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Clustering of galaxy clusters in cold dark matter universes
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A B S T R A C T

We use very large cosmological N-body simulations to obtain accurate predictions for the

two-point correlations and power spectra of mass-limited samples of galaxy clusters. We

consider two currently popular cold dark matter (CDM) cosmogonies, a critical density

model (tCDM) and a flat low density model with a cosmological constant (LCDM). Our

simulations each use 109 particles to follow the mass distribution within cubes of side

2 h21 Gpc (tCDM) and 3 h21 Gpc (LCDM) with a force resolution better than 1024 of the

cube side. We investigate how the predicted cluster correlations increase for samples of

increasing mass and decreasing abundance. Very similar behaviour is found in the two cases.

The correlation length increases from r0 � 12±13 h21 Mpc for samples with mean

separation dc � 30 h21 Mpc to r0 � 22±27 h21 Mpc for samples with dc � 100 h21 Mpc:

The lower value here corresponds to tCDM and the upper to LCDM. The power spectra of

these cluster samples are accurately parallel to those of the mass over more than a decade in

scale. Both correlation lengths and power spectrum biases can be predicted to better than

10 per cent using the simple model of Sheth, Mo & Tormen. This prediction requires only

the linear mass power spectrum and has no adjustable parameters. We compare our

predictions with published results for the automated plate measurement (APM) cluster

sample. The observed variation of correlation length with richness agrees well with the

models, particularly for LCDM. The observed power spectrum (for a cluster sample of mean

separation dc � 31 h21 Mpc) lies significantly above the predictions of both models.

Key words: gravitation ± methods: numerical ± galaxies: clusters: general ± cosmology:

theory ± dark matter.

1 I N T R O D U C T I O N

The last two decades have established cosmological N-body

simulations as the principal tool for studying the evolution of

large-scale structure. The earliest systematic studies used 103±2 �
104 particles to follow evolution from white noise or other

similarly ad hoc initial conditions (Gott, Turner & Aarseth 1979;

Efstathiou & Eastwood 1981). They showed that non-linear

growth could produce a power law autocorrelation function

similar to that measured for galaxies. Soon thereafter, the

suggestion that the dark matter might be a weakly interacting

massive particle led to the first simulations from initial conditions

based on a detailed treatment of the physics of earlier evolution.

These represented the dark matter distribution within cubic

regions with periodic boundary conditions using only 3 � 104

particles. They were nevertheless able to show that, for adiabatic

fluctuations produced during inflation, a neutrino-dominated

universe is not viable (White, Frenk & Davis 1983) while a cold

dark matter (CDM) dominated universe is much more promising

(Davis et al. 1985).

Since this early work, many groups have used their own

simulations to compare predictions for large-scale structure with

the wealth of data coming from new observational surveys. As

algorithms and computers have improved, the number of particles

q 2000 RAS

w Present address: 105 Lexington Avenue, Apartment 6F, New York, NY

10016, USA.

² E-mail: a.r.jenkins@durham.ac.uk



treated in high-resolution simulations has increased. Thus, White

et al. (1987a,b) could already use 2:6 � 105 particles to study

CDM universes, while Warren et al. (1992), Gelb & Bertschinger

(1994), Jenkins et al. (1998) and Governato et al. (1999) studied

large-scale structure using high-resolution simulations with 1 �
106; 3 � 106; 1:7 � 107 and 4:7 � 107 particles, respectively. More

particles are better for two reasons. One can choose to have better

mass resolution so that the internal properties of each structure are

better defined, and one can simulate larger volumes so that more

structures are included and the statistical distribution of their

properties is better defined. Here, we report results for the spatial

distribution of galaxy clusters from simulations using 1 � 109

particles. The volumes simulated are much larger than any

attempted previously and are large compared even to the biggest

currently planned observational surveys. As a result our theoreti-

cal predictions have high precision.

The two-point correlation function of galaxy clusters has been

controversial for decades. The early work of Hauser & Peebles

(1973) showed that rich galaxy clusters are more strongly

clustered than galaxies, and estimates of the autocorrelation

function of Abell clusters by Bahcall & Soneira (1983) and Klypin

& Kopylov (1983) agreed on a power-law form which parallels the

galaxy autocorrelation function but with substantially greater

amplitude. Subsequent work has failed to agree on the strength of

this enhancement and on its dependence on the properties which

define the cluster sample. Thus, Sutherland (1988) argued that

much of the apparent clustering in the original samples was

induced artificially by Abell's criteria for defining clusters. This

conclusion has been supported by some subsequent studies (e.g.

Croft et al. 1997 and references therein) and disputed by others

(e.g. Olivier et al. 1993 and references therein).

Although all authors agree that richer clusters are more strongly

clustered, the strength of this trend is also disputed. Bahcall and

co-workers (e.g. Bahcall & Cen 1992, Bahcall & West 1992) have

argued that the correlation length, r0, defined via jcl�r0� � 1;
scales linearly with intercluster separation, dc,

r0 � 0:4dc � 0:4n21=3
c ; �1�

where nc is the number density of clusters above the chosen

richness threshold. This scaling might be expected in a fractal

model of large-scale structure (Szalay & Schramm 1985) and

appeared consistent with early measurements for Abell clusters

(e.g. Bahcall & Soneira 1983). Other work has suggested that this

apparent scaling reflects incompleteness in the Abell samples (e.g.

Efstathiou et al. 1992a, Peacock & West 1992). The more

objectively defined automated plate measurement (APM) cluster

sample appears to show a significantly weaker trend of clustering

strength with richness (Efstathiou 1996; Croft et al. 1997).

Quite surprisingly, both camps have used N-body simulations of

standard CDM cosmogonies to support their views. Bahcall & Cen

(1992) found r0 to increase roughly in proportion to dc for their

simulated clusters, while Croft & Efstathiou (1994) found a

weaker dependence. The latter authors found their cluster

correlation function to be insensitive to the cosmic matter density,

V, and to depend weakly on the normalization of the power

spectrum, s8, but strongly on its shape. (Here, s8 denotes linearly

extrapolated present-day rms mass fluctuation in spherical top hat

spheres of radius 8 h21 Mpc .) Similar conclusions were reached

by Eke et al. (1996) who studied systematics in simulated cluster

correlations, in particular the influence of the definition of a

cluster. They argued that the different scalings of r0 with dc seen in

previous N-body simulations stemmed primarily from the use of

different algorithms to identify clusters in the simulations. All this

work suffered from the relatively small volumes simulated, which

limited the statistical accuracy of the correlation estimates,

especially for rare and massive clusters. A substantial improve-

ment came with the work of Governato et al. (1999) who used

more particles and treated significantly larger volumes. The

simulations presented below provide a further major improvement

by using 20 times as many particles and increasing the volumes

treated by about two orders of magnitude.

The results we present below are in general agreement with

those of Governato et al. (1999), but our work achieves

substantially higher statistical precision. We show very clearly

that the strength of cluster correlations is predicted to increase

significantly with cluster richness in currently popular CDM

cosmogonies. Furthermore, these correlations can be predicted

remarkably accurately (and with no free parameters) by the recent

analytic model of Sheth, Mo & Tormen (2000, hereafter SMT). In

this model, which refines that of Mo & White (1996), the two-

point correlation function of dark haloes is proportional to that of

the dark matter, the ratio of the two depending on halo mass and

on the linear power spectrum of mass density fluctuations (see

below). Mo & White tested their original model on a set of scale-

free N-body simulations, finding good qualitative agreement. For

CDM models, SMT found the quantitative prediction both of halo

mass functions and of halo correlations to be improved sub-

stantially by generalising the Mo & White approach to ellipsoidal

(rather than spherical) collapse. Our results here reach higher

precision and extend these tests to rarer objects; a preliminary

account was published in Colberg et al. (1998), which is

superseded by the current paper.

The second-order statistics of the spatial distribution of clusters

can, of course, be analysed using power spectra rather than

correlation functions. Such an approach is particularly advanta-

geous for analysing fluctuations on large spatial scales. Recent

observational estimates of the cluster power spectrum have been

given by Borgani et al. (1997) and Retzlaff et al. (1998), and by

Tadros, Efstathiou & Dalton (1998) for the Abell±ACO and

APM clusters, respectively. For both samples, there is an

indication of a peak in the power spectrum at a wavenumber

of k , 0:03 h Mpc21: This is roughly coincident with the scale

where a peak is expected for currently popular CDM models. The

simulation data we present below verify that the cluster power

spectrum should indeed parallel that of the mass on these scales.

In the following section we briefly discuss the Hubble Volume

simulations and the way we have defined cluster samples within

them. In Section 3, we present two-point correlations for these

samples and compare them with the analytic model. In Section 3,

we present power spectra for samples constructed to correspond

directly to the APM cluster survey; an interesting result is that the

observations and predictions are significantly discrepant for the

current `best buy' cosmogony. We conclude with a summary of

our main results.

2 C L U S T E R S I N T H E H U B B L E VO L U M E

S I M U L AT I O N S

The two simulations analysed in this paper were carried out in

1997 and 1998 on 512 processors of the CRAY T3E at the

Garching Computer Centre of the Max Planck Society. They used

a specially stripped down version of parallel Hydra, the workhorse

code of the Virgo Supercomputing Consortium. Details may be
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found in MacFarland et al. (1998). This code maximises the

efficiency of memory use on the machine and allowed the

trajectories of 109 particles to be integrated accurately, with a

gravitational force resolution of about 1024 of the side of the

computational volume. Each simulation used about 50 000

processor hours of CPU time. The two cases studied were a

(2000 h21 Mpc)3 volume of a tCDM universe and a (3000 h21

Mpc)3 volume of a LCDM universe. In both cases the mass of a

single particle is 2 � 1012 h21 M( and the simulation is normal-

ized to yield the observed abundance of rich clusters at z � 0

(White, Efstathiou & Frenk 1993; Eke, Cole & Frenk 1996).

These normalisations are also consistent with the level of

fluctuations measured by COBE. The parameters of the simula-

tions are summarised in Table 1. (Here, G denotes the spectral

shape parameter; cf. Efstathiou, Bond & White 1992b.)

The Hubble Volume simulations are essentially larger

realisations of two of the cosmological models previously

simulated by Jenkins et al. (1998). We have checked that basic

properties of our new simulations, such as the mass power

spectrum and the velocity field, are consistent with expecta-

tions based on our smaller simulations. High-order clustering

statistics in the tCDM Hubble Volume simulation have been

extensively studied by Szapudi et al. (2000) and Colombi et al.

(2000). Both Hubble Volume simulations were used by Jenkins

et al. (2000) in a study of the mass function of dark matter

haloes. The mass functions from the Hubble simulations are

consistent with those from smaller simulations in the regions of

overlap.

Clusters of galaxies were identified in these simulations using a

spherical overdensity (SO) group finder (Lacey & Cole 1994).

This defines the cluster boundary as the sphere within which the

mean density is 180 and 324 times the critical value in the tCDM

and LCDM cases, respectively. The lowest mass clusters

considered in our analysis have 75 and 39 particles, respectively,

in the tCDM and LCDM models. We have checked that our

results in the form we present below are insensitive to this choice.

For example, we obtain almost identical results if clusters are

defined using a friends-of-friends algorithm (Davis et al. 1985)

with linking lengths of 0.2 and 0.164 in each model (which

produces clusters with at least 86 and 44 particles, respectively.)

The choice of grouping algorithm and associated parameters

affects the masses assigned to clusters in a systematic way, but has

no significant systematic effect on their positions or on their

ranking in mass.

We construct a series of mass-limited cluster catalogues and

characterise each one by the mean separation dc of the clusters it

contains. The advantage of this parameterisation is that it allows a

precise comparison with observed richness-limited samples and

with analytic models without any need to ensure that the mass

definitions in the three cases correspond exactly. In the current

paper, we consider only the clustering of clusters at z � 0: The

excellent fits we find to the analytic theory also hold at other

redshifts, so in practice the analytic formulae can be used to

describe superclustering at any redshift.

3 T W O - P O I N T C O R R E L AT I O N F U N C T I O N S

3.1 The analytic model

Starting from a `Press±Schechter' (1974) argument similar to

those in Bond et al. (1991) and Lacey & Cole (1993), Mo & White

(1996) developed an analytic theory for the spatial clustering of

dark haloes in hierarchical clustering models such as the many

variants of CDM. They find that the two-point correlation function

of dark matter haloes of mass M may be approximately related to

that of the mass by

jh�r;M� � b2�M�j�r�; �2�
where

b�M� � 1� dc

s2�M� 2
1

dc

: �3�

Here, dc � 1:686 is the interpolated linear overdensity at collapse

of a spherical perturbation, and s (M) is the rms linear fluctuation

in overdensity within a sphere which on average contains mass M.

Notice that although s (M) can be calculated directly from linear

theory, j(r) in equation (2) is the full non-linear correlation

function of the mass density field. This can be estimated from the

linear-theory power spectrum using, for example, the approxima-

tion of Peacock & Dodds (1996). Thus, the non-linear correlation

function of haloes can be predicted without the need to carry out an

N-body simulation. As shown by Cole & Kaiser (1989), equation

(3) can be derived by calculating how the Press±Schechter mass

function responds to small changes in the threshold d c.

It has long been known that the Press±Schechter mass function

is not a perfect match to the mass functions found in simulations

(e.g. Efstathiou et al. 1988), and recent work has demonstrated

that there is a corresponding systematic shift in the bias calculated

using the Cole±Kaiser argument (Jing 1998; Sheth & Tormen

1999). SMT have shown how the inclusion of a mass-dependent

absorbing barrier in the excursion set derivation of the mass

function (Bond et al. 1991) can model the anisotropic collapse of

cosmic structure and substantially improve the agreement between

analytic theory and numerical simulation. Following the logic of

Mo & White's extension of the excursion set formalism but using

this mass-dependent threshold, SMT predict halo clustering in

good agreement with simulation data. For our purposes, the effect

of the SMT revision is to predict a slightly different b(M) from

that in equation (3).

A technical problem arises when comparing such analytic

formulae with simulations; it is unclear how to define the

boundaries of simulated clusters so that their mass corresponds to

the mass M in equation (3). Although this might seem to introduce

an additional degree of freedom, we can eliminate it by using the

corresponding analytic expression for the abundance of clusters to

convert from sample limiting mass, M, to mean cluster separation

dc. The predicted correlations can then be compared to those of a

mass-limited sample of simulated clusters with the same mean

separation. This comparison has no adjustable parameters. Note

that for such mass-limited samples the factor b2 in equation (2) is

the square of the mean bias obtained by weighting b(M) by the

abundance of clusters of that mass (see, for example, Baugh et al.

(1998) and Governato et al. (1999)).

3.2 Results

Fig. 1 shows cluster correlation functions for the tCDM

Table 1. Parameters of the Hubble Volume simulations.

Model V L h G s8 Lbox

tCDM 1.0 0.0 0.5 0.21 0.6 2000 Mpc h21

LCDM 0.3 0.7 0.7 0.17 0.9 3000 Mpc h21
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simulation for mass-limited samples of clusters with mean

separations of 40, 70, 100 and 130 h21 Mpc. These samples

contain 125 000, 23 000, 8 000 and 3 600 clusters, respectively. We

have computed 1s errors from the numbers of pairs in each

separation bin. Clearly, more massive clusters are more strongly

clustered. Note also the very small error bars on these correlation

estimates which are a consequence of the very large volume of our

simulations.

Fig. 2 shows the correlation functions of samples with dc �
50 h21 Mpc from our two simulations, together with predictions

from the SMT model of the last subsection. The predictions are

shown separately for the two cases where j (r) is simply taken as

the Fourier transform of the linear power spectrum, and where it is

estimated using the non-linear model of Peacock & Dodds (1996).

The correlation functions are very similar in the two cosmologies,

showing that the strength of superclustering is not a good

estimator of V for CDM models normalised to match the observed

abundance of clusters and having a mass correlation function with

a similar shape to the galaxy correlation function on large scales.

(Note that the curves for LCDM have been raised by an order of

magnitude for clarity.) The analytic predictions are in excellent

agreement with the numerical results, particularly for jh , 1:
Over the relevant range of scales the linear and non-linear

predictions for j (r) are quite close, and using the non-linear

formula gives at best a marginal improvement in the fit to the

simulation results.

In Fig. 3 we quantify the increase in clustering strength with

cluster mass by plotting the correlation length, r0, of our mass-

limited cluster samples as a function of their mean intercluster

separation, dc. We estimate correlation lengths from plots similar

to those of Fig. 1 by interpolating between the points on either

side of jh � 1: This figure again shows that our simulated

volumes are large enough to estimate correlation lengths with high

accuracy. The values of r0 for LCDM exceed those for tCDM by

between 10 and 20 per cent. In both models, the increase in r0 with

dc is quite strong, although weaker than the direct proportionality

suggested by Szalay & Schramm (1985) and Bahcall & Cen

(1992). For tCDM the analytic prediction of r0 is accurate to

within a few percent on all scales; for LCDM it is about 10 per

cent high.

The same general trend of r0 with dc is also apparent in the

simulations of Governato et al. (1999) who considered an

Figure 2. The two-point correlation functions of the tCDM (lower plots)

and LCDM (upper plots) models for dc � 50 h21 Mpc: This figure

compares results from the simulations (dots with error bars) with the linear

(dashed line) and non-linear (solid line) predictions from equation (2) with

the SMT prediction for b. For the LCDM model all quantities have been

shifted upwards by one order of magnitude. 1s error bars are plotted, as in

Fig. 1.

Figure 1. Two-point correlation functions of the tCDM model for the

dc � 40; 70, 100 and 130 h21 Mpc samples (solid lines, from bottom to

top). The plotted 1s error bars are derived from the number of pairs in

each bin. The dashed line is the two-point correlation of the dark matter.

Figure 3. Correlation length, r0, as a function of mean intercluster

separation, dc, for the tCDM (open squares) and LCDM (filled squares)

simulations. The predictions of the SMT model are shown as solid lines.

Also shown are data from the APM cluster catalogue (open triangles),

taken from Croft et al. (1997).
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V0 � 0:3 open CDM model (OCDM) and an V � 1 standard

CDM model (SCDM). The clustering amplitude of clusters in

OCDM is similar to that in LCDM, while that in SCDM, although

qualitatively similar, has much lower amplitude, reflecting the

relatively small amount of large-scale power in this model

compared to the other three.

Our predictions may be readily compared with the measured

values of r0 for APM clusters given by Croft et al. (1997).

Comparison with these data is relatively simple because this

cluster sample is approximately volume-limited. By contrast,

comparison with X-ray selected cluster samples (e.g. Ebeling et al.

1996a,b; Guzzo 1999), which are flux-limited, requires more

extensive modelling (see Moscardini et al. 2000). The measured

values of r0 for APM clusters are in good agreement with the

predictions of LCDM. They lie significantly above the tCDM

predictions for the smallest values of dc. For the R $ 1 Abell

clusters, with dc � 52 h21 Mpc; Peacock & West (1992) estimated

r0 � 21:1 ^ 1:3; which is close to the LCDM predictions ±

18.5 h21 Mpc from the simulation, or 20 h21 Mpc from the

analytic theory ± and also agrees with the APM results on this

scale.

4 P OW E R S P E C T R A F O R T H E C L U S T E R

D I S T R I B U T I O N

We have computed the power spectra for the cluster distribution in

our two simulations. As a comparison observational sample we

take the APM clusters analysed by Tadros et al. (1998). The

number density in this sample is 3:4 � 1025�h21 Mpc�23 which is

equivalent to dc � 30:9 h21 Mpc: At this separation, the tCDM

and LCDM simulations contain samples of about 270 000 and

915 000 clusters, respectively. The upper panels of Figs 4 and 5

show cluster power spectra from our simulations at this value of dc

(filled circles), the observational points of Tadros et al. (open

triangles), and power spectra for the dark matter (open squares).

The bias, defined as the square root of the ratio of cluster to dark

matter power spectrum, is plotted in the lower panels. The power

spectra are quite noisy at the largest scales because of the small

number of modes in the simulated volume. The peak in the power

spectrum is nevertheless quite clear. The bias is nearly constant

over a wide range of scales, and its value is close to that predicted

by the SMT formulae (about 15 per cent below the prediction of

equation (3). The agreement is remarkable given the simplicity of

the analytic arguments. The observed power spectra of Tadros

et al. (1998) lie above both models by a factor of about 1.5. This is

a little surprising since the correlation strength given by Croft et al.

(1997) for the corresponding sample is quite similar to that

predicted (see Fig. 3). Of course, our numerical results are in real

space, whereas the APM power spectra are measured in redshift

space. For these large scales, Kaiser's (1987) expression should be

applicable:

Ps

Pr

� 1� 2b=3� b2=5; �4�

where b � V0:6=b (see Eke et al. 1996). For tCDM and

LCDM, the correction factors are, respectively, 1.22 and 1.15,

less than half the observed offset between models and data. The

remaining differences are not large and may reflect residual

systematics in the observational data analysis. Comparing the

observational points with the simulations it appears premature

to argue that a peak in the observed power spectrum has been

detected.

5 S U M M A RY

We have presented results for the second order clustering statistics

of mass-limited samples of galaxy clusters in our Hubble Volume

simulations. These simulations follow the matter distribution in by

far the largest volumes treated to date, and as a result we are able

to estimate clustering statistics with unprecedented precision. The

two simulations we have studied are a tCDM universe with V � 1

and a LCDM universe with V � 0:3: Both are consistent with the

fluctuation amplitude measured by COBE and with the observed

abundance of rich clusters at z � 0: Cluster correlations are very

Figure 4. The upper panel shows power spectra for galaxy clusters with

dc � 30:9 h21 Mpc from the tCDM simulation (filled dots), for the APM

cluster sample (triangles; taken from Tadros et al. 1998), and for the dark

matter in the simulation (open squares). The lower panel gives a bias factor

defined as the square root of the ratio of the cluster and dark matter power

spectra. The horizontal dotted line is the value of this bias predicted by the

SMT model.

Figure 5. As in Fig. 4 but for the LCDM model. For this model the SMT

prediction of the bias factor is high but only by 6 per cent.
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similar in these two models, although slightly stronger in the low

density case. In both cosmologies, the correlation length of rich

clusters increases from 12±13 h21 Mpc for relatively low mass

objects with mean separation 30 h21 Mpc to 22±27 h21 Mpc for

rarer and more massive objects with mean separation

100 h21 Mpc. For both models, the power spectrum of the cluster

distribution is accurately parallel to that of the dark matter for

wavenumbers k � 0:01±0:1 h Mpc21:
We have compared our results with predictions from the

analytic model of SMT. When clustering strengths are compared

as a function of the mean separation of the cluster sample, there

are no adjustable parameters and it is thus remarkable that we find

good agreement in all cases. Correlation lengths are predicted by

the analytic model to better than 10 per cent, and the mean bias of

the power spectrum is predicted even more accurately on the

scales most relevant for real samples.

We have also compared our results with published data on the

APM cluster sample (Croft et al. 1997; Tadros et al. 1998). The

observed trend of clustering with richness is very similar to those

predicted in our CDM models. The observed correlation lengths

are consistent with those predicted by our LCDM model at all

richness levels, and are also compatible with our tCDM model

except perhaps for the poorest systems. The published power

spectrum for the APM clusters agrees in shape with that predicted

by the two models, but its amplitude is greater by about 50 per

cent. Only part of this discrepancy can be attributed to redshift

distortion effects. Since the observed spectrum is based on only

364 clusters, it may be prudent to wait for larger samples before

drawing substantive conclusions from this disagreement.
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