GENERAL DESIGN PROCEDURE FOR HIGH-EFFICIENCY TRAVELING-WAVE AMPLIFIERS

Technical Report No. 24
Part II

Electron Tube Laboratory
Department of Electrical Engineering

By
Joseph E. Rowe
Harold Sobol

Project 2750
CONTRACT NO. AF30(602)-1845
DEPARTMENT OF THE AIR FORCE
PROJECT NO. 4506, TASK NO. 45152
PLACED BY: THE ROME AIR DEVELOPMENT CENTER
GRIFFISS AIR FORCE BASE, NEW YORK

February, 1958
EXPLANATORY NOTES

1. Theoretical Development of Design Procedure. In Part I of this report a general design procedure is developed for the design of high-efficiency traveling-wave amplifiers. The procedure is first developed for helix-type tubes and is then extended to cover traveling-wave amplifiers with other types of r-f structures. The same design curves are used for these dispersive structures with appropriate correction factors.

2. Design Curves. In Part II all of the available design curves useful in the actual design of high-efficiency amplifiers are compiled. Immediately preceding each section of curves there is a list of parameters for which the particular curves have been calculated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPLANATORY NOTES</td>
<td>i11</td>
</tr>
<tr>
<td>SECTION A: Efficiency</td>
<td>1</td>
</tr>
<tr>
<td>SECTION B: Impedance Reduction Factor</td>
<td>8</td>
</tr>
<tr>
<td>SECTION C: Space Charge vs. Stream Diameter</td>
<td>18</td>
</tr>
<tr>
<td>SECTION D: Space Charge vs. Voltage</td>
<td>379</td>
</tr>
<tr>
<td>SECTION E: Space-Charge Correction Factor</td>
<td>398</td>
</tr>
<tr>
<td>SECTION F: Optimum Electron Injection Velocity</td>
<td>402</td>
</tr>
<tr>
<td>SECTION G: Perveance</td>
<td>409</td>
</tr>
<tr>
<td>SECTION H: Perveance Correction Factor</td>
<td>435</td>
</tr>
<tr>
<td>SECTION I: Electron Stream Characteristics</td>
<td>439</td>
</tr>
<tr>
<td>SECTION J: Space-Charge Reduction Factor for Dispersive Structures</td>
<td>450</td>
</tr>
<tr>
<td>SECTION K: Tube Length and Change in Phase Shift vs. Input-Signal Level</td>
<td>459</td>
</tr>
</tbody>
</table>
SECTION A

EFFICIENCY

The efficiency curves are presented for selected values of the parameters C, B, and Q_C in the indicated ranges.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.05 to 0.20</td>
</tr>
<tr>
<td>B</td>
<td>0.5 to 1.5</td>
</tr>
<tr>
<td>Q_C</td>
<td>0 to 0.75</td>
</tr>
</tbody>
</table>
FIG. A.1 SATURATION EFFICIENCY VS. SPACE CHARGE.

B - ADJUSTED FOR MAXIMUM η_s. (C = 0.1, d = 0)
FIG. A.2 SATURATION EFFICIENCY VS. SPACE CHARGE AND BEAM DIAMETER. b - ADJUSTED FOR MAXIMUM η_s.
(C = 0.1, d = 0)
FIG. A.3 SATURATION EFFICIENCY VS. SPACE-CHARGE PARAMETER. b - ADJUSTED FOR MAXIMUM η_s.

($B = 0.5$, $d = 0$)
FIG. A.4 SATURATION EFFICIENCY VS. SPACE-CHARGE PARAMETER. b - ADJUSTED FOR MAXIMUM η_s.
($B = 1$, $d = 0$)
FIG. A.5 SATURATION EFFICIENCY VS. GAIN PARAMETER.

b - ADJUSTED FOR MAXIMUM X_1. ($B = 1.0$, $d = 0$)
FIG. A.6 MAXIMUM SATURATION EFFICIENCY VS. GAIN PARAMETER.
* b – ADJUSTED FOR MAXIMUM η_s. (B = 1.0, d = 0)
SECTION B

IMPEDANCE REDUCTION FACTOR

The impedance reduction factor curves are arranged according to ascending values of the dielectric loading factor.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLF</td>
<td>70 to 100</td>
</tr>
</tbody>
</table>
FIG. B.1 IMPEDANCE REDUCTION FACTOR $F = F_1 F_2$ FOR A TAPE HELIX. (EXTENSION OF TIEN’S CALCULATIONS.)
FIG. B.2 (a.) IMPEDANCE REDUCTION FACTOR F_1 FOR DIFFERENT CURRENT DISTRIBUTIONS.

(b.) FACTOR F_1 COMPUTED USING CURRENT DISTRIBUTION —a— FOR $\eta_0^i = 1, 1.5, 4$.

(COURTESY OF P.K. TIEN)
FIG. B.3 IMPEDANCE REDUCTION FACTOR F_2 FOR A TAPE HELIX.

(COURTESY OF P.K. TIEN)
FIG. B.4 HELIX IMPEDANCE REDUCTION FACTOR FOR VARIOUS VALUES OF BEAM VOLTAGE. (DLF = 70 %)
FIG. B.8 HELIX IMPEDANCE REDUCTION FACTOR F FOR VARIOUS VALUES OF BEAM VOLTAGE. (DLF = 95%)
SECTION C

SPACE CHARGE vs. STREAM DIAMETER

The curves of the space-charge parameter vs. the stream diameter are arranged according to increasing values of the parameters V_{o}, a'/b' and DLF successively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{o}</td>
<td>1 to 14 kv</td>
</tr>
<tr>
<td>a'/b'</td>
<td>1.2 to 2.0</td>
</tr>
<tr>
<td>DLF</td>
<td>70 to 100</td>
</tr>
</tbody>
</table>
FIG. C.1 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.2, V_0 = \text{1 KV}, \text{DLF} = 70\%$)
FIG. C.2 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.2, V_0 = 2\,\text{kV}, \text{DLF} = 70\%) \)
FIG. C.3
SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(a/b = 1.2, V₀ = 3 kV, DLF = 70%)

SPACE CHARGE, QC/(1 + QD)

BEAM DIAMETER, B

C = 0.20
C = 0.15
C = 0.10
C = 0.08
C = 0.05
FIG. C.5 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\alpha'/b' = 1.2\), \(V_0 = 5\) KV, DLF = 70 %
FIG. C.6 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.2, V_0 = 6\text{KV}, \text{DLF} = 70\%)\)
FIG. C.7 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b'=1.2$, $V_0 = 7$ kV, DLF = 70%)
Fig. C.8
Space charge vs. beam diameter for various values of the gain parameter.
(d/b = 1.2, V_0 = 8 kV, DLF = 70%)
FIG. C.10 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.2 \), \(V_0 = 10 \text{KV} \), DLF = 70\%
FIG. C.21 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.2, V_0 = 12\, \text{kV}, \text{DLF} = 70\%)\)
Fig. C.12 Space Charge VS. Beam Diameter for Various Values of the Gain Parameter.
($a'/b' = 1.2$, $V_0 = 14$ KV, DLF = 70%)
FIG. C.13 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.4, V_0 = 1\ \text{KV}, \ DLF = 70\% \)
FIG. C.14 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.4, V_0 = 2 \text{ KV}, \text{ DLF} = 70\%\)
FIG. C.16 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.4, V₀ = 4 KV, DLF = 70%)
FIG. C.17 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a^i/b^i = 1.4\), \(V_0 = 5\) KV, DLF = 70%
FIG. C.19
SPACE CHARGE V.S. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a}{b'} = 1.4, V_0 = 7 \text{ KV}, \text{ DLF} = 70\% \)
FIG. C.21 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.4, V_0 = 9 \text{ KV}, \text{ DLF} = 70\%\)
FIG. C.22 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a}{b'} = 1.4 \), \(V_0 = 10 \text{ KV} \), DLF = 70%
FIG. C.23 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.4, V_0 = 12 \text{ KV}, \text{ DLF} = 70\%\)
FIG. C.24 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a' / b' = 1.4, V_o = 14 \text{ KV}, \text{ DLF} = 70\%\)
FIG. C.25 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a'/b' = 1.6\ , V_0 = 1\ \text{KV},\ \text{DLF} = 70\%\)
FIG. C.26 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b'=1.6, V_0 = 2 \text{ KV}, \text{DLF} = 70\%)\)
FIG. C.27 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(a/b = 1.6, V₀ = 3KV, DLF = 70%)

Space Charge, q₀/(1 + q₀)
FIG. C.28 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.6 , V_0 = 4 KV, DLF = 70 %)
FIG. C.29 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.6, V_0 = 5 \text{ KV}, \text{ DLF} = 70\%)\)
FIG. C.30 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.6, V_0 = 6\, \text{kV}, \text{DLF} = 70\%\)
FIG. C.31 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.6 , V_0 = 7 \text{ KV}, \text{ DLF} = 70\% \)
FIG. C.32 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a/b^1 = 1.6, \ V_0 = 8 \text{ KV}, \ DLF = 70 \%)\)
FIG. C.33
SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($d/b' = 16, V_0 = 9$ KV, DLF = 70%)

SPACE CHARGE, $\frac{Q}{\pi c^2}$

BEAM DIAMETER, B
FIG. C.34 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(\(a/b = 1.6\), \(V_0 = 10\) KV, DLF = 70\%)
FIG. C.35 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a/b' = 1.6 \), \(V_0 = 12 \text{ KV} \), \(\text{DLF} = 70\% \)
FIG. C.36 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'/b'}{1.6}, V_0 = 14 \text{ KV}, \text{ DLF} = 70\% \)
FIG. C.37 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a/b'}{1.8}, V_0 = 1 \text{ KV, DLF = 70\%} \)
FIG. C.38 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.8\), \(V_0 = 2\) KV, DLF = 70%
FIG. C.39 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\delta_{b}/b = 1.8, \sqrt{v_0} = 3 \text{ KV}, \text{ DLF} = 70\% \)
FIG. C.40 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

$(a'/b' = 1.8, V_0 = 4 \text{ KV}, \text{DLF} = 70\%)$
FIG. C.41 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(\(a'/b' = 1.8\), \(V_0 = 5\, \text{KV}\), DLF = 70%)
FIG. C.42 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.8, V₀ = 6 KV, DLF = 70%)
FIG. C.44 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER

(\(\delta/b' = 1.8\), \(V_o = 8\) kV, DLF = 70%)
FIG. C.45 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.8 \), \(V_o = 9 \) KV, \(DLF = 70\% \))
FIG. C.47 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a' / b' = 1.8, \quad V_0 = 12 \text{ KV}, \quad \text{DLF} = 70\% \)
FIG. C.48 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.8, V₀ = 14 KV, DLF = 70%)

SPACE CHARGE, QC/(1 + Cb)

BEAM DIAMETER, B
FIG. C.49 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 2.0$, $V_0 = 1$ KV, DLF = 70%)
FIG. C.50 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b'=2.0, V_0 = 2 \text{ KV}, \text{DLF} = 70\%)
FIG. C.51 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a' b'}{2.0}, V_0 = 3 \text{ KV}, \text{ DLF} = 70 \% \)
Fig. C.53: Space charge vs. beam diameter for various values of the gain parameter.

\(\Phi / \Phi_0 = 2.0, V_0 = 5 \text{ KV, DLF = 70%} \)
FIG. C.54 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a'/b'=2.0, V_0 = 6 \text{ kV}, \text{DLF} = 70\%\)
FIG. C.55 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\alpha/b'=2.0, V_0 = 7\) KV, DLF = 70%
FIG. C.56 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 2.0, V_0 = 8 \text{ KV}, \text{DLF} = 70\% \)
FIG. C.57 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 2.0\), \(V_0 = 9\, \text{KV}\), DLF = 70\%
FIG. C.58 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a/b = 2.0, V_o = 10 \text{KV}, \text{DLF} = 70 \% \)
FIG. C.59 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 2.0\), \(V_0 = 12\) KV, DLF = 70%
FIG. C.61 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.2, V₀ = 1 KV, DLF = 80 %)
FIG. C.62 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
$(a'/b') = 1.2, V_0 = 2$ KV, DLF = 80%
Figure C.63 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\alpha' / \beta' = 1.2, V_0 = 3 \text{ kV}, \text{ DLF} = 80\% \)
FIG. C.65 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.2, V_0 = 5$ KV, DLF = 80 %)
FIG. C 66 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.2, V_0 = 6 \text{ KV}, \text{ DLF} = 80\%)\)
FIG. C.67 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[\frac{a'}{b'} = 1.2, \quad V_0 = 7 \text{ KV}, \quad \text{DLF} = 80\% \]
FIG. C.70 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.2 \), \(V_0 = 10 \text{ KV} \), DLF = 80%
FIG. C.71 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.2, V₀ = 12 KV, DLF = 80%)
FIG. C.73 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.4 \), \(V_0 = 1 \text{ KV} \), DLF = 80%
FIG. C.74 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.4, V₀ = 2 KV, DLF = 80 %)
FIG. C.75 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.4$, $V_0 = 3$ KV, DLF = 80%)
FIG. C.76 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER
($a'/b' = 1.4$, $V_\infty = 4$ KV, DLF = 80 %)
FIG. C.77 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.4$, $V_0 = 5$ KV, $DLF = 80\%$)
FIG. C.78 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a' b'}{1 + C} \), \(V_p = 6 \text{ KV} \), DLF = 80%
FIG. C.79 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER
(a'/b' = 1.4, V0 = 7 KV, DLF = 80 %)
FIG. C.80 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a'//b' = 1.4, \ V_0 = 8 \text{ KV}, \ DLF = 80\%\)
FIG. C.81 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\alpha'/b' = 1.4, \quad V_0 = 9\,\text{KV}, \quad \text{DLF} = 80\,\% \)
FIG. C.82 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[a'/b' = 1.4, \ V_0 = 10 \text{ KV,} \ \text{DLF} = 80 \% \]
FIG. C.83
SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a/b' = 1.4, V_0 = 12$ kV, DLF = 80%)
FIG. C.84 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.4, V_o = 14 KV, DLF = 80%)
FIG. C.85 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.6, V₀ = 1 KV, DLF = 80 %)
FIG. C.86 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER

\(\frac{a' b'}{1.6}, V_0 = 2 \text{ KV}, \text{ DLF} = 80\% \)
FIG. C.87 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a' / b' = 1.6, \ V_0 = 3 \ \text{kV}, \ \text{DLF} = 80 \ %\)
FIG. C.88 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.6, V₀ = 4 KV, DLF = 80%)
FIG. C.89 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.6, V₀ = 5 KV, DLF = 80 %)
FIG. C.90 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.6, \ V_0 = 6 \text{ KV, DLF } = 80\%) \)
FIG. C.91 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.6, \ V_0 = 7 \text{ KV}, \ \text{DLF} = 80\% \)
FIG. C.92 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.6, V_0 = 8$ KV, DLF = 80%)
FIG. C.93 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

($a'/b' = 1.6$, $V_0 = 9$ kV, DLF = 80 %)
FIG. C.94 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER
(a/b' = 1.6, V₀ = 10 KV, DLF = 80 %)
FIG. C.96 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

($a'/b' = 1.6, \ V_0 = 14 \text{ kV}, \ DLF = 80\%$)
FIG. C.97
SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{d_0}{b_0} = 1.8, \ V_0 = 1 \text{KV}, \ DLF = 80 \% \)
FIG. C.98 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER
($a'/b' = 1.8, \text{ } V_o = 2 \text{ kV, DLF = 80\%}$)
FIG. C.99 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.8, V_0 = 3 \text{ kV}, \text{ DLF} = 80\% \)
FIG. C.100 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF GAIN PARAMETER.
\(\left(a'/b' = 1.8, V_n = 4 \text{ KV}, \text{ DLF} = 80 \% \right) \)
FIG. C.101 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.8, V₀ = 5 KV, DLF = 80%)
FIG. C.103 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.8, V_0 = 7$ KV, DLF = 80%)
FIG. C.104 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.8$, $V_o = 8$ KV, DLF = 80 %)
FIG. C.105 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.8, V_0 = 9$ KV, DLF = 80%)

SPACE CHARGE, QC/(1 + CB)

BEAM DIAMETER, B

0 0.5 1.0 1.5 2.0

C = 0.20
C = 0.15
C = 0.10
C = 0.08
C = 0.05
FIG. C.108 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a' b'}{l \cdot V_c} = 1.8 \cdot V_c = 14 \text{ kV} \), D.I.F. = 80%
FIG. C.109 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 2.0, V_0 = 1 \text{ KV}, \text{ DLF} = 80 \%)\)
FIG. C.110 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 2.0, V_0 = 2 \text{ KV}, \text{ DLF} = 80 \% \)
FIG. C.111
SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($\alpha/b^* = 2.0$, $V_0 = 3$ kV, DLF = 80%)
FIG. C.112 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 2.0, V_0 = 4 \text{ KV}, \text{ DLF} = 80\%$)
FIG. C.114 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 2.0, \ V_0 = 6 \text{ KV}, \ \text{DLF} = 80\% \)
FIG. C.115 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 2.0, V_0 = 7 \text{ KV, DLF} = 80\%\)
FIG. C.117 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 2.0, V_o = 9 KV, DLF = 80 %)
FIG. C.119 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 2.0, V₀ = 12 KV, DLF = 80%)
FIG. C.120 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((d'/b' = 2.0, V_n = 14 \text{ KV}, \text{ DLF } = 80\%)\)
FIG. C.121 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.2, V_0 = 1 \text{ KV, DLF} = 85\%\)
FIG. C.122 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.2, V_0 = 2$ KV, DLF = 85 %)
FIG. C.126 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.2, V₀ = 6 kV, DLF = 85 %)
FIG. C.127 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a}{b} = 1.2, V_0 = 7 \, \text{KV}, \, \text{DLF} = 85\% \)
FIG. C.128 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.2$, $V_0 = 8$ KV, DLF = 85 %)
FIG. C.130 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.2, $V_a = 10$ KV, DLF = 85 %)
FIG. C.131 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\[(a'/b') = 1.2, V_0 = 12 \text{ KV}, \text{ DLF} = 85\%\]
FIG. C.132 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a'/b' = 1.2\), \(V_0 = 14\) KV, \(DLF = 85\%\)
FIG. C.134 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.4, V₀ = 2 KV, DLF = 85 %)
FIG. C.135 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\alpha/b' = 1.4, \ V_0 = 3 \text{ kV}, \ \text{DLF} = 85 \%\)
FIG. C.137 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\((a' / b' = 1.4, \ V_0 = 5 \ \text{KV}, \ \text{DLF} = 85 \ %)\)
FIG. C.138 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[\frac{a'}{b'} = 1.4, \ V_0 = 6 \text{ KV}, \ \text{DLF} = 85\% \]
FIG. C.140 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.4 \), \(V_a = 8 \text{ KV} \), DLF = 85%
FIG. C.141 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a/b' = 1.4, V_0 = 9 \text{ KV}, \text{ DLF} = 85 \%)\)
FIG. C.142 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.4, V_0 = 10$ KV, DLF = 85 %)
Fig. C.143 Space charge vs. beam diameter for various values of the gain parameter.

(\(\frac{d}{D} = 1.4, V_o = 12\,\text{kV}, DLF = 85\%\))
FIG. C.144 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.4, V_0 = 14 \text{ KV}, \text{ DLF} = 85\% \)
FIG. C.145 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{d'b^1}{b^1} = 1.6, \ V_0 = 1 \text{ KV}, \ DLF = 85 \% \)
FIG. C.147 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.6, V_0 = 3 \text{ KV}, \text{ DLF} = 85\%\)
FIG. C.148 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.6$, $V_o = 4$ kV, DLF = 85%)
FIG. C.149 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{d}{b} = 1.6, V_0 = 5 \text{ KV}, \text{ DLF} = 85\% \)
FIG. C.150 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.6, \ V_n = 6 \text{ KV}, \ \text{DLF} = 85 \% \)
FIG. C.151 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.6, V₀ = 7 KV, DLF = 85 %)
FIG. C.152 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{d}{b'} = 1.6, \ V_n = 8 \text{ KV}, \ \text{DLF} = 85\% \)
FIG. C.155 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{C}{b'} = 1.6, V_o = 12 \text{ KV, DLF = 85\%} \)
FIG. C.156 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a}{b'} = 1.6, V_0 = 14 \text{ KV, DLF} = 85\% \)
FIG. C.157 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.8, V₀ = 1 KV, DLF = 85 %)
FIG. C.158
SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a/b = 1.8, V₀ = 2 kV, DLF = 85 %)

SPACE CHARGE, qC/(1 + qC)

BEAM DIAMETER, B
FIG. C.160 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.8, \ V_0 = 4 \text{ KV}, \ \text{DLF} = 85\%\)
FIG. C.161 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\[(a'/b'=1.8, \ V_0=5 \ \text{KV}, \ \text{DLF}=85 \ \%)\]
FIG. C.163 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.8, V_0 = 7 \text{ KV}, \text{ DLF} = 85 \text{ %} \)
FIG. C.164 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\left(\frac{n}{b'} = 1 \quad R = 8 \text{ KV} \quad \text{DI E = 85 %} \right) \)
Fig. C.165: Space Charge vs. Beam Diameter for Various Values of the Gain Parameter.

(d/b = 1.8, V_0 = 9 KV, DLF = 85%)
FIG. C.166 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a_i}{b_i} = 1.8, \ V_n = 10 \text{ KV, DLF} = 85\% \)
FIG. C.169 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a'/b' = 2.0, V_0 = 1 \text{ KV}, \text{ DLF} = 85 \% \)
FIG. C.170 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\((a'/b' = 2.0 \ V_0 = 2 \text{ KV}, \ DLF = 85\%) \)
FIG. C.171
SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(a/b) = 2.0, Y_o = 3 KV, DLF = 85%
FIG. C.173 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 2.0, V₀ = 5 kV, DLF = 85%)
FIG. C.174 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{d}{b} = 2.0, V_0 = 6 \text{ KV, DLI = 85\%} \)
FIG. C.175 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

($a'/b' = 2.0$, $V_0 = 7$ KV, DLF = 85%)
FIG. C.176 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\alpha' / \beta' = 2.0, V_0 = 8 \text{ KV, DLF} = 85 \% \)
FIG. C.177 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 2.0, V_0 = 9 \text{ KV}, \text{ DLF} = 85\% \)
FIG. C.178 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 2.0, V_o = 10KV, DLF = 85%)
FIG. C.179 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 2.0$, $V_0 = 12$ kV, DLF = 85%)
FIG. C.180 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a}{b} = 2.0, \ V_n = 14 \text{ KV, DLF} = 85\% \)
FIG. C.181 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.2\), \(V_0 = 1\) KV, DLF = 90%
FIG. C.182 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.2, \ V_n = 2 \text{ KV}, \ \text{DLF} = 90\% \)
FIG. C.183 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{\alpha/\beta'}{1, V_0 = 3 \text{ KV}, DLF = 90\%}\)
FIG. C.166 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($d/b' = 1.2$, $V_0 = 6$ kV, DLF = 90%)
FIG. C.187 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.2, V_0 = 7 KV, DLF = 90%)
FIG. C.188 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.2, \ V_a = 8 \ \text{KV}, \ \text{DLF} = 90\% \)
FIG. C.189 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.2, V_0 = 9 \text{ KV}, \text{ DLF} = 90\%)\)
FIG. C.191 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.2, V_0 = 12 \text{ KV, DLF} = 90\%$)
FIG. C.193 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.4$, $V_0 = 1$ KV, DLF = 90 %)
FIG. C.195 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.4, V_0 = 3 \text{ KV, DLF} = 90\%) \)
FIG. C.196 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.4$, $V_0 = 4$ KV, DLF = 90 %)
FIG. C.197 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

$\frac{d/b'}{1.4}$, $V_b = 5$ KV, DLF = 90%
FIG. C.200 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a}{b} = 1.4, V_a = 8 \text{ KV, DLF = 90 \%} \)
FIG. C.201 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{Q_{0}}{V_{0}} = 1.4 \), \(V_{0} = 9 \text{ KV}, \text{DLF} = 90\% \)
FIG. C.202 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[\frac{g}{b} = 1.4, \quad V_e = 10 \text{ KV}, \quad \text{DLF} = 90\% \]
FIG. C.203 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(\frac{\alpha_b}{b} = 1.4, \phi_0 = 12 \text{ KV}, \text{ DLF} = 90 \%)
FIG. C.204 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.4, V_a = 14 \text{ KV}, \text{ DLF} = 90\% \)
FIG. C.205 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a^2}{b^2} = 1.6, V_0 = 1 \text{ KV}, \text{ DLF} = 90\% \)
FIG. C.206 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a' \div b' = 1.6 \), \(V_n = 2\) KV. DLF = 90\%
FIG. C.207 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a/b}{1.6} = 3 \text{ KV}, \text{ DLF} = 90\% \)
FIG. C.208 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a' \cdot b'}{1.6}, V_0 = 4 \text{ KV}, \text{ DLF} = 90\% \)
FIG. C.209 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

($a'/b' = 1.6$, $V_0 = 5$ KV, DLF = 90%)
FIG. C.211 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
$(a'/b' = 1.6, V_0 = 7 \text{ KV}, \text{DLF} = 90\%)$
FIG. C.212 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.6, V_0 = 8 \text{ KV}, \text{ DLF} = 90\%) \)
FIG. C.213 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[\frac{\alpha}{\beta} = 1.6, \ V_0 = 9 \text{ KV, DLF} = 90\% \]
FIG. C.214 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
$(a'/b' = 1.6, V_a = 10 \text{ KV}, \text{ DLF} = 90\%)$
FIG. C.215 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a' / b' = 1.6\), \(V_0 = 12\) kV, DLF = 90%
FIG. C.216 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a' / b' = 1.6 \), \(V_n = 14 \) KV, DLF = 90 %
FIG. C.217 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a/b' = 1.8, V₀ = 1 KV, DLF = 90 %)
FIG. C.219 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.8 \), \(V_0 = 3 \) kV, DLF = 90%
FIG. C.220 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[(a'/b' = 1.8 , V_n = 4 \text{ KV, DLF = 90\%} \)
FIG. C.221 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b'=1.8$, $V_0 = 5$ KV, DLF = 90%)
FIG. C.222 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(a/b = 1.8, V_n = 6 KV, DLF = 90%)
FIG. C.223 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\alpha' / b' = 1.8 \), \(V_0 = 7 \text{ KV} \), DLF = 90%
FIG. C.224 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

($a'/b' = 1.8$, $V_n = 8$ KV, DLF = 90%)
FIG. C.225 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a}{b'} = 1.8 \), \(V_0 = 9 \text{ kV} \), DLF = 90%
FIG. C.226 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\[(a/b') = 1.8, \ V_o = 10 \text{ KV}, \ DLF = 90\%\]
FIG. C.227 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.8 \), \(V_0 = 12 \text{ KV} \), DLF = 90\%
FIG. C.22B SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(d/b = 1.8, V₀ = 14 KV, DLF = 90%)
FIG. C.229 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a' / b' = 2.0, V_0 = 1 \text{ KV}, \text{ DLF} = 90\% \)
FIG. C.231 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(d/b' = 2.0, V_0 = 3 K V, DLF = 90%)
FIG. C.232 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 2.0, V_n = 4 KV, DLF = 90%)
FIG. C.233 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\[a'/b' = 2.0, V_0 = 5 \text{ KV, DLF} = 90\%\]
FIG. C.234 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a/b' = 2.0, V_n = 6$ kV, $DLF = 90\%$)
FIG. C.235 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a}{b'} = 2.0, V_0 = 7 \text{ KV}, \text{ DLF} = 90\% \)
FIG. C.236 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(d/a)^2 = 2.0, V_r = 8 kV, DLF = 90%
FIG. C.237 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\alpha' / b' = 2.0, V_0 = 9 \text{ KV}, \text{ DLF} = 90\% \)
FIG. C.24O SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 2.0, V_n = 14 \text{ KV}, \text{ DLF} = 90\% \)
FIG. C.241 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.2 \), \(V_0 = 1 \text{ KV} \), DLF = 95%
FIG. C.242 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a'/b' = 1.2, V_0 = 2\, \text{KV}, \, \text{DLF} = 95\%\)
FIG. C.243 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.2, V_0 = 3 \text{ kV}, \text{DLF} = 95\% \)
FIG. C.244 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(a/b = 1.2, V_e = 4 KV, DLF = 95%)
FIG. C.245 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a/b' = 1.2, V₀ = 5 KV, DLF = 95%)
FIG. C.246 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a/b^1 = 1.2, \, V_n = 6 \, KV, \, DLF = 95\%)\)
FIG. C.247 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.2, V_0 = 7 \text{ KV}, \text{ DLF} = 95\%) \)
FIG. C.248 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(n'/h' = 1.2\), \(V_\gamma = 8\,\text{KV}\), \(D/L = F = 95\%\)
FIG. C.249 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a'/b' = 1.2 \), \(V_0 = 9 \text{ KV} \), DLF = 95%
FIG. C.250 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

($a'/b'=1.2, V_n = 10kV, DI F = 95\%$)
FIG. C.251 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.2 \), \(V_0 = 12 \text{KV} \), DLF = 95\%
FIG. C.253 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a'/b' = 1.4 \), \(V_0 = 1 \) KV, DLF = 95%
FIG. C.254 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.4, Vn = 2 kV, DLF = 95%)
FIG. C.255 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.4, V_0 = 3 \text{ KV}, \text{ DLF} = 95\%\)
FIG. C.256 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
$(\alpha/\beta' = 1.4, V_0 = 4 \text{ KV, DLF = 95\%})$
FIG. C.260 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a'/b' = 1.4 \), \(V_n = 8 \text{ KV} \), DLF = 95%
FIG. C.263 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

$\left(\frac{a}{b} = 1.4, V_o = 12 \text{ KV}, DLF = 95\%\right)$
FIG. C.266 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a' / b' = 1.6 \), \(V_0 = 2 \text{ KV} \), \(\text{DLF} = 95\% \)
FIG. C.269 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[(a/b' = 1.6, V_0 = 5 \text{ KV, DLF = 95\%})\]
FIG. C.271 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(a'/b' =1.6 , V₀ = 7 KV, DLF = 95 %)
FIG. C.272 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a}{b} = 1.6 \), \(V_0 = 8 \text{ KV} \), DLF = 95 \%
FIG. C.273 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a'/b' = 1.6, V_0 = 9 \text{KV}, \text{DLF} = 95\%\)
FIG. C.274 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[\frac{d}{b} = 1.6 \, , \, V_0 = 10 \text{ KV}, \, \text{DLF} = 95\% \]
FIG. C.276 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a/b^4 = 1.6, \quad V_{\alpha} = \text{14 kV}, \quad \text{DLF} = 95\%) \)
FIG. C.277 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\alpha^*/b^* = 1.8, V_0 = 1 \text{KV, DLF = 95\%} \)
FIG. C.278 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

($a/b = 1.8$, $V_0 = 2$ KV, DLF = 95%)
FIG. C.279 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.8 \), \(V_0 = 3 \text{ KV} \), DLF = 95%
FIG. C.282 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[(a/b') = 1.8, \ V_o = 6 \text{ KV, DLF = 95\%}\]
FIG. C.283 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\((a'/b' = 1.8, V_0 = 7 \text{ KV, DLF = 95\%}) \)
FIG. C.284 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a/b' = 1.8 \quad V_0 = 8 \text{ kV} \quad \text{DIE} = 95\%)\)
FIG. C.285 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a/b^2 = 1.8, V_0 = 9 \text{ KV}, \text{ DLF} = 95\%)\)
FIG. C.286 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{d}{b} = 1.8 \), \(V_A = 10 \text{ kV} \), \(\text{DLF} = 95\% \)
FIG. C.289 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{d}{b} = 2.0, V_e = 1 \text{ KV, DLF = 95\%} \)
FIG. C.290 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\alpha/\beta = 2.0, V_0 = 2 \text{ KV, DLF = 95\%} \)
Fig. C.291 Space charge vs. beam diameter for various values of the gain parameter.

\(\frac{d}{b} = 20 \), \(V_0 = 3 \text{ kV} \), DLF = 95%
FIG. C.293 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a/b^{'=}2.0, V_0 = 5\text{ kV}, \text{ DLF} = 95\%\)
FIG. C.294 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(a/b' = 2.0, V_n = 6 KV, DLF = 95%)
FIG. C.295 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 2.0, V_0 = 7 \text{ KV}, \text{ DLF} = 95\% \)
FIG. C.296 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[\frac{a/b'}{2.0} \cdot V_n = 8 \text{ KV}, \ DLF = 95\% \]
FIG. C.297 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b'=2.0$, $V_0 = 9$ kV, DLF = 95%)
FIG. C.298 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 2.0, V = 10 kV, DLF = 95%)
FIG. C.299 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a/b'=2.0$, $V_0 = 12$ KV, DLF = 95%)
FIG. C.300 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\((a/b^* = 2.0, V_0 = 14\text{KV}, \text{DLF} = 95\%) \)
FIG. C.301 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{q}{Q} = \frac{1}{(1 + C b)} \)

\((a/b' = 1.2, V_o = 1 \text{KV}, \text{DLF} = 100\%) \)
FIG. C.303 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a^2}{b^2} = 1.2 \), \(V_0 = 3 \text{kV} \), DLF = 100%
FIG. C.305 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{q}{b}\) = 1.2, \(V_0 = 5\) kV, DLF = 100%

Space Charge, \(qC/(1 + Cb)\)
FIG. C.306 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(a/b') = 1.2, V₀ = 6 KV, DLF = 100%
FIG. C.307 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.2, V₀ = 7 KV, DLF = 100%)
FIG. C.308 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

($\alpha'\beta'=1.2$, $V_c = 8$ kV, DLE = 100%)
FIG. C.309 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b'=1.2, V_0 = 9 \text{ KV}, \text{DLF}=100\%)\)
FIG. C.310 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a}{b} = 1.2 \), \(V_o = 10 \text{ KV} \), DLF = 100%
FIG. C.311 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(a' / b' = 1.2\), \(V_0 = 12\) KV, DLF = 100\%
FIG. C.312 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{\alpha}{\beta} = 1.2, V_n = 14 \text{ KV}, \text{ DLF} = 100\% \)
FIG. C.313 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{d}{b} = 1.4, V_0 = 1 \text{ KV, DLF = 100\%} \)
FIG. C.315 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.4, V₀ = 3 KV, DLF = 100%)
FIG. C.316 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(n' / n = 1.4, V_0 = 4 \text{ KV, DLE = 100\%} \).
FIG. C.317 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a/b' = 1.4, V_0 = 5 \text{ KV}, \text{ DLF} = 100\%) \)
FIG. C.31B
SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\[
\frac{a/b^*}{V_0} = 6 \text{ KV, DLF} = 100 \%
\]
FIG. C.320 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.4, V_0 = 8\text{ KV}, \text{ DLF} = 100\%\)
FIG. C.321 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.4$, $V_0 = 9$ KV, DLF = 100 %)
FIG. C.32 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(d/b = 1.4, V₀ = 10kV, DLF = 100%)
FIG. C.323 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.4, V_o = 12 \text{ KV}, \text{ DLF} = 100\%\)
FIG. C.324 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a}{b} = 1.4, V_a = 14 \text{ KV}, \text{ DLF} = 100\% \)
Fig. C.325 Space charge vs. beam diameter for various values of the gain parameter.
\((a'/b' = 1.6, V_0 = 1 \text{ KV, DLF = 100\%})\)
FIG. C.327 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

$\frac{a}{b'} = 1.6, V_0 = 3$ kV, DLF = 100%

$\frac{\text{Space Charge}}{\text{Ac/(1 + Cb)}}$
FIG. C.328 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.6 \), \(V = 4 \text{ KV} \), DI E = 100%
FIG. C.329 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.6, V_0 = 5 \text{ KV, DLF = 100\%}\)
FIG. C.330 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{b}{d} = 1.6, V_d = 6 \text{ KV}, \text{ DLF = 100\%} \)
FIG. C.331 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.6, V₀ = 7 KV, DLF = 100%)
FIG. C.332 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($d/b' = 1.6, V_n = 8$ KV, DLF = 100%)
FIG. C.333 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.6$, $V_0 = 9$ KV, DLF = 100%)
FIG. C.334 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.6, \ V_0 = 10 \text{ KV}, \ DLF = 100\% \)
FIG. C.335 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.6 \), \(V_0 = 12 \text{ KV} \), DLF = 100%
FIG. C.336 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(a'/b' = 1.6, V₀ = 14 KV, DLF = 100%)
FIG. C.337 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\[\frac{a'}{b'} = 1.8, \ V_0 = 1 \text{ KV}, \ DLF = 100\% \]
FIG. C.338 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.8, V_0 = 2 \text{ KV}, \text{ DLF} = 100\% \)
FIG. C.339 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 1.8 \), \(V_0 = 3 \text{KV} \), DLF = 100%
FIG. C.340 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a/b'=1.8, V_o = 4 kV, DI F = 100%)
FIG. C.341 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b'=1.8$, $V_o = 5$ KV, DLF = 100%)
FIG. C.343 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a_i^{i^1}}{b_i} = 1.8 \), \(V_0 = 7 \text{ KV} \), DLF = 100%
FIG. C.345 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\left(\frac{d}{b} = 1.8, V_0 = 9 \, \text{KV}, \text{DLF} = 100\% \right) \)
FIG. C.346 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a}{b^2} = 1.8 \), \(V_\alpha = 10 \text{ KV} \), \(\text{DLF} = 100\% \)
FIG. C.347 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a}{b} = 1.8, V_0 = 12\, \text{KV}, \text{DLF} = 100\%\)
FIG. C.348 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

($\alpha/k^3 B < 1$, $V = 14$ kV, DLE = 100%)
FIG. C.350 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{Q}{C(1 + Cb)} \)

\(a'/b' = 2.0, V = 2 \text{ kV}, \text{ DLE} = 100\% \)
FIG. C.351 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 2.0$, $V_0 = 3$ KV, DLF = 100%)
FIG. C.354 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 2.0, V_n = 6 KV, DLF = 100%)
FIG. C.355 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 2.0, V_0 = 7 \text{ KV}, \text{ DLF} = 100\% \)
FIG. C.356 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

(\frac{d}{b} = 2, V_0 = 8 \text{ kV}, \text{ DLF} = 100\%)
FIG. C.357 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b'=2.0, V_0 = 9$ KV, DLF = 100%)
FIG. C.358 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\(\frac{a'}{b'} = 2.0, V_n = 10 \text{ KV, DLF = 100\%} \)
FIG. C.360 SPACE CHARGE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a}{b^*} = 2.0 \), \(V_a = 14 \) KV. DLF = 100 %
SECTION D

SPACE CHARGE vs. VOLTAGE

The plots of the space-charge parameter vs. the stream voltage are arranged according to increasing values of the parameters B and DLF successively at a fixed value of a'/b'.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.5 to 1.5</td>
</tr>
<tr>
<td>DLF</td>
<td>70 to 100</td>
</tr>
<tr>
<td>a'/b'</td>
<td>1.4</td>
</tr>
</tbody>
</table>
FIG. D.2 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(a'/b' = 1.4, B = 1.0, DLF = 70\% \)
FIG. D.4 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b' = 1.4$, $B = 0.50$, DLF = 80%)
FIG. D.6 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.

\((a' / b' = 1.4, \ B = 1.50, \ \text{DLF} = 80\%) \)
FIG. D.7 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.
(a'/b' = 1.4, B = 0.5, DLF = 85 %)
FIG. D.8 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\((a'/b' = 1.4, \ B = 1.0, \ \text{DLF} = 85\%)\)
FIG. D.9 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\frac{a'}{b'} = 1.4, \ B = 1.50, \ \text{DLF} = 85 \% \)
FIG. D.10
SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER
($\alpha/\beta = 1.4$, $B = 0.50$, DLF = 90%)
FIG. D.12 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a'/b = 1.4$, $B = 1.50$, DLF = 90%)
Fig. D.13 Space Charge vs. Helix Voltage for Various Values of the Gain Parameter.

\(\frac{a}{b} = 1.4, \ B = 0.50, \ DLF = 95\% \)
FIG. D.15 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.
($a' / b' = 1.4$, $B = 1.50$, DLF = 95 %)
FIG. D.16 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.

($a'/b' = 1.4, B = 0.50, DLF = 100\%$)
FIG. D.17 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.
$(\gamma/b) = 1.4, B = 1.0, DLF = 100 \%$
FIG. D.18 SPACE CHARGE VS. HELIX VOLTAGE FOR VARIOUS VALUES OF THE GAIN PARAMETER.
\(\alpha' / \beta' = 1.4, \ B = 1.5, \ DLF = 100\%\)
SECTION E

SPACE-CHARGE CORRECTION FACTOR

The space-charge correction factor curves are arranged according to ascending values of the gain parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.05 to 0.20</td>
</tr>
</tbody>
</table>
FIG. E.1 SPACE-CHARGE CORRECTION. (C = 0.05, d = 0)
FIG. E.2 SPACE-CHARGE CORRECTION. (C = 0.10, d = 0)
FIG. E.3 SPACE-CHARGE CORRECTION. (C = 0.2, d = 0)
SECTION F

OPTIMUM ELECTRON INJECTION VELOCITY

The curves of the optimum electron injection velocity are arranged according to ascending values of the loss parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0 to 0.3</td>
</tr>
<tr>
<td>QC</td>
<td>0 to 1.0</td>
</tr>
<tr>
<td>d</td>
<td>0 to 1.0</td>
</tr>
</tbody>
</table>
FIG. F.1 b AT X_1 MAX. VS. X_1 MAX. WITH C AND QC AS PARAMETERS. (d = 0)
FIG. 2 b AT X₁ MAX. VS. X₁ MAX. WITH C AND QC AS PARAMETERS. (d = 0.0)
FIG. F.3 b AT X_1 MAX. VS. X_1 MAX. WITH C AND QC AS PARAMETERS.
($d = 0.125$)
FIG. F.4 \(b \) AT \(X_1 \) MAX. VS. \(X_1 \) MAX. WITH \(C \) AND \(QC \) AS PARAMETERS.
\((d = 0.5) \)
FIG. F.5 b AT X_1 MAX. VS. X_1 MAX. WITH C AND QC AS THE PARAMETERS.
(d = 1.0)
FIG. F.6 RELATIVE INJECTION VELOCITY VS. SPACE-CHARGE PARAMETER. (B = 1, d = 0)
SECTION G

PERVEANCE

The curves of the electron stream perveance vs. the stream diameter are arranged according to ascending values of the parameters a'/b' and C in succession.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'/b'</td>
<td>1.2 to 2.0</td>
</tr>
<tr>
<td>C</td>
<td>0.05 to 0.20</td>
</tr>
</tbody>
</table>
FIG. G.1 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. ($C = 0.05$, $a'/b' = 1.2$)
FIG. G.2 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. \((c = 0.05, a'/b' = 1.4)\)
FIG. G.3 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. (C = 0.05, a'/b' = 1.6)
FIG. G.4 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. ($C = 0.05, a'/b' = 1.8$)
FIG. G.5 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER.\((C = 0.05, \alpha'/b' = 2.0) \)
FIG. G.6 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER (c = 0.08, a'/b' = 1.2)
FIG. G.7 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. (C = 0.08, a'/b' = 1.4)
FIG. G.8 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. (C = 0.08, a'/b' = 1.6)
FIG. G.9 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. \(C = 0.08, \ a'/b' = 1.8 \)
FIG. G.10 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. ($C = 0.08, a'/b' = 2.0$)
FIG. G.11 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. ($C = 0.10$, $a'/b' = 1.2$)
FIG. G.12 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. ($c = 0.10$, $a'/b' = 1.4$)
FIG. G.13 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. (C = 0.10, a'/b' = 1.6)
FIG. G.14 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. (C = 0.10, a'/b' = 1.8)
FIG. G.15 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. \((C=0.1, a'/b' = 2.0)\)
FIG. G.16 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. (C = 0.15, a'/b' = 1.2)
FIG. G.17 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. \((c = 0.15, d'/b' = 1.4) \).
FIG. G.18 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. (C = 0.15, a/b' = 1.6)
FIG. G.19 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. ($C = 0.15, a'/b' = 1.8$)
FIG. G.20 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. \((C = 0.15, a'/b' = 2.0)\)
FIG. G.21 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. (C = 0.20, a'/b' = 1.2)
FIG. G.22 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. \(C = 0.20, \frac{a'}{b'} = 1.4 \)
FIG. G.23 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. ($C=0.20$, $a'/b = 1.6$)
FIG. G.24 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. (C = 0.20, \(a'/b' = 1.8\))
FIG. G.25 MICROPERVEANCE VS. BEAM DIAMETER FOR VARIOUS VALUES OF THE SPACE-CHARGE PARAMETER. \(c = 0.20, a'/b' = 2.0 \)
SECTION H

PERVEANCE CORRECTION FACTOR

The curves of the perveance correction factor vs. the space-charge parameter are arranged according to ascending values of the gain parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.05 to 0.20</td>
</tr>
</tbody>
</table>
FIG. H.1 PERVEANCE CORRECTION FACTOR. (C = 0.05, d = 0)
FIG. H.2 PERVEANCE CORRECTION FACTOR. (C=0.10, d = 0)
FIG. H.3 PERVEANCE CORRECTION FACTOR. (C = 0.2, d = 0)
SECTION I

ELECTRON STREAM CHARACTERISTICS

The following useful electron stream characteristic curves are included:

1. QC vs. B with ω_p/ω as the Parameter.

 $C = 0.05; \ a'/b' = 1.4, 2.0.$

 $C = 0.10; \ a'/b' = 1.4, 2.0.$

 $C = 0.20; \ a'/b' = 1.4, 2.0.$

2. R_n vs. B with a'/b' as the Parameter.

5. Magnetic Field Required for Brillouin Flow.
FIG. I.1 SPACE CHARGE VS. STREAM DIAMETER WITH NORMALIZED PLASMA FREQUENCY AS THE PARAMETER. ($C = 0.05$, $a'/b' = 1.4$)
FIG. I.2 SPACE CHARGE VS. STREAM DIAMETER WITH NORMALIZED PLASMA FREQUENCY AS THE PARAMETER.
(C = 0.05, a'/b' = 2.0)
FIG. I.3 SPACE CHARGE VS. STREAM DIAMETER WITH
NORMALIZED PLASMA FREQUENCY AS THE PARAMETER.
(C = 0.1, \(a'/b' = 1.4 \))
FIG. I.4 SPACE CHARGE VS. STREAM DIAMETER WITH NORMALIZED PLASMA FREQUENCY AS THE PARAMETER.
(C = 0.1, \(a'/b' = 2.0\))
FIG. 1.5 SPACE CHARGE VS. STREAM DIAMETER WITH NORMALIZED PLASMA FREQUENCY AS THE PARAMETER.
(C = 0.2, a'/b' = 1.4)
FIG. I.6 SPACE CHARGE VS. STREAM DIAMETER WITH NORMALIZED PLASMA FREQUENCY AS THE PARAMETER. (c = 0.2, a'/b' = 2.0)
\[R_n = \left[1 - \frac{n \beta b'}{I_{Ona'}} \left(I_{Inb'}K_{Ona'} + I_{Ona'}K_{Inb'} \right) \right]^{\frac{1}{2}} \]

\(R_n \) = DRIFT TUBE RADIUS

\(b' \) = ELECTRON STREAM RADIUS

\(b' = \gamma b' \approx \beta e (1 + Cb) b' \)

FIG. 1.7 PLASMA FREQUENCY REDUCTION FACTOR
FIG. I.8 ELECTRON STREAM PERVEANCE AND POWER
FIG. I.9 NOMOGRAPh RELATING CURRENT, VOLTAGE, POWER AND PERVEANCE IN AN ELECTRON STREAM.
$B_0 d = 0.654 P \mu^\frac{1}{2} V_0^\frac{1}{2}$

- P in μ-PERVS
- V_0 in VOLTS
- B_0 in GAUSS
- d - STREAM DIAMETER IN INCHES

FIG. I.10 MAGNETIC FIELD REQUIRED FOR BRILLOUIN FLOW VS. STREAM VOLTAGE WITH PERVEANCE AS THE PARAMETER.
SECTION J

SPACE-CHARGE REDUCTION FACTOR
FOR DISPERSIVE STRUCTURES

The space-charge reduction factor curves for dispersive structures are arranged according to ascending values of the parameters V_0, a'/b' and DLF successively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_0</td>
<td>5 kv and 10 kv</td>
</tr>
<tr>
<td>a'/b'</td>
<td>1.2 and 2.0</td>
</tr>
<tr>
<td>DLF</td>
<td>70 and 90</td>
</tr>
</tbody>
</table>
FIG. J.1 SPACE-CHARGE REDUCTION FACTOR VS. BEAM DIAMETER.
(C = 0.1—— , C = 0.2—— , a'/b' = 1.2, V₀ = 5 KV, DLF = 70 %)
FIG. J.2 SPACE-CCHARGE REDUCTION FACTOR VS. BEAM DIAMETER.

(C = 0.1 ————, C = 0.2 ————, a'/b' = 1.2, V_n = 10 kV, DLF = 70 %)
FIG. J.3 SPACE-CHARGE REDUCTION FACTOR VS. BEAM DIAMETER.
(C = 0.1 ———, C = 0.2 ———, $\alpha' / b' = 2.0$, $V_0 = 5$ kV, DLF = 70%)
FIG. J.4 SPACE-CHARGE REDUCTION FACTOR VS. BEAM DIAMETER.
(C = 0.1 --- , C = 0.2 ---- , a'/b' = 2.0, V_o = 10 KV, DLF = 70 %)
FIG. J.5 SPACE-CHARGE REDUCTION FACTOR VS. BEAM DIAMETER.
(C = 0.1 ———, C = 0.2 ———, a'/b' = 1.2, V₀ = 5 KV, DLF = 90 %)
FIG. J.6 SPACE-CHARGE REDUCTION FACTOR VS. BEAM DIAMETER.
(C = 0.1 ———, C = 0.2 ———, \(a'/b' = 1.2\), \(V_0 = 10\) KV. DLF = 90%.)
FIG. J.7 SPACE-CHARGE REDUCTION FACTOR VS. BEAM DIAMETER.
(C = 0.1 ———, C = 0.2 ———, d/b' = 2.0, V₀ = 5 KV, DLF = 90 %)
SECTION K

TUBE LENGTH AND CHANGE IN PHASE
SHIFT vs. INPUT-SIGNAL LEVEL

The optimum tube length and the change in phase shift through the
tube are given as functions of the input-signal level \(\psi \), relative to \(C \ell_0 V_0 \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.1</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
</tr>
<tr>
<td>QC</td>
<td>0, 0.05, 0.125, 0.25, 0.5</td>
</tr>
</tbody>
</table>
FIG. K.1

ψ, input-signal level in db below $C I_0 V_0$, vs. tube length at saturation in undisturbed wavelengths. b is adjusted for maximum saturation gain

$(C = 0.1, d = 0, B = 1, a/b' = 2)$
FIG. K.2

CHANGE IN PHASE SHIFT AT

$N_g = 5.5$ VS. ψ FOR FIXED TUBE LENGTH WITH VARIABLE INPUT-SIGNAL LEVEL

($C = 0.1, d = 0, N_g = 5.5, B = 1, a'/b' = 2$)
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Commander, Rome Air Development Center, ATTN: RCERMT, Griffiss Air Force Base, New York</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Commander, Rome Air Development Center, ATTN: RCSSTW, Griffiss Air Force Base, New York</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Commander, Rome Air Development Center, ATTN: RCSSSLD, Griffiss Air Force Base, New York</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Armed Services Technical Information Agency, Documents Service Center, Arlington Hall Station, Arlington 12, Virginia</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Commander, Air Force Cambridge Research Center, ATTN: CRQSL-1, Laurence G. Hanscom Field, Bedford, Massachusetts</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Director, Air University Library, ATTN: AUL-7736, Maxwell Air Force Base, Alabama</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Commander, Wright Air Development Center, ATTN: WCOSI-3, Wright-Patterson Air Force Base, Ohio</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Commander, Wright Air Development Center, ATTN: WCOSR, Wright-Patterson Air Force Base, Ohio</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Air Force Field Representative, Naval Research Laboratory, ATTN: Code 1010, Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Chief, Naval Research Laboratory, ATTN: Code 2021, Washington 25 D. C.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Chief, Bureau of Ships, ATTN: Code 312, Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Commanding Officer, Signal Corps Engineering Laboratories, ATTN: Technical Reports Library, Fort Monmouth, New Jersey</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Chief, Research and Development Office of the Chief Signal Officer, Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Commander, Air Research and Development Command, ATTN: RDVTF, Andrews Air Force Base, Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Commander, Air Research and Development Command, ATTN: RDVTC, Andrews Air Force Base, Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Director, Evans Signal Laboratory, Belmar, New Jersey, ATTN: Mrs. Betty Kennett, Report Distribution Unit, Electron Devices Division</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Chief, European Office, Air Research and Development, Shell Building, 60 Rut Cantersteen, Brussels, Belgium</td>
</tr>
<tr>
<td>No.</td>
<td>Copies</td>
<td>Agency</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>California Institute of Technology, Department of Electrical Engineering, Pasadena, California, ATTN: Prof. L. M. Field</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of California, Electrical Engineering Department, Berkeley 4, California, ATTN: Prof. J. R. Whinnery</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of Colorado, Department of Electrical Engineering, Boulder, Colorado, ATTN: Prof. W. G. Worcester</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cornell University, Department of Electrical Engineering, Ithaca, New York, ATTN: C. Dalman</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>General Electric Company, Electron Tube Division of Research Laboratory, The Knolls, Schenectady, New York, ATTN: Dr. E. D. McArthur</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>General Electric Microwave Laboratory, 601 California Avenue, Palo Alto, California, ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Huggins Laboratories, 711 Hamilton Avenue, Menlo Park, California, ATTN: L. A. Roberts</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hughes Aircraft Company, Electron Tube Laboratory, Culver City, California, ATTN: J. T. Milek</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Varian Associates, 611 Hansen Way, Palo Alto, California, ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Philips Research Laboratories, Irvington on the Hudson, New York, ATTN: Dr. Bernard Arfin</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Columbia University, Radiation Laboratory, 538 West 120th Street, New York 27, New York, ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of Illinois, Department of Electrical Engineering, Electron Tube Section, Urbana, Illinois</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of Florida, Department of Electrical Engineering, Gainsville, Florida</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Johns Hopkins University, Radiation Laboratory, Baltimore 2, Maryland, ATTN: Dr. D. D. King</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sperry Rand Corporation, Sperry Electron Tube Division, Gainsville, Florida, ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Copies</td>
<td>Agency</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Stanford University, Microwave Laboratory, Stanford, California, ATTN: Dr. M. Chodorow</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Stanford University, Stanford Electronics Laboratories, Stanford, California, ATTN: Dr. D. A. Watkins</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Raytheon Manufacturing Company, Microwave Power Tube Division, Waltham, Massachusetts, ATTN: Technical Library</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Federal Telecommunications Laboratories, Inc., 500 Washington Avenue, Nutley, New Jersey, ATTN: Technical Library, Electron Tube Laboratory</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>RCA Laboratories, Electronics Research Laboratory, Princeton, New Jersey, ATTN: Dr. E. H. Herold</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Eitel-McCullough, Inc., San Bruno, California, ATTN: Mr. Donald Priest</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Litton Industries, 960 Industrial Road, San Carlos, California, ATTN: Dr. Norman Moore</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge 39, Massachusetts, ATTN: Documents Library</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Sperry Gyroscope Company, Great Neck, New York, ATTN: Engineering Library</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Polytechnic Institute of Brooklyn, Microwave Research Institute, Brooklyn, New York, ATTN: Technical Library</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Harvard University, Cruft Laboratory, Cambridge, Massachusetts, ATTN: Technical Library</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Sylvania Microwave Tube Laboratory, 500 Evelyn Avenue, Mountain View, California, ATTN: Dr. D. Goodman</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Sylvania Electric Products, Inc., Physics Laboratory, Bayside, New York, ATTN: Dr. R. G. E. Hutter</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Bell Telephone Laboratories, Inc., Murray Hill Laboratory, Murray Hill, New Jersey, ATTN: Dr. J. R. Pierce</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>University of Washington, Department of Electrical Engineering, Seattle 5, Washington, ATTN: A. E. Harrison</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Massachusetts Institute of Technology, Lincoln Laboratory, Lexington 73, Massachusetts, ATTN: Mr. Robert Butman</td>
</tr>
</tbody>
</table>