressed in terms of XS(AP,'ET + 1’3 =) by writing Eq. (3.41) as

— n i
e = (-i)n(%f1Xs(_A_P;‘flT +73£ ip (6.26)
T=- 5=
Thus, Egs. (6.24) and (6.26), yield
. A 2 | Ap2 1 2 k 2
S R A D: (e + ) ) (p)
K ko, 1
or
ApZE = Z (Ap'a + ZZ (Ap* bk (6.27)
i
where k k%o

t = (1-Z3). (6.28)
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For an isotropic medium the direction of Ap may be fixed arbitrarily,
in which case
1 k2 k
£ = 3 (a%)" + (b (6.29)

—J —31
k k>k i

Also, explicit use of isotropy in Eg. (6.24) yields

i Ap® ApEtE | ApZ 2
fn xg(4p,t + “gﬁ) = - Ewé - gMgs - 2M§d5ﬁ2 + 5K (Eﬁg) fl(ﬂik;T;t)

2: }: —Jlo a?k Tt)

Kk, 1

(6.30)

where Wé is the Debye-Waller factor for Ap chosen along the x, y, or z-
axis (o = 1,2,3), and f1(w,,T,t) and fg(a%ki,T,t) are self-defined by
comparison with Eq. (6.24).

Hence,

iph
3n xg(kpyt + =) = 'EZ - 3bp° <8m3 anﬁh) Z

G| ) )T ) ) )
K>k, 1

k

or

A 2 BA 2 APZ-tZ
rp,t + BBy o . Z{: W D _ _ApPt2-
Xs(_p + _2_) exp 3 :} exp[: B | oXP s
° (6.31)
2 T
() et B2 1) ()P v ) ) ()%
K K>k, 1

2
In accordance with Eq. (6.29), the quantities %_ (a?) and 3E(b§1) can
;2 )

be interpreted as the probabilities associated with eigenfrequencies

W and Wy 5 respectively, so that
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s
Z (25)" £1 (0, ,t) Z Z _Jl " falomp,Tt)  (6.32)
TR Kk, 1

represents an average over a discrete spectrum of frequencies.
If, for the sake of simplicity, the frequency spectrum is approximated

by a continuous one of the Debye type, Eq. (6.32) can be replaced by

®p ®p
f ¢L((le) fl(mlkJ T)t)dw]_k +Z \7_/; ¢T(w2ki)f2(a)éki’T’t)dw2ki
o} i C

(6.33)
where wpy = the Debye cutoff frequency
dlon) - 5’“’% : (6.34)
and
bl ) = (1= (wgfo)®] B Ba
eV /% wp? = ¢ op® ‘

Thus Eq. (6.31) becomes

Xs(é_p,‘ﬁ'r + }-S-ﬁ-) = exp[-2W] exp EPA}—)— expl- Apg,w'(T)] (6.36)

8Me
where
®p
1 / B
2W = th —)d
Em% ‘”_DEI oot () (6.37)
_1 rx3/2 “D x o
+g§ji_ f ® coth —B—l@e' 2>da>
wp? we 2
and
(T) = T - £ L wcsch cos( ash/—r
w om®s 2vh | op®
(6.38)
2
o1 yx2/2 @p - 27X _ox2
+ 2t . \K w csch <B—§9 e 2>cos(a)e T‘ﬁﬁr)dﬂ
©p C
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Observe that for an ideally perfect crystal & + « and

éig:, udT) = -21\/;0)])3 [wg csch (Eﬁg—m)cos(afrr)dm (6.39)

6.4 THE DIRECT SCATTERING FUNCTION
Meking use of Eq. (6.36), together with Egs. (3.20) and (3.27),

yields

Se(4p,e) = -%; eBe/ge"2W expE——gﬁéz:l f e'ieﬂre-Apg“/(T)d—ri6 0
-00 40

In order to perform the Fourier transformation in Eg. (6.40) we introduce

53

the following expansion:

[o0] [o0]
ier  =ApEwlT) -ier T Ap2r2 Ap% 2
leT - - Ap7T 2 AP~

e e ar = e exp |- 2 35 [L+Ap2n(T)+ = 1 (1)+...]ar

~ ~o0 (6.41)
in which
n (1) = 2 ) . (6.42)
2MPB
Defining a new quantity,
uple) = L U/‘ e-ieTe'QTa alr) i ar (6.43)
2 ™ n(o)
where
= _Ap% 6.1
Q T (6.44)

and expanding n(7)/n(0) in a power series in T whose convergence is

guaranteed by the conditions

In() | < [n(0) | (6.45)
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and

)
lim n(7) = lim —t = JF a><_§_.- Blo | --i)cos(mﬁT)dw
T->00 T 2Mawp | WD
[ < e’ / e T+--->cos<ﬁa)e T—r)da)

2&'

lim n(T) = g('r‘l) (6.46)

we get

ua(e) = -2%- [ooe'ieT e"Q"r2 exp E 4n <%%§->:| ar

[e¢]

(6.47)
o0
00 ) o — ' )
_ 1 f o-ler e-QT exp nz X_J (i—r)J ar
21 Lo Ji
J=0
The expansion coefficients )x.j may be determined from
J
Ny o= (07 A (T (6.18)
T=0

in particular
M =0 and >"2,j+l =0 for j=0,1,2,....

Modifying (6.47) to read

pne = T f expEle'r'-n >\2+— :IexpEl Tild-r'
(6.49)

and making the transformation

(e + 22) = o1
n
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results in

exp 2

(o) - 1 fm expl:Te . ieT N
n = - — —
2nyn(hg + n—Q) -0 2 n(hz i—Q) =3 Je

-

- J
) < ir >] ar (6.50)
~/ 2Q
n(>\2 + -l;l—)
Now expanding the second exponential in (6.50) in powers of it

leads to

(i)Y exp|- L

O p—— = Z an)f i 5
2ﬂjln(x2 + §—> o ~o ﬁ/ EQ

(n)

where the coefficients Cj

(n) _ )3 1 aJ
CY = (-1 exp|n (6.52
o - il (]

and are nonvanishing only for even values of j. Moreover, noting that

6.51)

are given by

f (i-r)‘j exp| - .;_2 + 1€t dr = g—'-J—J fexp E;_a +iy€IdT

-00 Vl’l()\.g + i—Q-) dy -®
~y2 “*(iy/j§3 2 ] (6.53)

G F e

dy o (1y A2 )

j 2
Vor & VE/R
dyJ

where

€

n(hz + EQ)

substituting into (6.51), and using the definition equation for the

Hermite polynomials
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Hy(y) = ( l)‘] YTA Y (6.54)
dyJ
gives
1 r ] (n)
i) = - e |- J ) ( >
\\/Enn()\.g + .i_g) (nA2+2Q) 320 —]/ (Ao + 2Q

655

Finally, inserting this expression into Egs. (6.40) and (6.41) results in

5. (Apye) = eBe/Ee-gw expl:BAij n(O] emn w(e)  (6.56)

where

6.5 THE WIDTH OF INTERMEDIATE SCATTERING FUNCTION
As may be seen from Eq. (6.36), all the essential features of the

model under consideration are contained in the width function

2W ‘
ar) = ‘“8‘%5 + ) (6.57)

therefore it is of interest to calculate this quantity. For this pur-

pose, making use of the fact that for ordinary temperatures
B2 < BA,” <1,
and making use of the expansion

cotn (B . Biw+52“°- (gékg)s b (6.58)

the integrals in (6.37) and (6.38) may be approximated by
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1 By ~_ 2 _ er

pe [ ® coth (_2_"3) dw .__% " 5 (6.59)
L wa coth B —(7X2/2)>d‘b o2 <E—> <l i %)eyxz/g (6.60)
wDa‘ C 2 ®p .

©p .

Jf w csch (55—) cos(ahr)dw o sin(whT) (6.61)
5 T

and

fa)Dd) csch <% e-(7X2/2)>cos€1wr e-(7X2/2)>dw

. (6.62)
, 267)(2 . 2 2 2
o= > {%}n(%wDTe_(yx / T)- sin<?wCTe'(7x /Q{E}_

Bh=T
Hence,
Q(T) Y 1 (_B_ + f>+ _§___ (__T__) E + 2§-1e7X2 < _ %>
oM3 \L B Mhwp \p wp (6.63)
3

X2
¢ sin(hwpT) 0e2 | ~(yx2/2)> | (2o
- ms(bDSBT - BmstsT E—n(iﬁ%Te )- Sln(h(_pCTe 7 /)]

Further progress in the evaluation of Q(T) requires, however, the
knowledge of the quantities & and y. These may be obtained from the:
ratio of the specific partition function Zy, corresponding to a config-
uration group with average mesh size Qa, to the partition function Z,

for a perfect crystal (@ + o). According to Ookawa this is given by

% n (%‘) = (7 - %)a'z + 4n (—% % oc) a® - S (6.64)

where the temperature ® is defined by



kg = D, = 2w (6.65)

and HLVo,and vy are the rigidity, the atomic volume, and the propaga-
tion velocity of transversal waves respectively.
The most probable value of ¢ for a given temperature is determined

by

no_ 1 5 oz - ©,2 /8 _ N\
Togemop-250° - mgel(foy)w (660

in

which follows immediately from maximizing (6.64). Moreover, assuming
that the solid can be represented by the limiting case of infinite mesh
size, we have that aa = ZO at the temperature of meltipg. In this case,
Egs. (6.64) and (6.66) may be solved simultaneously for Op and 7.

Critical Frequency.--This may be obtained, in terms of & and the

Debye frequency, from the condition that the number of degenerated trans-
lational modes must be equal to twice the number of crystallites, i.e.,
W
C 2
6Nu[\ @ do = N s

3
o) wp3 a
or

wg = 2. (6.67)

6.6 CALCULATIONS FOR LIQUID LEAD

The preceding formulae have been applied to the evaluation of the
width function Q(7) for liquid lead at T = 620°K. The parameters used in
this calculation are given in Table I, and the results obtained are shown
in Fig. 6 together with the widths for a Debye lattice; the Rahman,

20

Singwi and SjBlander model; and the width derived from the experimental
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data of Brockhouse and Pope.21

TABLE I

CALCULATION PARAMETERS FOR LIQUID LEAD

T 620°K

vi (Ref. 5h) 7 x 10" cm/sec
8°K 1.831 x 104

y calc. 29.78

y to fit data 28.75

fup (Ref. 55) 9.65 x 107 erg
a 5.1

hay, 1.89 x 10712 erg

It is interesting to note the following:

1. The values for y required to obtain agreement with the Brock-
house and Pope points are close (~5.5%) to the value predicted by the
theory.

2. In contrast to the model postulated by Rahman, Singwi and Sjo-
lander, that postulated by Ookawa contains only one adjustable param-
eter; however, the approximate value of this parameter is fixed by the
theory. Thus, a comparison with experimentation constitutes a true test
of the model. Since Oockawa's model postulates a Hamiltonian rather than
an expression for the velocity correlation, the contribution of inter-
ference scattering to the cross section can be calculated for it, whereas

it cannot be calculated for the model of Rahman, et al.
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3., The increase in the width function %2Q(7) without limit as time
increases is in sharp contrast to the width for a Debye lattice, which
becomes asymptotic to the Debye-Waller factor; this indicates that the
atomic motion is not always confined to a well localized vicinity (see
Section 3.2 of Chapter III).

4. The asymptotic behavior of the width is essentially different
from that corresponding to a diffusive-type motion. In the latter case
the asymptotic rise of Q(7) would be linear in time, while according to
the present model it grows parabolically.

5. Since in the presently available experimental data for lead the
interaction times are of the order of 10'15 seconds whereas the interac-
tion times required for observing the full effect of the gbove mentioned

asymptotic behavior are of the order of 10'12

seconds, experiments with
colder neutrons (~88) are desirable. In particular, it seems plausible
that the translational type of motion described by Ookawa's model may be
predominant at temperatures just above melting, while the diffusion of
individual atoms would become more important with increase of tempera-
ture. Evidence in this direction could be obtained by performing the
above suggested experiments at various temperatures of the scatterer.

6. It should be observed at this point that due to the uncertainty
in the errors introduced by a Fourier analysis of the experimental data,

as well as errors that may result from the use of the Gaussian approxima-

tion, the agreement between the theory and the Brockhouse and Pope
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points should be corroborated by a sounder approach consisting of a direct

comparison of the theoretical and experimental cross sections.

6.7 THERMODYNAMICAL FUNCTIONS

An additional check on the model proposed is provided by a8 compar-
ison of the experimental and calculated values for the entropy of melting.
To this end, note that the excess free energy per atom in the liquid

state relative to that in the solid state is given by

Af = - 5%2 i 2 (6.63)

&

and that substitution of Eq. (6.64) into this expression results in

(B ‘ s ) - = 1
AT = -kpT 'Q - %/)oc'2 + fn %%oc) a2 -y . (6.69)

Furthermore, for an isobaric process, the thermodynamic identity52

dh = Tds + vdp (6.70)
yields
Ah(T
() = (6.71)
Tm

where Ah(Tm) is the enthalpy of melting. In terms of the excess free
energy, the latter is given by

_ s/ - L 2|3 (arm)
A Lwa(l/Tl}p ’ L@T 1t/ {JP (6.72)

Il

-0 0 -3 _ -2 -3
kpT(0r2 2 - o) = %uvoa - kpTo:
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The first term in the right side of the above equation can be iden-
tified with the configurational excess energy U,, while the second term
represents the energy deficit due to degeneration into translation of
2N/oB vibrational degrees of freedom.

From Egs. (6.71) and (6.72) it follows that

As(Ty) = kB<a;n2%-ogf> : (6.73)

Inserting the experimental value for the entropy of melting56[As(Tm)/kEf
0.-95] into Eq. (6.73) yields a value for Oy = 5.65. Substituting this

value in Eq. (6.6L4) and noting that for T = Ty

(Zo/Z)y = 1

results in y = 29.8 as compared with the value 29.78 predicted by the
theory.

As a final illustration of some of the features of the model, the
relative thermodynamic probabilities [Eq. (6.64)] for liquid lead have
been plotted versus a for y = 29.78 and several temperatures (see Fig.
7). It is interesting to note that for T > Ty, the curves go through a
maximum corresponding to a value Zy greater than Z,, thus stabilizing
the imperfect crystal as representative of the liquid phase. For T=Ty,
the maximum occurs when Zy = Zy; i.e., the imperfect crystal with most
probable mesh size Oy is in equilibrium with the perfect crystal of in-

finite mesh size and is separated from it by an intervening minimum of
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Zn; thereby representing a first-order-type transition (see inset in
Fig. 7).
For T < Ty, Zy converges monotonically to Z,, stabilizing the per-

fect crystal as representative of the solid phase.
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Fig. 7. Relative specific partition function versus mesh size ¢, for
lead at temperatures below, at, and above melting point and y = 29.78.



CHAPTER VII

SUMMARY AND CONCLUDING REMARKS

The isomorphism between the Weyl-Wigner quasi-probgbility distribu-
tional formulation and the von Neumann density matrix formulation of
quantum mechanics has been derived solely on the basis of an extension
of the Fourier integral theorem to quantum mechanical functions of the
position and momentum operators. The derivation, which encompasses the
results of various authors, is felt to be somewhat simpler and more self
contained. A generalization to Heisenberg operators is also presented.

The utility of this particular formulation in the discussion of a
variety of problems in equilibrium and non-equilibrium statistical mech-
anics has been established by various authors.t0 In the present work,
it has been applied to the Van Hove formulism of neutron scattering,
leading to extremely interesting results. For quasi-classical systems
it has been found that, to first order in ﬁ, the incoherent component
of the differential scattering cross section may be given, essentially,
as a four dimensional Fourier transform of the classical time displaced
self-correlation function GE(r,t). The correction terms of Cﬂﬁz) have
been obtained explicitly and are seen to be small for systems at ordi-
nary temperatures.

In addition, this analysis was found convenient for deriving and
investigating the implications of other existing semi-empirical pre-
scriptions which attempt to relate the cross section to Gg(z,t). In

105
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particular, it was shown that the Egelstaff-Schofield yZ approximation
is valid only for small times. Also, a numerical comparison for some
simple systems, between the results obtained here and the so-called
Vineyard approximation, indicated significant differences. These dif-
ferences were found to increase with increasing energy of the incident
neutrons. A similar relation between the coherent cross section and the
distinct classical time displaced correlation Gﬁ({,t) does not appear to
exist. The reason is that the essential singularity occurring in the
expression for xg 1 only apparent; thus, an asymptotic expansion in
powers of A is possible. For xp), however, the essential singularity may
not be removed, preventing a similar asymptotic expansion in this case.
It is felt that this limitation is not too strong; it may be possible
for some systems to separate the coherent from the incoherent cross sec-
tion by means of either isotopic substitution which alters the relative
amounts of these components, or by making use of a law of corresponding

states as suggested by V:'Lneyarc'i.65’&L

Further investigation along these
lines undoubtedly deserves special attention.

A separation of the incoherent part from the total cross section,
together with a Fourier inversion of the experimental data for liquids,
would yield G§(r,t) and, in Brockhouse's words, "a moving picture of
the motions of the atoms in the system."

The controversial accuracy of the inversion procedure suggests

another approach based on the probabilistic interpretation of Gg(r,t).

The connection of the latter with the incoherent part of the cross
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section may be used for comparing calculations based on specific dynamical
models of the liquid state with scattering data. In fact, for certain
statistical models (such as Frenkel's) the only possibility for compar-
ison with experimental scattering data is through the use of the quasi-
classical formulism here presented.

Other approaches, consisting of the reduction of the physical many-
body Hamiltonian to a sum of single-body Hamiltonians, do not require the
introduction of correlation functions. For some of these models, in
which combinations of harmonic and free-gas type motions appear, the use
of a Wigner representation is particularly convenient and leads to closed
expressions for the cross section.

As an illustration, the method has been applied to a crystalline
dislocation model for a monatomic liquid. In this model, originally
proposed by Ookawa, the thermal agitation of the molecules is repres-
ented as a superposition of longitudinal waves plus shear waves that
lead to either translational or vibrational modes, depending upon the
wavelength. The Hamiltonian was derived in a less intuitive manner than
Ookawa's and was found to reduce to a combination of ideal gas and har-
monic oscillator Hamiltonians. The parameters entering the Hamiltonian
were determined from thermodynamical considerations and the incoherent
components of the intermediate and scattering functions were calculated.
A comparison was made of the width of Xs(ép,t) obtained according to
this model with both Brockhouse's results for lead and with the width

evaluated from Rahman, Singwi and SjOlander's stochastic model. For
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small times, the agreement of Ookawa's model with Brockhouse's results
was found to be better than that predicted by the Rahman, et al., model.
In fact, the Ookawa model gave reasonably good agreement over the entire
experimental range. The predicted long time behavior was parabolic,
differing, thus, from that for a Lagevin-type diffusion model. As sug-
gested in Chapter VI, it seems plausible that the type of translational
degree of freedom introduced in Ookawa's model would predominate in
liquids Jjust above the melting point and that a diffusive-type motion
would become increasingly important with the increase of temperature
above fusion. It was suggested tﬂat further experiments with colder
neutrons (~8R) at various scatterer temperatures would be desirable in
order to investigate whether this is true.

The possibility of relating the cross section, through Gg(r,t), to
other transport properties appears suggestive and of considerable in-
terest for further work. Finally, the establishment of the relation-
ship between the cross section and Gg(z,t) may make possible an addi-
tional experimental investigation of the validity of certain calcula-

tions of classical non-equilibrium statistical mechanics.



APPENDIX A
ORTHONORMALITY OF THE SET OF OPERATORS!O
{(l/?n’h) 3/2 expE (x- _13»@.5]} AND GENERALIZATION OF THE FOURIER
INTEGRAL TO FUNCTIONS OF OPERATORS

ORTHONORMALITY

We prove first the following identity?'

ea(A+B) e0BeCAr( ) (A.1)

where I'(a) is defined by the differential equation

[o9]

or(e) _ .-an z (1) [B,4], €'r(a) (A.2)
XX n!
n=1
and the initial condition
rMo=0) = 1. (A.3)
To this end, consider the function
v = 0 A+B) ¥ (A.1)

o

where Vo = y(0=0) and the operators A,B are independent of a.. Setting

v o= 2Py, (A.5)
and differentiating (A.4) and (A.5) with respect to o gives

N L (mmy = By + B,
o

or
109



110

P B L g ) L1 (5, a6 (4.6)
n=1
Letting
g = ¥ r(a)v, (A.7)

and combining (A.4), (A.5), and (A.7) yields Eq. (A.1l). Eguations (A.2)
and (A.3) follow readily from substituting (A.7) into (A.6) and from
setting a=0 in (A.7) and (A.5), respectively. Q.E.D.

For the case that A and B each commute with the commutator [A,B],

Eq. (A.2) simplifies to

ar = -o [B,A]ll
o’
or
r = exp{- = [B,A}}F(OFO) = exp{- o2 [B,A]},
2
i.e.,
e(A+B) = eBeh exp{i [A,B]} . (A.8)
2
In particular, when
A = %[z P+y-R]
and
g - 1 [x'-P+y'+R]
5 = =L

where x and y are c-numbers Eq. (A.8) gives -



1
(x) exp | = (x-y'-x"-y) A.
after noting that
[(xP+y-R,(x Py R ] = -thlxy'-x'-y] . (4.10)
Moreover, when x' =y = 0, the above result reduces to

i i ' i i
exp& [5-_13+z' -B] = exp {:—2—{1 _)5-1] exp [% y' B] exp I_‘E E-a,
(

A.11)
and
i
—. — __y—.B z(-'.v
Tr{exp l;_;:l (-}—{V.E-FX.BE'} = exp i-}é__-ﬂ fdg<gfe e B]ﬂ.>
2"
— i
i R ARC! X'V
=exp,'-—x'yk/qdqe'ﬁ <q|e glq>
EEE :
(A.12)
i
ix' wlAR!
= exp|—= {\ﬂdqdq'S(g-g')eﬁ 5(grx'-a")
L 2h
3
= (2+h) "s(x")8(y) ,
i.e.,

1\> T i i
~ )T e@l:—(z-zs')'z“(z-z')'g} = &(x-x')8(y-y") -
<2n’ﬁ L h A (A.13)

Inserting now Eq. (A.9) into (A.13) yields the orthonormality condition

1\3 i 1 ' ' ) ' |
(;—If—f?_t Tr%@lig (_’E'E*'X'Bﬂ expt% (5 -P+y _Rzl} - 5(2_2_{ )S(Z'X )

(A.1L)
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for the set of operators

{(é_l%)ixl’ [:% (x- P4y Bﬂ} .

GENERALIZATION OF THE FOURIER INTEGRAL TO FUNCTIONS OF OPERATORS

We define the inverse Fourier transform of the operator A(g,_R,t) by
i
A(R,R,t) = ﬂdz’dz'a(z',z',t)e@[g (z'-_li’rz'-Bz, - (A15)

This may be considered as an integral equation for the coefficient a.
In order to obtain & explicitly from Eq. (A.15), use is made of the
orthonormality relation derived in the previous section.

Thus, multiplying Eq. (A.15) from the right by

and making use of (A.9) gives

A(P,R,t) exp [ % @'Eﬂ!'ﬁﬂ
R e e | O | RN TRD
(x) exp B—ﬁ (;z'-gs-z'-zzl .

Now taking the trace of this expression and utilizing (A.13) results in

(-fsinfiond]

Q,ﬁ(y X-X'+y)
/]dx rdy'a(x',y',t)e 8(x'-x)8(y'-y)



113

N i i
AR,B,L) = (‘;l) ffdz'dz'Tr*A@B,t)eXPE%@-M’-Bﬂ}
2 L ,

~ - (A.18)
(x) exp L% (x'-P+y'-R)

That (A.18) is a formal identity follows readily from multiplying both
i

sides by expt%-l (E»E+X~éﬂ , taking the trace, and resorting to Eq.

(A.13).

Equation (A.18) is the generalization of the usual Fourier integral

to functions of operators.



APPENDIX B

THE WIGNER DISTRIBUTION

It was shown in Chapter IV that, upon introducing a Wigner repre-
sentation, it is possible to associate a quasi-probability distribution
function on classical phase space to each quantum mechanical state of a

physical system.

Expectation values are then taken according to¥*

< Q(E’B)>T = _[7\dpdq p.(p,9,t)0"(p,d) , (B.1)

where Py is the so-called Wigner distribution function defined by

1 VN i z
P (R,4,t)= (2—«;)5 fd_Z. exp@ zra] <a-zlela~

2
3 _
l/71 T . . .
- 1(2) Zlf oz exsl; 22| g + B0va - &)
V=

and QW(E,g) is obtained from the "Weyl correspondence" between operators

1IN

>

(B.2)

and phase-space functions.

PROPERTTESY #1

Some of the more important properties of the Wigner distribution

are as followsre

*Recall that g and p are used to denote the set of position and momentum
vectors of the N particles in the system, while the same variables
subindexed refer specifically to the particle denoted by the index.

11k
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1. Oy is everywhere real. This can be readily seen by taking the

complex conjugate of (B.2) and changing the dummy variable z to -z

2. The projection of P, O coordinate space,

/o (p,a,t) XZ YV a,t) v (g,t) (B.3)

gives the correct quantum mechanical probability density in configura-

[}
=
I

tion space.

3. The projection of P, On momentum space,

f(m )dg («ley ‘fduexpi% ](ut)

2

(B.L)

= z Vﬁv(g)t) év*(E}t) ’
;X v=1

gives the correct quantum mechanical momentum probability density Equa-

tion (B.4) follows simply from (B.2) after making the substitution

=u and q - = V.

N H=g
Mol

q +
The first moment of the jth particle momentum gives the prob-

L.

ability current density in configuration space:

lf 1 % Z .
~ [ p.po.(p,g,t)dp = z fdg.wv(ql...q +=d,...,q)
M w2 m - J A1, 133 > s 22N

(x) q;v(_c_ll,...,qj - ?; ’ql\T) 2;&{) fp explfl Z . ‘p:l

lJ&M }: /qdz A (d1,.. + %Q""’EN)

(x) \va(gl,--.,gj - -'E—i""’gm) VZJS(-Z-j) ’
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or upon integrating by parts and noting that

1 *
v \Vv*'= = v Z'WV
23 A+ =d
Jo 2 (a4% 59
and
1
vy = -2V Al
23 2 (q5- 4" 7
we get

) vq \Uv(ql,--.,g_-N)

’ ’ 21MZJ T k j
(B's)

TIME DEVELOPMENT OF THE WIGNER DISTRIBUTION FUNCTION58

The time evolution of P, Mmay be obtained by differentiating Eq.

(B.2) with respect to time and by noting that

o _ 1
= z [H,er. (5.6)
Thus,
Py, i/ 1 3N~/\d (1 -] R R
- = - == R ~Rp|<a-=|[H,Plla+=>.
3t B 21'(’T1> | 'explil'g 1 -2ltHPlla+ 3 (B.7)

Using now an argument identical to that followed in obtaining Eq. (L4.54)

from (4.46) leads to
A <
% + -vqu - (2/{1)pwsin [5 vp-‘vil V(g = 0, (B.8)

ot

ko)

L
M
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or

Py o .(:'HA
-, tE H,sin 5 o, = 0, (B.9)

which is the quantum mechanical analog to Liouville's equation in clas-
sical statistical mechanics and differs from the latter only in second
and higher powers of A. For a system of harmonic oscillators, for ex-

ample, the quantum mechanical and classical equations are identical be-

(2m+1)

cause the operator HyA vanishes for m > 1 for this case.

CANONICAL ENSEMBLE
In the case of a stationary ensemble, @ must commute with t{ [see
Eq. (B.6)]. Its form for a closed, isothermal, thermodynamic system is

given, ex hypothesi, by

g = %e (B.10)

Z = TrE'B"] . (B.11)

Equation (B.2) then becomes

_ 2N . ”
1 1 i Z _-BH
Pl Rsd = <"‘2m> E fd_z_ eXPI:% E';il <g-3lePhg

where

>,
(B.12)

Ml

This equation can be solved for some simple systems, such as an
harmonic oscillator (see Appendix C) or a system with a constant poten-

tial for which
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>

N |

Z, - Z -
<g - zle BH|E +5> = e BV « q - %]exp[; N

2
= e'BVfdg'a(g’-g+2)exp Sﬁ ;]6(5;'@- %)
BV [ B 1VY Bﬁz’ﬂf
" f agre(y g JEIERH
(B.13)

(x) expl|io-(q'-g - %] do

= e-BVqu '3(q" -+ 3 Z BNf Lﬁflz ]

ﬂdﬂ
- (@) e e
21

Ml

(x) explio*(gq'-g-

Hence,
2 @@m - [ 2] (B.14)

The partition function Z is derived from the agbove equation simply by

[DW(E’E)]Vgconst.

making use of the normalization condition for oy and is given by

DN 5
z ﬁdpdq e” expL P:]. (B.15)
Qﬁﬁ 2M

For more complicated systems, however, an evaluation of (B.12) in

closed form is;impossible. Nonetheless, an approximate expression for

py Mmay be obtained from the stationary form of (B.8

> [He »
-gpwmn[é-vp-voj V(g = o0, (B.16)

by noting that in the limit # - 0 this equation becomes the classical

==
Irc
o
o
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Liocuville equation which has the solution

— $ = cC = - __p_2.
pe = %fél P, = Ty exp B(F-V - =) (B.17)

for a closed isothermal system. F is the Helmholtz free energy of the

system here and is related to the partition function by
F = = fniz. (B.18)

This suggests that, for a "quasi-classical" system, p,, can be ex-
pressedgas a series in which the dominant term is f$ and the remaining

N

terms containing quantum mechanical corrections to it, i.e.,*

o= Cfl(\; (1+hA; + B34 + H2Ag+...) (B.19)
W
where the constant C is required for proper normalization.

The expansion coefficients may be evaluated by substituting (B.19)

into (B.16) and collecting terms with equal powers of A. This procedure

leads to the following set of differential equations,

B = 1
[5 +1]
m-1
(-1) Log a2 leey Lo for n>1. (B.20)
(om-1): WB-L " N n-2m2 o =

m=1

The symbol [% + 1] denotes the greatest integer that does not exceed the

number % + 1.

*Note the similarity between the procedure followed here and the asymp-
totic series expansion [Eq. (5.10) ] used in Chapter V.
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In particular, for n = 1

HWA Al = O’ (B.gl)

which is Liouville's equation and thus has as a solution A; = f(FH,)
where F(Hw)is an arbitrary function of Hy,. For a constant potential,
however, Eq. (B.19) must be equal to (B.14). Hence, it follows immed-
. SN

iately that C = (1/278)” and A; = O. The same argument leads to
Ay =0 (m=1,2,3,...), since for odd values of n Eq. (B.20) will con-
tain only odd coefficients,9

For n=2, Eq. (B.20) becomes

_ (2 B (R .7 )3 1 272
Bohe = (ﬁ“’@[ﬁ(ﬁ'@ "9 m”«ﬂ’

or

A RN 3 /5 A \2 1 v
HMo = (D% Vg - quovp> [% % . vq) v(a) - &y Bgvfﬂ

2 /p (B.22)
-~ D - .E .
+ qu.v.p [EE ('I\_/I . Vq> (‘M Vq\ﬂ .
Noting now that
2y/2  3\/7p OV Pp 2y
V.V.V =V £, 7%Vv) = 2
( (o} p) (M Q> ('M q> aqa M 5%55%
a,B
= 1-_ Z pB —é— .@—Y—— z
M2 d
wp 0% % (B.23)

p-V) (VV-7V)

- (g .7 -quo’€> <i vvovv>
M qa P/ \m

I
ol
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and substituting this result into (B.22) yields

EENEE Lt e 2y
VS —HwA[eAM ANCR " P o quvqﬂ,(BElr

3 e N 2 2 .,
he = 'B_<'1~:4 ) vq> v(g) - B (vay - Bvvvy . (B.25)

gy ¢ 3 4@

The possibility of an additive constant in (B.2L) has been excluded by
the requirement that A = O for a constant potential.

In principle, Eg. (B.20) may also be solved in a similar way for
n = 4,6, etc.; however, the complexity of the calculations increases con-
siderably.

An analogous expansion in powers of £ can be obtained for the con-
Tigurational probability density, defined according to (B.3), by inte-

grating Eq. (B.19) over momentum space.t’ Thus,

ny = n§(1+ 1By + B*B,+...) (B.26)

where

. N/2
(%d—“f exp [B( F-V) ] (B.27)

is the classical density distribution function and

_ M>3N/2fdp exp[ ] (B.28)

In particular,

_ B2 : 2
Bo = " (aqu VgV - equ) . (B.29)



122

For the case of two body forces, the potential of interaction may
be expressed as a sum of potential energies of interaction between pairs

of particles

N-1 N

- %ZE by - (B.30)

itk k=1

In this case, reduced distribution functions may be obtained by integrat-
ing Egs. (B.19) and (B.26) over the phase space and configuration space
coordinates of N-m (m=1,2,...,N-1) particles respectively. For instance,
the specific singlet space phase distribution function fl(gj,gj) can be
obtained by integrating Eq. (B.19) over the phase space coordinates of

all particles except one,

N

17“{: (1+A2A0 + A*A,+.. } i dp;dg;
ff {fc 1+62132J> );C dp;dg, (B.31)

+‘[f [ﬁ2f1(\21(A2'B2)} J} ap;ag; + O
173

Noting upon substituting Eq. (B.27) into (B.17) that

ﬁ& = <§%ﬁ> c exp[j- j} (B.32)

fl(Ej ng>

we get
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B N 2, 1.
{x) GXP{_“ ":‘*‘] Lb ¥ V - ?\_/I fb dp;dgy + @(’ﬁ
- if]
Furthermore, since PeVq = “klpk]iVQKl’

/;fnc: expEE.Ej ﬁ(%?q>(§o V\/)ﬁdp dq

1#£]

7~ l = <
= R.:";Y)B“[/ﬁ nlf\; exp |- —%%- z = _,_,) @ )pi%dpkdukdgkj‘t dp;da;

— 1£]

#k
271 -
B y 7] P\ Y
- 80 e E G i e

(B.3k)
Hence,

M N EC

The second term in this expression vanishes when kf'éJ, this may be shown

as follows:



12k

Sl 2 3G -3
exp[ ]f[( iy _}ﬂ exp

i#3

] e

o[- 201 [ [5(3" - ] e[ 2] |

(22D o [ 2] [§<%> 0] e 2
M)E]

(EF 3 o[ 2] [ - (2

Thus, we now have

fl(gj,gj) ny(gq

ool B ey - S G

: [%(%D

Moreover, from Eq. (B.30) we get
N-1
1 2 2
2 2 [Vj Bax +7 ﬁkﬂ ’
k£
and since
v ¢(QJ q‘k) V;k é(ﬁk)
9.-9.) = V5 -1 ) v r.)
fé(_k V(_rk) 55( Ik 'ké(_k
= - i +
where zk gj G it follows thsa

N-1

)

k#J

Ve v
J

S zﬂ fn%V?Vj;C ag, + G
1]

L1

Bpy2
dﬁk

ool 5]

(B.37)

(B.38)

(B.39)

(B.L0)



Hence,

3 ’ \T /
an]j 7,79 ¢ Z anJfk Ao /1 dg
54

i#J

Finally, substituting this result into (B.37) yields

3 b= o .2 - 2 :
2 >§ 510;1] 2 Erﬁ Py

f .,0. = < exp |- —=— n )+ = = . 1
(295 25 Xpl: oM (g oy LS M

(x) (Nwl)fn%(gj,gjq) ve é(}:)dz} + 9’(/h4)

{B.L42)



APPENDIX C

THE WIGNER DISTRIBUTION FUNCTION FOR AN
ISOTROPIC HARMONIC OSCILLATOR

It was shown in Appendix B that when V(g) is an harmonic oscillator

potential Eq. (B.8) reduces to the classical Liouville equation

dp

1 = =
aw 227 Oy = Py Vpr Vg V(@ = 0. (c.1)
t

For thermodynamical equilibrium, this equation has the canonical

solution

2 =gap=)
: D Mo=g;
P, = C, exp EO( <§I—VI + 5 >] (c.2)

where C; and ¢ are constants to be determined.
C, can be obtained directly in terms of ¢ by making use of the norm-

alization condition

fpwd_d2=l=01ﬁdpdq9@[ £—+Wq>] (c.3)

and is given by

@%3 . (c.h)

To evaluate Q, we substitute (C.2) into the Fourier inverse of

Eq. (B.2) and get

z z N 2 MPg3
<s-Blplsrds - o f o] erlonfa(E 25

(c.5)
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Setting z = O in the above equation and performing the indicated

integration yields

3
B 2.2
<alpla> - @‘f) ) exp[— = qj . (c.6)

The term in the left side of Eq. (C.6) is the diagonal element of the

density matrix in the coordinate representation. It may be conveniently

expressed in terms of energy eigenfunctions by making the transformation

t (B
(0(3) = S'pUS (c.7)
where the superscripts indicate in which representation f’ is expressed

and f;- is a unitary matrix. Thus,

(H)
<q| g > = <q|8 |k > <x| It ><12]|S]g > .
P 1; ‘O (c.8)

If [k > and |£ > are energy eigenvectors, then

H 1 -BE
<kIP( )|z> =7 e ’Zsu (c.9)
and Eq. (C.8) becomes
1 -BE
<c_1|p(g)|g> = EZ<E|S*|z>eBZ</z|S|g>. (C.10)

)

The matrix elements of E; can be readily obtained from the closure prop-

erty of the energy eigenfunctions:

8(g-q") = ZU}f(Q)Uz(g') (c.11)
1
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and are given by

<1[Slg> = Ux9 (c.12)
and
<2|S*|ﬂ> = U,(9) (C.13)

Finally, substituting these results into Eq. (C.10) yields

3
1 ) -BE 2 M= 2 e
alpla> = 3 ), P - @D exp |- 2L y
: c.1

J

S
=2
N’

SCHRODINGER'S METHOD OF FACTORTZATTIONW?:®0
In order to obtain ¢ from Eq. (C.14) explicitly, it is convenient

to consider first some properties of the complex operators

1l

A(+) P, + iMuRy , (c.15)

and

[l

Arly P, - iMeRy (C.16)

which obey the commutator relations:
_ ﬁn\A 17
[LX’A(+) ] = ( ) (\,o )

and

[HX,A(_)} = -ﬁmA(w) . (c.18)

In the above equations, Ry and P, are the components of R and P along

the X-axis and Hy = 7~ + 37 R/2.
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Meking use of Egs. (C.1l7) and (C.18), together with the fact that
for an isctropic oscillator the eigenfunctions are separable into a pro-

duct of components along each axis, we have

A( +) HXUn( X) = EnA( +) Un( x)
or
HXA( 4 Un(x) = (B + Yw) A( ) Un( x) ,
i.e.,
A U (x) = Ng+)Un+l(x) . (C.19)
Similarly,
HXA( _)Un(x) = (B, - ﬁm)A( _)Un(x) s
and
AU = ol (x) . (¢.20)

Moreover, since there are no eigenfunctions with eigenvalues smaller

than (En)minimum’
A(_)Uo(x) = 0 ,
(A(+)A(_))Uo(x) = 2M[Hx-2—£-b']Uo(x) = 0,
and
Hon(x) = ?Uo(x)
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That is,

(c.21)
and

E, = (n+3)%hw. (c.22)

The normalization constant Ng') may be obtained from the norm of

(C.20). Thus,

1l
Pt
L

[en]

5/\
Ka)

X

=
&

o

ke

< n|A(+)A(_) |n >

< n|eM(H, - 2—93) In > = omnfw ,

or
1
w7 o (oMan)® (c.23)
Nl(’l+) follows readily from
< n]A( HA0 In > = Ng+)N§l;)l
and
< n|A(_)A(+) Il’l > = <n|2M(HX + 2-—“‘-)) [n > = 2MAw(n+l) ,
i,e.,
1
W - ngn;l) o 2Eetl) o) | (c.2h)
N [oMhuy( n+1) ]2

n+l
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EVATUATION OF o

We now return to the problem of calculating o from (C.14) explicitly.

To this end, note that

'._l

<dple> - 1) P9
)

[N

(c.25)
}: e—BE£|Um(Y)Uj(Z)|2 |Uh(x)|2 .

L=n+mtj

|
N

Making use of the operators introduced in the previous section, we ob-

tain

=B iz ~PEy 2 [ Uy U
ox <g|/’|g> Z L e Iyl Elng?c-+Ung§—

i -BE *_ ¥
- ‘ezzz ° I*UmUa-laEE(Au)*A(->)Un-Un<A<+)+A<-)> Ur]

l
(c.26)
i -BE, 2 (+) . x *
- Z e "|UpUs Ny [URU41 -UpUnya ]
£=0
i _BEﬂ 2 - * * .
t o . e " [UyUsl Ng ) [URUp1-Upln 1]
=

Now changing the index of notation (n»n+l) in the second term of

the above equation and taking into account Eq. (C.22) yields

9 i -BE 2
& <dlpla> = E%E e Huyuy| {Ngﬁ) [U3Un+1-UnUns1 ]

£=0
B0 () gt x
te Nn+1[Un+lUn'Un+th] )

. (+) -
or since N, ° = Ng+{ s
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d ; - -BE
- <g]p lg > = -i-z- (1-e Bﬂ")Z e l‘UmUj 2N51+) (02U, 41-UUnsy ] -

(c.27)
Similarly, noting that
Ay U Uk = U;A( AU * Unhy UL - MUY (C.28)
and
A UpUn = UphcyUy + UpAc yUp + 1MexUpU, (c.29)
we get

(hay-hy) <alpla> = 2imx <glpla> - %Z e |,y 12

(X) (A( +) -A( _) ) UnU:,el

(C.30)
1 -BE
zze £[UmUj|2[U*(A(+)-A(_))Un
1
+ Ug(A 4y -A(_))U: - 21 < gl pla >,
i.e.,
5 J; 2 (+ *
-2Muw < E_Ip lg > = - I | Ny [U Un+l'UnUn+l]
(c.31)
i ) -PE 2 (.
- éE e " uyus | 0l [0k 1 -UnUR-1 ]

=1

Direct comparison of this result with Egs. (C.26) and (C.27) leads

to:

-2Mux < qlp lg > == (1+e Bm)z L f|an |2N(+ Un el UnUn_,_l] .
(C.32)
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Substituting this expression into (C.27) results in the differential

equation

o) 2Muwx
= <glpla> = -

tanh.(%-—w><glla|g> . (C.33)

Evaluating now %i < g|f9lg > from the right side of Eq. (C.1L4) and in-

serting the result into (C.33) yields

2Mux tanh <§——> < q|f3|q >,

2
o tanh <_@_lg__a)> . (C.3k)

In summary, we then have for an isotropic harmonic oscillator

- (&) eXPL o (B + quﬂ (c.35)

aMex < c_;llplg >

or

Q
It

with o given by (C.3L4).*
In the classical limit (BhAw << 1),
a ~ B
and p,, becomes identical with the classical phase space distribution
function. This, of course, could be expected since in this case the
distribution of energy levels can be regarded as practically continuous

and quantisation ceases to have any effect.

*Except for the normalization constant, the same result was obtained
by Wells6l by making use of Feymnman's path integral techniques. See
also Landeu and Lifshitz®? for a derivation of the marginal distribu-
tions by a device similar to the one used here.



APPENDIX D
ASYMPTOTIC FORM OF Gs(E)t); THE "CLASSICAL" LIMIT Gg(z,t), AND
VINEYARD'S APPROXIMATION FOR THE IDEAL MONATOMIC GAS

The purpose of this section is dual:

1. To derive an asymptotic expression for the space-time correla-
tion Gg(r,t).

2. To show in the case of the ideal monatomic gas that the time
displaced pair distribution function GE(r,t), obtained by letting H>0
in Gs(f:t), yields the incorrect classical limit for the scattering
function Sg(Ap,€).

Our first objective may be attained by Fourier inverting Eq. (5.3L4)

to get
t) = (— d < -5 > +0(h

Gg(r,t) A Ap exp(: 8M:J exp %J e 0(£2)
(D.1)

where

iph

= r+qgs - g.(t) + =— .. D.2
g = r+gy- gt 5 B, (D.2)

Completing now the squares in Eq. (D.1) and defining a new vector v by

1/2 My -
- (&) [—.2;2 i —il ¢ 1y (5.3

- h<2M A (s - 3 2) = (zrayay(®) & <§M>l/2 (D.4)

with

f!

yields

134
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Gg(z,t) = (?—4)3/2(%)3 < exp [zﬁj f av exp[-v2] >p, + €f(%2)

If y 1s chosen along the z-axis, then
_ B >1/2 Ap
Vx T <2M 7 £j>x
CONGEEY
= -_— _ - B.
y 2M 2 J ¥

s>1/2 Ap .
7 'éﬁ 5 T B‘;)Z 1y,

<
]

<
1]

and

\/qdz exp[-v?]

1l
L“v
8
g
>
%
3
0
>
(M
c_._‘,_s
M
O,
<
N
*
o
W
<
N
M

oo+i'y
2
TE‘ ,dVZ exp[_vz ] .
-oo+]'_')'

(D.5)

In order to perform the above integration, consider the following

contour in the complex plane:

AY
= |
, A
r> Y I'y
-
-R 0 R
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Since exp[-z2] is an entire function,

R -R+iy

—22 "'X2 "'Z2
dz e = 0 = e dx + Irl + Ip, + e"*dz , (D.7)
-R R+iy
or
R+iy
. -z2 1/2 i
lim e “dz = (n) + lim (Il“ 1, ) . (D.8)
Rro  “_R+iy R0 1 12
Furthermore,
R+iy
Ip, = f exp[-(x2-y2+2ixy) ] (dx+idy)
R
R+i
T (x2y2) o .
= e [cos(2xy) - i sin(2xy) ](dx+idy)
R
R 7 2 2
-(x2-y2 -(R*-y%)
= f e (x2-y )cos(2xy)dx + if e cos(2Ry) dy
R o)
7 R2-v2
2_
f e (x2-y%) sin(2xy) dx +f e v )sin(ERy)dy ,
R O
i.e.,
V4 4
..R2 + _R2
Ip, = ie fe y2cos(2Ry)dy + e R f eyzsin(2Ry)dy . (D.9)
0 o}
Both integrals in (D.9) are finite. Therefore,
lim Ip, = O.
R t
Similarly,
lim IFg = 0
R

and Eq. (D.8) Dbecomes



oo+i‘y

-7@ 2
| P - (0. (D.10)
=co+1y

In view of Egs. (D.10) and (D.6), Eg. (D.5) goes into

,

2 2 s
ool = (Z) Teon[ 2o B . (o)

The limit as A+0 of this expression may be obtained by noting that if in

Eq. (D.1) we make the dummy variable transformation

_[_X_p/él = Kk,

then

Gs(_{)t) = (%;)3 fdﬁ eXPE Bg;Kj < eXp[-iﬁ-E] >TC + Q(ﬁ2)

and

1im GS(E) t)
£50

3
%>f%<mﬁﬂmﬂﬁmﬁc
(D.12)

< Blrtay-ay(t) 1 >p, = c(z,t) .

In actual fact, this limit is meaningless since we have kept k finite,

and hence, implied zero momentum transfer.

IDEAL MONATOMIC GAS

As will be seen below, this case is particularly convenient for com-

paring the scattering functions obtained from (D.11) and (D.12) and to

show that although

lim G.(r,t) = G(r,t
Lim s(r,t) s(r,t)

lim Sg(Ap,e) % Sgyl(Ap,e).
>0
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For this purpose, note that

and

BPj2  2Ms®  2M (15ﬁ 2 5%] D;
——_—QM + Bﬁz - Bﬁz l— P) - t) + LI_ -I\-[l— + E_j;g_ﬁ_ -.t) 2+ 6%2]
(D.13)

r2fM

+ -
T o B

o BMr2 | f i 2

GS(_I_';t) = €XPA - 1Bﬁ 2 52ﬁ dBJ expl - Bﬁz Eg - t)
/(75 -t) "+ T

1Bﬁ )

%:l 2
1Bﬁ 2 Bzﬁi] ’

and after following a procedure entirely analogous to that used to eval-

uate the integral in (D.1l), we get

: 3/2 : 2,
GS(EJt) = —-———ME——-—-] / exp| - __Mi_..B..__._ (D,l5)
wt(t-1p4) 2t(t-1iph)
and
Sg(Ap,e) = — dr\/ﬂdt exp[: (Aper - e{] Gg(r,t)
1 iet
= dt exp |- - iph) D.16
" exp |- S| x| - Mﬁ2 15] (D.16)

= exp exp|-

1/2
KAP [: 2Ap?
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Equations (D.15) and (D.16) are exact because the correction terms of
Eﬂtﬁz) in (D.11), containing the potential of interaction between par=-
ticles of the system, vanish for an ideal gas.

The classical equivalent of (D.15) obtained according to (D.12) is

3/2 2
MB Mrep
and inserting this result into Eq. (5.31) gives
B 3/2 T © e-iet Mr26
§}> dr exp Z Ap-r -mdt 3 exp |- oL?
gﬁﬁ fdt L [ Mﬁ:l (D.18)
( )1/2 [ Me2B
25hp? 2Ap®

Moreover, Eq. (D.16) is entirely classical containing no powers of f at

Ssv(_éP: €)

all. Hence,

. Be
SS(AP;E)I'g. = %ig SS(AP;G)I_g_ exp [ﬁj} exx)[: i] Ssv(AP;

% Sey(4D,€) (D.19)

i.e., the Fourier transform of the time displaced pair distribution
function Gg(r,t) does not give the correct classical limit for the scat-
tering function Sg(Ap,e). Q.E.D. This discrepancy disappears, of

course, when Ap-0.



APPENDIX E

THE ASYMPTOTIC EXPANSION OF THE INTERMEDIATE
SCATTERING FUNCTION

In Chapter V [Eq. (5.10) ] we have obtained an asymptotic series ex-
pansion in powers of 4 for the function QW(E,E,T). In order to have s
similar power series for the intermediate scattering function X(AP,ﬁT),

there is the additional requirement that the thermal averages

i .
< exp|- 7 Ap-gy explé Ap-vpi () >na (E.1)

and

i 1 S
< exp‘-—a ép'ﬂj] expE Ap.vp‘i‘_‘Fn('r) () >TC’ for n>3 (E.2)

in Eq. (5.18) be of the same order in 4.

For the diagonal component (i=j) of X(Ap,%ﬁ), this follows immed-
iately since the essential singularity inside the thermal average bracket
is only apparent and disappears when f(T) is expanded in a Maclaurin
series. Thus, Egs. (E.1l) and (E.2) are both, in this case, of order £°,

For i%J, however, the essential singularity is real and a Maclaurin

expansion of f(1) in (E.1) and (E.2) yields
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.
i 1 A
<wﬂ;ﬁgggaﬁé@qé]%ﬁﬁﬁ)%c
ixj

= < exp[:% Ap'(gj-gﬂ expE AP-VP;\ F (7) exp[ﬁl Ap-g;‘ (E.3)

(9 L+ B>,

1]
and

- T . :
< exp ‘:';'1 Ap-(gj-gjgl exp[é Ap-vpi:l e@[:%'dl AP'BJ 1+ d(’ﬁ)] >TC , (o)
ixJ )

respectively.
Because of the additional factor Fy(7), it is not clear that (E.3)
is of the same order in % as (E.4) and, consequently, that an asymptotic

expansion for the interference part of X(Ap,ﬁm) exists.
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