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Ef®ciency considerations in the additive
hazards model with current status data
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For current status data, LIN, OAKES and YING (1998) proposed a proce-
dure for estimation of the regression parameters in the additive hazards
model that makes clever use of martingale theory. However, one of the
outstanding problems posed in the paper was the issue of ef®cient
estimation, as their estimators do not attain the semiparametric informa-
tion bound. In this paper, we explore this issue and provide a character-
ization of the NPMLE. We conduct ef®ciency comparisons between the
NPMLE and the procedure of LIN et al. (1998) analytically and numeri-
cally through analysis of a dataset from a tumorigenicity experiment.
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1 Introduction

The analysis of failure-time data is an area of substantial statistical research, having

started with the seminal papers of KAPLAN and MEIER (1958) and COX (1972). The

focus of much of the work in this ®eld has dealt with the situation where the time

to event is subject to right censoring. In this case, if T denotes the survival time, C

the censoring time and Z a p-vector of covariates, one observes (min(T , C),

I(T < C), Z), where min(a, b) is the minimum of two numbers a and b, and I(A) is

the indicator function for the set A. However, other censoring schemes are possible.

For example, in certain situations, one can only observe (C, I (T < C), Z); this is

known as `case 1' interval censored or current status data. With this type of

censoring, the exact survival time is never observed. Current status data arise in a

variety of settings. DIAMOND and MCDONALD (1991) considered current status data

in demography studies, while HOEL and WALBURG (1972) examined such data arising

from animal tumorigenicity experiments. Current status data also occur in HIV

studies, such as in SHIBOSKI and JEWELL (1992) and JEWELL, MALANI and VITTINGH-

OFF (1994). The situation of `case 1' interval censored data can be extended to a

more general interval censoring setting, as discussed in HUANG and WELLNER

(1997).
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Several authors, including AYER et al. (1955), PETO (1973), TURNBULL (1976) and

GRONENBOOM and WELLNER (1992) have proposed procedures for nonparametric

estimation of the distribution function of T , F, with current status data. In particular,

GRONENBOOM and WELLNER (1992) showed that the nonparametric maximum like-

lihood estimate (NPMLE) of F, F̂, is consistent for F and converges at an n1=3 rate

to a complicated limiting distribution.

Semiparametric regression models for current status data have also been examined.

FINKELSTEIN (1986) proposed a method of estimation for the proportional hazards

model, but the asymptotic properties of her estimator remain unknown. Ef®cient

estimation in this model based on NPMLE methods was developed by HUANG

(1996), who showed that the regression parameters converge at an n1=2 rate to a

normal distribution.

An alternative to the proportional hazards model is the additive hazards model,

proposed in LIN and YING (1994). This model postulates that covariates have an

additive effect on the baseline risk:

ë(tjZ) � ë0(t)� è9Z, (1)

where ë0(t) is the baseline hazard of T and è denotes the regression parameters. We

leave ë0(t) unspeci®ed so that (1) speci®es a semiparametric model. For the analysis

of current status data using this model, LIN, OAKES and YING (1998) derived a novel

estimation procedure for è that uses martingale theory in a clever manner. One of the

outstanding questions in their paper was the investigation of ef®ciency in the

estimation of the regression parameters. The estimators proposed by LIN et al. (1998)

do not achieve the semiparametric information bound. In this article, we investigate

the issue of ef®ciency and propose a method of estimation based on the NPMLE.

While much of the asymptotic results will be developed along the lines of HUANG

(1996), the characterization of the NPMLE is quite different from that for the

proportional hazards model and will make use of interior point methods. A further

exposition of this topic can be found in WRIGHT (1997). We analytically compare the

relative ef®ciency of the procedure proposed by LIN et al. (1998) to the NPMLE. In

addition, we perform a numerical comparison between the two methods based on

data from a tumorigenicity experiment.

2 Computation of the NPMLE

In this section, we characterize the maximum likelihood estimator (MLE) (è̂, Ë̂)

� (è̂n, Ë̂n) of (è0, Ë0) for a ®xed sample size n, where Ë(t) � � t

0
ë(s) ds is the

integrated or cumulative hazard. Here, è0 and Ë0 are the true values of the regres-

sion parameters and baseline cumulative hazard. We will demonstrate that a proper

characterization of the relevant optimization problem cannot make use of the results

from HUANG (1996) so that a different approach is needed. We are able to provide

necessary and suf®cient conditions for the existence of the MLE and subsequently

outline an algorithm for computing (è̂n, Ë̂n).
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In the rest of the paper, we assume that T and C are independent, conditional on Z

and that the joint distribution (C, Z) is noninformative for è and Ë. For a single

observation X � (C, ä, Z), where ä � I(T < C), the pdf is proportional to

pè,F(x) � F(cjz)äF(cjz)1ÿä

� [1ÿ F0(c) exp(ÿcè9Z)]ä[F0(c) exp(ÿcè9Z)]1ÿä,

where F � 1ÿ F. Thus, the log-likelihood for a single observation, up to a constant,

is given by

l(è, F) � ä log[1ÿ F0(C) exp(ÿCè9Z)]� (1ÿ ä)[log F0(C)ÿ Cè9Z]:

Let (Ci, äi, Zi), i � 1, . . . , n, be an i.i.d. sample from (C, ä, Z). Then the log-

likelihood for the sample can be written as

ln(è, Z) �
Xn

i�1

(äi logf1ÿ exp[ÿË0(Ci)ÿ Ciè9Zi]g

ÿ [1ÿ äi][Ë0(Ci)� Ciè9Zi]), (2)

where we have used the relation Ë0 � ÿlog(1ÿ F0).

Since the regression parameters in the additive hazards model act additively on the

baseline hazard, there is an an inherent positivity constraint, i.e. the right hand side in

(1) must be nonnegative. Let C(1) < C(2) < � � � < C(n) denote the ordered censoring

times, and let ä(i), Z(i) correspond to C(i), i � 1, . . . , n. In the likelihood function

(2), only the values of Ë0 at the C(i)'s matter. Thus, the MLE Ë̂n of Ë0 will be a

right-continuous increasing step function with jump points at C(i) and corresponding

values Ë̂n(C(i)), i � 1, . . . , n, where C(0) � 0 and Ë̂n(0) � 0. We have that

Ë̂n(y) � 0 0 < y , C(1)

Ë̂n(C(i)) C(i) < y , C(i�1), i � 1, . . . , nÿ 1:

�
However, Ë̂n(y) for y . C(n) is left unspeci®ed.

Now de®ne Ë(i) � Ë0(C(i)). Then the proper optimization problem is to maximize

l(è, Ë(:)) �
Xn

i�1

fä(i) log[1ÿ exp(ÿË(i) ÿ C(i)è9Z(i))]

ÿ (1ÿ ä(i))(Ë(i) � C(i)è9Z(i))g
subject to

(C1) è 2 È � Rp;

(C2) 0 < Ë(1) < � � � < Ë(n);

(C3) Ë(i) � C(i)è9Z(i) > 0, i � 1, . . . , n

in order to obtain MLE's of è0 and Ë0. In the absence of the positivity constraint

(C3), the optimization problem would be the same one as that considered by HUANG
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(1996). However, due to the presence of (C3), we are not able to use Fenchel duality

results directly as Huang did.

Nevertheless, we are able to derive a characterization of the NPMLE using results

based on convex analysis, which can be found in any standard text, such as ROCK-

AFELLAR (1970). To simplify the presentation, for the rest of the paper, we will

assume that p � 1. The generalization to p . 1 is straightforward. Let v � (Ë(1),

Ë(2), . . . , Ë(n), è). De®ne g: Rn�1 ! R2n by g(v) � (g1(v), . . . , g2n(v))9, where

g1(v) � ÿË(1),

gi(v) � Ë(iÿ1) ÿË(i), i � 2, . . . , n,

g n�i(v) � ÿ(Ë(i) � C(i)èZ(i)), i � 1, . . . , n:

Furthermore, de®ne G � [@ gi(v)=@v j], i � 1, . . . , 2n; j � 1, . . . , n� 1. Note that

G does not depend on v due to the linearity in the side conditions. Now the

optimization problem above can be re-expressed as trying to minimize ö(v), where

ö(v) � ÿ
Xn

i�1

fä(i) log[1ÿ exp(ÿË(i) ÿ C(i)èZ(i))]

ÿ (1ÿ ä(i))[Ë(i) � C(i)èZ(i)]g
subject to g(v) < 0, v 2 Rn�1. De®ne =ö to be the gradient of ö and hu, wi to be

the dot product vector between two vectors u and w. Based on the optimization

problem, we have the following characterization theorem.

THEOREM 1. Let v̂ � (Ë̂(1), Ë̂(2), . . . , Ë̂(n), è̂) be a vector in Rn�1 such that

ö(v̂) ,1. Then v̂ minimizes ö(v) over the set fv: v 2 Rn�1, g(v) < 0g iff the

following conditions are satis®ed:

=ö(v̂)� G9ù � 0

g(v̂)� s � 0

hù, si � 0

for vectors ù and s in R2n
� .

The proof of this theorem is not stated here, as it is a simple modi®cation of that

found in GRONENBOOM (1998). Theorem 1 leads to an algorithm for computing

(è̂n, Ë̂n) based on primal-dual interior point methods (WRIGHT, 1997). We now

brie¯y outline the computational procedure. It is discussed in greater detail in another

setting by GRONENBOOM (1998).

We start with v0 2 Rn�1 such that g(v0) , 0. We take ù0 � s0 � e, where e is the

vector in R2n
� with each component equal to 1. De®ne öù: Rn�1 ! R by öù(v)

� ö(v)� hù, g(v)i. Then the ®rst iteration of the algorithm solves
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=v0v0
öù0

(v0) G9 0

G 0 I

0 S0 Ù0

0@ 1A vÿ v0

ùÿ ù0

sÿ s0

0@ 1A � ÿ =öù0
(v0)

g(v0)� s0

(Ù0S0 ÿ ó ì0)e

0@ 1A, (3)

where S0 and Ù0 are diagonal matrices with diagonal elements s0 and ù0, respec-

tively, I represents the identity matrix, =vvöù(v) is the Hessian of öù with respect to

v, and ì0 and ó are tuning parameters whose values are set to 1 and 1=2. For a ®xed

â. 0, de®ne N (ì) as

N (ì) � f(v, ù, s): k=vöù(v)k < âì, kg(v)� sk
< âì, ù > 0, s > 0, ùisi > ì=2, 1 < i < 2ng,

where k:k denotes the Euclidean norm, and ì is the duality measure, de®ned by

ì � 1

2n
hù, si:

Taking ù0 � s0 � e gives a value of ì � 1 for the ®rst iteration.

We then choose a number ã 2 (0, 1) and take á as the ®rst number in the sequence

f1, ã, ã2, ã3, . . .g such that

(v(á), ù(á), s(á)) � (v0, ù0, s0)� á(vÿ v0, ùÿ ù0, sÿ s0) 2 N (ì0),

where (v, ù, s) solves (3) and

ì(á) � 1

2n
hù(á), s(á)i < (1ÿ :01á)ì0:

One then takes (v1, ù1, s1) � (v(á), ù(á), s(á)) and ì1 � ì(á); based on these

values, we solve the following system of equations:

=v1v1
öù1

(v1) G9 0

G 0 I

0 S1 Ù1

0@ 1A vÿ v1

ùÿ ù1

sÿ s1

0@ 1A � ÿ =öù1
(v1)

g(v1)� s1

(Ù1S1 ÿ ó ì1)e

0@ 1A
and ®nd the new (v(á), ù(á), s(á)) required to lie in N (ì1) for this system,

(v2, ù2, s2) and the new ì2. This procedure is repeated until ìk is below a certain

tolerance criterion, such as 10ÿ10 or 10ÿ15.

3 Main Results

Having characterized the NPMLE, we are now in a position to investigate the

asymptotic properties of the estimator. In this section, we state the main theoretical

results. Since most of the proofs of the results involve simple modi®cations of the

arguments given by HUANG (1996), they will not be given here. The results are stated

for the sake of completeness. It is quite intuitive to expect that similar asymptotic

results would hold for the NPMLE in the additive and proportional hazards models

with current status data.

Again, for notational convenience, we will stick to the case where p � 1; the
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extension of the results to general p is straightforward. First, we make the following

assumptions, the same as those in HUANG (1996):

(A1) È is a bounded subset of R.

(A2) Z has bounded support.

(A3) For any è 6� è0, P(èZ 6� è0 Z) . 0.

(A4) F0(0) � 0. Let ôF0
� infft: F0(t) � 1g. De®ne the support of C to be an

interval S[C] � [lC , uC], where 0 < lC < uC , ôF0
.

(A49) Everything is the same as in (A4), except that 0 , lC < uC , ôF0
.

(A5) Ë0 has strictly positive derivative on S[C] and the joint distribution function

G(c, z) of (C, Z) has bounded second-order (partial) derivative with respect

to c.

Before developing the asymptotics of the NPMLE, it is useful to compute the

information bound for è. With interval-censored data, since the exact time to the

event is never observed, it is not intuitively clear that there will be positive

information for the regression parameter. As stated in the next theorem, however,

there is indeed positive information. Before stating the theorem, de®ne a
2 � aa9,

Q(c, ä, z) � äF(cjz)

1ÿ F(cjz)
ÿ (1ÿ ä)

and O(cjz) � E[Q2(C, ä, Z)jC � c, Z � z] � F(cjz)=[1ÿ F(cjz)].

THEOREM 2. Suppose Assumptions (A3) and (A4) are satis®ed. Then

(a) the ef®cient score for è is given by

_l�è (x) � Q(c, ä, z)c zÿ E[ZO(CjZ)jC � c]

E[O(CjZ)jC � c]

� �
:

(b) The information for è is given by

I(è) � E[ _l�è (X )]
2 � E O(CjZ) C Z ÿ E[ZO(CjZ)jC]

E[O(CjZ)jC]

� �� �
2
( )

:

Having computed the semiparametric information bound for è, we can now deter-

mine the asymptotic behavior of the è̂n and Ë̂n. The next theorem states the

consistency of è̂n and Ë̂n on the support of C.

THEOREM 3. Suppose that assumptions (A1)±(A4) hold. Then

è̂n ! è0 a:s:,

and if y 2 S[C] is a continuity point of F0, then

Ë̂n(y)! Ë0(y) a:s:
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Furthermore, if F0 is continuous, then

sup
y2S[C]

jË̂n(y)ÿË0(y)j ! 0 a:s:

Consistency of the NPMLEs is a useful ®rst step in determining the asymptotic

behavior of the estimators. The next step is to determine their rate of convergence. In

order to do this, it is necessary to de®ne an appropriate metric. One can de®ne a

metric d on R 3 Ö, where

Ö �
fË: Ë is increasing and 0 , 1=M < Ë(y) < M ,1 for all y 2 S[C]g,

as follows; d is de®ned as

d((è1, Ë1), (è2, Ë2)) � jè1 ÿ è2j � kË1 ÿË2k2,

where jaj denotes the usual Euclidean distance in R and

kË1 ÿË2k2 �
�

[Ë1(y)ÿË2(y)]2 dQC(y)

� �1=2

is the L2 distance between Ë1 and Ë2 with respect to QC , the probability measure of

C. We now have the following result.

THEOREM 4. Suppose that assumptions (A1)±(A3) and (A49) are satis®ed. Then

d((è̂n, Ë̂n), (è0, Ë0)) � OP(nÿ1=3):

Roughly, what Theorem 4 states is that the rate of the convergence of the NPMLE is

dominated by that of the in®nite-dimensional parameter. However, the hope is that

the NPMLE of the regression parameter converges at a n1=2 rate. By performing

some calculations using empirical process methods, such as those in VAN DER VAART

and WELLNER (1996), one can apply Theorem 6.1 in HUANG (1996) to demonstrate

asymptotically normality of è̂n.

THEOREM 5. Suppose that è0 is an interior point of È and that assumptions (A1)±

(A3), (A49) and (A5) are satis®ed. Then���
n
p

(è̂n ÿ è0) � I(è0)ÿ1
���
n
p

Pn
_l�è0

(x)� oP(1)! d N (0, I(è0)ÿ1),

where Pn is the empirical measure of (Ci, äi, Zi), i � 1, . . . , n and l�è0
(x) and

I(è0)ÿ1 are de®ned as in Theorem 2.

Thus, just as for the proportional hazards model, the NPMLE of the regression

parameters converges at a regular rate and is fully ef®cient for the semiparametric

variance bound in the additive hazards model.
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4 Analytical comparison with LIN et al. (1998)

One of the main results from the previous section was the calculation of the

semiparametric information bound for è. This result allows us to examine the loss in

ef®ciency from other procedures. As was mentioned in the introduction, LIN et al.

(1998) proposed an estimating function approach to estimation of the regression

parameters in (1) with current status data. While the general formula for the relative

ef®ciency is not very informative, we consider a special case.

Suppose that Z is scalar, C is independent of Z, è � 0, and P(T > C) 2 (0, 1).

Let I(è) be the information bound derived in Section 3. Let ILOY (è) be the

information for è, based on equation (2.2) in LIN et al. (1998). The ef®ciency of the

LIN et al. procedure can be shown to be

ILOYè)

I(è)
� fE[C2] Var(Z)� E[Z]2 Var(C)gP(T < C)

E[C2] Var(Z)
: (4)

If E[Z] � 0, (4) reduces to P(T < C). Given a distribution for T and C, we can

calculate this probability quiteeasily. For example, if T and C are independent

exponential random variables, each with rate 1, then the ef®ciency of the LIN et al.

(1998) procedure is 0.5.

5 Numerical Example

We now compare the results given by the LIN et al. (1998) and NPMLE procedures

on a real dataset. We consider data from a tumorigenicity study, ®rst analyzed by

HOEL and WALBURG (1972). The objective of the study was to compare the time to

lung tumor development between two environments, germ-free and conventional.

The study involved 144 RFM mice; 96 were assigned to the conventional environ-

ment, while 48 were assigned to the germ-free environment. The mice were followed

until sacri®ce or death. At this time, it was determined whether or not a lung tumor

had developed. Since these tumors are nonlethal, it is reasonable to treat the times to

lung tumor development as current status data. Of the 96 mice in the conventional

environment group, 27 had lung tumors at the time of sacri®ce or death, while 35 of

the 48 mice in the germ-free environment arm had lung tumors. Here, we focus on

the effect of environment on time to tumor devevelopment.

As was noted by LIN et al. (1998), there was a signi®cant difference in monitoring

times between mice in the two environments. Using their dependent monitoring

procedure, their estimate of the treatment effect was ÿ0.00071 with a standard error

of 0.00041. Using the interior point algorithm described in Section 2, we get an

estimated treatment effect of ÿ0.00065.

The issue of estimating the standard error for the treatment effect now arises. To

estimate I(è0), we follow the development in Section 4 of HUANG (1996). Having

computed estimators è̂n and F̂n of è0 and F0, we estimate O(cjz) by

Ôn(cjz) � [1ÿ F̂n(cjz)]=F̂n(cjz),
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where F̂n(cjz) � F̂n(c) exp(ÿcè̂nz). Let P(Z � 1) � p. Since the covariate encoding

environment is binary, we note that

E[O(CjZ)jC � c] � O(cj1)P(Z � 1jC � c)� O(cj0)P(Z � 0jC � c)

� O(cj1) f1(c) p

f (c)
� O(cj0) f 0(c)(1ÿ p)

f (c)
,

where f k(c) is the conditional density of C given Z � k(k � 0, 1) and f (y) is the

marginal density of C. It can be shown similarly that E[ZO(CjZ)jC � c] �
O(cj1) f1(c) p. If we let p̂n denote the empirical estimator of P(Z � 1) and f̂ kn(c)

represent a kernel density estimate of f k(c) (k � 0, 1), a natural estimator of

ì � E[ZO(CjZ)jC � c]=E[O(CjZ)jC � c] is given by

ì̂n(c) � Ôn(cj1) f̂1n(c) p̂n

Ôn(cj1) f̂1n(c) p̂n � Ôn(cj0) f̂ 0n(c)(1ÿ p̂n)
:

It can be shown that for an appropriate choice of bandwidth and kernel, ì̂n is a

consistent estimator of ì. This leads to the following estimator of I(è0):

Î n(è̂n) � nÿ1
Xn

i�1

fÔn(CijZi)[Ci(Zi ÿ ì̂n(Ci))]
2g: (5)

Using equation (5) with the tumorigenicity data yields an estimated standard error of

0.00037.

6 Conclusion

In this paper, we have explored the issue of ef®cient estimation in the additive

hazards model with current status data. Theoretically, results analogous to those

derived by HUANG (1996) hold here as well. However, the characterization of the

NPMLE in this problem is quite different from that for the proportional hazards

model due to the presence of the positivity constraint (C3).

Similar methods can be applied to the analysis of interval censored data under

alternative observation schemes. For example, ZHANG (1998) studied the problem of

analysis of panel count data, which is a generalization of the problem considered

here. He proposed nonparametric maximum pseudolikelihood estimation (NPMPLE)

in both the one-sample and regression problems. The method proposed here can be

generalized similarly.

While we made an analytic comparison between the procedure of LIN et al. (1998)

with the NPMLE, the behavior in small samples has yet to be investigated. This is

de®nitely of interest in practice and would be a worthwhile avenue to explore.
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