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Summary
Increasingly, epidemiologic and clinical data support the hypothesis that perturbations in the

gastrointestinal (GI) microbiota because of antibiotic use and dietary differences in ‘industrialized’

countries have disrupted the normal microbiota-mediated mechanisms of immunological tolerance in

the mucosa, leading to an increase in the incidence of allergic airway disease. The data supporting

this ‘microflora hypothesis’ includes correlations between allergic airway disease and (1) antibiotic

use early in life, (2) altered fecal microbiota and (3) dietary changes over the past two decades. Our

laboratory has recently demonstrated that mice can develop allergic airway responses to allergens if

their endogenous microbiota is altered at the time of first allergen exposure. These experimental and

clinical observations are consistent with other studies demonstrating that the endogenous microbiota

plays a significant role in shaping the development of the immune system. Data are beginning to

accumulate that a ‘balanced’ microbiota plays a positive role in maintaining mucosal immunologic

tolerance long after post-natal development. Other studies have demonstrated that even small

volumes delivered to the nasopharynx largely end up in the GI tract, suggesting that airway tolerance

and oral tolerance may operate simultaneously. The mechanism of microbiota modulation of host

immunity is not known; however, host and microbial oxylipins are one potential set of

immunomodulatory molecules that may control mucosal tolerance. The cumulative data are

beginning to support the notion that probiotic and prebiotic strategies be considered for patients

coming off of antibiotic therapy.

Introduction

In the United States, Canada, United Kingdom, Ireland, New
Zealand and Australia, the incidence of allergic airway
disease among 13–14-year old children is currently the highest
in the world and ranges from 22% to 32% [1]. The high
incidence in these countries is consistent with a world-wide
trend in which the incidence of allergic airway disease in
industrialized countries has increased over the past 40 years
while remaining stable in developing countries [2]. This recent
increase in the asthma rate, coupled with the dichotomy in the
incidence of asthma between industrialized and developing
countries, suggests that environmental changes are a major
factor in the development of asthma [3–5]. Numerous studies
have laid the foundation for the hypothesis that a lack of
early microbial stimulation (infection or exposure) results in
aberrant immune responses to innocuous antigens later in life,
i.e. the ‘hygiene hypothesis’ [6–8]. In addition, other environ-
mental factors such as differences in diet between industria-
lized vs. developing countries have been noted. This review
focuses on an alternative interpretation of the data support-
ing the ‘hygiene hypothesis.’ The ‘microflora hypothesis’
proposes that perturbations in the gastrointestinal (GI)

microbiota because of antibiotic use and dietary differences
in ‘industrialized’ countries have disrupted the normal
microbiota-mediated mechanisms of immunological tolerance
in the mucosa, which has led to an increase in the incidence of
allergic airway disease.
There is a significant amount of epidemiologic and clinical

data supporting this altered microflora hypothesis. These
include correlations between allergic airway disease and (1)
antibiotic use early in life, (2) altered fecal microbiota and (3)
dietary changes over the past two decades. Our laboratory
has recently demonstrated that mice can develop allergic
airway responses to allergens if their endogenous microbiota
is altered at the time of first allergen exposure [9, 10]. In
contrast, mice with normal microbiota do not develop allergic
responses upon airway exposure to the allergens. These
experimental and clinical observations are consistent with
other studies demonstrating that the endogenous microbiota
plays a significant role in shaping the development of the
immune system [11–18]. There is currently a significant level
of interest in the role of the endogenous microbiota as
initiators of inflammatory diseases such as inflammatory
bowel disease and arthritis [19, 20] and in how the immune
system adapts to the presence of the microbiota in the GI
tract during development [21–23]. However, we believe that it
is now becoming clear that a ‘balanced’ microbiota plays a
positive role in maintaining mucosal immunologic tolerance
long after post-natal development, similar to ideas proposed
by Rook and Brunet [24]. Thus, we predict that elements that
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disrupt the dynamics of the microbiota, such as antibiotics
and diet, will disrupt mucosal tolerance.

Regulation of mucosal tolerance

Repeated antigen exposure in the airways does not result in
enhanced reactivity; rather, it leads to decreasing responsive-
ness and the development of immunologic tolerance to the
antigen [25–28]. Regulatory T cells (Treg) are the mediators
of immunological tolerance and these cells possess anti-
inflammatory capabilities (Fig. 1). Treg comprise a diverse
group of cells that, even in small numbers, can suppress
antigen-specific responses (largely via IL-10 and/or trans-
forming growth factor-b ). The type and maturation state of
the antigen-presenting cell appears to play the most
significant role in the development of Treg. Dendritic cells
(DC) are the antigen-presenting cell primarily responsible for
the antigen-specific activation of naı̈ve T cells. While mature
DC (activated by inflammatory signals) induce differentiation
of inflammatory T cells (T helper [Th]1 and Th2), immature
DC (absence of inflammatory signals) appear to induce the
differentiation of Treg (Fig. 1) [29–31]. Resident DC in the
airways are normally exposed to airborne antigens under
non-inflammatory conditions that are believed to induce Treg
responses to the antigens, thereby limiting T cell-mediated
inflammatory responses. Interestingly, compared with im-
munogenic proteins, aeroallergens are micro-particulates that
contain a number of moieties that are immunogenic and can
stimulate inflammatory cytokine production by lung leuco-
cytes when isolated in pure form [32]. However, aeroallergens
induce minimal, if any, response in the lungs upon repeated
exposure demonstrating that they are subject to tolerigenic
mechanisms.

Oral delivery of antigens also leads to the development of
antigen-specific immunologic tolerance, a phenomena known
as oral tolerance [33–35]. Oral tolerance to an allergen can
block responses outside of the GI tract including the allergic
response to that allergen in the lungs [36–38]. Similar to
airway tolerance, oral tolerance is also mediated by Treg cells
[27, 28, 34, 35]. The cellular mechanisms underlying oral
tolerance are still an arena of intense investigation. Studies
have demonstrated that (1) the normal microbiota is required
for the generation of oral tolerance as it cannot be generated
in germfree mice and (2) conventionalization of germ-free
mice with normal microbiota can restore the ability to
generate oral tolerance in these mice, indicating that tolerance
continues to be regulated by the microbiota long after the
post-natal period [11, 39].
Induction of oral tolerance has been suggested as a

therapeutic strategy for treating asthma [27, 28, 34], but does
oral tolerance normally play a role in down-regulating
immune responses to inhaled allergens? The mucociliary
architecture of the nasopharyngeal cavity and upper airways
naturally sweeps all inhaled micro-particulates that stick to
the mucus lining into the GI tract. Shortly after intranasal
inoculation, fluids, particles and microbes introduced into the
nasal cavity are largely found in the GI tract [40–42]. In mice,
intranasal inoculation of a volume as small as 2.5mL still
largely ends up in the GI tract [41]. Thus, inhaled micro-
particulates (which comprise the vast majority of aeroaller-
gens) are also swallowed. Therefore, we propose that oral
tolerance and airway tolerance are tightly linked and the GI
tract acts as a ‘sensor’ for the development of tolerance to
inhaled antigens. We propose that this ‘sensor’ system can be
modified by genetics (affecting innate immune cells) but to an
even greater extent by microbiota perturbations exerted by
antibiotics and diet (Fig. 2).

Establishment and dynamics of the gastrointestinal
microbiota

The GI tract of infants is sterile at birth but colonization
begins upon delivery. GI colonization involves a succession of
microbial populations waxing and waning as the diet changes
and the host develops [43, 44]. Major factors affecting the
nature of the early microbial populations are vaginal delivery
vs. caesarian delivery, antibiotic use in the mother and bottle-
feeding vs. breastfeeding. By adulthood, the microbial
community generally stabilizes and is composed of both
permanent members and transient colonizers, which are
briefly introduced from an exogenous source. Both prokar-
yotic and eukaryotic microbes are present although bacterial
species predominate. The majority of the bacterial species are
strict anaerobes (97%), while only 3% are aerobic (facultative
anaerobes). While an estimated 30–40 species predominate
within the adult GI tract, the microbiota is composed of 400–
1000 species, including approximately 60% unculturable
species. The composition of the microbiota differs not only
along the length of the GI tract, but also cross-sectionally,
with different populations inhabiting the GI mucosa
and lumen. The most common anaerobic genera in terms of
concentration within the GI tract are Bacteroides, Bifidobac-
terium, Eubacterium, Fusobacterium, Clostridium and
Lactobacillus. Among the facultative anaerobes are the
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Fig. 1. T cell subset interactions and the role of dendritic cell (DC)
maturation in the development of T cell subsets. Immature dendritic cells
(DCi) can mature into regulatory (DCr), type 1 (DC1) and type 2 (DC2)
phenotypes depending on the interaction between pathogen recognition
receptor (PRR) and Toll-like receptor (TLR) binding to different microbes
and microbial products. In addition, DC differentiation is also influenced by
cytokines and oxylipins (prostaglandins and leukotrienes) in the local
environment. These different DCs promote differentiation of naı̈ve T cells
into regulatory (Treg), type 1 (Th1) and type 2 (Th2) T cells, respectively.
Treg can dampen both Th1 and Th2 cells by production of transforming
growth factor-b and IL-10. Th1 and Th2 can counter-regulate each other via
cytokine production.
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Gram-negative enteric bacteria (Escherichia coli and Salmo-
nella spp.), the Gram-positive cocci (Enterococcus, Staphylo-
coccus and Streptococcus) and fungal species (predominantly
Candida albicans). Control of the microbiota populations
occurs at the levels of microbe–microbe interactions (compe-
titive exclusion), metabolic competition, host factors and host
defenses such as IgA and defensin production [21–23]. As
described below, antibiotics and diet can dramatically affect
the stability of the microbiota populations.

The association between altered microbiota and allergic
disease

Numerous studies indicate that the GI microbiota is different
in atopic vs. non-atopic individuals and in industrialized vs.
developing countries [45–51]. Sweden has a high incidence of
allergic disease while Estonia has a low incidence. In a series
of studies, it was shown that allergic children from either
country have similar microbiota composition but the
composition differs from non-atopic children. Atopy was
associated with increased levels of aerobic microbes and
decreased levels of anaerobic microbes, particularly lactoba-
cilli, in fecal samples [45]. In a prospective study, it was noted
that infants that developed allergies harbored decreased levels
of Bifidobacteria and Enterococcus species but had increased
levels of Clostridium species [46]. This is consistent with
reports of decreased levels of bifidobacteria and Gram-

positive organisms among the aerobic populations in infants
with atopic eczema [49]. Individuals living an anthroposophic
lifestyle abstain from antibiotic use and ingest fermented
foods containing probiotic organisms [52]. Studies on this
population of individuals also noted a decreased incidence of
atopy compared with the surrounding community and fecal
samples contained higher levels of lactic acid bacteria. As
discussed below, antibiotic use and dietary differences, such
as an increased proportion of refined foods in the diet and
differences in fat intake, likely play a role in GI microbiota
differences between industrialized and developing countries.

Role of antibiotics in microbiota dynamics and allergic
responses

The major effects of antibiotic treatment on the microbiota
are the direct effect of killing a large proportion of the
microbiota and the indirect effect of decreasing colonization
resistance within the GI tract. Colonization resistance is a
multi-faceted mechanism whereby obligate anaerobic micro-
biota inhibit the overgrowth of potentially harmful exogen-
ous or endogenous microbes. The end result of a reduction in
colonization resistance can either be clinically asymptomatic
(leading only to an imbalance in the microbiota), localized
symptomatic (e.g. diarrhea) or systemic symptomatic (dis-
seminated infection) [53]. In humans, yeast (C. albicans)
infections of mucosal sites are one of the most common side
effects of antibiotic therapy [53–57]. The ability of the
bacterial microbiota to control or prevent C. albicans
colonization is because of both competitive exclusion of
favored niches and by production of growth-altering meta-
bolites such as short chain fatty acids [58–62]. Thus, control
of C. albicans by the normal microbiota (especially the
probiotic species) is very important. Interestingly, changes in
the microbiota populations can persist months after cessation
antibiotic therapy and can result in long-term decreases in
beneficial anaerobic organisms (Bifidobacterium, Lactobacil-
lus, Bacteroides) and increases in potentially harmful
microbes (Gram-negative aerobic enteric bacteria, the anae-
robe Clostridium dificile and the yeast C. albicans) [55, 63–70].
Two lines of evidence support the concept that antibiotic

use can be a major underlying factor in the development of
allergic responses. The first are epidemiologic studies. A
number of studies have identified a correlation between early
antibiotic use in children and the subsequent development of
allergy/asthma [71–74]. Other reports have identified a link
between multiple ear infections early in childhood (which are
treated with multiple courses of antibiotics) and the
subsequent development of asthma [75]. Studies have also
compared children of families with an anthroposophic
lifestyle to children in neighbouring areas. Rates of allergy
among anthroposophic children are also significantly lower
and there is a correlation between the number of character-
istic features of an anthroposophic lifestyle and decreasing
risk of developing allergies [52]. Several features of the
anthroposophic lifestyle are likely involved in promoting
decreased rates of atopy (including a diet high in probiotics-
fermented foods and restrictive use of vaccines, anti-pyretics
and antibiotics) [76]. However, a study investigating anthro-
posophic children revealed that the use of antibiotic early in
life was significantly associated with development of asthma
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Fig. 2. Model for the regulation of pulmonary allergic responses by the
microbiota and gastrointestinal (GI) immune responses. Inhaled aeroaller-
gens are picked up by antigen-presenting cells in the lungs such as resident
dendritic cells. The allergen can stimulate dendritic cell (DC) maturation
(see Fig. 1) that can promote the development of allergen-specific T cells in
the secondary lymphoid organs. These allergen-specific T cells are then
recruited into the lungs where, upon encounter with allergen laden antigen-
presenting cells, they drive the initial phases of the pathophysiology of the
allergic response. Regulatory T cell (Treg) networks are necessary to
prevent the development of this over-exuberant allergic T cell response in
the airways. Inhaled aeroallergens are also swallowed because the
anatomy of the sinuses and upper airways is designed to trap environ-
mental microparticulates in the mucus layer and then ‘‘sweep’’ them into the
throat where they are swallowed. Ingested allergens are then processed by
antigen-presenting cells (DC) in the GI tract. In the anti-inflammatory
environment of a healthy GI tract, these DC become regulatory DC (DCr)
and promote the development of a Treg response to the allergen. The
microbiota plays a key role in signaling for this anti-inflammatory
environment and disruption of the normal balance, including increased
yeast growth, prevent the development of the Treg response to the
allergen. One potential set of signal molecules produced by the host and
microbes in the GI tract are oxylipins. Antibiotics and diet will alter the
microbiota balance while host genetics could modulate the response by
altering the innate recognition response.
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[74]. This indicates that antibiotic use within a cohort of
children with similar lifestyles predisposes towards atopy. The
second line of evidence is derived from national trends of
antibiotic use vs. incidence of allergic disease in industrialized
(high atopy, high antibiotic use) vs. developing countries (low
atopy, low antibiotic use) [3–5]. While it is recognized that
other interpretations exist for the correlative data described
above, they are consistent with the hypothesis that antibiotic
use may predispose an individual to developing allergic
airway disease. Within families leading similar lifestyles and
eating similar diets, there can exist atopic and non-atopic
family members. It is therefore important to remember that
genetics play an important role in determining whether atopic
disease develops. However, what may be occurring is that
environmental factors such as antibiotic use and diet (and
subsequent effects on the GI microbiota) might work to
uncover these genetic susceptibilities.

Role of the diet in microbiota dynamics and allergic
responses

A significant amount of research effort was invested during
the early 20th century in characterizing the effect of diet on
the microbiota. This interest was in large part inspired by Eli
Metchnikoff, who wrote extensively on the benefits of
probiotic microbes in health. Some early experiments on the
rodent microbiota demonstrated that it changed rapidly upon
altering the diet [77, 78]. Perhaps even more relevant to the
current health issues were later studies demonstrating that
rodents fed an enriched bread diet exhibited a significantly
delayed recovery of the microbiota ratios following antibiotic
treatment compared to rodents fed a standard diet [78].
Prebiotics are food components that promote the growth of
beneficial bacteria. Examples are prebiotic carbohydrates
such as inulin and oligofructose, which stimulate growth of
Bifidobacteria in the GI tract. In contrast, the simple sugar
fructose stimulates growth of coliform and aerobic organisms
in the GI tract [79]. These are a few of the experiments
demonstrating that the composition of the host’s diet plays a
significant role in modulating species composition of the
microbiota, as different species grow better on different
substrates, which in turn can alter microbe–microbe interac-
tions.
The role of diet in increasing or decreasing the incidence of

allergic airway disease has been noted in a number of studies
[80–84]. While antibiotic use in the Mediterranean countries
of Spain, France, Italy and Greece is not necessarily different
than that in the UK, Ireland or Australia, the asthma rates
noted in the 1998 International Study of Asthma and
Allergies in Childhood (ISAAC) report indicated that the
incidence of asthma in these ‘Mediterranean Diet’ countries is
significantly lower (Fig. 3) [1]. Significant attention has been
paid to the role of dietary metabolites in direct immune
system interactions during allergic responses [80, 81], but the
diet also has a significant affect on the composition of the
microbiota.
The role of fatty acids in allergic airway disease is not

understood. There is a rough association between national
polyunsaturated vegetable oil consumption and correspond-
ing national incidence of atopy and asthma [82]. Another
study of 10 European countries investigated the association

between dietary trans-fatty acids and the prevalence of
childhood asthma and allergies. There was a positive
association between dietary trans fatty acids (expressed as
percent of energy intake) and the prevalence of asthma,
allergic rhinoconjunctivitis and atopic eczema [84]. Another
example is a study of dietary fat intake vs. asthma in 478 men,
68 years of age, who were randomly selected from all the men
born in Malmo, Sweden in 1914. The study concluded that
men with asthma had a significantly higher intake of fat than
men without asthma [85]. Generally speaking, these studies
and others, discuss the possible role of dietary fats as
substrates and modulators of leukotriene and prostaglandin
production that would, in turn, augment allergic airway
responses.
While dietary fatty acids may directly modify host

responses, dietary fatty acid intake also plays a significant
role in shaping the population dynamics of the microbiota.
For example, a number of strictly anaerobic bacteria have
strict requirements for long-chain fatty acids [86]. Thus,
changes in dietary fats can alter one or more species of GI
microbes, which in turn, can alter the numbers of other
species of microbes by altering competitive exclusion
dynamics. However, the argument continues to be circular
in that the GI microbiota also plays a significant role in the
metabolism of lipids and sterols, including biohydrogenation
of sterols and fatty acids [87–89]. In the end, there is a tight
relationship between dietary fat intake and modulation of GI
microbiota dynamics. This raises the question of whether an
alteration of GI microbiota populations by dietary fats is an
underlying component of the dietary fat-asthma association.
An association has also been noted between higher dietary

antioxidant intake and lower incidence of allergic airway

Fig. 3. Incidence of asthma in 13–14-year olds in selected countries
around the world. The graph is based upon data from the 1998 International
Study of Asthma and Allergies in Childhood (ISAAC) [1]. This graph
highlights the lower incidence among Western European countries that
follow a Mediterranean Diet.
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disease [80]. One class of antioxidants contains compounds
such as vitamins C and E. However, another class of
compounds includes polyphenols, which are found in high
concentration in the skin of raw fruits and vegetables. A study
in Italy demonstrated a correlation between high vegetable
consumption and lower incidence of asthma [83]. Other
studies have demonstrated an association between low fruit
and vitamin C consumption and impaired lung function [80].
When antioxidant supplementation was examined as a
preventative therapy pre-natally, differential results were
observed. In atopic women, vitamin E supplementation was
negatively associated with atopic disease in infants, while
vitamin C was positively associated with atopy [90]. However,
a separate study found that only vitamin C consumed as part
of the diet (as opposed to a supplement) ended up in breast
milk. In this study, results demonstrated that increased levels
of vitamin C in breast milk was associated with a reduced risk
of atopy in the infant. Therefore, an antioxidant-rich diet may
be provide greater health benefits than antioxidant supple-
mentation.
What is the mechanism underlying a protective effect of

dietary antioxidants? One hypothesis is that membrane lipid
peroxidation is elevated in the lungs of asthmatics, leading to
cellular damage, the development of pathologic changes and
hypersensitivity. Dietary antioxidants in the adult diet might
protect against cellular oxidant damage [80]. However, many
of the plant antioxidants (including polyphenols) belong to a
class of compounds collectively called phytoalexins, which are
plant host defense molecules produced in response to
microbial attack [91]. Many plant polyphenols are potent
inhibitors of the growth of a number of bacterial and fungal
species and can also alter microbial metabolism. Thus, similar
to dietary fatty acids, this raises the possibility that dietary
antioxidants also alter the GI microbiota populations as an
underlying component of the dietary antioxidant-asthma
association.
One final diet–asthma association we wish to touch on is

the association between bottle-feeding during infancy and
increased risk of developing asthma. It was noted almost a
century ago and confirmed in numerous other studies that
there are significant differences in the GI microbiota between
breastfed and bottle-fed infants [43, 92]. The chief difference
between these two feeding regimens is that the microbiota of
breastfed infants is composed mainly of lactic acid bacteria,
while the microbiota of bottle-fed infants is more diverse,
composed of a mixture of anaerobic bacteria as well as
aerobic species [43]. Thus, the role of breastfeeding in
protecting against atopic disease may also be related to the
beneficial effects on the microbiota.

Experimental evidence that altered microbiota can
promote the development of allergic airway disease

Our laboratory has recently developed a mouse model of
antibiotic-induced GI microbiota disruption that is accom-
panied by stable increases in GI enteric bacteria and C.
albicans levels [9, 10]. Using this model, we have addressed
whether microbiota disruption can promote the development
of an allergic airway response to mold spore (Aspergillus
fumigatus) or ovalbumin (OVA) challenge. These studies
utilized immunocompetent mice and did not involve previous

systemic antigen priming as is typically used for breaking
airway tolerance to these allergens. There was also no
evidence of microbial growth in the lungs or inflammation
in the GI tract in this model. The parameters measured
included pulmonary eosinophilia, total serum immunoglobu-
lin (Ig)E, lung leucocyte IL-5, IL-13 and IFN-g, and goblet
cell metaplasia. All of these parameters were significantly
elevated in the microbiota disrupted mice (Fig. 4). Mice with
unaltered microbiota did not develop an allergic response
following intranasal challenge with either mold spores or
OVA. The response did not develop in IL-13-deficient mice or
mice that had been depleted of CD4 T cells. In addition,
vigorous allergic airway responses could be generated in both
C57BL/6 and Balb/c mice following microbiota disruption
and antigen challenge but not in antigen-challenged ‘normal
microbiota’ C57BL/6 and Balb/c mice. The presence of C.
albicans in the GI tract was required to break airway
tolerance. Thus, these studies demonstrate experimentally
that antibiotic treatment, including fungal microbiota
growth, can break airway tolerance to an aeroallergen such
as mold spores or an experimental non-fungal allergen such
as OVA.
Although these studies suggest a connection between the

gut microbiota and pulmonary tolerance, the possibility that
pulmonary tolerance may be directly affected by subtle
changes in the upper respiratory tract microbiota as a result
of antibiotic treatment cannot be ruled out. The bronchial
mucosa and the GI mucosa use common mechanisms that
allow these areas to discriminate among different antigens

Fig. 4. Effect of gastrointestinal (GI) microbiota disruption on goblet cell
metaplasia. One group of mice was treated with antibiotic in the drinking
water for 5 days and then colonized in the GI tract with low levels of the
yeast Candida albicans. The second group of mice was left untreated. For
both groups of mice, the mice were exposed multiple times intranasally with
either mold spores (Aspergillus fumigatus) or ovalbumin , beginning 2 days
after cessation of the antibiotics in the first group. Approximately two weeks
after the initial exposure, the lungs were harvested, fixed, sectioned and
stained with Periodic-Acid Schiff stain to identify mucus-producing goblet
cells (pink). Methyl green was used as a counterstain. These photographs
illustrate the significant effect of microbiota disruption on promoting an
allergic airway response to different types of allergens. Other parameters
such as serum immunoglibulin E, pulmonary eosinophils, and IL-5/IL-13
production are also elevated by microbiota disruption during initial allergen
challenge [9, 10].
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and microbes in order to determine whether a tolerogenic or
inflammatory response should follow [93, 94]. A recent study
demonstrated that prior pulmonary viral influenza infection
actually enhanced later allergen specific asthma in mice [95].
Pulmonary DCs isolated from lung after viral clearance were
able to confer this allergic disease to recipient mice, indicating
that similar mechanisms for maintenance and disruption of
mucosal tolerance exist in the respiratory and GI tracts. The
relative importance of the respiratory mucosa and the GI
mucosa in controlling tolerance to inhaled/swallowed anti-
gens remains to be determined.

What are the possible mechanisms underlying the break in
tolerance during microbiota disruption?

This question clearly lies at the heart of the ‘microflora
hypothesis’ of allergic airway disease. The most likely
mechanism involves a break in the ability to generate Treg
cells. Recall that antigens acquired by DCs in the absence of
inflammation or in an anti-inflammatory environment such as
a microbiota-balanced healthy GI tract preferentially stimu-
late the generation of Treg cells that can be recruited to the
airways. Thus, it is our hypothesis at this point that
microbiota disruption involves a disruption of this anti-
inflammatory environment of the GI tract, where inhaled/
swallowed micro-particulate antigens (aeroallergens) are
acquired by DCs. The allergen-primed DCs then undergo
maturation because of the stimulatory nature of the
aeroallergen and a Treg response is not generated. In the
lungs, the aeroallergen stimulates a mix of an inflammatory
and a Th2 response, which is normally down-regulated by the
Treg response, but is now left unchecked and develops into an
allergic response in the airways.
Two possible mechanisms that may play a role in disrupting

the anti-inflammatory environment of the GI tract are
decreased short-chain fatty acid production by probiotic
bacteria and increased oxylipin production by yeast. Short-
chain fatty acids, such as butyric acid, are by-products of
anaerobic fermentation by the normal probiotic members of
the microbiota and these fatty acids possess anti-inflamma-
tory activity [96–100]. Short-chain fatty acids can also inhibit
C. albicans hyphal transformation, an important step in
persistence of C. albicans on mucosal surfaces [58, 59].
Oxylipins are oxidized fatty acid metabolites that are
produced by C. albicans and other fungi [101–103]. These
oxylipins include leukotriene-like and prostaglandin-like
molecules that can be synthesized de novo or via conversion
of exogenous arachidonic acid by the yeast. Host-derived
prostaglandins and leukotrienes are potent immunomodula-
tory molecules that can modulate innate and adaptive
immune responses. Microbe-derived prostaglandin-like mo-
lecules are active on mammalian cells and can alter dendritic
cell migration and biology [101]. The hypothesis of our
current studies builds upon these observations and is
investigating whether production of oxylipins is required for
the immunomodulatory activity of C. albicans. Other
potential mechanisms exist. However, it is intriguing that
the fatty acid metabolite leukotriene C4 (LTC4) is required for
dendritic cell movement from tissues to the lymph nodes,
LTC4 is secreted from cells via the action of a multi-drug
resistance pump, and knockout mice deficient in one of the

multi-drug resistance pumps spontaneously develop colitis, a
disease believed to be caused by a deficient Treg response
[104–106]. Thus, fatty acid metabolites from the host and the
microbiota, which would be influenced by dietary fatty acid
content, may play a critical role in maintaining the anti-
inflammatory environment of the GI tract necessary for
mucosal tolerance.

Probiotic therapy as treatment for atopic diseases

Probiotic supplementation has been practiced for over a
century and has resulted in a litany of anecdotal evidence that
suggests a connection to improved health. Probiotics are
defined as live microbial supplements that exert a beneficial
effect on health and are non-pathogenic. There is also some
evidence that oral delivery of heat-killed saprophytic soil
mycobacteria can down-regulate symptoms of allergic in-
flammation in animal models [107]. Current investigations of
probiotic therapy provide statistical evidence that live
microbial supplementation can produce positive results in
both therapeutic and preventative ways. In regards to atopic
diseases, the majority of human trials have focused on
neonatal or infant subjects. In a randomized placebo-
controlled study, Lactobacillus casei GG was effective in
prevention of atopic eczema in children at-risk (one or more
first-degree relatives with allergic disease) [108, 109]. Atopic
eczema is often the earliest manifestation of subsequent
allergic diseases in infants and children; therefore, a follow-up
of this study was performed 2 years later. Interestingly,
children who received prior probiotic supplementation
exhibited protection from other atopic diseases that extended
beyond infancy [108, 109]. A separate study demonstrated
that the protection provided by early probiotic therapy also
extends into adulthood [110]. In addition to post-natal
therapy, pre-natal probiotic supplementation in pregnant
women with a history of atopic disease reduced rates of atopy
in their infants [111]. Other studies examined the ability of
probiotics to treat atopic disease in infants. In these studies,
probiotic supplementation decreased severity of atopic
eczema, atopic dermatitis and food allergy compared with
controls [112–117]. While these studies point to a role for
modulation of the microbiota in children and infants as a
preventative or therapeutic strategy against allergic disease,
very little effort has been made to examine the role of
probiotics in management allergy in adults. Among studies
examining adults, probiotic supplementation resulted in a
decrease in numbers of CD341 stem cell levels (an indicator
for systemic allergic inflammation) [118]. In asthma patients,
supplementation with yogurt containing probiotic Lactoba-
cillus resulted in decreased pro-inflammatory cytokine levels
and eosinophilia; however, clinical parameters of asthma
were unchanged [119]. These results underscore the need for
further clinical trials of probiotic and prebiotic therapy in
adults with allergic disease.

Future perspectives

Allergic airway disease is a continuum of pathophysiologic
changes in the host. It ranges from mild inflammation to
severe inflammation and will ultimately result in structural
changes in the airways and in the biology of the airway
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smooth muscles and epithelium. It is clear from numerous
studies that respiratory infection, airborne irritants, the
nature of the allergen, exposure rates and genetics all
influence the development and manifestation of asthma.
However, it is our hypothesis that disruption of the normal
microbiota breaks airway tolerance to aeroallergens (non-
pathogenic micro-particulates that possess antigenic/inflam-
matory properties). Once tolerance is disrupted, other factors
play a role in either promoting or preventing the development
of airway hypersensitivity (genetics, infection). One of the
difficulties in family association studies is that non-genetic
effects are often difficult to discern from genetic effects. Diet,
co-housing, physical interaction, non-life threatening com-
municable diseases and health practices are significantly more
common between members of a family than between
members of different families. These factors also influence
an individual’s microbiota. Thus, generating direct proof for
the ‘microflora hypothesis’ of allergic disease will rely largely
upon experimental animal models and well-controlled human
intervention studies such as are now being proposed and
carried out with probiotic therapies in children. The
accumulating evidence also suggests that the medical estab-
lishment should more seriously consider the role of diet in
chronic disease, think seriously about prescribing long-term
antibiotics for non-life threatening conditions and also
consider probiotic and prebiotic strategies for patients
coming off of antibiotic therapy.
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