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Abstract

Brooks parsimony analysis (BPA) and reconciliation methods in studies of host–parasite associations differ fundamentally,

despite using the same null hypothesis. Reconciliation methods may eliminate or modify input data to maximize fit of single parasite

clades to a null hypothesis of cospeciation, by invoking different a priori assumptions, including a known host phylogeny. By

examining the degree of phylogenetic congruence among multiple parasite clades, using hosts as analogs of taxa but not presuming a

host phylogeny or any degree of cospeciation a priori, BPA modifies the null hypothesis of cospeciation if necessary to maintain the

integrity of the input data. Two exemplars illustrate critical empirical differences between reconciliation methods and BPA: (1)

reconciliation methods rather than BPA may select the incorrect general host cladogram for a set of data from different clades of

parasites, (2) BPA rather than reconciliation methods provides the most parsimonious interpretation of all available data, and (3)

secondary BPA, proposed in 1990, when applied to data sets in which host-switching produces hosts with reticulate histories,

provides the most parsimonious and biologically realistic interpretations of general host cladograms. The extent to which these

general host cladograms, based on cospeciation among different parasite clades inhabiting the same hosts, correspond to host

phylogeny can be tested, a posteriori, by comparison with a host phylogeny generated from nonparasite data. These observations

lead to the conclusion that BPA and reconciliation methods are designed to implement different research programs based on dif-

ferent epistemologies. BPA is an a posteriori method that is designed to assess the host context of parasite speciation events, whereas

reconciliation methods are a priori methods that are designed to fit parasite phylogenies to a host phylogeny. Host-switching events

are essential for explaining complex histories of host–parasite associations. BPA assumes coevolutionary complexity (historical

contingency), relying on parsimony as an a posteriori explanatory tool to summarize complex results, whereas reconciliation

methods, which embody formalized assumptions of maximum cospeciation, are based on a priori conceptual parsimony. Modifi-

cations of basic reconciliation methods, embodied in TreeMap 1.0 and TreeMap 2.02, represent the addition of weighting schemes in

which the researcher specifies allowed departures from cospeciation a priori, with the result that TreeMap results more closely agree

with BPA results than do reconciled tree analysis results.
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Dowling (2002) recently compared the empirical
properties of two leading methods used to compare host

and parasite phylogenies: Brooks parsimony analysis

(BPA; Brooks, 1981, 1985, 1990; Brooks et al., 2001;

Wiley, 1986, 1988a,b) and TreeMap (Page, 1995; now
referred to as TreeMap 1.0), based on a series of simu-

lations. His results indicated a preference for BPA over

TreeMap 1.0 for two reasons (Dowling, 2002, p. 431):

‘‘First, TreeMap grossly overestimates duplications and

sorting events when widespread taxa due to host-

switching are present in the associations between the
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host and parasite phylogenies. Second, the ghost taxa
that BPA mistakenly produces do not cause any topo-

logical changes in the tree, are readily recognizable, and

are easy to interpret.’’ These findings were significant,

because Dowling�s comparisons forced BPA to be as-

sessed using TreeMap criteria. Like the majority of au-

thors who have compared BPA with other methods

(e.g., Morrone and Carpenter, 1994; Morrone and Cri-

sci, 1995; Page, 1990a, 1993a; Page and Charleston,
1998; Paterson and Gray, 1997; Paterson and Banks,

2001; Paterson et al., 1999, 2000; Ronquist, 1995, 1996,

1997a,b, 1998; for exceptions, see Hoberg et al., 1997;

Van Veller and Brooks, 2001), Dowling (2002) consid-

ered only the form of BPA (primary BPA) proposed in

1981 and did not take into account modifications of

BPA (secondary BPA), first proposed by Wiley (1986,

1988a,b) and later by Brooks (1990) (see also Brooks
and McLennan, 1991, 1993, 2002; Van Veller and

Brooks, 2001; Brooks et al., 2001; Green et al., 2002;

Hoberg and Klassen, 2002; Brooks and McLennan,

2003). In addition, Dowling�s simulations comprised
comparisons of only one parasite phylogeny with an a

priori specified host phylogeny, whereas BPA is de-

signed to assess cospeciation among multiple parasite

clades, in the context of their hosts but without speci-
fying a host phylogeny a priori (Brooks, 1981).

The methods used for phylogenetic analyses of host–

parasite associations have been applied to historical bi-

ogeographic analyses also. This has been justified by

references to analogous concepts and processes between

in the of species and areas and in the associations of

parasites and hosts (e.g., Brooks, 1981, 1985, 1990;

Brooks and McLennan, 1991, 1993, 2002; Page, 1993a,
1995; Page and Charleston, 1998).

In a series of recent studies, Van Veller et al. (1999,

2000, 2001, 2002) investigated some of the empirical

properties of different methods of historical biogeo-

graphic analysis. They developed a criterion by which

the internal consistency of each method could be as-

sessed and were able to identify two categories of

methods. They found that each method presented dif-
ferent problems with respect to internal consistency and

proposed ways in which those shortcomings could be

fixed. In doing this work, Van Veller et al. (2000, 2002,

2003) discovered that the various methods belonged to

two distinct classes, which they characterized as a priori

and a posteriori. Van Veller and Brooks (2001) sug-

gested that a priori and a posteriori methods represent

different research programs stemming from different
ontological bases. Ebach and Humphries (2002)

strongly disagreed with this position, but their own ex-

emplar and discussion actually supported the position of

Van Veller and Brooks (2001) (see Van Veller et al.,

2003).

Although Hoberg et al. (1997) noted the contrasts

and divergent foundations for BPA and reconciliation

methods (implemented in, e.g., component analysis
(CA) by Page (1988) and reconciled tree analysis (RTA)

by Page (1993b)), they did not explicitly recognize the

dichotomy for a posteriori and a priori approaches.

Until the study by Dowling (2002) there had been few

direct comparisons of these methods, and nearly all had

been based on empirical datasets and primary BPA. A

contrast was the empirical study of seabirds and tape-

worms (Hoberg et al., 1997) that used both secondary
BPA and reconciliation methods to assess the history of

widespread and sympatric parasite species.

Given that phylogenetic studies of coevolution make

use of the same methods, we believe that it is useful to

utilize insights recently gained in discussions of histori-

cal biogeography in assessment of the controversy about

phylogenetic studies of coevolution. We also think that

it is important to distinguish between epistemological
considerations and ontological considerations to focus

attention on the fundamental philosophical differences

that have led to the emergence of a priori and a poste-

riori methods as two very different approaches to the

study of host–parasite associations. Epistemologically,

our focus is on the application of different methods and

the inference and optimization of trees, whereas onto-

logically, we are concerned with categories of methods,
not separate methods. Our over-arching thesis is that a

theoretical framework describes a way of obtaining hy-

potheses from data based upon a researcher�s views on
the prediction of the relative importance of various

processes, in this case, cospeciation, host-switching,

duplication, and extinction. The differing opinions on

timing, frequency, and likelihood of these coevolution-

ary processes leads to the dichotomy between a priori
and a posteriori methods. We suggest that points of

mutual agreement between a priori and a posteriori

methods can be viewed as benefiting both research

programs. Further, we argue that points of disagree-

ment reflect differences in research programs rather than

fundamental flaws in methodology.

Epistemological considerations

When parasites (of a single clade) are widespread

over several hosts or when a single host contains several

(sympatric) parasites (of the same clade), there will be

only a partial fit between the phylogenies of hosts and

those of parasites. It is in these cases that subsequent

analyses are necessary to deal with widespread and
sympatrically distributed parasites, to infer both com-

mon and unique patterns in the associated phylogenies

of hosts and parasites. For dealing with widespread and

sympatric parasites, among other methods, BPA

(Brooks, 1981, 1985, 1990; Brooks et al., 2001; Wiley,

1986, 1988a,b), CA (Nelson and Platnick, 1981; Page,

1988), and RTA (Page, 1993b) can be applied. It has
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generally been assumed that all these methods have been
developed to implement the same research program. If

this is true, then one way to choose among them is to

determine which one best optimizes the goals of the

research program. Van Veller et al. (2000) discovered

that these different methods (among several others) be-

long to two different categories based on the different

methods that they use for dealing with widespread or

sympatric species. In the context of this paper, these
widespread or sympatric species are from several clades

of parasites distributed over their associated hosts. The

distinction between a priori and a posteriori methods is

fully discussed in Van Veller et al. (2002). Briefly, a

priori methods allow modification of data in the parasite

phylogeny to provide maximum fit of a single clade of

parasites to a single general host cladogram specified a

priori. A posteriori methods do not allow any modifi-
cation of data in the parasite phylogenies and deal with

widespread and sympatric parasites in a parsimony

analysis of the unmodified input phylogenies. The most

parsimonious depiction of all the data is selected for

inferring common patterns in the phylogenies of para-

sites and hosts that are the result of cospeciation (in-

cluding sympatric speciation, see below). Parasites

whose distributions conflict with these common patterns
are explained a posteriori as postspeciation host range

expansion (analogous to postspeciation dispersal) or

speciation by host-switching (peripheral isolates specia-

tion; see Brooks and McLennan, 1993, 2002). These

explanations are obtained by optimizing the data of

each clade of parasites on the general host cladogram

(primary BPA) or by duplicating the hosts in which the

incongruent distributions occur (secondary BPA; for
distinctions between primary and secondary BPA, see

Brooks et al., 2001; Van Veller and Brooks, 2001;

Brooks and McLennan, 2002; Hoberg and Klassen,

2002).

In implementations of reconciliation methods, phy-

logenetic relationships of widespread and sympatric

parasites are reconciled with the host phylogeny by

particular combinations of lineage duplication and

lineage sorting (e.g., Paterson and Banks, 2001). Initial

implementations of these a priori methods did not allow

postspeciation host range expansion or speciation by

host-switching as possible explanations. TreeMap 1.0

(Page, 1995) and TreeMap 2.02 (Page, 2003) were de-

veloped to permit explanations of host switching, but

only under conditions determined a priori by the re-

searcher. In the case of TreeMap 1.0, host-switching is
determined by first obtaining the maximum number of

cospeciations from the initial reconciliation of the two

associated phylogenies. From this point, the maximum

number of host-switching events is determined (maxi-

mum cospeciation minus total number of nodes minus

one) and a range from one to the maximum number of

host-switches is tried in combination at every node in

the phylogeny, searching for any number of host
switches that further maximize the total number of co-

speciations. TreeMap 2.02 uses the event-based cost

analysis model Jungles (Charleston, 1998) to minimize

the total cost (host-switching plus duplications plus

sorting events), while maximizing the number of co-

speciation events.

Putative shortcomings of BPA: two exemplars

When discussing differences among methods, with the

goal of choosing one over the other(s), it is important to

make certain that the actual workings of each method

are properly represented. Beginning more than a decade

ago, Page (1990a, 1994a,b) asserted two major objec-

tions to BPA: (1) in some cases BPA may find the same
general host cladogram as reconciliation methods, but in

doing so may produce biologically unrealistic interpre-

tations of the species involved (variously suggesting too

many losses, too many host-switches, or impossible

phylogenetic relationships) and (2) BPA will sometimes

fail to find the proper general host cladogram (i.e. the

host phylogeny). Dowling�s (2002) study represented an
effort to examine these assertions empirically. The fol-
lowing two exemplars are designed to characterize ob-

jections to BPA made by priorists and to further explain

the findings by Dowling on purely epistemological

grounds.

Exemplar 1

In Fig. 1a, we show the parasite phylogenies with
their hosts superimposed for four clades of parasites.

Since no widespread or sympatric parasites are present,

no additional steps are necessary and these parasite–

host cladograms (in analogy with usage by Kluge,

1998b; Enghoff, 1996) result in resolved host cladograms

derived directly from the parasite data congruent with

the resolved host cladograms that are obtained for each

clade of parasites.
With Component 1.5 (implementation of CA by

Page, 1990b), the sets of resolved host cladograms for

different clades are compared for congruent patterns,

which are then considered to be the general host clad-

ograms. For this particular exemplar, three of the four

clades show a congruent resolved host cladogram, which

is considered to be the general host cladogram for these

clades (Fig. 1b). The resolved host cladogram for clade
T1–T7 that is not congruent with this general host

cladogram is ignored and not considered further.

Component 2.0 (implementation of RTA by Page,

1993a) selects the same general host cladogram as does

Component 1.5. Tree reconciliation for the parasite–

host cladograms of three clades (T8–T14, T15–T21,

T22–T28) with this general host cladogram needs no
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duplications or losses. Tree reconciliation for the para-
site–host cladogram of the clade consisting of T1–T7

with this general host cladogram needs one lineage du-

plication and four losses (Fig. 1c).

TreeMap 1.0 and TreeMap 2.02 do not allow the use

of multiple parasite phylogenies and, therefore, cannot

make an assessment of cospeciation patterns without

stipulating a host phylogeny a priori. Due to this limi-

tation of TreeMap 1.0 and TreeMap 2.02, the parasite
clades (Fig. 1a) were analyzed individually with a spec-

ified host tree, in this case identical to the one chosen by

RTA (Fig. 1b). The three parasite clades (T8–T14, T15–

T21, T22–T28) were perfectly congruent with the host

phylogeny and, when analyzed with both TreeMap 1.0

and 2.0, provided results of three cospeciations and no

other events. As found with the Component 1.5 and 2.0

analyses, the parasite clade containing T1–T7 is not
congruent with the host phylogeny and needs further

explanation. TreeMap 1.0 provided an initial reconcili-

ation of one lineage duplication and four losses (the

same as the reconciliation done by Components 1.5 and

2.0) and, when host-switching events were exhaustively

searched for, a reconstruction involving one host-switch

and three losses were recovered (Fig. 1d). This recon-

struction requires one less event than the basic recon-
ciliation and therefore is deemed the more desirable

reconstruction. Analysis of the same parasite clade

(T1–T7) using the Jungles model in TreeMap 2.02, with

the default event cost settings (all events equally weigh-
ted), recovered the same reconstruction as TreeMap 1.0

(Fig. 1d), with a total cost of four (one host-switch and

three losses).

BPA selects the same general host cladogram as do

Component 1.5 and Component 2.0 and, therefore, as

the a priori host phylogeny for TreeMap. However, the

biological interpretation is different. DELTRAN opti-

mization (as preferred by Wiley, 1986, 1988a,b) of the
nodes of the parasite–host cladogram of the fourth clade

needs nine steps with two homoplasies (Fig. 1e). These

homoplasies are explained a posteriori as one loss (re-

versal) event for parasite T4 and one host-switch (con-

vergence/parallelism) event for parasite T1. In Page�s
(1990a, 1994a,b) interpretation of BPA, these two events

are biologically unrealistic because hypothetical ances-

tors T5 and T6 (i.e., ‘‘ghost taxa’’ according to Dowling,
2002) arise before parasite T1. One way to deal with this

problem is by assuming one persistent ancestor for the

hypothetical ancestors (T7¼T6¼T5). While this inter-
pretation may be appropriate for particular cases, we

consider it to be an unsatisfactory means for dealing

with the problem.

We believe that the explanation for these biologically

unrealistic interpretations is that the data have been
forced to conform to an a priori model that they do not

support, i.e., to the assumption that hosts cannot have

reticulated histories with respect to the parasite species

Fig. 1. Exemplar 1 (parasites are represented as T1–28 and the host associations (A–D) are identified at the tips of the clades). (a) Parasite–host

cladograms for four clades of parasites; (b) general host cladogram for three of the four clades obtained with Component 1.5; (c) tree reconciliation

for the parasite–host cladogram of one clade with the general host cladogram obtained with Component 2.0; (d) reconstruction produced by

TreeMap 1.0 using the exhaustive search function and that by TreeMap 2.02 using a default Jungles analysis; (e) general host cladogram for the four

clades obtained with primary BPA; (f) general host cladogram for the four clades obtained with secondary BPA); (�, lineage duplication; L, loss; A,
B, C, D, hosts; A0, host duplication; T1–T28, parasites; , co-speciation; , loss/host-switch).

A.P.G. Dowling et al. / Cladistics 19 (2003) 240–253 243



that inhabit them. For this particular exemplar the bi-
ologically unrealistic interpretations disappear if we as-

sume that host A has a reticulate history. Secondary

BPA (Brooks, 1990; see also Brooks and McLennan,

1991, 1993, 2002, 2003; Ruedi, 1996; Brooks et al., 2001;

Green et al., 2002; Van Veller and Brooks, 2001) allows

a reticulate history for host A and results in the general

host cladogram represented in Fig. 1f without any bio-

logically unrealistic interpretations.
Comparisons of BPA and reconciliation methods

(e.g., Dowling, 2002; Page and Charleston, 1998) have

not used secondary BPA. Because parasites may be

duplicated in both Component 2.0 (by lineage duplica-

tion) and secondary BPA (by host duplication), com-

parison of the resolved host cladograms obtained with

Component 2.0 (RTA) and secondary BPA is more

appropriate than comparison of the results obtained
with Component 2.0 (RTA) and primary BPA, as has

been done previously. This exemplar shows that Com-

ponent 1.5, Component 2.0, primary BPA, and sec-

ondary BPA all derive the same general host cladogram.

BPA provides a more parsimonious explanation of the

data than do Component 2.0 (one host-switching event

and one loss vs one lineage duplication and four losses)

or TreeMap 1.0 and TreeMap 2.0 (one host-switching
event and one loss vs one host-switching event and three

losses). Secondary BPA also eliminates any apparent

unrealistic biological interpretations due to the presence

of ‘‘ghost lineages’’ (Dowling, 2002) and eliminates po-

tential controversies arising from the use of DELTRAN

or ACCTRAN.

Exemplar 2

Fig. 2a shows the parasite–host cladograms for three

clades of parasites, obtained by replacing the parasites

by their hosts. Component 1.5 can deal with the wide-

spread and sympatric parasites in each of the three

clades under assumptions 0, 1, and 2. Under assumption

0, two of the three clades of parasites show a congruent

resolved host cladogram, which is considered to be the
general host cladogram for these two clades (Fig. 2b).

The only way to obtain a congruent resolved host

cladogram for all three clades is by dealing with the

widespread and sympatric parasites under assumption 2.

The general host cladogram obtained in the intersection

of sets of resolved host cladograms derived under as-

sumption 2 for the three clades is represented in Fig. 2c.

Component 2.0 selects the same general host cladogram
as is obtained for two of the three clades with Compo-

nent 1.5 (Fig. 2b) under assumption 0. Tree reconcilia-

tion for the parasite–host cladograms of the three clades

with this general host cladogram needs a total of 12

losses and five lineage duplications (Fig. 2d). The gen-

eral host cladogram that is obtained for the three clades

with Component 1.5 under assumption 2 is not selected

since tree reconciliation of it with the parasite–host
cladograms of the three clades needs 15 losses and six

lineage duplications (Fig. 2e). The only way to obtain

the general host cladogram that is obtained with Com-

ponent 1.5 under assumption 2 is by a priori eliminating

widespread parasites in favor of endemics (sensu Nelson

and Platnick, 1981; Kluge, 1988; Nelson and Ladiges,

1991a,b,c; Page, 1988, 1993a, 1994a).

The three parasite clades (T1–T7, T8–T14, T15–T21)
were analyzed individually with TreeMap 1.0 and

TreeMap 2.02 using the pectinate host tree (Fig. 2c).

TreeMap 1.0 provides an initial reconciliation for par-

asite clade T1–T7 of two lineage duplications and four

losses (Fig. 2f) and an exhaustive search for host-

switching provides no other reconstructions. For para-

site clade T8–T14, TreeMap 1.0 provides an initial

reconciliation of one lineage duplication and two losses
(Fig. 2g), and an exhaustive search for host-switching

also provides no other reconstructions. Finally, for

parasite clade T15–T21, TreeMap 1.0 produces an initial

reconciliation of three lineage duplications and seven

losses (Fig. 2h) and, once again, an exhaustive search

reveals no other reconstructions. The inability of Tree-

Map 1.0 to recover host-switching events when dealing

with widespread parasites is similar to the results found
by Dowling (2002). Since no host-switching events were

recovered, TreeMap 1.0 finds virtually the same results

as Component. The same analyses using TreeMap 2.02

produce slightly different results. Analysis of parasite

clade T1–T7, using TreeMap 2.02, produces two equally

good (total cost¼ 2) reconstructions (Fig. 2i) of one
host-switch and one loss but also chooses to completely

ignore parasite T2, which should also be associated with
host B. Similar results are found when analyzing para-

site clade T8–T14, from which a reconstruction of per-

fect congruence to the host phylogeny is recovered (Fig.

2j). Parasite T8, which is associated with hosts A and B,

was dropped from host B during the analysis. Finally,

for parasite clade T15–T21, the TreeMap 2.02 analysis

produced two equally good reconstructions of one

host-switch and one loss (Fig. 2k), but this time two
widespread parasites were dropped from one of their

respective hosts, in this case, T17 was dropped from host

C and T15 was dropped from host D.

Primary BPA selects the same general host cladogram

as does Component 1.5 under assumption 2. DEL-

TRAN optimization of the nodes of the parasite–host

cladograms (as suggested by Wiley, 1986, 1988a,b) of

the three clades on this general host cladogram needs 25
steps (Fig. 2l) with eight homoplasies (four host-

switching events plus associated ancestral codes result-

ing from inclusive ORing). Secondary BPA, assuming

reticulate histories for hosts A, B, and D, produces the

general host cladogram represented in Fig. 2m, requir-

ing four host-switching events (host duplications) and

eliminating the four ‘‘ghost lineages.’’
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This exemplar shows that the result obtained with

primary BPA can be obtained with Component 1.5 and

Component 2.0 only by a priori eliminating widespread
parasites in favor of endemics, as suggested by Page

(1988, 1993a, 1994a) and implemented in TreeMap 1.0

and TreeMap 2.0 (see also Van Veller et al., 2000).

When Component 2.0 is forced to use all available data

(as BPA does), it chooses a different general host clad-
ogram via tree reconciliation that needs 12 losses and

five lineage duplications. To obtain the same general

Fig. 2. Exemplar 2 (parasites are represented as T1–28 and the host associations (A–D) are identified at the tips of the clades). (a) Parasite–host

cladograms for three clades of parasites; (b) general host cladogram for two of the three clades obtained with Component 1.5 under assumption 0; (c)

general host cladogram for the three clades obtained with Component 1.5 under assumption 2; (d) tree reconciliation for the parasite–host clado-

grams of the three clades with the general host cladogram obtained with Component 2.0; (e) tree reconciliation for the parasite–host cladograms of

the three clades with the general host cladogram that is derived by Component 1.5 under assumption 2; (f) host–parasite reconstruction produced by

TreeMap 1.0 using the exhaustive search function for parasite clade T1–T7; (g) host–parasite reconstruction produced by TreeMap 1.0 using the

exhaustive search function for parasite clade T8–T14; (h) host–parasite reconstruction produced by TreeMap 1.0 using the exhaustive search function

for parasite clade T15–T21; (i) two host–parasite reconstructions produced by a Jungles analysis implemented in TreeMap 2.02 for parasite clade T1–

T7; (j) host–parasite reconstruction produced by a Jungles analysis implemented in TreeMap 2.02 for parasite clade T8-T14; (k) two host–parasite

reconstructions produced by a Jungles analysis implemented in TreeMap 2.02 for parasite clade T15–T21; (l) general host cladogram for the three

clades obtained with primary BPA; (m) general host cladogram for the three clades obtained with secondary BPA; (�, lineage duplication; L, loss; A,
B, C, D, host; A0, B0, B00, D0, host duplication; T1–T21, parasites; , cospeciation; , loss/host-switch).
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host cladogram that is derived by primary BPA and
Component 1.5, Component 2.0 needs 15 losses and six

lineage duplications for tree reconciliation, TreeMap 1.0

needs six lineage duplications and 13 losses, and Tree-

Map 2.02 needs two host-switching events and 2 losses

and eliminates two parasite species altogether and half

the host records for two other parasite species.

It is thus not primary BPA, but Component 2.0 that

does not succeed in finding the general pattern when it is

forced to confront all available data from several clades
of parasites. Further, secondary BPA explains all data

of the three clades in a general pattern with four host-

switching events (host duplication) and no extra steps.

Even when reconciliation methods are given the same

host tree as that produced by BPA, the BPA result is

more parsimonious than the explanation of all data for

the three clades with Component 1.0 (five lineage du-

plications and 12 losses), Component 2.0 and TreeMap

Fig. 2. (continued)

246 A.P.G. Dowling et al. / Cladistics 19 (2003) 240–253



1.0 (six duplications and 13 losses), or TreeMap 2.02
(two host-switching events and 2 losses, ignoring data

from four parasite species).

Discussion

These two exemplars demonstrate the general cir-

cumstances under which various implementations of
reconciliation methods produce less parsimonious re-

sults than does BPA (see also Ronquist, 1998). This ef-

fect is magnified, even to the point of supporting

the wrong general host cladogram (exemplar 2), when

reconciliation methods are forced to deal with all

available data, rather than eliminating some data from

the analysis.

The two exemplars show that implementations of
reconciliation methods (Component 1.5 and Compo-

nent 2.0) fail to satisfy two fundamental principles of

phylogenetic systematics: using all available evidence

(the principle of total evidence: Kluge, 1989, 1997,

1998a,b) and selecting the a posteriori working hy-

pothesis that best fits all available data (the principle of

maximum explanatory power: Farris, 1983; see also

Kluge and Farris, 1969; Eldredge and Cracraft, 1980;
Wiley, 1981; Kluge, 1997, 1998b). Secondary BPA dif-

fers from its counterpart, methods that are based on tree

reconciliation, with respect to a third and perhaps most

important principle of phylogenetic systematics: test-

ability (the principle of falsification: Popper, 1960,

1968a,b, 1972, 1976, 1992; Wiley, 1975; Platnick and

Gaffney, 1977, 1978a,b; Gaffney, 1979; Kluge, 1997,

1998b). Invoking subjective a priori weighting schemes,
such as those embodied in Jungles, does not correct this

shortcoming, although in principle one should always be

able to find a weighting scheme under which TreeMap

2.02 will provide the same results as BPA.

Exemplars 1 and 2 demonstrate that when some hosts

actually have reticulate histories, primary BPA may

produce interpretations that appear to be biologically

unrealistic because the data are forced to conform to an
a priori all-cospeciation null hypothesis. Those appar-

ently unrealistic interpretations disappear, however,

when secondary BPA is performed, allowing the data to

falsify the a priori all-cospeciation null hypothesis. BPA,

in accordance with the fundamental principles of phy-

logenetic systematics, functions best as an a posteriori,

or falsificationist, method (Popper, 1960, 1968a,b, 1972,

1976, 1992) in conjunction with ‘‘cycles of discovery and
evaluation’’ (Frost and Kluge, 1994; Kluge, 1997,

1998a,b). This is why BPA relies on the a posteriori use

of parsimony to explain all the data. Analyses using

BPA falsify the null hypothesis of all-cospeciation in

each instance that the data warrant such falsification.

This is shown visually in secondary BPA, in which each

host duplication represents a specific falsification of the
null hypothesis of cospeciation.

Reconciliation methods, however, do not attempt to

falsify the null hypothesis of cospeciation. Component

1.5 searches for congruent resolved host cladograms in

the solution sets obtained for different clades of para-

sites under the same assumption. Congruent resolved

host cladograms, present in the intersection of the so-

lution sets, are selected as general host cladograms and
are assumed to verify a common history of cospeciation

events by the different clades of parasites. For analyses

with Component 1.5, the chance of finding congruent

resolved host cladograms in the intersection of solution

sets obtained under assumption 2 is extremely large.

General host cladograms with Component 2.0 are de-

rived through tree reconciliation via losses and lineage

duplications. The number of resolved host cladograms
obtained under assumption 2 with Component 2.0

grows exponentially with an increase in the number of

widespread parasites. This is caused by an explosion in

the number of a priori rearrangements under assump-

tion 2 (solution sets sensu Van Veller et al., 1999, 2000)

to such an extent that the possibility of finding con-

gruent resolved host cladograms that verify a null hy-

pothesis of cospeciation (or any other arbitrarily chosen
possibility) approaches certainty. Implementing Jungles

does not help, as the realm of potential combinations of

a priori ‘‘costs’’ of different coevolutionary phenomena

is without limit.

The failure of reconciliation methods to satisfy the

three fundamental principles of phylogenetic systematics

(mentioned above) corroborate earlier findings in his-

torical biogeography (Van Veller et al., 2000; Van Veller
and Brooks, 2001) and coevolution (Dowling, 2002) that

when there is disagreement between a priori and a

posteriori methods with respect to a general pattern, the

result provided by the a posteriori methods is to be

preferred. In addition to providing less parsimonious

results, it has been shown by Van Veller et al. (2000,

2001) that a priori methods are internally inconsistent

on the issue of obtaining inclusive sets of cladograms
under assumptions 0, 1, and 2. Advocates of a priori

methods, however reject total evidence (Page, 1996),

parsimony (Morrone and Carpenter, 1994; Platnick

et al., 1996), and inclusive solution sets (Ebach and

Humphries, 2002) as criteria for assessing methods and

results of a priori and a posteriori approaches. Rather,

they prefer to invoke episodes of lineage duplication and

lineage sorting of a form and to the extent necessary to
increase the apparent support for a single, simple pat-

tern of host relationships (e.g., see Hoberg et al., 1997;

Page and Charleston, 1998; Paterson et al., 2000).

To us, such strongly held epistemological views in-

dicate strongly held ontological views. Van Veller and

Brooks (2001) suggested that the dispute between ad-

vocates of a priori and a posteriori methods has an
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underlying ontological basis. Others have also made this
suggestion, either explicitly (Brooks and McLennan,

1991, 1993, 2002, 2003; Ronquist, 1997a,b; Van Veller

et al., 2003) or implicitly (Hoberg et al., 1997; Ho-

venkamp, 1997), but it appears that the perspective

needs clarification. Next we consider three categories of

distinctions between a priori and a posteriori methods

that we believe comprise strongly divergent ontological

positions.

Host history versus parasite history perspectives

We believe that one reason for the marked difference

in perspectives represented by the a priori and a poste-

riori approaches can be traced to fundamental onto-

logical differences of opinion about the nature of

parasitism and the evolutionary independence of para-
sites relative to their hosts. Darwin (1872, p. 32) sum-

marized his view of evolution thusly: ‘‘there are two

factors: namely, the nature of the organism and the

nature of the conditions. The former seems to be much

more the important, for nearly similar variations

sometimes arise under, as far as we can judge, dissimilar

conditions; and, on the other hand, dissimilar variations

arise under conditions which appear to be nearly uni-
form.’’ For parasites, hosts are part of the nature of the

conditions. Those who consider parasites to be com-

pletely dependent on their hosts are not only ignoring

half of Darwin�s dictum, but are ignoring the half that
he considered most important. Methods of analysis

based on this ontology are characterized by a set of a

priori assumptions used to simplify an analysis; hence,

we refer to it as the ontology of simplicity or a priori
parsimony (see also Van Veller and Brooks, 2001;

Brooks and McLennan, 2002).

To think of parasites as active participants in their

own evolution, one must think of parasites as having

their own ‘‘nature of the organism’’ (Darwin, 1872).

That is, parasites are not simply dependent variables on

host phylogeny. Rather, they are independent variables

on different host resources, each of which may be dis-
tributed in a variety of ways among host species of

varying degrees of phylogenetic relatedness (Brooks and

McLennan, 1993, 2002). This viewpoint is rooted in (a

posteriori methods: Van Veller et al., 2000–2002; Van

Veller and Brooks, 2001; Brooks and McLennan, 2002)

the same ontology that leads us to believe that we will

routinely need to resort to parsimony a posteriori in

attempting to study any aspect of the evolution of bio-
diversity.

Simple versus complex associations between parasites and

hosts

When applying a priori methods for studying host–

parasite associations one finds the optimal fit of parasite

histories to the (a priori determined) host phylogeny and
then uses that fit to provide insights into the history of

speciation in several unrelated clades of parasites. To

implement this maximum cospeciation program, there-

fore, one must begin with an inferred host phylogeny

and one must accept cospeciation as the most probable

or usual form of evolutionary association. Within this

program the driving assumption is a single origin of all

characters or their analogs, thus one parasite for one
host or one species for one area; events such as post-

speciation host-switching or isolation without speciation

are not recognized, though they are real events. Having

accepted these assumptions, it is a simple matter of

finding the optimal fit of the parasites to the host tree.

Maintaining the singularity of host history is crucial for

this approach, so it is not surprising that advocates of a

priori methods invoke coupled parasite lineage dupli-
cation and sorting events rather than host duplication

events to deal with mismatches between host and para-

site phylogenies.

Studies of host–parasite associations with a posteriori

methods may be defined as the search for explanations

of the host context of species formation in parasites (see

also Wiley, 1986; Brooks and McLennan, 1991, 1993,

2002). Analyses from this (phylogenetic) perspective are
based on the assumption that cladograms produced by

phylogenetic systematic analysis are hypotheses of spe-

ciation events and can thus be used in studies of the

evolution of species and of their coevolutionary associ-

ations. In addition to (allopatric) cospeciation, processes

including sympatric (within-host) speciation, speciation

by host-switching (peripheral isolates speciation), post-

speciation host-switching, or isolation without specia-
tion (nonresponse to a vicariance event) are also

responsible for the occurrence of parasites among hosts

(see Brooks and McLennan, 1993; Hoberg, 1995; Ho-

berg and Klassen, 2002). Distinguishing all these possi-

bilities requires methods that are able to integrate

general patterns (host relationships supported by mul-

tiple clades of parasites) and unique elements, including

those that are incongruent with the general pattern. This
is based on the assumption that evolution has been so

historically contingent and complex that robust expla-

nations require analysis of both the common and the

unique patterns, including the possibility of hosts with

reticulated histories relative to the parasites inhabiting

them. Representing the unique elements may take the

form of optimizing incongruent data onto the general

host cladogram (primary BPA) or of duplicating hosts
that have a reticulate history with respect to the parasite

species inhabiting them (secondary BPA). This evolu-

tionary perspective is ontological rather than epistemo-

logical, because if this assumption is not warranted,

empirical studies using a posteriori methods will con-

sistently fail to find such complexity and ambiguity,

producing results that are congruent with those found
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using a priori methods. A clear example of this point is
illustrated by studies of cestodes and seabirds where

RTA failed to recover a complex history of host-

switching and diversification (Hoberg, 1992; Hoberg

et al., 1997).

Hennig’s auxiliary principle versus Hennig’s auxiliary

principle

A posteriori methods stem directly from the princi-

ples of phylogenetic systematics. In phylogenetic sys-

tematics analyses are performed on characters, not taxa

(Wiley, 1981; Kluge, 1999). Extending this reasoning to

studies of host–parasite associations (from a phyloge-

netic perspective), a posteriori methods are not analyses

of hosts, but analyses of parasites and their relationships

in a context of host-associated speciation. It is for this
reason that phylogenetic studies of host–parasite asso-

ciations deal with widespread and sympatric parasites

via a parasite-relationship approach rather than a host-

relationship approach. A parasite species cannot have

two different histories (hybrid species have two different

ancestors, but still only a single history), therefore its

occurrence in two different nonsister species hosts must

be the result of host-switching unless one parasite spe-
cies is the persistent ancestor of another (Brooks, 1981,

Figs. 39–44; also Johnson and Clayton, 2003). Each

such host-switching event produces a reticulated history

of the host with respect to the parasite associated with it.

These historical reticulations can be depicted as homo-

plasy in character optimization (primary BPA) or as

host duplications (secondary BPA). When applying a

priori methods, assumptions 1 and 2 allow parasites or
hosts in parasite–host cladograms to be discarded

(Nelson and Platnick, 1981; Kluge, 1988; Nelson and

Ladiges, 1991a,b,c; Page, 1988, 1993a, 1994a). Ebach

(1999) defended this practice by asserting that the dis-

carded taxa are those for which homoplasy is assumed

and are not ruled out as required by Hennig�s auxiliary
principle. The consequence of applying these assump-

tions in this manner, therefore, is that no falsification of
cospeciation among parasites and hosts is possible ex-

cept those stipulated by the researcher before the data

are analyzed. Therefore, a priori methods are inductivist

or verificationist in nature. This explains why ambiguity

must be treated as ‘‘items of error’’ (Nelson and Plat-

nick, 1981), rather than as ‘‘items of falsification’’ (Van

Veller and Brooks, 2001), justifying the use of assump-

tions 1 and 2 (see also Van Veller et al., 2002). This is the
reason that Page and Charleston (1998) can state as fact

that BPA underestimates the number of cospeciation

events, rather than stating as observation that BPA and

reconciliation methods may give different inferences of

the numbers of cospeciation events. Ebach and

Humphries (2002, p. 430) defined Hennig�s auxiliary
principle as ‘‘homoplasy should not be assumed beyond

necessity.’’ If assumptions 1 and 2 are invoked maxi-
mally, homoplasy is assumed only to the extent neces-

sary to fit ambiguous data to the general pattern,

meaning that the result is as parsimonious as possible

given the a priori dictum that Hennig�s auxiliary prin-
ciple cannot be violated. Because a posteriori methods

obtain more parsimonious results for data requiring the

intervention of assumptions 1 and 2, a priori methods

must be assuming homoplasy beyond necessity. There-
fore, in treating all ambiguous data as congruence, a

priori methods actually violate Hennig�s auxiliary prin-
ciple in an effort to maintain it. This may be a key to

understanding why each successive modification of a

priori methods has made them more BPA-like (for a

chronology of methods developed in comparative stud-

ies of host–parasite associations see Table 1).

Phylogeneticists define Hennig�s auxiliary principle as
‘‘Never presume convergent or parallel evolution; al-

ways presume homology in the absence of contrary ev-

idence.’’ (Brooks and McLennan, 2002, p. 36). This

principle is not an a priori assumption of a model, but

rather a technical presumption used to initiate the

analysis; if we assumed that similarity was always due to

convergent or parallel evolution, we would never find

any evidence of phylogeny. Hennig�s auxiliary principle
is violated each time that we discover homoplasy

(character incongruence), but it is violated a posteriori.

This is what makes phylogenetics, and associated a

posteriori methods, hypothetico-deductive or falsifica-

tionist in nature. Phylogeneticists expect this sort of

character incongruence to be a common enough occur-

rence that one will need to resort to a posteriori invo-

cations of parsimony to choose among competing
hypotheses. In studies of host–parasite associations

from a phylogenetic perspective, Hennig�s auxiliary

principle is violated every time that we discover host-

switching events. Homoplasy and host-switching are

discovered a posteriori in the context of character con-

gruence, not of a priori character duplication and

elimination. a posteriori methods use only assumption 0

precisely to prevent a priori violation of Hennig�s aux-
iliary principle.

Likewise, a posteriori methods assume that no clade

of parasites need conform completely to host phyloge-

netic relationships. Therefore the observation that, un-

der some circumstances, BPA of single parasite clades

may not produce a host cladogram congruent with the

host phylogeny (noted initially by Brooks (1979, 1981)

and discussed at length by Brooks and McLennan (1991,
1993, 2002)) indicates not a shortcoming in the methods

of analysis, but rather the need to examine more clades

of parasites to find host phylogenetic relationships. To

the extent that the original basis of BPA is correct, we

would expect the results of primary BPA and various a

priori methods to converge on the host phylogeny as

additional parasite clades are examined. The a priori
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results, however, would still lack a deductive framework
for explaining the incongruences between host and

parasite phylogenies, resorting to a priori subjective

weighting schemes such as those embodied in various

models such as Jungles (see also various contributions in

Page, 2003).

Conclusions

Despite the fact that both a priori and a posteriori

methods use the same null hypothesis, they implement

different research programs, based on different ontolo-

gies (see also Andersson, 1996). A priori methods (CA

and RTA) modify the data when necessary to provide

maximum fit to the null hypothesis of cospeciation; this

amounts to an a priori parsimony criterion. The a priori
hypothesis cannot therefore be directly tested or falsi-

fied. a posteriori methods (BPA), by contrast, falsify the

null hypothesis when the data do not support it; this
amounts to an a posteriori parsimony criterion.

The discovery of the difference between these two

different approaches permits us to understand the fol-

lowing general properties of a priori and a posteriori

methods:

• When cospeciation (including lineage duplications re-

sulting from sympatric speciation) is the most parsi-

monious explanation for all the data, BPA, CA,
and RTA (including TreeMap 1.0 and TreeMap

2.02 as weighted RTA) derive the same resolved host

cladograms with the same interpretation (Fig. 3a).

• When losses are the most parsimonious explanation

for all the data, BPA, CA, and RTA derive the same

resolved host cladograms with the same interpreta-

tion (Fig. 3b).

• When losses and host-switching are equally parsimo-
nious explanations for all the data, BPA, CA, and

RTA derive the same resolved host cladograms

Table 1

Chronology of conceptual and methodological development in comparative studies of host–parasite associations

Year Conceptual and methodological development

1966 Hennig (pp. 174–180) objects to ‘‘the parasitological method’’ as applied in studies for which only host phylogenetic relationships are

known, with the data from the parasites mapped onto the host phylogeny, as not being robust from a phylogenetic systematic

standpoint. He recommends better elucidation of parasite phyogenies to assess the extent to which parallel phylogenesis of hosts

and parasites is a law (p. 180).

1979 Brooks demonstrates that, even when phylogenetic relationships of parasites are known, they may exhibit plesiomorphic,

synapomorphic, autapomorphic, or homoplasious relationships with their hosts. He further suggests that the degree of host

specificity is not coupled with the degree of cospeciation.

1981 Brooks develops BPA and proposes that the obstacles pointed out by Hennig can be overcome if multiple parasite clades are

analyzed simultaneously with respect to their hosts, cospeciation patterns being inferred from phylogenetic congruence among

portions of the parasite phylogenies and host-switching being inferred from incongruence. The expectation is that cospeciation

patterns among parasites will generally conform to host phylogenetic relationships, especially if the parasite clades have very

different transmission biologies. In any event, the host cladogram produced by such multiclade analysis can be tested for

congruence with a host phylogeny generated using data other than parasites. Brooks further suggests that cospeciation between

hosts and parasites will often be the by-product of vicariant speciation affecting host and parasite lineages simultaneously, in

agreement with Hennig (1966, p. 79) who states ‘‘Particularly favorable results can be expected if the parasitological method is

supported by geographic vicariance relationships.’’

1983 Cressey et al. (1983) point out a technical coding problem with BPA, the problem of inclusive ORing, but do not propose a solution.

1985 Brooks applies BPA in historical biogeography and coevolution, showing fundamental similarities in methods of analysis.

1986,

1988

Wiley points out a technical problem with BPA resulting from coding absence as plesiomorphic and suggests using ‘‘missing data’’

coding with a posteriori interpretation of primitive absence vs secondary loss (extinction).

1990 Brooks proposes the duplication convention (secondary BPA in this paper), which eliminates the problems created by inclusive

ORing.

1990 Page implements component analysis and releases Component 1.5.

1991 Brooks and McLennan apply secondary BPA in coevolutionary studies.

1993 Page implements reconciled tree analysis and releases Component 2.0.

1993,

1994

Page applies Component 2.0 in historical biogeography and coevolution, agreeing with Hennig (1966) and Brooks (1985) that both

kinds of research are fundamentally similar. Coevolutionary studies using RTA provide maximal fit of any parasite phylogeny to

an a priori host phylogeny, invoking coupled lineage duplications and extinctions to ‘‘reconcile’’ apparent cases of host-switching

into instances of cospeciation with the host group.

1994,

1995

Page releases TreeMap 1.0. Possible instances of host-switching are allowed by deleting each associate in turn and computing a new

reconciled tree for the remaining associates (Page, 1994a) based on an a priori host phylogeny. In the online manual for TreeMap

1.0, Page suggests that successive host-switches are allowed (i.e., associate taxa are removed) until the number of putative

cospeciation events stops increasing.

1998 Charleston develops Jungles as an event-based model designed to incorporate host-switching and cospeciation.

2003 Page releases TreeMap 2.0. Trial runs involving the same widespread parasites due to host-switching trials that caused problems with

TreeMap 1.0 in Dowling�s (2002) analysis show that while TreeMap 2.0 (using Jungles) did not produce large numbers of lineage

duplications and extinctions as does RTA and TreeMap 1.0, it did so by deleting the problematic lineage and showing a perfectly

congruent match between the host and the associate phylogeny.
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(Fig. 3c). However, in interpreting these resolved host

cladograms, BPA will choose both losses and host-

switching as equally parsimonious and will require

more clades of parasites to resolve the issue, whereas

CA and RTA will choose only losses unless an a pri-

ori weighting scheme dictates otherwise.

• When host-switching is a more parsimonious explana-

tion for all the data than losses, primary BPA derives
the resolved host cladogram based on host-switching

(Fig. 2l) and secondary BPA depicts each switching

event as a falsification of the null hypothesis of cospe-

ciation, signified by the minimal number of host dupli-

cations necessary to explain all the switching events

(Fig. 2m). CA and RTA, by contrast, either remove

data a priori (Fig. 2c) or duplicate parasite lineages

and postulate losses a posteriori in sufficient quantity
to prevent falsification of the null hypothesis (Fig.

2d). TreeMap 1.0 andTreeMap 2.02 permit departures

frommaximumcospeciation, but only in amanner and

to an extent permitted by an a priori determined

weighting scheme.

We think that the above distinctions between a priori

and a posteriori methods for comparative studies of

host–parasite associations substantiate our claim that
they have different ontological bases. Van Veller and

Brooks (2001) and Brooks and McLennan (2002) have

referred to these as the ontology of simplicity and the

ontology of complexity, respectively. If the coevolution

of hosts and parasites is predominantly a matter of co-

speciation, rather than of historical contingencies, a

priori methods are to be preferred. As Hennig (1966)

noted, however, we will never know whether cospecia-

tion is common enough to be considered to act in a law-

like manner unless we test the hypothesis using methods
that do not presuppose any degree of cospeciation (see

also Brooks, 1979, 1981). BPA is such a method, and

virtually all coevolutionary studies to date using BPA

have discovered significant departures from cospeciation

(for references, see Brooks and McLennan, 1993, 2002).

Modifications of a priori methods have made them

progressively more BPA-like, Despite the modifications,

those methods have not achieved the same accuracy in
representing all the details of the input data as BPA, nor

have they produced a means of assessing cospeciation

without a priori acceptance of a host phylogeny and

without elimination of inconvenient data. Given our

beliefs that phylogenetic relationships among hosts and

parasites are complex and that therefore parsimony will

be the best that we can do with regard to hypotheses of

coevolutionary histories, we are not certain how a priori
methods can be suitably modified without reinventing

BPA.

Fig. 3. Similarities and differences in general host cladograms and their interpretations obtained with BPA, CA, and RTA. (a) Cospeciation is most

parsimonious explanation; (b) losses are most parsimonious explanation; (c) losses and host-switching are equally parsimonious explanations. (A, B,

C, D, hosts; T1–T11, parasites; , cospeciation; , loss/host-switch).

A.P.G. Dowling et al. / Cladistics 19 (2003) 240–253 251



Acknowledgments

This work was supported by an operating grant from

the Natural Sciences and Engineering Research Council

of Canada to D.R.B. We express thanks to Rino Zan-

dee, Leiden University, for helpful discussions. We also

thank Arnold Kluge, Rod Page, Mark Siddall, and two

anonymous referees for their critical and helpful reviews

of the manuscript.

References

Andersson, L., 1996. An ontological dilemma, epistemology and

methodology of historical biogeography. J. Biogeogr. 23, 269–277.

Brooks, D.R., 1979. Testing the context and extent of host–parasite

coevolution. Syst. Zool. 28, 299–307.

Brooks, D.R., 1981. Hennig�s parasitological method: a proposed

solution. Syst. Zool. 30, 229–249.

Brooks, D.R., 1985. Historical ecology: a new approach to studying

the evolution of ecological associations. Ann. Missouri Bot. Gard.

72, 660–680.

Brooks, D.R., 1990. Parsimony analysis in historical biogeography

and coevolution: methodological and theoretical update. Syst.

Zool. 39, 14–30.

Brooks, D.R., McLennan, D.A., 1991. Phylogeny, Ecology and

Behavior: A Research Program in Comparative Biology. Univ. of

Chicago Press, Chicago.

Brooks, D.R., McLennan, D.A., 1993. Parascript: Parasites and the

Language of Evolution. Smithsonian Institution Press, Washing-

ton, DC.

Brooks, D.R., McLennan, D.A., 2002. The Nature of Diversity: An

Evolutionary Voyage of Discovery. Univ. of Chicago Press,

Chicago.

Brooks, D.R., McLennan, D.A., 2003. Secondary BPA: extending

phylogenetic studies of coevolution. Cladistics.

Brooks, D.R., Van Veller, M.G.P., McLennan, D.A., 2001. How to do

BPA, really. J. Biogeogr. 28, 343–358.

Charleston, M.A., 1998. Jungles: a new solution to the host/parasite

phylogeny reconciliation problem. Math. Biocsci. 149, 191–223.

Cressey, R.F., Collette, B., Russo, J., 1983. Copepods and scombrid

fishes: a study in host–parasite relationships. Fish. Bull. 81, 227–

265.

Darwin, C., 1872. The Origin of Species, sixth ed John Murray,

London.

Dowling, A.P.G., 2002. Testing the accuracy of TreeMap and Brooks

parsimony analyses of coevolutionary patterns using artificial

associations. Cladistics 18, 416–435.

Ebach, M.C., 1999. Paralogy and the Centre of Origin concept.

Cladistics 15, 387–391.

Ebach, M.C., Humphries, C.J., 2002. Cladistic biogeography and the

art of discovery. J. Biogeogr. 29, 427–444.

Eldredge, N., Cracraft, J., 1980. Phylogenetic Patterns and the

Evolutionary Process. Columbia Univ. Press, New York.

Enghoff, H., 1996. Widespread taxa, sympatry, dispersal, and an

algorithm for resolved area cladograms. Cladistics 12, 349–364.

Farris, J.S., 1983. The logical basis of phylogenetic analysis. In:

Platnick, N.I., Funk, V.A. (Eds.), Advances in Cladistics II.

Columbia Univ. Press, NY.

Frost, D.R., Kluge, A.G., 1994. A consideration of epistemology in

systematic biology, with special reference to species. Cladistics 10,

259–293.

Gaffney, E., 1979. An introduction to the logic of phylogeny

reconstruction. In: Cracraft, J., Eldredge, N. (Eds.), Phylogenetic

Analysis and Paleontology. Columbia Univ. Press, New York, pp.

79–111.

Green, M.D., Van Veller, M.G.P., Brooks, D.R., 2002. Assessing

modes of speciation: range asymmetry and biogeographical con-

gruence. Cladistics 18, 112–124.

Hennig, W., 1966. Phylogenetic Systematics. Univ. of Illinois Press,

Urbana.

Hovenkamp, P., 1997. Vicariance events, not areas, should be used in

biogeographic analysis. Cladistics 13, 67–79.

Hoberg, E.P., 1992. Congruent and synchronic patterns in biogeog-

raphy and speciation among seabirds, pinnipeds and cestodes. J.

Parasitol. 78, 601–615.

Hoberg, E.P., 1995. Historical biogeography and modes of speciation

across high-latitude seas of the Holarctic: concepts for host–

parasite coevolution among Phocini (Pinnipedia) and Tetrabothrii-

dae. Can. J. Zool. 73, 45–57.

Hoberg, E.P., Klassen, G.J., 2002. Revealing the faunal tapestry: co-

evolution and historical biogeography of hosts and parasites in

marine systems. Parasitology 124, S3–S22.

Hoberg, E.P., Brooks, D.R., Siegel-Causey, D., 1997. Host–parasite

cospeciation: history, principles and prospects. In: Clayton,

D.H., Moore, J. (Eds.), Host–Parasite Evolution: General

Principles and Avian Models. Oxford Univ. Press, Oxford, pp.

212–235.

Johnson, K.P., Clayton, D.H., 2003. Coevolutionary history of

ecological replicates: comparing phylogenies of wing and body lice

to columbiform birds. In: Page, R.D.M. (Ed.), Tangled Trees.

Univ. of Chicago Press, Chicago, IL, USA, pp. 262–286.

Kluge, A.G., 1988. Parsimony in vicariance biogeography: A quanti-

tative method and a Greater Antillean example. Syst. Zool. 37,

315–328.

Kluge, A.G., 1989. A concern for evidence and a phylogenetic

hypothesis of relationships among Epicrates (Boidae, Serpentes).

Syst. Zool. 38, 7–26.

Kluge, A.G., 1997. Testability and the refutation and corroboration of

cladistic hypotheses. Cladistics 13, 81–96.

Kluge, A.G., 1998a. Total evidence or taxonomic congruence: cladis-

tics or consensus classification. Cladistics 14, 151–158.

Kluge, A.G., 1998b. Sophisticated falsification and research cycles:

consequences for differential character weighting in phylogenetic

systematics. Zool. Scr. 26, 349–360.

Kluge, A.G., 1999. The science of phylogenetic systematics: explana-

tion, prediction, and test. Cladistics 15, 429–436.

Kluge, A.G., Farris, J.S., 1969. Quantitative phyletics and the

evolution of anurans. Syst. Zool. 18, 1–32.

Morrone, J.J., Carpenter, J.M., 1994. In search of a method for

cladistic biogeography: an empirical comparison of Component

Analysis, Brooks Parsimony Analysis, and Three-area Statements.

Cladistics 10, 99–153.

Morrone, J.J., Crisci, J.V., 1995. Historical Biogeography: introduc-

tion to methods. Annu. Rev. Ecol. Syst. 26, 373–401.

Nelson, G., Ladiges, P.Y., 1991a. Standard assumptions for biogeo-

graphic analysis. Austral. Syst. Bot. 4, 41–58.

Nelson, G., Ladiges, P.Y., 1991b. Three-area statements:

standard assumptions for biogeographic analysis. Syst. Zool. 40,

470–485.

Nelson, G., Ladiges, P.Y., 1991. TAS: Three Area Statements,

Program and User�s Manual. Published by authors. Melbourne,
New York.

Nelson, G., Platnick, N.I., 1981. Systematics and Biogeography:

Cladistics and Vicariance. Columbia Univ. Press, New York.

Page, R.D.M., 1988. Quantitative cladistic biogeography: constructing

and comparing area cladograms. Syst. Zool. 37, 254–270.

Page, R.D.M., 1990a. Component analysis: a valiant failure? Cladistics

6, 119–136.

Page, R.D.M., 1990b. Component 1.5. Program and User�s Manual.
Univ. of Auckland, Auckland.

252 A.P.G. Dowling et al. / Cladistics 19 (2003) 240–253



Page, R.D.M., 1993. Component 2.0: Tree Comparison Software for

Microsoft Windows. Program and User�s Manual. Natural History
Museum, London.

Page, R.D.M., 1993b. Genes, organisms, and areas: the problem of

multiple lineages. Syst. Biol. 42, 77–84.

Page, R.D.M., 1994a. Maps between trees and cladistic analysis of

historical associations among genes, organisms, and areas. Syst.

Biol. 43, 58–77.

Page, R.D.M., 1994b. Parallel phylogenies: reconstructing the history

of host–parasite assemblages. Cladistics 10, 155–173.

Page, R.D.M., 1995. Treemap 1.0. Program and User�s Manual.
Division of Environmental and Evolutionary Biology. Institute of

Biomedical and Life Sciences. Univ. of Glasgow, Glasgow.

Page, R.D.M., 1996. On consensus, confidence and ‘‘total evidence’’.

Cladistics 12, 83–92.

Page, R.D.M. (Ed.), 2003. Tangled Trees. Univ. of Chicago Press,

Chicago.

Page, R.D.M., 2003. Treemap 2.0. Program and User�s Manual.
Division of Environmental and Evolutionary Biology. Institute of

Biomedical and Life Sciences. Univ. of Glasgow, Glasgow.

Page, R.D.M., Charleston, M.A., 1998. Trees within trees: phylogeny

and historical associations. Trends Ecol. Evol. 13, 356–359.

Paterson, A.M., Banks, J., 2001. Analytical approaches to measuring

cospeciation of host and parasites: through a glass darkly. Int. J.

Parasitol. 31, 1012–1022.

Paterson, A.M., Gray, R.D., 1997. Host–parasite co-speciation, host

switching and missing the boat. In: Clayton, D.H., Moore, J.

(Eds.), Host–Parasite Evolution: General Principles and Avian

Models. Oxford Univ. Press, Oxford, pp. 236–250.

Paterson, A.M., Palma, R.L., Gray, R.D., 1999. How frequently do

avian lice miss the boat? Implications for coevolutionary studies.

Syst. Biol. 48, 214–223.

Paterson, A.M., Wallis, G.P., Wallis, L.J., Gray, R.D., 2000. Seabird

louse coevolution: complex histories revealed by 12S rDNA

sequences and reconciliation analyses. Syst. Biol. 49, 383–399.

Platnick, N.I., Gaffney, E.S., 1977. Systematics: A Popperian perspec-

tive. Syst. Zool. 26, 360–365, reviews of ‘‘The Logic of Scientific

Discovery’’ and ‘‘Conjectures and Refutations’’ by Karl R. Popper.

Platnick, N.I., Gaffney, E.S., 1978a. Evolutionary Biology: a Poppe-

rian perspective. Syst. Zool. 27, 137–141.

Platnick, N.I., Gaffney, E.S., 1978b. Systematics and the Popperian

paradigm. Syst. Zool. 27, 381–388.

Platnick, N.I., Humphries, C.J., Nelson, G., Williams, D.M., 1996. Is

Farris optimization perfect?: three-taxon statements and multiple

branching. Cladistics 12, 243–252.

Popper, K.R., 1960. The Poverty of Historicism. Routledge and Kegan

Paul, London.

Popper, K.R., 1968a. The Logic of Scientific Discovery. Harper and

Row, New York.

Popper, K.R., 1968b. Conjectures and Refutations. Harper and Row,

New York.

Popper, K.R., 1972. Objective Knowledge: An Evolutionary Ap-

proach. Clarendon Press, Oxford.

Popper, K.R., 1976. Unended Quest: An Intellectual Autobiography.

Open Court Publishing, La Salle, IL.

Popper, K.R., 1992. Realism and the Aim of Science. Routledge,

London.

Ronquist, F., 1995. Reconstructing the history of host–parasite

associations using generalized parsimony. Cladistics 11, 73–89.

Ronquist, F., 1996. Matrix representation of trees, redundancy, and

weighting. Syst. Biol. 45, 247–253.

Ronquist, F., 1997a. Dispersal–vicariance analysis: a new approach to

the quantification of historical biogeography. Syst. Biol. 46, 195–

203.

Ronquist, F., 1997b. Phylogenetic approaches in coevolution and

biogeography. Zool. Scr. 26, 313–322.

Ronquist, F., 1998. Three-dimensional cost-matrix optimization and

maximum co-speciation. Cladistics 14, 167–172.

Ruedi, M., 1996. Phylogenetic evolution and biogeography of South-

east Asian shrews (genus Crocidura: Soricidae). Biol. J. Linn. Soc.

58, 197–219.

Van Veller, M.G.P., Brooks, D.R., 2001. When simplicity is not

parsimonious: a priori and a posteriori methods in historical

biogeography. J. Biogeogr. 28, 1–11.

Van Veller, M.G.P., Brooks, D.R., Zandee, M., 2003. Cladistic and

phylogenetic biogeography: the art and the science of discovery. J.

Biogeogr. 30, 319–329.

Van Veller, M.G.P., Kornet, D.J., Zandee, M., 2000. Methods in

vicariance biogeography: assessment of the implementations of

assumptions zero, 1 and 2. Cladistics 16, 319–345.

Van Veller, M.G.P., Kornet, D.J., Zandee, M., 2002. A posteriori and

a priori methodologies for testing hypotheses of causal processes in

vicariance biogeography. Cladistics 18, 207–217.

Van Veller, M.G.P., Zandee, M., Kornet, D.J., 1999. Two require-

ments for obtaining valid common patterns under different

assumptions in vicariance biogeography. Cladistics 15, 393–406.

Van Veller, M.G.P., Zandee, M., Kornet, D.J., 2001. Measures for

obtaining inclusive solution sets under assumptions zero, 1 and 2

with different methods for vicariance biogeography. Cladistics 17,

248–259.

Wiley, E.O., 1975. Karl R. Popper, systematics, and classification: a

reply to Walter Bock and other evolutionary taxonomists. Syst.

Zool. 24, 233–242.

Wiley, E.O., 1981. Phylogenetics: The Theory and Practice of

Phylogenetic Systematics. Wiley-Interscience, New York.

Wiley, E.O., 1986. Methods in vicariance biogeography. In: Hovenk-

amp, P. (Ed.), Systematics and Evolution: A Matter of Diversity.

Univ. of Utrecht Press, Utrecht, pp. 283–306.

Wiley, E.O., 1988a. Vicariance biogeography. Annu. Rev. Ecol. Syst.

19, 513–542.

Wiley, E.O., 1988b. Parsimony analysis and vicariance biogeography.

Syst. Zool. 37, 271–290.

A.P.G. Dowling et al. / Cladistics 19 (2003) 240–253 253


	A priori and a posteriori methods in comparative evolutionary studies of host-parasite associations
	Epistemological considerations
	Putative shortcomings of BPA: two exemplars
	Exemplar 1
	Exemplar 2

	Discussion
	Host history versus parasite history perspectives
	Simple versus complex associations between parasites and hosts
	Hennig&rsquo;s auxiliary principle versus Hennig&rsquo;s auxiliary principle

	Conclusions
	Acknowledgements
	References


