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ABSTRACT

It is the purpose of this dissertation to derive the large-signal trav-
eling-wave amplifier equations, to outline a method by which these equations
may be solved on a high-speed digital computer, and to present the resulting
equations in such form that the information will lead to a fuller understanding
of the physical phenomena involved in the high-level operation of the traveling-
wave amplifier.

Equations are derived describing the large-signal operation of the trav-
eling-wave amplifier, including the effects of a-c space charge and attenua-
tion along the helical slow-wave structure. The equations constitute a sys-
tem of nonlinear partial-differential-integral equations and are valid for
all values of the parameters which are encountered in typical high-power
traveling-wave amplifiers. The parameters which appear in the equations are
the relative injection velocity b, the gain parameter C, the large-signal
space-charge parameters K and B, the loss parameter d, and the input-signal
level Ag,.

The working equations were programmed for and solved on the Michigan
Digital Automatic Computer, MIDAC, located at the University of Michigan's
Willow Run Research Center. The r-f voltage amplitude A(y), the phase lag
of the r-f wave relative to the electron stream G(y), the electron phase
#(y,@5), and the velocity deviation 2Cu(y,@,) were computed for several
values of C, K, and b at B = 1, Ay = 0.0225, and 4@ = 0. Zero-space-charge
solutions are presented for C = 0.05, 0.1, and 0.2 with b as the parameter
in order to determine the value of b which gives the maximum saturation
gain and the optimum tube length. For C = 0.1 similar solutions are ob-
tained for two values of the space-charge parameter K, 1.61 and 3.42. Then
the input-signal level A, is varied for a fixed C, K, and b.

In addition, the effect of attenuation along the helix is determined by
obtaining solutions for several values of the loss parameter d, namely O.1,
0.25, 1.0, and 2.0, with fixed injection velocity and then the effect of
attenuation in lowering the optimum injection velocity is shown through
solutions for several values of b at d = 2.0. Finally, the effect on the
saturation gain of the placement of the loss is studied: solutions are
given for loss beginning at approximately 2, 3, and 4 wavelengths respec-
tively from the input.

The results of these various solutions are presented in graphical form

and are very useful for designing and predicting the performance of large-
signal traveling-wave amplifiers.
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PREFACE

The first chapter of this dissertation contains general material on the
traveling-wave amplifier, background information on the small-signal analysis,
and a discussion of why this approach is not suitable to be extended to de-
scribe the large-signal operation of the traveling-wave amplifier. In Chap-
ter II and Appendices A and B the working equations describing the opera-
tion of the large-signal traveling-wave amplifier are derived. The boundary
conditions are also discussed in Chapter II, and Appendix C presents an out-
line of the method used to obtain the roots of the small-signal equations
needed to evaluate these boundary conditions.

In Chapter III the working equations are programmed for solution on
MIDAC and a discussion of the characteristics of MIDAC is presented. An
experimental analysis of the presence of errors in the solutions and of the
stability of the working equations relative to the propagation of errors is
also discussed in detail, and a flow diagram for the solution of these equa-
tions on MIDAC is presented. Appendix D contains the programs and operating
instructions for the solutions.

In Chapter IV the results are presented in graphical form and discussed.
In Chapters V and VI these results are analyzed further and interpretive
curves are presented for use in the design of large-signal traveling-wave
amplifiers and also in predicting the performance of these tubes. A sug-
gested program for future work is also outlined in Chapter VI.

The author wishes to express his appreciation to the members of his
committee for their assistance, and especially to Professors W. G. Dow and
Gunnar Hok, who devoted considerable time and offered valuable suggestions
during the course of the work. The Mathematics Group at the Willow Run Re-
search Center, in particular Messrs. R. T. Dames and L. Razgunas, rendered
invaluable assistance in the programming and running of the problem on MIDAC.
Appreciation is also due to Miss Priscilla Woodhead for her excellent work
in preparing the many figures.

The research on which this dissertation is based was supported by funds

from the U.S. Navy Bureau of Ships under Contract NObsr 63114 and the U.S.
Signal Corps under Contract DA 36-039 sc-5265k.
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CHAPTER I. INTRODUCTION

1.1 Statement of the Problem

The traveling-wave amplifier is an important and useful tube; its
high gain and inherently large bandwidth compare favorably with the char-
acteristics of other microwave devices. A detailed understanding of its
behavior under various conditions is needed, however, if the tube is to
be used with maximum effectiveness.

Equations describing the behavior of an idealized traveling-wave am-

plifier transmitting small signals have been derived and studied exten-

8 516,57

sively by Pierce®, Kompfner , and others®. These equations for the
small-signal case can be linearized by application of a few reasonable
assumptions and hence are amenable to solution by straightforward methods.
The large-signal case, however, has not been studied in any great detail
up to the present time, largely due to the complexity of the equations
involved and to the lack of adequate mathematical techniques for solving
them.

Since high-speed digital computers now afford a means by which com=-
plex systems of mathematical equations of the type encountered in the
large-signal case may reasonably be handled, it has seemed worthwhile,
in terms of both time and expense, to undertake an analysis of the oper-
ation of the traveling-wave amplifier at high output levels.

It is therefore the purpose of this dissertation to derive the equa-
tions describing the large-signal operation of a traveling-wave amplifier,

to outline a method by which these equations may be solved on a high-speed

digital computer, and to present the resulting calculations in such form



that the information will lead to a fuller understanding of the physical
phenomena involved in the high-level operation of the traveling-wave am-
plifier and assist in the construction of tubes that more closely realize

a given set of specifications.

1.2 History of the Problem

1.2.1 General Description of the Traveling-Wave Amplifier. The es-
sential parts of a traveling-wave amplifier, as shown in Fig. l;l, are
(1) the electron gun, which produces an electron stream*; (2) the slow-
wave structure, in this case a helix, which supports the propagation of a
slow electromagnetic wave with a longitudinal electric field; and (5) an
electron collector. Figure 1-2 is a picture of a helix-type traveling-
wave amplifier showing the helix and electron gun structure. The phase
velocity of the radio-frequency wave as it travels longitudinally along
the helix is of the order of one-tenth the velocity of light; the phase
velocity variation with frequency for a typical helix is shown in Fig. 1-3.

An r-f signal is applied to the helix, at the same point as the elec-
tron stream enters the helik, by means of a waveguide and an antenna or
by a coaxial line. This signal appears, amplified, at the output end of
the helix and is removed from the helix by similar means. The bandwidth
of the transducers used to couple the signal into and out of the helix
limits the overall bandwidth of the device, since unfortunately transducers

have not yet been built which can utilize the full electronic bandwidth of

*In this dissertation a differentiation is made between the words 'beam"
and "stream". "Beam" is used to apply to the gross movement of electrons;
i.e., when Bulerian mechanics are applicable, hence only in the small-
signal theory. The term "stream", on the other hand, is used where the
electrons must be considered as individual particles (Lagrangian mechanics)
as in the large-signal theory.
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the traveling-wave amplifier. Typically, the overall bandwidth of a trav-
eling-wave amplifier operating at 3000 mcs, with coaxial-line-to-waveguide
transducers, for example, may be as high as 30 percent.

In addition, a longitudinal magnetic focusing field of several hundred
gauss must be provided to confine the electron stream so that it will pass
completely through the helix. Iither electromagnets or permanent magnets
may be used for this purpose. Recently the technique of periodic focusing
has been applied to traveling-wave amplifiers, reducing the weight of the
focusing magnets by a factor of approximately 10.

For the analysis of the operation of the traveling-wave amplifier it
is necessary to consider only the slow-wave structure and the electron
stream.

1.2.2 Brief Description of Amplifier Operation. The operation of

the traveling-wave amplifier described in the previous section depends on
the interaction of the r-f wave propagating along the helix with the elec-
tron stream traveling along the axis of the helix at a velocity approxi-
mately, but not exactly, equal to the axial phase velocity of the r-f wave.
The longitudinal electric field in the stream due to the r-f wave on
the helix exerts forces which velocity-modulate the stream, resulting in
current-amplitude modulation. Since as many electrons are accelerated
as are retarded, no energy is transferred from the wave to the stream in
this process. This current modulation induces a longitudinal r-f current
in the helix, which increases the amplitude of the r-f wave on the helix.
The phase of the induced r-f wave is such that more electrons are retarded
than are accelerated and hence the electron stream on the average loses

energy, which accounts for the increase in the amplitude of the r-f wave.



This cycle of operation is repeated many times along the length of
the helix. The phase velocity of the complete wave resulting from this
repeated interaction between the initial wave and the électron stream will
be lower than that of the initial wave because each wave which the bunched
electron stream induces onto the helix will lag its predecessor. Hence it
is easily seen that interaction can occur even when the phase velocity of
the wave is equal to the velocity of the electron stream, although this
is not in general the condition for optimum gain.

Thus, electrons injected at approximately the same velocity as the
wave will produce a net increase in the amplitude of the wave. However,
the amplitude of the r-f wave will not increase indefinitely, since the
nonlinearities of an actual tube set an upper limit to the final amplitude.
In short, there is a saturation power output for a particular device, re-
gardless of further increase in power input.

1.2.3 Small-Signal Analyses. The small-signal theory as outlined

by Pierce®

leads to a simple analysis of the operation of the traveling-
wave amplifier. In this analysis properties of various types of slow-wave
structures are first discussed in detail. Then simplified equations de-
scribing the overall behavior of the traveliﬁg-wave amplifier are intro-
duced and solved. Rather thorough discussions of overall gain, insertion
loss of the helix, a-c space-charge effects, noise figure, and power out-
put are included.

The small-signal analysis is limited chiefly by the assumption that
the a-c velocity of the electrons is small compared to their average ve-
locity, so that the nonlinear terms in the equations may be neglected and

a wave-type solution obtained. It is also assumed that all the electrons

in the same cross section of the stream are acted on by the same electric



field, which is a reasonable approximation if the stream is small compared
to the size of the helix or if an annular electron stream is used. Further,
it is assumed that a strong magnetic focussing field is used and transverse
motion may therefore be neglected.

The small-signal analysis of Kbmpfner5’6’7, although obtained by a
considerably more complicated procedure, is essentially the same as Pierce's
and arrives at the same conclusions but employs the same assumptions and
hence suffers from the same limitations.

The field theory of traveling-wave tubes derived by Chu and Jackson®
is a more elegant and rigorous treatment of the problem than Pierce's net-
work-and-beam theory, but it leads to more complicated expressions which
are not so useful to the engineer designing a traveling-wave amplifier. It
is interesting to note, however, that the two analyses are in quite good

agreement.

1.2.4 Need for Large-Signal Analysis. In view of the many applica-

tions for a traveling-wave amplifier operating at high output levels, it
seems desirable to study the large-signal equations governing its behavior
in detail. Of particular interest are the variations of gain and phase
shift at high output levels for different values of such parameters as
space charge, electron injection velocity, loss along the helical trans-
mission line, and the gaih parameter. Also of interest are the effects

of space charge and loss along the helical transmission line on the sat-
uration gain and‘power output. The overall objective, of course, is to
learn how to design a traveling-wave amplifier to operate at high power
levels with maximum efficiency.

1.2.5 Previous Large-Signal Analyses. Partjal large-signal theories

of the traveling-wave amplifier have been presented by Brillouin'?! and by



Nordsieckl?2 and a more complete theory has recently been presented by

Poulter.1®

Brillouin's analysis treats the large-signal case as an extension of
the small-signal theory, using the hydrodynamical equation of continuity
(Eulerian mechanics) as opposed to a particle-dynamics treatment (Lagrangian
mechanics) where individual electron trajectories are followed. The fluid-
dynamics treatment of the electron stream is clearly inadequate when over-
taking of electrons, i.e., electrons with different starting times appearing
at a point together, causes crossing of electron flight lines. This problem
is discussed more fully in Section 1.3. In addition, Brillouin's analysis
neglects the effect of loss along the helical transmission line and the ef-
fects of the space-charge-induced r-f fields.

The large-signal analysis of Nordsieck also neglects the effects of
space-charge r-f fields and circuit loss. Furthermore, the equations are
valid only for small (i.e., small compared to 0.1) values of the gain param-
eter C. But in traveling-wave amplifiers operating at high output levels,
where the d-c stream currents encountered may be of the order of hundreds
of milliamperes or even amperes, the effects of the space-charge-induced
r-f fields may not with impunity be negleéted. Furthermore the gain param-
eter in these large-signal devices may be of the order of 0.5 or O.4 and
hence ought not to be neglected.

The work reported in this dissertation follows similar lines to those
of Nordsieck's analysis, but it takes into consideration the effects of the
space-charge-induced r-f fields, loss along the helical transmission line,
and large values of the gain parameter.

Another approach to the large-signal theory has been presented by

Poulter®® of Stanford University. His method is quite similar to Kompfner's
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treatment of the small-signal problem in that he considers a unit of charge
in the stream which excites both forward-traveling and backward-traveling
energy on the helixj then the solution for the field on the helix is written
as a convolution integral. The resulting system of equations has been solved
for two non-space-charge cases, b = 1.5 and b = 2.2 at C = 0.2 and QC = O,
giving answers very close to those obtained for these cases in this disser-
tation. One disadvantage‘of his method is that it is difficult to interpret
physically some of the intermediate steps and also the final working equa-
tions. In addition, the equations do not lend themselves to solution by
numerical methods as readily as those derived here.

Very recently additional large-signal calculations for the traveling-
wave amplifier have been presented by Tien, Walker, and Wolontisl4. Nord-
sieék's equations were used for this work with a space-charge term added.
The space-charge field was evaluated by considering an infinite array of
unit-space-charge discs separated by a distance z and replacing the helix
by a conducting cylinder of the same radius. This method of evaluating the
space-charge field gives essentially the same results as those obtained for
the space charge in this dissertation. However, the assumptions made in
the Tien analysis are the same as those made by Nordsieck. The maximum
value of the gain parameter C for which these results apply is approximately
0.02 and hence this theory, like Nordsieck's, does not include high-effi-
ciency conditions. Also, the large values of the space-charge parameter QC
investigated by Tien are not consistent with practical tubes, since the
maximum applicable C is approximately 0.02. No solutions are included in
the Tien work for the relative injection velocity b that gives maximum sat-

uration gain and efficiency as a function of QC.
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1.3 Extension of the Eulerian Approach

The objections to extending the Eulerian approach to the large-signal
case should perhaps be examined in more detail.

Using the basic assumptions of Pierce's small-signal analysis, the con-
tinuity equation, Newton's force law, and the circuit equations are written
in differential form for a helical transmission line composed of series in-
ductance and shunt capacitance. For the sake of simplicity, the series loss
along the line will be neglected and the eguivalent circuit shown in Fig.
1-4, in which the distributed inductance and capacitance are chosen to match
the phase velocity aﬁd field strength of the field acting on the electrons,
will be used in the following development.

From this simplified model¥*,

op ov dp ~
% "% T V% T (1-1)
V.

ov ov
s " Ve T wE T 9 (1-2)
oV Z. oI
— + 22 - o (1-3)
oz Vo Oz

and
a_IE . R - - 0 (1-1)
oz ZoVo Ot ot ?

where n = q/m, the ratio of charge to mass for the elec-

tron, coulombs/kg;

Zo = NIn/Cp, the characteristic impedance of a loss-
less helix, ohms;
Vo = l/JLhCh, the undisturbed axial phase velocity of

the r-f wave along the helix, m/sec;

¥Symbols are defined where they are first introduced in the report. In
addition, a list of symbols is given at the end of the text.
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v(z,t) = the axial velocity of the r-f wave along the
helix, m/sec,

Ch = the distributed shunt capacitance per unit
length, farads/m;

Ly = the distributed series inductance per unit
length, henries/m;

£ = the beam-to-circuit coupling coefficient;
p(z,t) = the a-c space-charge density per unit length,
coulombs/m;
Vh(z,t) = the r-f potential along the helix, volts;
I,(z,t) = the longitudinal r-f helix current, amp;

and In, V,, v, and p are dependent variables, functions of both the inde-
pendent variables z and t.

In order to put the above equations in dimensionless form, all the var-
iables are normalized with respect to v,, the undisturbed phase velocity of

the helix. Writing the equations in terms of these new normalized variables

yields
op ov — Bp
- + — = O -
s P T V% ’ (1-5)
_ _ 3V,
ov _ ov h
=~ = . —= = 1-6
£ % %= 0 (1-6)
oVhp th
— + — = O l"
A St ’ (1-7)
and
P
—_— - . = = o, 1-8
32 5 ot (1-8)
_ 2
where P = p/pO = n¢ ZO/VO:
V = V/VO,
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It will be noticed that Egs. 1-5 and 1-6 are nonlinear, whereas Egs. 1-7 and
1-8 (the circuit equations) are linear.

To obtain the small-signal equations, Egs. 1-5 and 1-6 are linearized
by writing the velocity v and space-charge density p as the sum of their
d-c and a-c components and then neglecting the squares and products of the
a-c quantities in combining Egs. 1-5 and 1-6. The resultant expression is
then combined with Egs. 1-7 and 1-8 to give a single fourth-degree differ-
ential equation in the r-f helix potential V. The solution of this equa-
tion is of the familiar exponential type.

The next step would of course be application of the boundary conditions
at the input and output ends of the tube. However, since the equations pre-
sented in this section are not those ultimately to be solved, discussion of
the boundary conditions will be omitted.

This approach yields valid results for the small-signal case, but dif-
ficulties arise when large signals are considered. Since the equations are
based on the hydrodynamical equation of continuity, Egs. 1-5, 1-6, 1-7, and
1-8 are valid only until the electron flight lines cross. This crossing of
electron flight lines is due to overtaking of electrons, i.e., electrons
that entered the tube at different times appearing at a point simultaneously.
Overtaking of electrons by other electrons results in the velocity v, ap-
pearing in the above equaﬁions, becoming & multi-valued function of the in-
dependent variable z.

This overtaking of electrons does unfortunately occur in a large-sig-

nal traveling-wave amplifier considerably before the point of saturation
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is reached. The exact point in any particular tube at which overtaking be-
gins to occur depends on such factors as the gain parameter, the space-charge
density, the amplitude of the r-f wave initially impressed on the helix, and
the relative injection velocity. Therefore these equations cannot be used
for the large-signal case.

Additional equations may be written to take this difficulty into ac-
count, but the number of equations to be solved soon becomes enormous as
the number of electron-flight-line crossings increases. The number of these
crossings will be seen to approach infinity as saturation is neared and the
electrons, becoming trapped, oscillate back and forth in the regions of min-
imum potential.

Therefore it seems desirable to reformulate the problem in terms of new
variables so as to eliminate the difficulty introduced by the crossing of
electron flight lines. The new independent variables to be used are en-
trance phase, i.e., the phase at which the electron enters the helix rela-
tive to the r-f wave at the input, and position along the tube. Thus the
Eulerian approach is replaced by a Lagrangian treatment, which greatly sim-
plifies the large-signal problem. The resulting equations are a system of
second-order nonlinear partial-differential-integral equations. A detailed

discussion of these new independent variables is presented in Chapter II.



CHAPTER II. THEORETICAL EQUATIONS FOR THE LARGE-SIGNAL ANALYSIS

2.1 Derivation of the Theoretical Equations

It is anticipated that a large-signal study of the traveling-wave am=-
plifier will yield information relating the various design parameters of any
tube to the saturation power output and maximum obtainable efficiency. For
this investigation the large-~signal traveling-wave amplifier equations have
therefore been derived, on the basis of Nordsieck's'2 work but taking into
account the influence of the a-c space-charge fields and circuit loss in
the form of series loss along the helix. Also, the equations are valid for
large values of the gain parameter C. The MKS rationalized system of units
is used throughout the derivation.

The general transmission-line equation, including the series loss, is

derived in Appendix A as¥*

OV (z,t) Vo2 OV (z,t) , puoq Vlzst)
ot2 dzZ ot
3%5(z,t) op(z,t)
= VOZO-_EB_tg— + MdzovoT, (2-1)
IV (z,t)

where - —2—— = the longitudinal radio-frequency electric-

oz field intensity, due to the circuit, at the
electron stream, volts /m;
z = distance measured along the tube, m;

E(Z,t) = the linear space-charge density of the elec~

tron stream, coulombs/m;

*The bars over the dependent variables do not represent normalization as in
Chapter I but serve only to differentiate the voltage and space-charge den-
sity as functions of z and t from the same quantities as necessarily dif-
ferent functions of y and .

16
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Vo = L - the undisturbed phase velocity of the line,
~vLC m/sec;
Zo = NL/C = the characteristic impedance of the loss-
less line, ohms;
C = the gain parameter defined by C3
= |n‘ZIO/2u02;*
I, = the d-c stream current, amp;
up = ~N2nV,, the d-c stream velocity, m/sec;
Vo = the d-c stream voltage, volts;
n = q/m, the charge-to-mass ratio for the
electron, coulombs/kg;
® = angular frequency of the wave impressed
on the helix, radians /sec;
a = £/20(2n)(log e)(C) = 0.01836 £/C, the
loss factor;® and
L = the series loss expressed in db per

undisturbed wavelength along the helix.

The actual field along a helix is composed of an infinite number of
components orthogonal to one another. The phase velocities of the space-
harmonic fields, however, are lower than that of the fundamental field, and
the electron stream will interact appreciably only with the fundamental field,
since in a typical traveling-wave amplifier the electron stream is approxi-
mately in synchronism with the phase velocity of the fundamental field.
Consequently, the space-harmonic fields on a helix serve to carry power
o

along the helix but do not contribute to the gain of the amplifier. Tien®

has calculated the impedance parameter for a tape helix model surrounded by

*The impedance used in evaluating the gain parameter in the large-signal
theory is that which the electron stream sees, not necessarily Z,. In the
linear theory C is developed on the basis that the beam grazes the helix;
however, in the large-signal theory when the ratio of helix diameter to
stream diameter is not 1 the impedance Zy must be replaced by Z = §2Zo
where & is the stream-to-circuit coupling coefficient defined on page 13.
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a dielectric medium, and found that the results predicted by the theory
agree quite well with measurements on several tubes. He reports that the
presence of the space-harmonic fields lowers the actual helix impedance.

Hence, even though the space-charge density p(z,t) in Eq. 2-1 will be
.exceedingly rich in harmonics of the impressed frequency of the r-f wave,
the longitudinal r-f voltage along the helix will be approximately all at
the fundamental frequency since the helix impedance is very small for har-
monics of the fundamental frequency. Thus the assumption that all but the
fundamental frequency component of space-charge density may be neglected in
determining the helix voltage V(z,t) in the transmission-line equation is
not an appreciable limitation to the theory.

On the basis of this assumption we may represent the r-f voltage along
the helix V(z,t) in terms of two slowly varying functions of z, an amplitude
and a phase, as shown in Eq. 2-12.

The fields due to the longitudinal flow of energy on the helix and the
field due to space charge are linearly superimposed to write the Newton
equation of motion for an electron in a traveling-wave amplifier as

a2z (Fen avs(zﬁ)>
at2 _—ln oz oz ?

(2-2)

where OVg(z,t)/dz = -Bg(z,t) = the space-charge field intensity, volts/m.

The electron trajectories which are solutions of Eq. 2-2 will have the form
z = Flzg,t) , (2-3)

where z, = the position of an electron at time t = O. Equation 2-3 may of

course be inverted and solved for zy in terms of z and t as follows¥*:

*Tt should be noted that the function G(z,t) is not unique since 2o 1s a
multi-valued function of z.
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zo = G(z,t) . (2-4)

The electrons enter tlie helix at z = O but may be considered to orig-
inate at z = z5 at t = O, and each particular electron n has its own en-
trance position Zo, 8s shown in Fig. 2-1.

The solutions of Eq. 2-2 represented by Egq. 2-3 may be related to the
space~charge density E(Z,t) by remembering that conservation of charge re-
quires the charge Ebdzo entering the tube unmodulated at the input, due to
all electrons whose initial positions lie between zy and zg + dzp, to equal
the charge pdz at some later position z. This requirement is expressed

mathematically as

oz

plz,t)dz = p(z,t) dzg = 0(z0,0)dz, - (2-5)

Zo

The space-charge density in the stream entering the tube may be related to»f

the stream current and voltage by

520,00 = =2 . (2-6)
(0]

Hence the desired relationship may be obtained using Egs. 2-4, 2-5, and

2-6:

Io
Uo

dz4

dz

p(z,t) = . (2-7)

Considerably before saturation is reached, the electrons begin to over-
take one another; i.e., electrons starting at different initial times appear
simultaneously at the same point. When this occurs, zo is no longer a sin-
gle-valued function of z and Eq. 2-7 must be modified by replacing the quan-

tity (Bzo/az)lt by the sum of its values for all branches of the multi-valued
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function zy. The calculations are therefore made in terms of zy as the in-
dependent variable, since z is a single-valued function of 25-

In order to simplify the calculations and put the equations in a form
applicable to all traveling-wave amplifiers, whatever the frequency range,
new variables are introduced. The new variables defined are usually normal-
ized with respect to some constant velocity occurring in the problem; in the
case of the traveling-wave amplifier either the stream velocity ug or the
undisturbed phase velocity of the helix vy would be suitable. The defini-
tion of new variables amounts to changing to a coordinate system riding with
the undisturbed phase velocity v, or with the stream velocity uy, the advan-
tage being that the dependent variables vary more slowly with time and dis-
tance in these coordinate systems.

The choice of which velocity to use is somewhat arbitrary, but it is
helieved that the numerical calculations will be simpler if the variables
are normalized with respect to the initial stream velocity. The alternate
set of equations 1s presented in Section 2.2.

The normalized independent variables are therefore defined as follows:*

é Cwz _ 2nC

Y Ugq I z (2'8)

and

o 4 %%Q = Wty , (2-9)

where Ag = uo/f, the stream wavelength in meters. Physically, y is propor-
tional to the position along the tube in stream wavelengths. ¢o, the en-

trance phase, relative to the r-f wave at the input, of an electron in

*The symbol A means that the left-hand side of the equation is by definition
equal to the right-hand side.
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radians, may be thought of as a "tag" for a particular electron entering the
helix region¥*. In fact, ¢o is a time standard in radians of the frequency
of the input voltage. Thus in this Lagrangian formulation of the problem,
particular electrons are followed through the interaction region rather than
considering the electron stream as a "fluid". Introducing the new variable

y into Egs. 2-1 and 2-2 gives

az\af(y t) cae( 10 ) av(yzt) + oot Bv(z,t)
t2

= voZo i—g%ﬁl +  2aCaveZo 5\’—‘3%;’5—2 (2-10)
g2 CoN IV (y,t Cw
E% SR [(f __%L_) - E(;ES(y,t)jl. (2-11)

In the large-signal equations the space-charge dehsity p(y,t)h which is a
fluid constant, is interpreted as the electron charge ge times the number
density of electrons Ng.

In accordance with the discussion following Egq. 2-1 the following de-

pendent variables are defined:

7, T _j
A Re 0 Alyle 9 (2-12)

V(Z,t) = V(y)¢)

Equation 2-12 serves to define A(y), the normalized voltage amplitude of
the r-f wave along the helix, and ¢(y,¢o), the phase of the fundamental-
frequency r-f wave in the circuit relative to the phase of the wave at the

input to the helix. A particular value of y not only defines a phase plane

*Also, as may be seen in Fig. 2-1, ¢o is in a sense a transit angle for a
particular electron traveling from the point Zop to the helix boundary at
z = 0.
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of the r-f wave but also serves as the axial coordinate of one or more elec-
trons; similarly ¢(y,¢o) can be used in a second sense as the phase of the
displacement component of an electron at y that entered the helix at the
moment ¢o relative to the r-f wave. It is easily seen that the new time
variable ¢(y,¢o) in Eq. 2-13 is based on a coordinate system which moves
with the initial stream velocity u,.

The following additional reduced dependent variables are defined:
A z
o(z) = “(ﬁ; - t) - 8(z,t) (2-13)

and

up(y,%) = %% by, 1+ 2Culy,do)] - (2-1k4)

Equation 2-13% defines G(Z), the phase lag across the amplifier, at any point
y, in radians. In particular, 6(z) is the r-f phase angle (or lag) in ra-
dians of the wave on the helix relative to a hypothetical traveling wave whose
phase velocity is the initial stream velocity up. Equation 2-14, an expres-
sion for the total velocity of an electron, defines ECuOu(y,¢O), the velocity
deviation of an electron relative to the initial d-c stream velocity. Since
u is a function of ¢o, the entrance phase of an electron, the velocity of
an electron at any point y can be calculated. u(y,$,) is a dimensionless
large-signal velocity parameter.

Solving Eq. 2-13 for z and converting to the new independent variable

y gives

Yy = C [¢(Y)¢o) + 6(y) + at] . (2-15)

Equation 2-14 written in terms of y is

&Y o [1+ 2culy,do)] - (2-16)
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Taking the time derivative of Eq. 2-15 and equating the result to Eq. 2-16
gives

[gg %% + 9§§Zl %% + ({J = [0+ 2oCuly,85)] . (2-17)

Partial differentiation with respect to y and t is represented by B/By and
B/Bt, and partial differentiation with respect to ¢o and y 1s represented
by 8/80, and /8y in the equations of this section. Obviously, 3/dy = 8/8y
and 0/dt = (1/w)(8/5@,). Equation 2-17 may be simplified and written as

88(y,80) . de(y) 2u(y,?s) ~
By dy -1+ 2Culy,®?5) *

(2-18)

Equation 2-18 is the first of the working equations, relating the dependent
variables B(y,%o), €(y), and uly,@s).

In terms of the new dependent variables, Eq. 2-10 may be rewritten with
the space-charge density p(y,t) replaced by its fundamental-freguency com-

ponent pi, in keeping with the previous discussion:

o) w2 - w0 (-2 - () o o

2 2
-2 (o42) s S8 - (s

dy
> d
= Volo 53+ 2ufd voZo S (2-19)

Upon substitution from Eg. 2-12 for oV/dy, the force equation, 2-2, becomes
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2
av d7y Zolo®w | ga(
at T g2 = Inl Ug de) cos #(y,fo)

dy

- Aly) sin @(y,%0) (% - de(y)il - Eg(y, 8. (2-20)

From Eq. 2-16,

dv dv a du & du(y )
& = &y = 2Cu, 5y 55 = 20%uge [1 + 2Culy,do)] ——gf,f& .+ (2-21)

/,

The next step is to equate Egs. 2-20 and 2-21 and simplify:

ulralod (1 4 sculy,do)] = Aly) [1 - diéy)] sin §(y,fo)

-C dgéy) cos P(y,Po) + agzio Es(y,f) . (e-22)

In terms of the newly defined variables Eg. 2-7, expressing the conser-

vation of charge, may be written as

9o
op

1

I
p(y,f) = = TG ST

o)

(2-23)

Next, p(y,#) is expanded in a Fourier series in the time variable @(y,%).

This operation introduces no additional assumptions in the analysis.

= o o ox
ply,gd) = };_EE%_EQ er sin n@ df, + }:EEE_EQ JFD cos nf af, . (2-24)
n=1 0 n=1

0]

Substituting Eq. 2-24 into Eq. 2-23 gives
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p(y,¢) = Re %Ze—jn¢ f cos E¢(Y:¢5)d¢(') +"jfsln n¢(¥)¢0)d¢0 4 (2_25)

Yo ] o 1+ 2Cu(y,@s) 1 + 2Culy,@08)

(In Eq. 2-25 the prime denotes the variable of integration.)
In terms of the new variables the first and second time derivatives of
the fundamental component of space-charge density, p, of Eq. 2-19, may be ex-

pressed as follows:

—1 = -

ot 'é?il d3t (2-26,

32p a 2 8 N

St tz (_g F (2-27.
and

P, = Pjocos @ + p, osing . (o-28

If Egs. 2-26, 2-27, and 2-28 are substituted into the right-hand side of
Eq. 2-19 with the aid of Eq. 2-25, the resulting expression may be written
as two equations simply by equating the coefficients of sin ¢ and of cos ¢
on each side of the equation. This is a valid procedure because the coef-
ficients are independent of ¢ and the sine and cosine functions are orthog-
onal. In the two equations thus obtained, the constants are written in terms

of the parameters previously defined and the additional parameter

Yo - Vo
L (2-29)

where b = a relative injection velocity parameter. Thus
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AG) | Ay (_; ) de(y)> (1+Cb)
dy2 C dy CZ
2x 2%
= XD k/ﬁ cos P(y,43) d¢0 + ZCdU/\ sin g(y,¢§);§%é (2-30)
nC A 1 + ECu(y, O A 1 + 2Cu y,88 '5
and

Aly) (20

24 dA ae(
= . & (1+00)2 | + 2 (Y) ( y) _ l)

21

2xn _]
1+Cb f sin @(y,88) ags _ o4 f cos @(y,@5) ags |

nC 1 + 2Culy,@s) 1 + 2Cu(y,@?) _j'

(2-31)

Finally, the expression for the space-charge field Eg (derived in

Appendix B),

_ F(g-g') age
ES(.Y:¢) = - nl l+Cb <%> f l+2_Cu(y,¢Z) ) (2-32)

is substituted into the force equation, Eq. 2-22, to obtain the last of the

working equations:

§E£%§ggl [1 + 2Culy,@o)] = Aly) [} - C de(yi} sin $ly,8,)

dy

2n
aa(y) c [ F(p-g"
- C Tyj_- cos ¢(y’¢o) - I%(%(%) f 1 -E- 2Cu)y:i 2 . (2-33)
A A

To summarize, the four equations 2-18, 2-30, 2-31, and 2-33 are the

final working equations which will be solved for the dependent variables

Aly), oly), uly,%o), and @#(y,00) subject to the boundary conditions discussed
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in Section 2.4. This system of second-order nonlinear partial-differen-
tial-integral equations is valid for a wide range of the parameters C, d,
b, wq/w, and Ay (the normalized amplitude of the r-f signal impressed on
the helix at the input) and is limited only by the assumptions mentioned
in their derivation:

1. The electrons will interact appreciably only with the funda-
mental field and hence all but the fundamental component of
space-charge density may be neglected in determining the helix
voltage.

2. There is no initial thermal velocity distribution in the elec-
tron stream.

3%« The electric field is constant across the electron stream.

4. The radio-frequency wave impressed on the helix bunches the
stream in such a manner that the space-charge density is
constant in amplitude (i.e., has no radial variation) and
varies sinusoidally with axial distance. (In calculating
the space-charge forces it is assumed that the growth con-
stant of the growing space-charge wave is small compared
to unity.)

5. The relationships may be described using nonrelativistic
mechanics; i.e., the squares of the ratios of the stream
velocity uy and the wave velocity v to the velocity of
light are small compared to unity, and hence the motion
of the electrons is sufficiently slow that the formulas
of electrostatics are valid.

6. The electron stream is in a strong axial d-c magnetic
field (rectilinear flow), so that the electrons are
constrained to follow linear paths. Consequently there
is considered to be no transverse motion and the stream
boundary is smooth.

T. A sufficient quantity of positive ions is present to
neutralize the average space charge.

Assumptions 3 and 4 are considered to be the chief limitations to the theory
as presented here.

For the small-signal theory one parameter, namely QC, is sufficient
to specify the space charge; but in the large-signal theory it is necessary,

for any given ratio of helix diameter to stream diameter, to specify two
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parameters, a space range of effectiveness and an amplitude. The range
parameter used is Bb', shown in Fig. B-6. The space-charge weighting func-
tion F(¢—¢') drops off more rapidly for smaller values of Bb' than for the
larger values, and thus Bb' determines the range over which the space-charge
forces are effective. The coefficient (wp/dC)z of the space~-charge field
term in the force equation, Eq. 2-33, would seem to be a better choice for
the amplitude parameter of the large-signal case than the QC appropriate to
the linear theory. The relationship between (wpﬁwC)g and QC is discussed

in Appendix B.

In the small-signal theory the current is essentially all at the fun-
damental frequency; hence QC need be evaluated only for the fundamental com-
ponent of current. Correspondingly in the large-signal theory the reduction
factor R, of Fig. B-3 must necessarily, then, be evaluated only for the fun-
damental component of space charge (i.e., n = l), even though the harmonic
content of the stream current is high.

The recommended space-charge parameters for the large-signal analysis

are therefore Bb' and (a@/wC)z, which might be more briefly represented as

2

< (3

and

B = Bb! .

For the purpose of calculation a mathematical model will be used in
which the helix-stream interaction region of the traveling-wave amplifier
is considered to be infinite in length and the helix is thus terminated in
its characteristic impedance Zg,. Hence the effect of reflections due to a
mismatch at the output end is not considered, and the collector and helix

d-c potentials are taken as equal. The small-signal conditions, corresponding
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to the three waves, are applied at the input:

a voltage is applied to the

helix at y = O, and the egquations are integrated stepwise until a maximum

occurs in the amplifude of the normalized r-f voltage A(y). The amplitude

of the r-f signal initially impressed on the helix, Ag, 1is usually taken as

0.0225, which is approximately 30 db below CIVoe

However, solutions are

also obtained for other values of Ay to provide data for a plot of power

output vs. power input.

In applying the results}of these computations, therefore, to any ex-

isting finite-length traveling-wave amplifier, it must be assumed that there

are no reflections at the input or output (which may be due to a mismatch

in the coupling networks or to a discontinuity in the acceleration if the

helix and the collector are operated at different d-c potentials), and that

the interaction region is sufficiently long for small-signal conditions to

prevail at the input.

2.2 Relation to Nordsieck's Equations

The general working equations derived in the preceding section may be

reduced to Nordsieck's'® "large-signal" equations,

sd(r,do) , 290y
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