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Abstract. The effects of competition onindividual fitnessand
species diversity were investigated in afirst-year old field by
comparing the natural community to an experimentally-deter-
mined null community. The species pool for the null commu-
nity was estimated from low-density plots, and hypothetical
sample plots in the null community were constructed by
random sampling from the species pool. Individual plants
were larger in low-density plots than control plots, indicating
that competition reduced individual fitness. Competition ap-
peared to reduce diversity in half the plots (i.e. species rich-
ness and diversity were lower than in hypothetical null com-
munity plotswith the same number of individuals), but did not
affect diversity in the other plots. However, the reduction in
diversity could be explained as an artifact caused by spatial
aggregation in control plots. The magnitude of the effects of
competition on diversity did not change with plot density, and
no species consistently increased or decreased in relative
abundanceasplot density increased. We concludethat compe-
tition had no effect on diversity in thiscommunity, despitethe
strong effect on individual growth.

K eywor ds: Competitiveability; Null community; Null model;
Old-field; Spatial aggregation; Species diversity; Speciesin-
teraction; Species pool.

Abbreviations: InRR = log response ratio.

Nomenclature: Voss (1972, 1985, 1996).

Introduction

Numerous studies have demonstrated that competi-
tion occurs in plant communities and that it affects
growth and fitness of individual plants (e.g. Aarssen &
Epp 1990; Goldberg & Barton 1992; Nambiar & Sands
1993; Keddy et a. 1998). However, experimental stud-
iesof the effects of competition on community structure
are more problematic. Three experimental approaches
have been used, all of which have serious limitations.

Variations in community structure with changesin
environment, for example over nutrient or disturbance
gradients, are often argued to be theresult of differences
incompetitiveinteractions(e.g. Tilman 1987; Weiher &
Keddy 1995; Vivian-Smith 1997; Fraser & Grime 1998),

especialy when the abiotic environment has been ex-
perimentally manipulated in communities that are ini-
tially the same. Thisargument may be correct; however,
there is hardly any direct evidence that differences in
competition causethosedifferencesin community struc-
ture. Direct evidence requires manipulation of potential
competition intensity, as well as manipulation of the
abiotic environment.

Potential competition intensity has been manipu-
lated in a few cases by removing some part of the
vegetation, usually a dominant species, and observing
the response of the remaining community. This type of
study generally shows that competition reduces species
diversity (e.g. Abul-Fatih & Bazzaz 1979; Gibson 1988;
Gurevitch & Unnasch 1989; Keddy 1989; but seeHils &
Vankat 1982) and affects relative abundance of species
(Fowler 1981; Gibson 1988; Keddy 1989; but see
Armesto & Pickett 1986). However, this kind of re-
moval experiment has limited potential to reveal the
total effects of competition on a community because
only a small portion of the vegetation is removed and
competitive effects exerted by the full community may
not be detected.

Potential competition intensity has aso been ma-
nipulated by comparing growth of populations in mono-
cultures (with no interspecific competition) and mixtures
(with interspecific competition from some set of gpecies;
Austin1982; Campbell & Grime1992). Thisdesigndlows
the combined competitive effects of many species to be
detected, but the requirement for monocultures of each
specieslimitsthe number of speciesthat can practicaly be
included. Also, these two studies discuss the effects of
competition on abundance of each species, but not on
species diversity. Goldberg (1994) provided a method for
caculating the effect of competition on diversity by
comparing monocultures and mixtures.

A more comprehensive approach to determining
community-level consequencesof competitionisto com-
pare the natural community to a null community, in
which the effects of competition and facilitation by all
species have been removed. Goldberg et a. (1995) have
suggested that a null community can be constructed ex-
perimentally by reducingtotal density of thecommunity.
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If the opportunity for individualstointeract decreasesas
density decreases, a community with low enough den-
sity will be anull community.

The natural community and the low-density null
community cannot be compared directly, because spe-
ciesrichness and other diversity indices are sensitive to
the number of individuals sampled (Magurran 1988).
Instead, the composition of the null community can be
used as a species pool (the community species pool
sensu Zobel et al. 1998). Hypothetical sample plots of
any number of individuals can be constructed by ran-
dom sampling from this species pool (Goldberg &
Estabrook 1998). Plots from the natural community can
then be compared to hypothetical sample plots with the
same number of individuals to quantify the change in
diversity due to competition.

Competition may causediversity inthe natural com-
munity to be lower, higher, or equal to the diversity in
hypothetical sample plots from the null community, de-
pending on which species experience the most density-
dependent mortality. If al speciesareequally affected, no
specieswill be excluded, and the natural community will
have the same diversity as hypothetical plots in the null
community. If initialy rare species are most strongly
affected, they may be excluded from natural-community
plots, and those plots will have lower diversity than
hypothetical plots in the null community. If initialy
common species are most strongly affected, diversity per
individua will increase, and the natural community plot
will have greater diversity than a hypothetical null com-
munity plot with the same number of individuals.

Two potentia artifacts may influence these predic-
tions. First, the procedure for lowering density may
result in some species being over- or underrepresented
intheexperimentally-determined null community. Over-
represented species could increase diversity in hypo-
thetical sample plots, and cause sample plot diversity to
be greater than natural plot diversity. Underrepresented
species, on the other hand, could cause sample plot
diversity to belower than natural plot diversity. Second,
random sampling gives hypothetical null community
plotswhich are equivalent to plotsin which specieshave
random spatial distributions. If some speciesin natural
plots are spatially aggregated, those plots will have
lower diversity per individua than if specieswere ran-
domly distributed, and lower diversity than hypothetical
null community plots, even if competition does not
affect diversity.

In this study, we used the reduced-density null-
community approach to examinethe effects of competi-
tionon individua fitnessand speciesdiversity inafirst-
year old field. This community allows easy manipula
tion of density because al plants come from seed each
year, and seedlings can be thinned early in the growing

season, before any interactions have occurred among
the plants. Also, previous studies have shown that com-
petition can be intense in first-year old-fields (e.g.
Goldberg & Miller 1990) and that annual species show
hierarchies in competitive response (Goldberg &
Fleetwood 1987; Miller & Werner 1987; Wilson &
Tilman 1995), so that species might be expected to show
differential responses to competition.

Specificaly, we asked: 1. Does competition affect
biomass of individua plants in this community? This
guestion has been asked in many other studies, but we
must determine whether individuals are competing in
this particular community before we can address our
second question. 2. Does competition reduce species
diversity?How dotheartifactsof overrepresented species
and spatial aggregation influence the results? 3. Are
particular species consistently suppressed or favoured
in the presence of competition relative to a community
with minimal interactions?

Methods

The experimental community

This study was conducted in a first-year old-field
plant community at the University of Michigan's
Matthaei Botanical Gardens. The field was tilled on 8
May 1996 and seeds in the existing seed bank were
allowed to germinate. A few perennias, mainly Cirsum
arvense and Taraxacum officinale, re-emerged from un-
derground parts; thesewerekilled by direct application of
RoundUp (Monsanto Company, San Ramon, California).
The resulting community consisted mostly of annual
forbs and grasses, with afew perennial seedlings.

In previous years, this field showed a gradient of
species composition from east to west (M. Hommel
pers. comm.), so the experimental plots were blocked
aong this gradient. Rainfall during the 1996 growing
season (May through August) was 206 mm, compared
to amean of 323 mm.

Experimental treatments

Each of thefour blocks consisted of four plots. Three
unmanipulated small plots, measuring 0.5 m x 0.5 m,
were used to measure individual plant biomass, diver-
sity, and abundance of species in the natural commu-
nity. To determine the null community, a plot 20 x
larger (5m x 1 m) was thinned to 1/20 of the origina
plant density. This combination of plot size and density
was intended to yield approximately the same number
of individualsasin the smaller, unthinned plots but with
much lower interaction intensity.
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The null-community plots were thinned between 9
June and 22 June. At this time, seedlings were still
small enough that they were unlikely to beinteracting,
but were large enough to be identified to species. We
thinned these plots to 5% of natural density while
keeping relative abundances unchanged by thinning
one species at a time. Because the objective of the
thinned plots was to minimize interactions between
individuals, the plants that were left in the plot could
not be chosen entirely at random. For each species, we
chose one seedling and marked it with a toothpick,
then moved systematically across the plot, removing
the next 19 individuals with forceps as they were
encountered. A dlightly different starting place was
chosen for each species. Thus, the remaining seedlings
were fairly evenly distributed across the plot. We also
thinned a 20-cm border around each thinned plot to 5%
of original density, with individuals removed without
regard to species identity.

This method of removal resulted in rare species
(those represented by fewer than 20 individualsin the
5-m2 plot) being overrepresented after thinning. For
these species, one individual was left in the plot but
fewer than 19 were removed, leaving more than 5% of
individuals after thinning. While the large size of the
plotsreduced thisproblem, it must be kept in mind when
interpreting results.

Monitoring of plots

Photosynthetically active radiation was measured
abovethevegetation and at the soil surfacein each of the
unthinned plots on 20 August 1996 with a Sunfleck
Ceptometer (Decagon, Pullman, Washington). The
ceptometer integrates light at 20 sensors at 1-cm inter-
valsalong awand. One measurement was madewith the
wand placed east to west across the middle of each
control plot.

All living, above-ground material was harvested
from all plots between 15 and 23 September. We sorted
plantsto species, counted individuals, dried the plants at
60° for 2 days, and weighed the plant material.

To determine whether soil nutrientslimited growth
in the community, a second set of three 0.25 m2,
unthinned plots in each block was fertilized. These
plotseachreceived 28-4-8 N-P-K granular fertilizer on
two dates (22 June and 9 August), for a total addition
of 30 g N/m2. This amount is similar to the amount
added in other old-field fertilization experiments
(Carson & Barrett 1988; Carson & Pickett 1990; Tilman
& Pacala 1993). Above-ground material from these
plots was harvested between 15 and 23 September,
dried, and weighed.

Analysis

Plot characteristics

ANOVA was used to test for effects of fertilizer and
block on standing crop, to determine whether mineral
nutrientslimited plant growth. PAR measurementsabove
and bel ow the vegetation were converted into percent of
light reaching the soil surface and the mean value was
calculated.

Individual plants

To determine whether competition affected indi-
vidual plant mass, we tested whether individual plants
of each species were smaller in control plots (with
competition) than in thinned plots (without competi-
tion). Mean plant mass for each species in each block
was calculated for the thinned plot and for the three
control plots combined, and ANOV A was used to test
for effects of block, species, and treatment on mean
plant mass and for a species by treatment interaction.

Diversity

The effect of species interactions on diversity was
examined using the method described by Goldberg &
Estabrook (1998). The speciescomposition of thethinned
plotswas used asanull species pool. Expected diversity
for each natural density plot was found by generating
5000 random samples from the pool of plants in the
thinned plot in the same block. Because diversity meas-
ures, especially speciesrichness, are sensitiveto sample
size (Magurran 1988), each random sample had the
same number of individuals as observed in the natural
density plot. The probability that each individual in the
random sample belonged to agiven specieswas equal to
that species’ proportional density in the thinned plot.

For each of these 5000 random samples we calcu-
lated speciesrichness, S and Simpson’ sdiversity index,
1/D (D = ]JZpiZ, where p; is the proportional density
of speciesi). We combined the 5000 samples to calcu-
late an expected (mean) value and aprobability distribu-
tionfor Sand 1/D. The probability distribution wasused
to assign a level of significance to the difference be-
tween the observed values of S and /D and those
expectedinanull community. A two-tailed significance
test was used, because species interactions might either
reduce species diversity below the expected value or in-
crease it, depending on which species are most strongly
affected. A Bonferroni-adjusted criticd vaueof a =0.0021
was used to correct for the 12 significance tests (one per
plot) in each analysis.

We repeated this analysis for each of the natural-
density plots and its associated null plot. We used ob-
served and expected values to calculate a log response
ratio (INRR = In(expected/observed)) to quantify the
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effects of speciesinteractionson diversity. Thisindex is
similar to relative competition intensity (RCI, as used
by Wilson & Tilman 1991) but presents positive and
negative effects symmetrically and is more likely to be
normally distributed (Hedges et a. 1999). Positive val-
ues of InRR indicate that observed diversity is greater
than expected (interactionsincrease diversity); negative
values indicate that observed diversity is less than ex-
pected (interactions reduce diversity).

As described above, rare species were sometimes
overrepresented in the thinned plots. The proportional
densities of species with fewer than 20 individualsin a
thinned plot were inflated in the species pool, because
they were present at more than 5% of their initial den-
sity. These species were chosen for samples more often
than they should have been, and some samples may
have gained species they would not have had, if all
species were correctly represented in the species pool.
This problem alone could cause expected diversity val-
ues to be higher than the observed values. To check the
effect of rare species, we reran the analyses, including
only those species which had at least 20 individualsin
the large plot prior to thinning.

Another possible source of artifacts is aggregation
of plantsin natura-density plots. Plantsin control plots
may have had contagious spatial distributions, whilethe
thinning procedure would have reduced or eliminated
any aggregation in thinned plots. Hypothetical sample
plots constructed by random sampling are equivalent to
plots in which all species are randomly distributed.
Aggregation could have the effect of making observed
diversity lower than expected even when interactions
have no effect on diversity. For instance, a sample plot
containing 10 plants can have amaximum of 10 species.
If, in the corresponding control plot, one species oc-
curred in a clump of five individuals, the plot could
contain no more than six species.

Wedid not explicitly measure aggregation in control
plots. However, we tested whether aggregation might
account for any differences between expected and ob-
served diversity by incorporating realistic levels of ag-
gregation into the sampling procedure. Singh & Das
(1938) published detailed data on aggregation patterns
of 21 annual weed species, reporting the number of
15cm x 15cm quadrats containing 0, 1, 2, etc. individu-
as of each species (a ‘clump-size distribution’). The
mean:varianceratiosfor these speciesranged from 0.907
to 1.50; eighteen species were aggregated, one signifi-
cantly, and threewere dispersed, onesignificantly (Singh
& Das 1938).

We used the 21 reported clump-size distributionsin
our sampling. For each random sample, each speciesin
the species pool was randomly assigned a clump-size
distribution. As before, a species was chosen for the

random sample with probability equal to its propor-
tional density in the thinned plot. Once a species was
chosen, the number of individuals of that species added
to the random sample was chosen. The probability of
choosing a particular number of individuals was equal
to the frequency of that clump size in the species
clump-size distribution. Sampling continued until the
sample contained at least as many (but possibly more)
individuals as the control plot. Aggregation was added
to the analysis which included all species.

Observed values, expected values, and InRR'’s for
the two diversity indices (S and /D) were regressed
against plot density for each of the three analyses (all
species, overrepresented species removed, all species
with aggregation). Expected diversity values should
increase with plot density due to sample-size effects
(Magurran 1988). Observed values might increase, de-
crease, or remain constant with density, depending on
the relative influences of competition and sample-size
effects. If the common expectation holds that species
interactions reduce diversity, this effect should become
larger as density increases, so InRR should decrease
(becoming more negative) with density.

Unfortunately, the individual-level data collected
are based on biomass, while the community-level data
are based on densities. We do not have the appropriate
data to test the effects of competition on individual
survival, and biomass cannot be incorporated into the
null-community sampling procedure without informa-
tion onthedistribution of biomassesof individual plants;
thuswe cannot directly compareindividual and commu-
nity level effects for the same response variable. How-
ever, Simpson’s index can be calculated with propor-
tional biomass, rather than density. Because Simpson’s
index is less sensitive to sample size than species rich-
ness (Magurran 1988) and thinned pl otswere constructed
to have roughly the same number of individuals as
control plots, we calculated 1/D for proportional density
and 1/D for proportional biomass for each thinned and
control plot. We used ANOVA to test for effects of
treatment and block on 1/D for proportional density and
1/D for proportional biomass.

Patterns within species

If speciesinteractions are found to reduce diversity, it
should be possible to identify which species are poor
competitors and decline in abundance in the presence
of interactions. We regressed proportional biomass on
total plot density for all species that were present in at
least three control plots, a total of 13 species. Poor
competitors should become relatively less abundant as
total plot density increases and interactions become
more intense.
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Results

Plot characteristics

Standing crop in control plots was 80.5 + 7.29 ¢/
0.25 m? (mean + 1 S.E.); in the fertilized plots, stand-
ing crop was 88.1 + 5.86 g/0.25 m2. This differencewas
not significant (F=0.747; df = 1.16; P = 0.400), and the
effect of block was not significant either (F = 2.568;
df = 3.16; P = 0.091). Light penetration to the soil
surface in the control plots at the end of the season was
quite high, 69.6% * 4.98% of full sunlight.

Individual plants

Individual plant size was reduced by competition
(Fig. 1). Mean plant masswasaffected by block (F =4.022;
df = 3.43; P = 0.013), species (F = 4.278, df = 15,43,
P < 0.001), andtrestment (F =48.051; df =1.43; P<0.001).
There was also a significant species by treatment inter-
action (F = 2.100; df = 15.43; P = 0.029), but there was
no clear pattern explaining the interaction.

Diversity

For the analysis that included all species, both ob-
served and expected species richness increased with den-
sty, withtheresult that INnRR wasunrelated to density (Fig.
2). For Simpson’s index, observed and expected values
wereunrelated to density (Fig. 3). Log responseratiofor 1/
D aso did not change with density (Fig. 3). Observed
diversity wassignificantly lessthan expected for five (S) or
seven (/D) of the 12 control plots (Figs. 2¢c and 3c).
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Fig. 1. Mean plant mass is larger in thinned plots than in
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Fig. 2. a. Observed species richness (S) in control plots.
Observed S increased with increasing plot density, as ex-
pected. b. Expected species richness in hypothetical sample
plotsfrom the null community, with densitiesequal to thosein
control plots. Expected Sincreased with increasing plot den-
Sity. c. Log responseratio —INnRR = In(expected/observed), an
index of the effect of species interactions on species richness.
Positive values of InRR indicate that interactions increased
species richness above that expected in the null community,
negative values indicate that interactions decreased species
richness, and a value of zero (dashed line) indicates that
interactions had no effect on species richness. Points marked
with * are significantly different from zero; points marked
with « are not significantly different from zero. Log response
ratio showed no relationship with plot density.

Removal of overrepresented speciesfrom the analy-
sisdid not influence the results for 1/D. In this analysis,
eight plots had observed S significantly lower than ex-
pected (Fig. 4¢). Observed speciesrichnesstill increased
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Fig. 3. a. Observed diversity (Simpson’sdiversity index, 1/D)
in control plots. Observed 1/D showed no relationship with plot
density. b. Expected diversity in hypothetical sample plotsfrom
the null community, with densities equd to those in control
plots. Expected 1/D also showed no relationship with plot
density. c. Log response ratio — INRR = In(expected/observed),
an index of the effect of species interactions on diversity.
Positive values of InRR indicate that interactions increased
diversity abovethat expected in the null community, negative
values indicate that interactions decreased diversity, and a
value of zero (dashed line) indicates that interactions had no
effect on diversity. Points marked with * are significantly
different from zero; points marked with  are not significantly
different from zero. Log responseratio showed no relationship
with plot density.

Rajaniemi, T.K. & Goldberg, D.E.

a
) 16 R2=0.887
14 P < 0.001
w 12+
T 10+ ——
x
Z 6+ *
o 4.
21
0 } : } . t —
0 50 100 150 200 250 300
Density (plants/ 0.25m2)
b) 16
14+
2 10!
= 4
‘§ 8 4+ ° .0. L 4 (X}
& 61 ° o o
B4l
21
0 f . } f ; {
0 50 100 150 200 250 300
Density (plants/ 0.25m2)
c) X  significant
0.4, ® notsignificant
0.2 +
ol _______ P 74./_.__{
%-0.2 4 X
04 xX
06 /*/ R°=0.574
P=0.004
-0.8 +
-1 f } : t fF——
0 50 100 150 200 250 300

Density (plants/ 0.25m2)

Fig. 4. a. Observed species richness (S) in control plots, after
overrepresented species were removed from the analysis. Ob-
served Sincreased with increasing plot density, as expected.
b. Expected species richness in hypothetical sample plots
from the null community, with densities equal to those in
control plots, with overrepresented speciesremoved. Expected
S showed no relationship with plot density. c. Log response
ratio—InRR = In(expected/observed), an index of the effect of
Species interactions on species richness, with overrepresented
species removed from the analysis. Positive values of InRR
indicatethat interactionsincreased speciesrichness above that
expected in the null community, negative values indicate that
interactions decreased species richness, and a value of zero
(dashedline) indicatesthat i nteractions had no effect on species
richness. Pointsmarked with * are significantly different from
zero; points marked with  are not significantly different from
zero. Log response ratio increased with increasing plot den-
sity, suggesting that the effect on interactions on species
richness decreased as plot density increased.
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with density, but expected va uesno longer changed with
density. Conseguently, INRR for Sincreased (becoming
less negative) with density (Fig. 4). This unexpected
result impliesthat the effects of interactions decreased as
interaction intensity increased. We suggest that this pat-
tern was an artifact due to the small size of the species
pool inthisanalysis. All speciesin the pool were chosen
for samplesin even the lowest-density plots, so expected
species richness values were constrained from increas-
ing as density increased.

Incorporating aggregation into the null model had
little effect on the overal trends with density, but did
eliminate al significant differences between expected and
observed values for both Sand 1/D (Figs. 5 and 6). Ob-
sarved vaues of Sand /D were, naturally, the sameasin
the original analysis. The expected values of Sincreased
with density, while expected values of 1/D did not change.
Asintheorigina andysis, log responseratiosfor Sand 1/
D did not change with density (Figs. 5b and 6b).

In adirect comparison of diversity, 1/D for propor-
tiona density was significantly higher in thinned plots
thanin control plots (F = 54.453; df = 1.8; P <0.001), but
there was no significant difference for 1/D for propor-
tional biomass (F = 1.641; df = 13.8; P = 0.236). The
block effect and block by treatment interaction were
aso significant for 1/D for proportional density (block:
F =9.702; df = 3.8; P = 0.005; interaction: F = 4.599;
df =3.8; P=0.038) but not for 1/D for proportional
biomass (block: F = 2.521; df = 3.8; P = 0.132; interac-
tion: F = 1.436; df = 3.8; P = 0.303).

Patterns within species

Relative biomasswasrelated to total plot density for
only two of the 13 species tested: Panicum capillare
(dope = -0.0003; F = 8.607; df = 14; P = 0.012) and
Mollugo verticillata (d ope =—0.0005; F=5.778; df = 14;
P = 0.032). With a Bonferroni-corrected o of 0.0019 (a
two-tailed test for 13 regressions), neither of these was
considered significant.

Discussion

Thisexperiment took placein arelatively unproduc-
tive environment. Mean standing crop was 332 g/m?in
unmanipulated plots, similar to that reported for other
first-year old fields on infertile soils (363 g/m2 — Hils &
Vankat 1982; 252 g/m? —Miller & Werner 1987; 300 ¢/
m? — Goldberg & Miller 1990). On the often-cited
standing crop-species richness curve reported by Al
Mufti et a. (1977), this standing crop level fallslow on
the ascending part of the curve. Light depletion by the
vegetation was low, as would be expected in a low-

productivity community.

Water was likely the limiting resource during the
experiment. Addition of N-P-K fertilizer did not result
inincreased production, and 70% of full sunlight reached
the soil surface in unfertilized plots at the end of the
growing season. Rainfall for the growing season was
only 64% of normal levels.

Despite the unproductive environment, competition
affected fitness of individual plants. For each species,
the average plant had lower biomass in control plots,
withahigh potential for competition, than thinned plots,
with a lower potential for competition (Fig. 1). This
result also suggests that thinned plots provide a reason-
able approximation of a null species pool. Although
interactions may not have been entirely eliminated from
these plots, they were clearly greatly reduced relative to
natural conditions.

There were some indications that competition may
have affected diversity. Intheinitial anaysis, half of the
plots had observed speciesrichnessand diversity values
that were significantly lower than expected in the ab-
sence of species interactions (Figs. 2¢ and 3c). These
significant deviations were not due to the presence of
overrepresented speciesin the species pool. When those
species were removed from the analysis, significant
deviations for S were found for three additional plots
(Fig. 4c). However, the deviations could be accounted
for by adding aggregation to the null model. When
species were given variable spatial distributions, the
expected richness and diversity were lower (Figs. 5a
and 6a), and none of the deviations were significant
(Figs. 5b and 6b). Therefore, although theinitial analy-
sisindicated that competition reduced diversity in some
plots, this reduction can explained as an artifact due to
spatial aggregation.

While the diversity analysis could have been con-
founded by the difference in area between thinned and
control plots, this difference was probably not important.
Speciesdiversity issensitiveto theareasampled, because
larger areas hold more individuals, may contain a higher
diversity of microhabitats, and may experience greater
edge effects. Our method accounted for the differencein
number of individualsby using plot sizesthat giveroughly
equal numbersin both thinned and control plots, by using
random sampling to construct hypothetical null plotswith
the same number of individuals as control plots, and by
testing for the effect of overrepresented species. The
thinned plots were small enough (5 m?) that they were
unlikely to incorporate much microhabitat variation. Fi-
nally, the edges of thinned plots showed no obvious
differencesin speciescomposition fromtheinterior of the
plots, and the thinned 20-cm borders should have buff-
ered any edgeeffects. Therefore, any differencesindiver-
sity between the control plots and hypothetical null
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Fig. 5. a. Expected speciesrichness (S) in hypothetical sample
plotsfrom the null community, with densities equal to thosein
control plots, when aggregation is added to sample plots.
Observed S-values from control plots are the same asin Fig.
2a. Expected values of S with aggregation in the model are
marked with e ; expected Svalues from the originad model
without aggregation are higher and are marked with O . With
aggregation, expected S increased with increasing plot den-
sity. b. Log responseratio —InRR = In(expected/observed), an
index of the effect of species interactions on speciesrichness,
with aggregation added to the model. Positive values of INRR
indicatethat interactionsincreased speciesrichness abovethat
expected in the null community, negative values indicate that
interactions decreased species richness, and a value of zero
(dashed line) indicates that interactions had no effect on spe-
cies richness. No values were significantly different from
zero, and log response ratio showed no relationship with plot
density.

community plotswere unlikely to be confounded by area
effects, and the aggregation artifact remains the most
likely explanation for those differences.

No species seemed to be a consistently good or poor
competitor. Despite the significant species by treatment
interaction in the comparison of plant mass with and
without competition, there was no evidence of any spe-
ciesthat were reduced in relative abundance by interac-
tions. No species showed a significant decreasein rela
tive abundance as density, and interaction intensity,
increased.

In summary, competition reduced the growth of
individual plants in this community, but probably had
no effect on species richness or diversity. Some plots
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Fig. 6. a. Expected diversity (Simpson’ sdiversity index, 1/D)
in hypothetical sample plots from the null community, with
densities equal to those in control plots, when aggregation is
added to sample plots. Observed 1/D valuesfrom control plots
are the same as in Fig. 3a. Expected values of 1/D with
aggregation in the model are marked with e; expected 1/D
vauesfrom the original model without aggregation are higher
and aremarked withO. With aggregation, expected 1/D showed
no relationship with plot density. b. Log responseratio (InRR
= In[expected/observed]), an index of the effect of species
interactions on speci esrichness, with aggregation added to the
model. Positive values of INRR indicate that interactions in-
creased species richness above that expected in the null com-
munity, negative values indicate that interactions decreased
species richness, and a value of zero (dashed line) indicates
that interactions had no effect on species richness. No values
were significantly different from zero, and log response ratio
showed no relationship with plot density.

showed lower diversity than expected in the absence of
interactions, but the difference could be accounted for
by low levelsof spatial aggregation. Zamfir & Goldberg
(2000) report similar results for bryophytes: increasing
community density reduced proportional growth of each
species, but had no effect on diversity.

Thedifference between individua - and community-
level effects does not seem to be a result of looking at
biomass for individuals and densities for communities.
Simpson’s index for proportional biomass of species
does not differ significantly between thinned and con-
trol plots, suggesting that competition does not affect
diversity in terms of biomass. Simpson’s index for
relative density did differ significantly, so sample sizes
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were |large enough to detect a difference, but the better
sample-based analysis shows that Simpson’s index for
relative density does not differ between the null commu-
nity and the observed community.

Thisresult contradicts previous studies which found
that competition reduced species diversity (Abul-Fatih
& Bazzaz 1979; Gibson 1988; Gurevitch & Unnasch
1989; Keddy 1989). However, at least two of these
studiesinvolved much more productive environments—
standing crop = 1641 g/m? in Abul-Fatih & Bazzaz
(1979), 715 g/m? in Gurevitch & Unnasch (1989), 90 g/
m?2 in Gibson (1988); not reported in Keddy (1989).
Grime (1977) predicted that competition should be un-
important in unproductive environments. Our study sup-
ports that prediction, if ‘importance’ is interpreted as
importance in determining community-level patterns,
rather than individual fitness. Our result also agreeswith
Newman's(1973) predictionthat light competition should
lead to competitive exclusion, while competition for be-
low-ground resources (water, in our study) should not.

Much of the theory regarding the effects of compe-
tition isaimed at explaining community-level patterns.
For example, the observed changes in species diversity
aong productivity gradients are explained as the result
of changes in the nature or intensity of competition
(Grime1973; Tilman 1982; Tilman & Pacala1993). But
most tests of this hypothesis measure the effects of
competitiononindividual fitness(e.g. Wilson & Tilman
1991, 1993; Twolan-Strutt & Keddy 1996). The results
of this study show that measures of individual-level
effects cannot necessarily be used to predict commu-
nity-level effects. Competition will only change diver-
sity if species are differentially affected. This study
gives one example of a community in which species
appeared to be affected equally by competition; we do
not know how common this pattern is. More commu-
nity-level experiments will be needed to test for com-
munity-level effects of competition.
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