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CHAPTER I

INTRODUCTION

1.1 Introduction to the Problem

The first large scale digital computer designed to incorporate
the binary number system was the EDVAC developed at the Moore School of
Electrical Engineering, University of Pennsylvania. The addition time
of the EDVAC was one millisecond. Since 1949 when the design was de-
scribed, the trend in digital computer technology has been toward higher
speed, in particular drastically reduced addition time. One of the fast-
est digital computers under development is the IBM STRETCH which is to
effect addition in 0.6 microseconds. This great arithmetic speed is ob-
tained partly by using very fast componentsand partly by the novelties
in the logical structure of the system. As yet new and unconventional
number systems have not been employed to increase the speed of arithmetic
operations in a large scale digital computer.

When two numbers represented in conventional number systems are
added in a digital computer, carry propagation normally consumes the major
portion of the computation time. The residue number systemé,lﬁ2 based on
the algebra of residue classes, allows addition to be performed without
carry computation. Furthermore, multiplication is as fast as addition.

Cheney5 has designed a digital correlator based on the residue number

Ly, 1. Garner, "The Residue Number System." IRE Trans. Electronic
Computers, Vol. EC-8, June 1959, pp.l40-7.

2 A, Svoboda, "Rational Number Systems of Residual Classes." Stroje Na
Zpracovani Informaci, Sbornik V; 1957.

5 P. W. Cheney, "A Digital Correlator Based on the Residue Number
Syztemo" Technical Document IMSD-702670 Lockheed Aircraft Corporation,
1960,
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system and concluded that a correlator of similar accuracy based on the
binary system would have been 10 times slower i1f the organization were
parallel and 100 times slower if serial.

The residue number system poses rather formidable problems which
have prevented its adoption in the design of general purpose digital com-
puters. These problems include (1) sign determination, (2) the prevention
of additive and multiplicative overflow, (3) magnitude comparison, and
(4) division. In this thesis the algebraic properties of the residue num-
ber system and related number systems are investigated and employed to
provide insight into the above problems.

The remainder of this chapter will be devoted to the presenta-
tion of the residue number system as the direct sum of rings of integers.
The above mentioned problems will be discussed.

Chapter II will contain the algebraic theory of the R-space, a
pseudo-vector space of the residue representations. The R-space will pro-
vide the formulation of the residue number system and the associated num-
ber systems.

Carry functions which provide a basis for the addition and mul-
tiplication of the residue and related number systems are discussed in
Chapter III.

The mixed base number system related to the residue number sys-
tem is discussed in Chapter IV. It is shown that the mixed base number
system possesses several crucial properties. Thése properties allow the
solution of the problems of the residue number system.

Chapter V shows that there is no number system related to the
residue number system which shares the special properties of the mixed

base system.



This dissertation will investigate the problem of the residue
number system and give solutions to the problems of (l) sign detection,
(2) magnitude comparison, (3) overflow, and (4) division. These results
will be obtained by considering the residue number system to be a pseudo-

vector space.

1.2 The Residue Number System

As a preliminary step in the introduction of the residue‘number
system the ring Iy of integers modulo M will be discussedo4 The
elements of the ring are the integers 0, 1, 2, ..., M~1. Ring addition
and ring multiplication of two elements of Iy are performed by reducing
the conventional sum and product modulo M. That is, the sum or product
is divided by. M and the remainder is retained as the result. Thus, for
example, the ring I consists of the integers 0, 1, 2, 3, L, 5. Divid-
ing the ordinary sum of 4 and 5 by 6, one obtains 3 for the remainder.
Therefore, in Ig, 4 + 5 = 3, Similarly 2+ 4 =0, 2 - 2 =4, and
L - 2 =2, The proof that Iy is actually a ring follows from the fact
that in the division of an integer by M, the remainder is unique. The

complete proof may be found in the literature.D The order of Iy is M.

b N. H. McCoy, "Rings and Ideals." The Mathematical Association of

America, Buffalo, New York, p. 1.

A Ring is a set of elements a, b, c, i»., a unique defined addition
a + b, and a uniquely defined product - ab. satisfying the following five
properties:
P1 a + (b+c) = (a+b) + c;
Po a+b=b+a;
P5 the equation a + x =b has a solution x in R;
P, a(be) = (ab)e;
P5 a(b+c) = ab + ac, (b+c)a = ba + ca.
D Tbid., p. 64,
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Consider the ring I of integers and the ring Iy of integers
modulo M. An arbitrary element m of I determines a unique element m
of Iy; namely, the remainder upon division by M. If one denotes the
correspondence of m to m by m - a, it is clear that if m] = Ei,

mg-*-ﬁé, then m; + mpawm+ mp = Ei +mp  and mmp ea—emmp = Eiﬁé .

Therefore, the correspondence between I and Iy is a homomorphism.

Fixed point digital computers do not operate upon the ring I
of integers but rather on the ring TIy. If one thinks of the radix point
as being on the right, then the largest number which can be represented
is M-l. That the homomorphism is a many-to-one mapping is painfully
apparent when overflow occurs and the most significant digit(s) are lost.
Fortunately, one can detect such an overflow by sensing the carry from
th% most significant digit position. The ring Iy possesses an additive
inverse of every element. If m is an element of Iy, M - m is the
additive inverse. Thus we map the integers less than M/E onto the ele-
ments of Iy less than M/2 and the negatives greater than -M/2 onto
the remaining elements of TIpy. Thus the sign is readily determined and
thereby magnitude comparisons can be performed. Since one can perform
overflow detection, sign determination, and magnitude comparisons, divi-
sion is possible.

Let S5 and Sy, be two rings and consider the ordered pairs
of symbols (sl, sp) where s1 € S and sp € Sp. If one defines addi-
tion and multiplication to be

(s1, sp) + (t1, to) = (s + t1, so + tp)
and

(s15 sp) (1, tp) = (s1t1, sptp)
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this set of ordered pairs becomes the ring S termed the direct sum
of 5q and S, and denoted 51 + SE‘ In the above definition the
operations s’i + 'l:.i and Siti are the ring operations of Si.

An especially important theorem is the following:

Theorem 1, If a ring S has positive characteristic
n=mny + ny, where n; and n, are greater than 1 and relatively
prime, then S is isomorphic ( ¥ ) to 81 ¥ S, where S; is a ring
of characteristic n; (i =1, 2).6

This theorem states, for instance, that 16 is isomorphic

+0 the direct sum 12 + I3 with the following mepping

0 — (0, 0) 3 —(1, 0)
1 ~(1, 1) b (0, 1)
2 ~ (0, 2) 5 ~ (1, 2) ,

Theorem 1 may be extended as follows:
Theorem 2, If the ring IM has positive characteristic
M o= MMy ees mI1 where the m; are integers greater than 1 and pair-

wise relatively prime, then

IM = Im-l + Inlz + oses F Tj,nn 4
Proof: If n =2, the result follows from Theorem 1, Assume the re-

sult for n =X and consider

Moo= ommy eee By

6 B. L. van der Waerden, op. cit. p. 116, Theorem 1 is Theorem 28 in

MeCoy.
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M may be written
M=mm ... n'g

1 =
where m K meK+l .

Thus we have

~ . . .
IM = Iml + Im2 + ...+ Im,K s
but by Theoren 1,
/\_J. .
Ith = ImK + ImK+l .
Therefore,'
~ . . [
IM = Iml + Im2 + .00t ImK+l .

Thereby, the conclusion is proved.
The direct sum of Theorem 2 defines the residue number system.
Elements of IM are mapped Unto n-tuples of the direct sum (elements of

the residue number system) according to the following scheme

xé&>(xmodm, xmodm, ..., x mod m ). 7 (1-1)
If X > (X7, X0, «ety Xp),
then
x+y<> [(x3 +y7) mod my, ..., (2 + yp) mod my]
and

x +y <= [(x] y1) mod my, ..., (xq yn) mod my]
It is clear from both the example following Theorem 1 and Ex-
pression (1-1) that the components of the residue representations have

no positional significance. Therefore, there is no direct means of

7 X mod my is defined to be the residue of X;

; modulo mj



comparing two elements to determine which is the image of the larger

integer. Thus one cannot compare any element with the image of M/2

(or M+ if M is odd) to learn sign. A result is that Euclidean
2

division is not possible in the residue number system.

Consider the following examples of additions in the ring

I2lO with m, = 2, m, = 3, my = 5, and m, = T.
(a) 209 —=(1,2,4,6) (b) 209 ~—=(1,2,k4,6)
1-—(1,1,1,1) 105 «—+(1,0,0,0)
210 ~—(0,0,0,0) 10k ~——(0,2,4,6)
(¢) 105-—(1,0,0,0) (@) 2%e—(1,2,3,1)
120 =— (0,0,0,1) 162 «—(1,2,2,6)
015~— (1,0,0',1) 185 ~— (0,1,0,0)

In example (a), the sum produces an overflow and each component ring in-
dicates an overflow. The sum in (b) overflows but only one component
overflows. In (c), overflow occurs but the component subrings do not
indicate overflow. No overflow accompanies the addition in (a); however,
overflow i1s present in each component. These examples indicate that over-
flow in the component subrings is unrelated to overflow of Iy. Similar

statements may be made concerning multiplicative overflow.



CHAPTER II

THE R-SPACE

2.1 Basic Properties of the R-Space

Let any two residue representations be

x = (X7, Xpy veny %)

y (yl’ Jos ooy yn)

then x + ¥ g [xl +y1 (ml), veoy Xn t ¥n (mn)] where the mj are palr-
wise relatively prime. The component x4 1is said to be associated with
the base modulus my. The residue number system representations form

an additive Abelian group which is denoted by RE. For S, a ring with
identity, we select the integers and define multiplication by a scalar

to be

A

ax =

[axl(ml)’ cooy axn(mn)]

With these definitions it is seen that

a.) ax € R%,

i

b.) a(x +y) = ax + ay

{al(x; + y) @)1 (), ..o,

U

for a(x + y)

al(x, +y,)(m)] (my)}

{(axy) (m)) + (ayy)(my)] (my), ...,
[(axy) (my) + (ayy) (my)] (mpy)}

= ax + ay,

c.) (a+b)x = ax + bx

]



since

(a +Db)x = [(a + b)xl (ml), ceey (B + b)xn (mn)]
= {[ axy(my) + bxy(my)] (my), +ony
Cax (n) + ox ()] ()}

d.) (ab)x = a(bx)

1

n

for (ab)x = [ abxy(m)y ..., abx (m )]

[

a[bxl(ml), vees bxn(mn)]

it

a(bx), and
e.) All elements of R® are uniquely expressible as linear
forms 8161 + ... + 8.6, by means of n fixed basis
elements with 0 < ay < my where €3 has one for its
j=th component and zero for the other cqmponents.
The five properties which must be satisfiled f@r R® to be a n-dimensional
vector space are a, b, c, d above, and:
e'.) All elements of R® are miquely expressible as
linear forms ajquj + ... + apu, by means of n
fixed "basis elements" 1u;y ..., u, and a;€ 8‘8
This property is not satisfied, and thus R® is not a true vector
space. The pseudo~vector space R* will be called the R-space and
all vector space terms which follow will have an interpretation in the
R~space which 1s analogous to the vector space definitions.
Consider the set of Yectors "< O, ..., Oy > with each oy
having n components. Form a square array of the components by placing

the components of @; in the i-th row, If this array can be made triangu-

lar (specifically a lower traingular array) by reordering rows and columns,

8 B. L. van der Waerden, "Modern Algebra." Frederick Ungar Publishing
Company, New York, Vol. 1, p. 42,
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the set < Qp, .acy O > 1is termed semi-triangular and the reordered
set termed triangular.

Theorem 3. If the set {al, caey oh} is triangular and the
elements on the principal diagonal are relatively prime to the associated
base modulil, then any linéar form 8107 + a2 + ... + apnQn where the
aj are integers can be uniquely expressed as

n

izi c; O where O<cy <my .
Proof: k¢, # kpa, mod m,
where kij is the j~th component of ai°9

Thus ¢, 3 ap mod my, since m, is relatively prime to k,, and

n
0< cy < m, is uniquely determined.
Assume the conclusion true for cj for j=2m,m+1, .co, n

and also that these c;

3 have been determined and consider the congruence

Kn-1, m-1 Cm-1 ¥ ¥m, m-1 Sm ¥ oc¢ ¥ Xp, m-l Cn =
km_l) m-1 a.m_l + km’ m_l am + .50 F k.n, m-1 an mod Inln...lo

By adding to both sides of the above congruence the additive inverse of
(km,m-l eyt eee TRy g cy) mod my_y, this congruence takes on the

form Ky g gy Cpoy FAmOd myy. Since (kyypoys M) =81y

Cp-1 1s uniguely determined mod my_; and

0 < epay < mm-l'lo

9a b modm (a is congruent to be modulo m) if and only if

m|a-b (m divides a-b or a =b + km).
10 The greatest common divisor (d) of a and b is written (a, b) = 4.
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Theorem % is of key importance for it allows us to abandon the
ring S and to concentrate our attentions on linear forms of triangular
sets of vectors; nanely, iii cy @ where < O, «o.y O > 1s tri-
angular and O < c¢i <m;. Except where indicated the following discussion
will be limited to sets of triangular vectors and linear combinations
with restricted scalars.

Definition: The vectors Qp, ..., Q) of a triangular array are linearly

independent if and only if

J < mg

C10q + ceo T Oy 0O where O S c

implies ¢} =cp = ... =cp = O,

Otherwise the vectors Oy, ..., O are termed linearly dependent.

Theorem 4. The triangular set of vectors < Op, Opy cooy Qb >
is linearly independent if and only if each element on the principal
diagonal 1s relatively prime to the associated base modulus.

Proof: Consider the equation

ci0 + .ua + 0 =0, (2-1)

Equation (2-1) is equivalent to the following simultaneous linear con-

gruences
konen ¥ 0 mod my,
n
kiseq + ] Z kji Cj £0mod my for i =n-l, oo, L.
J=1i+l
For kp.c, ¥ O mod m, to yield the unique solution c¢, =0, it is suffi-

cient that (knn:’mn) = 1. Assume Qkﬂg, mﬂ) =1 and ¢y =0 for
i=2041, 4 +2, ..., n. The #-th congruence becomes kgg cg = O mod mg
and cg = 0 is the unique solution. This proves the sufficiency of the

hypothesis.
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Assume r to be the least index for which (kiy, my) # 1.

Let ¢y = 0 for i >r. The above congruences become

Kpp Cp = 0 mod m, (2-2)
r
kig ey ¥ st kji cy E Omod m;y for i =r-1, r-2, ..., l.

Congruence (2-2) may be solved with Cyp % 0. ©Since (kii, mi) =1 for

i =r=-1, p-2, ..., 1, the remaining congruences assume the form

. k i

i1 Ci = Ai mod mi

The condition (kii, mj) =1 for i <r guarantees the existence of a
solution for each congruence. This completes the proof.
Definition: Aset of vectors {07, 0o, ..., Oh} is said to span RM if
and only if fhere exists a set of coefficients ¢y in the ranges
0<eci<m éatisfying the equation

n
G ero e
for.all. reRD ,

Theorem 5. For a triangular set  of vectors < Oy, ..., Oy >
to span RP it is necessary and sufficlent that éach element on the
principal diagonal be relatively prime to the associated base modulus.
Proof: The existence of solutions ¢y to the following congruences

will be shown
Knn Cn = ap mod my (2”5)

n
and kijey + Z;lkji cjy ®a; mod mj for all aj in the range
J=L
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0 <aj <mj. The necessary and sufficient condition for the existence of
a solution to (2-3) is (kyp, my)|ay. Since ay (an integer) will range
0 <a, <my, it is necessary and sufficient for (knn, mn) = 1., Assume
that solutions cy exist for 1 > 4. These solutions are substituted

into the #-th congruence yielding an expression of the form

kyg cy +D 2 ay mod my

or

1]

k,@ﬂ C,E a£+Emod mz

Again (aﬂ + E) mod my will include all integers in the range O through
mg - 1. Thus to guarantee solution it 1s necessary and sufficient that
(kﬂﬁ’ mﬂ) = 1. The proof is complete.
Corollary: The triangular set of vectors < Gy, ..., Oy > 1s a spanning
set of RU if and only if it is an independent set.
Definition: A basis of an R-space is a linearly independent set of vec-
tors which generate the R-space.
Theorem 5 may be rephrased in more conventional terms as follows:
Theorem 6. For a triangular set of vectors < My cooy Oy >
to be a basis of RM it is necessary and sufficient that each element on
the principal diagonal of the array be relatively prime to the associlated
modulus.

Theorem 7. If 0Oy, ..., @ forms a basis for R, then every

vector B € R® has a unique expression

B=x10) +%X Op + ooe +x,0Q, 0<% <my.

Proof: It will be shown that the congruences which must be satisfied for

the above expression to hold will provide X3 which are unique modulo ms .

Let B = (by, bo, .eu, by).
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The first congruence is X, kn,n bn mod m, - Since kpp and
m, are relatively prime, x, 1s uniquely specified modulo mp. Assume
Xptls Xpgps <oes X have been uniquely determined. Then to be considered

n

is the congruence

Kpom *m * Kptl,m ¥l *ooce T Enm *n = by mod my,.

Add to each side the additive inverse modulo L of

(km+l,m Xgel oo TRy g x,)

to obtain

km}m Xy = B mod m, -

Since (kyp, my) = 1, X, is uniquely determined modulo my.

Theorem T states that every residue number has unique coordinates
relative to a given basis. Thus every basis serves to define a number sys-
tem related to the residue number system. The chapters which follow will
be devoted to the arithmetic properties of this class of number systems.
Algorithms which permit addition, complementation, and multiplication will
be developed. The relation of these number systems to the problems of the
residue number system will be investigated. It has been proven by Garner
and Arnold fhat only triangular arrays of vectors will span RE.

2.2 Linear Transformations and Matrix
Multiplication in the R-Space

Definition: A linear transformation G: Ri—= S of an R-space
R into an R-space S is a transformation which satisfies

(e +1)G

i

EG+nG

(c £) G =c(t@G)
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Theorem 8. If X, ...y ¥ 1s any basis of R" and Y1y vees 7
are any vectors in SM, then there is one and only one linear transforma-
tion G: R™ - S™ with

alG = 71

]

oG =74

This transformation is defined by
(k909 + oo + x000)G = X979 + Xp¥p + ov F XYy .

Proof: lLet A ={0p, ..., Oy} be a basis for R"

and B = {Bl, ceey Bm} be a basis for SO ,
then NG =71

G =72

oG = 7pn, where 73 =aj1fp t ... taypPy for i =1, ..., n.
If

E = (Xl, ceey xl’l)A € RY )

then

g

EG

X10q + ... + %0, from which results

]

X171 + X072 + ...+ Xp¥n .
By substituting for 7; one obtains
e¢ = x1 (a31P1 + ... + aipPy)
+ %5 (8B + «v0 + appBy)

+ %y (ap1Bp + -+ + appPn), and by rearranging terms,
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EG = (Xlall + X859 R Xnanl)Bl
+ (xla12 tXplps t oo t X8 5)Bs
+ (Xlalm + Xpapp + et Xnanm)gm .

By Theorem 3 the image EG can be uniquely expressed

m
El d;B; Where 0 < d; <my

and, therefore, &G € S™ and the transformation G is a transformation

RE - g,
Let n=(y1, -++s ¥nla
then n = ylal + oo T VR0, .
Thus NG =y171 + «+« + ¥n¥n >
e+ = (x +y)oy + (xy + yploy
(6 + )G=(xp +77)7q + -ov + (xy + 37,
=XVt eee F XY T V71 F oo Y70
= £G + nG, and
ct = CXlQi + ... + cxnah
(cE)G = cxq7q + +.. + cxp7p

c(eq)

]

Thus the transformation is linear. It is to be noted that it is not
necessary that the set {71, . 7n} be a triangular set.
Since every vector in RZ can be expressed uniquely as

X907 + .00 +x 0 for O < x; <my, the transformation is single valued
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and, therefore, no other transformation from R" into s" yields 04G.
The proof is complete.

let A= {al;..., o} be a basis for R" and B = {B1, ++v» B}
be a basis for &M, We then have the equations

NG =a13fy + o0 F Ay

OQG B a51f] + ... + appBn

CtnG = anlﬁl + ...+ a.ntm

The form of these equations suggests writing the rectangular matrix

ail alg alm

a1 ..+ app

anl “os amn

—
S—

If R", S®, and T% are three n dimensional R-spaces, G 1is
a transformation of R® into SU, and H is a linear transformation of
s" into Tn,then the product of the transformations is defined

a(GH) = (eG)H

Theorem 9. If the product of two transformaﬁions is defined,
then it 1s a linear transformation.
Proof: Let G and H be linear transformations whose product exists,
let c¢ be a scalar, and let Oy, v be vectors in the domain of G.
Then we have
(o + ap) (GH) = [(o + ap)G]H
= [(0qG) + (0p6) H
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il

(0yG)H + (0pG)H

oy (GH) + o (GH)

li

and

(con) (GH) = [(ea))GIH

Il

[c (CX]_G> JH

C [ (QflG) ]H

clog(cH)] .

Multiplication of linear transformations has been defined and
will now be used as a guide to defining multiplication of matrices. To
this end let RE, 8%, and T® be three R -—spaces of dimension n with

respective bases

A=-‘°{051, ceey Oﬁn}, B={ﬁl, ey Bn}, and C T-{'}’l, oy ')'n}

Relative to these bases G has the matrix (L and H has the matrixyzg.
Consider the matrix P = Ilpijl] of the product transformation
J = GH relative to the bases for RE and SB. A development of the

rows of P will be given in terms of 2 j and bij'

0qG = a11fy + ... +agpfy

G = ap1fy + ... + appPy

O[nG = anlBl + .t annﬁn
and

PpH = D97y + oee #0907

BoH = bo171 + ... + bop¥y

-+

Bl = bm?71 « + bpp¥n -
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Thus (0 G)H = a); (ByH) + a15(BoH) + ... + ay (B H)
= 217 (b1977 + bypYp + een FB1Yy)
+ a1p(boyyy + bop¥p + 4en + oo, 7p)
+ L] L] L]
aln(bnl7l +bpp?o t vee F Dpn?n)
Therefore
n n n
(0y0H) = <k§l 21xbx1 kél B1KbkRs - vrs Ly 81xbkn) -
Similarly
n n n
(0pCE) = (kél 221Px1 s k§l B2Prps v kél 82xPicn) -
Thus
n n n
(0,GH) = (kzi 8Pkl / kzi ankPR2s s kzi anxbkn) -

The above equations are preliminary results in the determination of the
rows of P. Each of the linear forms indicated above must be expressed
as linear forms with restricted coefficients. The linear form with re-
stricted coefficients corresponding to (Q&GH) constitutes the i-th row
of P.

The justification for restricting the discussion to the multi-
plication of matrices which correspond to linear transformations from n
dimensional R spaces into n dimensional R spaces is the projected
application of such multiplication. The principal application will be
in the change of basis operation (conversion from one number system into
another). In this application the linear transformation is an automorphism

from RZ onto RE.
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In the interest of completeness, the result for the most general
case will be given. Let RV, S¥, and TZ Dbe three R-spaces with re-

spective bases
A =foy, s a}, B Aoy, o}, ama C={ry, ooy )
The linear transformations G and H are defined by

aiG:’ Z aivBV (i =l, 2, ...,‘V),

and
Z
BiH = M;Zl bj_“')'u (i =1, 2, b W)
Therefore,
W A\ W 7
GH) = ( L ag H= L2 aj,(pyHE) = 2 aiy 2 by,
(ogcH) = ( V2 1vBv) Jey ey BvE) oy TV oy Pwlu
Z W w W w
= uél Vgl aivbyyly = (k§1 a1 kPk1 ., kgl 81 kPK2, + -« 5 kél aikbkz) ,

The above linear form when expressed with restricted coefficients consti-
tutes the i-th row of the product matrix.

If A= |lagyll, B |[ogsl|, and C = ||eij]| are nxn
matrices relative to the natural basis, the product (AB)C is developed
in the following manner:

AB = E = ||e;j|| relative to the natural basis and the i-th
row of E 1is obtained from the linear form

n n n
(k§1 a1 kb1 » kél 8iKbk2, « - kgl.aikbkn)
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Since this linear form is to be reduced relative to the natural basis,

the i=-th row of E 1is

n n n

[( 2 ajxb - ( X ajrbro) (m veey, (2 asiubrn) (mpy) ]
kel ik kl)( l): ol ik k2> 2): e ik kn) n
The product (AB)C = F = ]]fij]] is similarly developed and the i-th row
of F 1is
(% ( (% (my,)
[ e:rC m cee €:1.Crp ) ]
kop ik k1) (m1) » N2y Cik%kn Tp

n
= » {kzll [(rgl airbbk) (mk)] ckl} (ml)’ ey

n n

{kzi [(TZi airbrk)(mk>] ckn} (mn) . (g'h)

Consideration of the product BC gives rise to the following linear
form with restricted coefficients.

[( Z by kckl)<ml)’ caey (l{zlb kckn)< )1 .

Also
A(BC) =D = ||djs|| vhere the i-th row of D 1is
n n n
[(rzi 8ir kzi brkckl)<ml>’ ( Z’ 8ir kZi brkckn)(mn)]' (2-5)

As shown by Equation (2-4) and (2-5), multiplication of matrices
associated with the residue system is not associative, for the ranges of

the components in (2-4) and (2-5) differ.



CHAPTER IIT

CARRY FUNCTIONS IN RESIDUE NUMBER SYSTEM
AND RELATED NUMBER SYSTEMS

3.1 The Carry Algorithm

In the second chapter many of the results depended upon the
existence of a linear form with restricted coefficients which was equi-
valent to a given linear expression. This chapter will discuss an
algorithm (the Carry Algorithm) for finding the linear form with re-
stricted coefficlents when any linear combination of the basis vectors
{al, ceey Ob} is given. The algorithm involves the notion of carries
from some components of the representations into other components of
the representation.

If the linear form to be reduced is 810 + a0y + ... +a ),
one proceeds b& expressing an0, as b1 + bplp + ... + b, where
0 <Dbj <my and making the substitution to obtain (al + bl)qi + ... + bnan.
The process 1s then repeated focusing attention on (bn-l + an-l)an-l and

continﬁed until one has the desired result.

Dividing a; by m:, one obtains a

j J 3 =msq +r, 0<r< ms.

Any multiple of mjaj will yield a vector in the subspace (xl, XDy vaoy

Xj-l’ Oy +e., O).  Since the set of vectors {O&} is a basis, the set
{o&, ceoy aj} is a basis of the mentioned subspace by Theorem 4. Thus
the term ms will not affect the multiplier of aj in the reduced ex-

e

pression; that coefficient must be r. The product m;

5 can be expressed
as a linear combination of O through Qs5.1 and Qm 55 is merely q
times each term of that combination. The linear combination for (q mj)aj

1s added to the original linear combination and a ;05 is replaced by

_oo.
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0. Thus one applies the above procedure to first a, , then to the new

i

coefficient of a,_j, and so on until the desired result if obtained.

The Carry Algorithm may be stated as follows:

1. Express m;Qy as a linear combination of @y, ..., aj-l
denoted -bleil + bJQCXE S PR bjj_lozj_l for j=2,3,...,0.
Beginning with j =n and aﬁ =a,

2. Divide a3 by my and obtain

al = gm, +r, with 0<r, <n,.
J Jd J J - J J

3. Replace a'c with r o and
SIS TR I
ai with (a£+qibji) for i=1, 2, ..., j=-L
Lk, Repeat steps 2 and 3 substituting Jj-1 for j. Stop after
executing steps 2 and 3 with j = 1.

Theorem 10. The linear form produced by the application of
the Carry Algorithm expresses the same residue number as the original
linear combination,

Proof: The proof will be the demonstration that the coefficients of
the resulting linear form satisfy the congruence indicated in the proof
of Theorem 3.

Consider c, = ap mod my with 0 < ey <my.

By the uniqueness of division r, is the residue of a, modulo my,
and ry = cp.

Assume that r; = ¢

j 3 for j = m, m+l, ..., n. The congruence

which then must be satisfied is

kp-1, m-1 Gu-1 + ¥m, m-1 Gn t -« + Kn, m-1 G (3-1)

= Ky, mel ®pel t M, mel @ toeee t Ky opo] 8oy mOd mpy 3.
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The quantity a'j which enters the division in step 2 of the

Carry Algorithm is

©
il

3585 T A4Png F Ano1Paozy toeee T QP
thus

a

18y
B
il

n

1 =
#pe1 T a1 * qﬁbn, n-1

=ap.p t ApPp no2 * Anl1 P, ne2

&
B3
]
o
I

m-l = %l t P, el Foeee T Qpby) o1 -
In expressing

Pjdy =Dy +byo0o + .us +Dys 10y,
one solved the congruences

kj—lj-l bjj-l mjkjj_l mod mj_l

+

K3-25-2 Py5-2 * Ky-15-2 Pag-1 T Mg Rgg-e MO% My

Kpol,m-1 Pim-1 * ¥m-2,m-1 Pym-2 * «¢- T k5.1 ,m-1 Pyn-1
. = m; kj ,m-1 mod mp_7
kllbjl + kEleE + ... + kj-l,l bjj-l = mJ kjl mod. m .

Using the induction assumption, relation (3-1) can be written

Kno1,m-1m-1 * ¥p,m-1tm * ce0 T Kp opo1Tn

= kpol,m-12m-1 * Kp,m-18m t co¢ K po18p W04 mp_y

which can be manipulated to yield

kpo1l,m-1%m-1 * ¥m,m-1m * -c¢ * ¥po1,m-1Tn-1

-

= km-l,m—lam-l + km,m-lam + ... F kn,m-l (an - rn) mod My _7 -

(3-2)
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Since a, =a'y, a, - r, = qm, (3-2) becomes

+ ...+ kn-l,m-lrn-l

km-l,m-lcm—l + Rm,m-lrm
= kpo1,m-1 (apgoy + qnbn,m-l) + kp,m-1 (am + apbpm)

T tkn)m-1 (ap.y + qnbn,n-l) mod mp_3 (3-3)

upon the substitution

An (km-l,m-lbn,m-l + km,m—ibnm toee. kn~l,m-lbn,n—l)

Once again we transpose (add the inverse) kp-1,m-1rn-1 2nd

recognize that

ap.1 * 9Ppn-1 - Tn-1 = @'pel - Tnol = Qp-10p-1

Making the following substitution:

dpn-1 (km-l,m-lbn-l,m—l + km,m-lbn-l,m toee # kn-l,m'-lbn-l,n-Q

In-1"n-1¥n-1,m-1 M4 Mp_7

we obtain
kp-1l,m-1m-1 * Km,m-1"m * +o« + kn-2,m-1Tn-2
= kpo1m-1 (8m-1 + QoPn,m-1 + dn-1 Pn-1,m-1)
+ km,m-l (am + qnbn,m + q‘n-l‘bn-l,m) t o

+ kpooom-1 (app + UnPn,n-2 * qn-lbn-l,n-E) mod mp_ .

Again we identify the last quantity in parenthesis as a',_p, transpose
and substitute. By repeating these manipulations, one finally obtains

kpol,m-1m-1 = ¥p-1,m-1 (g1 + UnPn,m-1 + -+« F QP m-1) mod mp_q

or
Crp-1 = a'p-1 mod my 1

which yields the desired result cp.] = rp-1.
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By showing that rp = cy, we have shown that the linear form
produced by the Carry Algorithm is identical to the linear form of the
conclusion of Theorem %. Therefore the proof is completed.

Without the Carry Algorithm, one can perform operations such
as addition, multiplication, and matrix multiplication by resorting to
the defined operations of addition and scalar multiplication of residue
numbers. The only alternative is to solve a set of simultaneous linear
congruences every time one wishes to express a linear form with restricted
coefficients.

With the Carry Algorithm, it is necessary to solve only n sets
of simultaneous linear congruences, and further those sets of congruences
may be solved immediately upon the selection of the base moduli and the
basis vectors. Thereafter, any linear form may be reduced to one with
restricted coefficients by the application of steps 2, 3, and 4 of the
Carry Algorithm. It is thus possible to select a set of basis vectors,
perform step 1 of the reduction algorithm (i.e., determine the carry func-
tions), and thereafter perform addition of two vectors by addition of the
components followed by the application of the Carry Algorithm. Scalar
multiplication is effected by multiplying each component of the vector by
the scalar and then applying the Carry Algorithm. The Carry Algorithm
will prove significant in the multiplication of representations for it

will provide a means of combining partial products.

5.2 The Borrow Algorithm and Complementation

The question arises: Given two representation X and Y of
positive integers, how does one obtain the remainder X - ¥Y? This ques-

tion will now be considered in some detail.
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Let X be represented by (xy, Xp, <.« x ) and Y Dy

(yl, Yoy eees yn)a. Initially one forms (Xl - Vis Xp = Yps +eey Xy - yn)e
This last expression denotes (x] - y1)ag + (x0 - y2)Qo + ... + (X - yn)om.
Consider the j-th component of an expression to be negative. Since

mJaJ = leOfl + ngae S bj’j_laj_l,
one may add to the above expression zero in the form

dj [mJOtJ - (bletl + bng(Q +bj’j_laj_l)] =0,
where d: is the smallest multiple of ms which is larger than the magni-

J
tude of the j-th component. This addition yields

(x - y1 - dgbp1s Xp = ¥o - dpbp2y ++v» Xp1 - ¥n-2 - dpPn n-1s

Xy = ¥ + dpmp)

for Jj =n,
(x1 - y1 - dpbp1 - dp-1bn-1,1, X2 - ¥2 - dpbp2 - dp-1 bn-1,2,
«» ¥nd-¥n-1 - dnbn,yn-1 * dn-10n-15 Xpn - Yn dptiy)
for Jj = n-l, and finally
(%7 - y1 - dgbp1 - dpoibpoy,1 - -+« - dpbpy + dymy,
Xp - y2 = dpbp2 - dp-1bp-1,2 - ... - dzbzp + domp,

cees Xp_] - ¥n-l - Gpbp,n-1 *+ dnofino1, Xp - Yo + dpmp) for § = 1.

This final expression will be a linear form with restricted coefficients
which is the representation of X - Y if X > Y. If X< Y the above pro-
cedure yields a representation of -(Y - X). Thus complementation quite
naturally enters the picture.

By dividing the range of integers which can be represented by
residue numbers into those integers less than M/2 and those integers
larger than M/2, one can designate the first group of vectors to be repre-

sentations of positive integers and the second group, codings for the
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complements of the elements of the first group. If M is even, M/2
is self complement.

To find’'the complement of a given representation Z, one gen-
erates the remainder (0 - Z) as indicated above.

The procedure for performing subtraction and finding comple-

ments indicated above suggests the statement of a Borrow Algorithm as

follows:
1. Express mjaj as a linear combination of Qq, ..., aj-l
denoted bjloi + bJEQQ + ... + bj,j-laj—l for J =2, 3, ...,
Beginning with j =n and a'j = 8y
2. Perform steps 3 and 4 if a'y < 0, othervise skip to step 5.
3. Determine dj such that dj is the smallest multiple of

ms which is larger than ’a’j]
L., Add to the linear form the expression
(-djbjl, - dbsp, weey = Agbysg, + dgms, O, el 0).
5. Repeat steps 2, 3, and 4 substituting Jj-1 for J. Stop
after executing steps 2, 3, and 4 for j = 1.
Example: With the basis < (1,0,0,0), (1,2,0,0), (1,1,2,0), (1,1,1,1) >
where the moduli are my =2, mp = 3, mz = > and m)y = 7, the carry func-
tions are 30p = 0, 50 %= Qp, and 7oy = 0z. An example of subtraction
using the Borrow Algorithm directly will be given as well as subtraction

by using the complement of the substrahend.
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Subtraction using the borrow algorithm:
v 3T
(1,2,2,1) <— 1%

-(0,2,4 6) <« -104

(1, 0,-2,-5)
7)

+(0,0,-1, 7

( l) 01‘3) 2,)

+ ( O’—l) 5’

(1,-1, 2, 2

(-1, 3, 0, ©

4+

0)
)
)
(0,2, 2,2)
Complement of (0,2,4,6):

(0,-2,-4,-6)

+(0,0,-2,7)

( 01-2)_51 l)
+(0,-1, 5, 0)

Subtraction utilizing the complement:
(1,2,2,1) == 19

+ (1,0, 0, 1) =—= - 104

(0,2,2,2) — &
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3.3 Change of Basis

One quite important use of the carry algorithm and matrix multi-
plication is the change of basis operation. Quite often it is desirable
to convert from one number system to another, i.e., express a vector in
coordinates relative to a different set of basis vectors. One might wish
to make the conversion because different number systems are more advan-
tageous for particular operations than others. More will be said concern-
ing this later.

Let a vector X ©be represented by (xl, XDy wee, Xn) relative
to the basis < 01, 0o, ..., Oyp > . It is desired to find coordinates
(yl, Yos «e+s ¥,), relative to the basis < Bys Bos -+es By >. Each
vector @ of the old basis can be expressed as a linear combikation of

the vectors of the new basis in the form

O = Qqj1B1 +* QioBp * cev * UinPp - (3-4)

However, since both bases are triangular, qijx =0 for k> i. The

vector X with coordinates (Xl, Xpy ceey Xn) relative to the basis

<Oy, Qo, vowy, Oy > 1s X905 + X00p + o0 + X0
Substituting from above, one obtains for X
x101181 * %o [ApBy + QooBpl + ove 4 %y [apBy + ooo + appByl

which can be written

(%3921 + xpap1 + +.. + xpan1)p1

+ (x2q22 + ... + annE)BE + c.. * annnﬁn .



-31-

The carry algorithm is then applied to linear form (3-5) and the result

is X = lel + YoBo t e T YVBy -

The y;i are the coordinates of X relative to the basis
< Byy By vers By >

If the zero coefficients are retained in Expression (3-4),

Expression (3-5) becomes

(21977 + XpUpy + +o0 + Xy )Py (%1970 + Xplpp *+ «oo + X Q0)Bp
+ ce0 T+ (xlqln + XpQpop *oees annn)Bn .

This expression is an interpretation of

(xq77 + XpUpy + ++o *+ XpAny), (Xqqpp + Xplpp + o0 ¥ Xpdn2) »
(quln + vee + annn)
which is the matrix product
(%9, Xp5 «oes xy] 911 912 --- 4in

o lapp app vee o] = vy Yor oeees Wyl

Fﬂl dpo -+ 9nn

denoted X-Q=7Y.

The above procedure constitutes an effective procedure for exe-
cuting change of basis.

The vectors PB4 of the new basis can be written as linear com-
binations of the old vectors,

n
By = jzi P 393 (3-6)

Thus for a change of basis from < By, ..., Bn > to < Q1, coo, On >,

the appropriate matrix product is Y . P = X vhere P = IlPijll
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Substituting Equation (3-6) into Equation (3-4) one obtains

n n n
Q = Qi1 jgi pljaj t Q42 jzi ngaj + oe0 t Qyp Jzi pnjaj

n n n
= Z q_ilpljaj -+ Z q_igpgjaj + 0o * Z qinpnjaj
Jml J=1 J=1

Loz
ey . NOMN
k=] j=l ql kka J

One may interchange summations to obtain

n n
o =5 L L qikPkjO
j=1 k=1
n n n
= Y q_-p-O[+Zq-p +t caw T qu (5'7)
gm1 CRPRITL TG GkPRet xm) Pk

Equation (3-7) written in n-tuple form with restricted coefficients is
the i-th row of the matrix product QP. Since the ¢4 constitute a basis,
the reduced form of Equation (3-7) must be Q; = 0. As a consequence,
it is seen that

Q- -P=1I. (3-8)

By advancing a dval argument, one deduces

P.Q=I. (3-9)
Equations (3-8) and (3-9) can be used as a check on the determination of
the P and Q matrices. These equations are necessary but not suffi-

cient conditions. for the accuracy of P and Q.

3.4 Multiplication

To multiply two elements of a number system related to the resi-

due number system, one forms partial products, one for each component of
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the multiplier, and adds them together producing a linear combination of

the basis vectors which is then reduced by means of the Carry Algorithm.

The algorithm for determining the form of the partial products will be

called the Multiplication Algorithm.

The Multiplication Algorithm may be stated as follows:

Consider the most general multiplicand (yl, VO, osoy yn) and

multiplier

Example:

1.

(Xl,Xg, v ey Xn)c

Write the multiplicand (yl, V05 coey yn) as the vector

sum  y10q + ypo0p + ... F YO -

Beginning with J =n

2'

Write the partial multiplier (0, ..., 0, Xj, 0, ..o, 0) as
the vector Xjaj

Multiply, component by component, xjaj -y 1= Oy, voeoy
Express the vector xjaj - y104 as the linear combination
Zial+lat +Ziai’ i:‘O, s 00 g no

Sum the linear forms produced in Step 4 to determine the
J-th partial sum.

Reduce J Dby one and repeat Steps 2 through 5. Terminate

the procedure after doing the above steps with J = 1.

Consider the multiplication

(yl’ Jos 00 YM)M° (Xl: Koy cooy Xﬂ)M

in the mixed base number system where m) =2, mp = 3, mz = oy, my = T.

Here the basis is < (1,0,0,0), (1,2,0,0), (1,1,2,0), (1,1,1,1) > .
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The following steps are numbered to correspond to the statement

of the Multiplication Algorithm.

l.

2.

5.

(y15 050,0) + (y2,270,0,0) + (¥3,¥352¥3,0) + (¥ ,¥y,¥%,73)
(%, 7,5,
(y1%,,0,0,0)
(yoxy ,2y5,%Y,0,0)
(yBXM,yBXu,QyBXh,O>
R L)
(y3%1,,0,0,0) = (y7x,0,0,0)y
(yoxy ,2y5%)y,0,0) = (0,y0x),0,0)y
(y3xly 535 27320 ,0) = (0,0,y3%) ,0)M
(yx sy vz yxy) = (0,050,531 )y
(y1572592m )y + (0,0,0,x, )y = (Xy,¥1 X432 X473, X470
(x3,x5,2x5,0)
(ylx5,o,o,o> = A
(ypx3,2y5%5,0,0) =B
(y5x5,y5x5,2(2y5x3),0) =C
(yuxE,y4x5,2yux5,O) =D
A = (y1x5,0,0,0)y
B = (O,y2x5,O,O)M |
C = (0,0,2yzx3,0)y + (0,%2y3,0,0)y
since (0,0,2x3y3,0)+ (0,x3y3,0,0)y
= (2x5y5,2x5y5,ux5y3,o) + (x5y5,2x5y5,o,o)
= (y5%3,73%5,2(2y3%5) ,0)

D = (O,O,x5y4,0>M .
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5. (yysyps¥ssy )y + (0,05%3,0)y
= (ylx5,y2x5 + YgXz2%z¥z + XByu,O>M
2. (x5,2%5,0,0)
3. (x5y1,0,0,0) = A!
(¥, 4%575,0,0) = B!
(%575 52%575,0,0) = C!
(

XY, 12%,¥), 50, 0) =D

o A = (y7%5,0,0,0)y
B! = 2(O,X2y2,O,O)M + (xeyg,O,O,O)M
for (x5¥5,4%5¥5,0,0)y
= (xpy0,2%0¥,0,0) + (0,2x5y5,0,0)
= (x0¥p,2%0yp,0,0) + (x0¥p,2%0¥5,0,0)
+ (25¥5,0,0,0)
Ct = (O,xgyB,O,O)M
D' = (0,x0¥),0,0)y

. (yl:yg)Y5)yu)M ) <O’XE’O’O)M

= (Xeyl + X2y2’2X2y2 + X2y2 + Xey)_l_ ,0,0)M

2. (x1,0,0,0)

3. (x7y7,0,0,0)
(%175,0,0,0)
(x,¥5,0,0,0)
(xlyu,0,0,0)

5. (Yl:YE3Y5JY4)M ’ (Xl’O)O;O)M = (XlYl T X1y2 t X1y3 * XlYM:OfoJO)M
The results of the Multiplication Algorithm in this example are

the following for rules for the formation of partial products:
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(yl’yE’yB’y4>M. (Xl;O:O:O)M= (lel T XY, t X3 + XlYM)OyO:O>M
)

(YI:YQ;Y »yLIM' (O:XQ:O)O>M= (XQYl + Xp¥p,2Xpyp + Xpyz + XQY&;O:O)M
3 3

(yl’yE’YB’yh)M. (O)O)X5:O)M= (X5yl’X3y2 + X5Y5:2X5y5 + XBYA:O)M

(yy 570,735 m )M (0,0,0,3 hw= (339 524,253, 0,5 )M

To multiply two mixed base elements (y1,y2,¥3,y4 )y and (%1 %0 ,%3,20 )y

one procedes as follows:

1. Form the above partial products.
2. Reduce each partial product by employing the Carry Algorithm.
%, Sum the partial products again employing the Carry Algorithm.

As an example, consider the product (1,2,3,4)y * (0,2,4,6)y

The partial products are

(1,2,

(1,2,

(l:2:3:u)M ° (O}E)O)O)M = (6:22;010)

(6,12,18,24) = (1,1,1,3)y Mod M

il

3,4)y + (0,0,0,6)y

3,4)y ¢ (0,0,4,0)y = (4,28,40,0) = (1,1,0,0)y Mod M

i

1l

(1,1,0,0)y Mod M .

Therefore,

(1,2,3,4)y + (0,2,4,6)y = (0,0,1,3)Mod M

(0,2,4,6)c—= 104
and

(1,2,3,4 )&= 200

10k « 200 = 20800 = 10 Mod M

(0,0,1,3)y <= 10 .

Let us look again at the question of associativity of matrix

multiplication. Consider the three matrices A = ]Iaijll s B = llbijll,
and C = [lcijll- Let the basis of the vector spaces be

U,<Otl, Otg_,...,OLn>; V’<Bl’ Bg, oy ﬁn>,' W,<7l, 72,..0, '}’n>;

and Z, <

81, &y «vey Oy >. Tp 1is a transformation from U->V, Tp :

VW, and Ty : W—=Z.
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The 1-th row of the product A -« B 1is

n n

n
<Z a b Zl a'b ¢ a0 Zl 8. b
oy KPKL7 o) BikOk2s cees Ly 8k kn)

reduced relative to the basis < Y1, ..oy ¥y > . Designating the reduced

form obtained (ei1, ei2, ..., ein), we obtain

n
aikbkn
e, = | K2
in -
Define n
| [ L aikbkn
k=]
fi = |
n L mn
n
Zl aikbk,n-1 + fin&n,n-1
ei ,n’l = k=
Mn.1
n
Y, aikbk,n-1 + finén,n-1
fip-1= |52 .
Mh-1
C . .
‘ kzi aixby1 * finBn,1 + f1 n-18n-1 t ..o + I 0821
i1 =
my
where

. . = . s Py s 11
Ty Ty T 8L T el e ¥ 855-17 510

11 ‘
[%1 denotes the integral part of the division % .

oo

{’ % } denotes the fractional part of the division
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The i-th row of the product (A « B)C is

(X e:plrys 2 €:1.Crny, cvey L 1701 )
kel ik~kl k=1 ik~k2 k=], ik~kn

reduced relative to the basis < V15 Vps weasy 7 > &

This gives rise to the reduced form

(hil: hip, <oy hin)

where
Z €ikCkn
hyp =
n
Z eikCkn
b, = k=1
in
k elkck n-1 t zlnrn n-1
Bj pn-1 =
Mn-1
and n 4. ‘
Z €ikCk,n-1 * “in’n,n-1
L, = k=1
l,n"'l _l
k§l €ikCk1l * 'einrn,l + 'ei,n-lrn-l,l oo+ fioryy
hiy =
my
where
mJSJ = rJlSl + ... I‘j,j_lgj_l o

Similarly the i-th row of the product B -« C is

( Z bixCk1, Z DikCkos +-vs kgi Di)xCkn)

reduced relative to the basis < &y, ..., &, > .
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The reduced form is (s57, Sip, +++s Sip)
where n
Y bipc
. ) = ik~kn
in
My
n
Y, PikCkn
k=
tin =
My
n
kgl bikCk,n-1 + tinTn,n-1
si ’n—l =
o1
n
kZl bikCk,n-1 * tinTn,n-1
ti ,n“l =
Mp.1
n
{kgl bixCx1 * binTnl t b ,no1Tp-1,1 T oeee FobioT2)
sil =
my
The i-th row of A(BC) is
n n n
<k§l 8ik°k1’ k§l 8ikSk2s v k§l 81 kSkn)

reduced relative to the basis < 8y, ..., Oy > .

The reduced form is

(Vil: Vios ey Vin)
where

n
Y aikSkn
k=1

Ty

in ~
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n
L) Bikekn
Vv, = —
in my,
n
kzi 8ikSk,n-1 T WinTn,n-1
Vi,n-1 =
my_1
S a S + Us ..
ik®kn-1 in‘n,n-1
~ kzi ’
Ui ,n-1 =
Mpo1
n
kz @1kSk1 * YinTn,1 * Ui,n-1Tn-1,1 toeee F Uioro
Vil =

my
Selecting particular components for comparison

n

hin = (kz.l eikckn) mod my
n
= [( Z a‘ikbkl’l) mod. mn ¢ Cn
k=1
n
* <k§£ 81xPk,n-1 * Linén,pn-1) mod mpy_y - ®n-1,n *oeee

n
+ <k§i 213%k1 * Tingp1 * f3 no18po1,1 + e

+  fipgp)) mod my - c1,n] mod my

n

n .
rZﬁ (kgi 81 ybyy mod m )c,. mod m,

or hin
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Removing one term and changing indicies, one finds

n
Y, aiibpnc mod m
k=1 1kVkn*nn n

hin

n-1 n

+[ 2 (2 a,;,b,_modm) * c__] mod m
r=1 k=1 1k"kr T rn n

n-1 n

+ (_Z fijgjr mod. mr) Cpp mod m
r=1 Jj=r

n

= kgﬁ aikbkncnn mod My

n-1 n

n
+ Y [ 2 aijxbgr + _Z fijgjr] mod my * cyp mod myp .
r=1 k=1 J=r

Also

Vip = (k= a4)Skp) mod my

n n ,

= [aj7 ( 2. bixc mod m + aj (Z'b c mod m:
(ai1 K=l ikCkn n) i2 k%.EK kn n)

n
+ .28y, ( ; by kCyn mod my)]mod m, or
n n
Vin < kzi rZi 81 rPrkCrn mod my
n n-1 n
= rzi 84 pPrnCpy mod my + kzi rzi 84 pPyyCxp mod my .

Changing indicies for clarity, one obtains

n n-1 n
Vi, = & asibp.c mod m, + & & a:ibp.c mod .
in = 2 ik”kn®nn n T k=1 ikPkrCrn My
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Since the first terms of hi, and vj, are the same, it is

sufficient to look at

n
[ Zi 840 + Z f, ngk] mod 1my (3-10)
and
n
[rzi 8ipbpr] mod my . (3-11)

It is seen that the above expressions are not in general equal, for the
range of Expression (3-10) is the positive integers less than my

whereas the range of (3-11) is the positive integers less than my. Since
the mj are relatively prime, one is led to conclude that the i-th row
of (AB)C is not equal in general to the corresponding row of A(BC).
This was shown independent of the selection of the basis for the various
image spaces involved. Therefore, no selection of basis will guarantee

assoclativity of matrix multiplication.



CHAPTER IV

THE MIXED BASE NUMBER SYSTEM

L,1 The Mixed Base Number System

When one allows complementation as a means of subtraction, the
representations are partitioned into two classes, those representations
termed positive and those termed negative (or complements of positives).
For sign determination and magnitude comparison, it is necessary to
identify the classification of each and every representation. As is well
understood, the elements of the residue number system contain insufficient
information for making such an identification. The structure of the mixed
base system makes the identification immediate. In addition, the mixed
base system allows one to handle the problems of additive and multiplica-
tive overflow, and division. We shall see that the mixed base system ex-
tracts payment in the form of carries for these advantages.
The basis vectors for the mixed base system are generated in the
following manner:
1. Order the prime my, mp, ..., m, .
2. Bet @ equal to the vector consisting of all 1l's.
Beginning with J =n

3. Obtain aj_l = mjaj

L, Repeat step 3 with J replaced by Jj-1. Stop after per-
forming 3 with j = 1.

Theorem il. The vectors {O@, ..n,Qh} produced by the above

scheme constitute a basis.

-L3.
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In order to prove the theorem Lemma 1 will be proven.

Lemma 1: If (a, b) =1, then (amod b,b) =1
Proofs a=®bg+r, 0<r<b and by definition r is the residue
of amod b

a®r mod b
or

a3 (amodb) md b .
Since x =y mod z (x,2) = (y,2), (a mod b, b) = (a,b). The conclusion

follows.

Proof of Theorem 11: @, 1is a representation of the integer 1. The vec-
n

tor Oy is the residue representation of Ay= il}:l m. Each my; for
1« 4 1is relatively prime to Ag. Thus it is seen that
kgt =0 for 1> 4
and (kﬂi’ mg) =1 for 1< £. By Theorem U4 the set <Oy, Gp, ..., O >
is a basis of RE,
Theorem 12. An element (x3, Xo, ..., X) of the mixed base

number system is a representation of an integer X in the range

c 2 <x<(cr) L if and only if x; = C.
m = my,

Proof: The element X = (X7, Xp, .0., X,) 18 a coding of the integer

X1 2. Xp . X3 + ... + X, modulo M. (4-1)
m, mjmo m]moms »
Consider the quantity
M M
ML * 2 g D gy * R -2

The largest value Expression (4-2) can assume is attained when

xiﬁami-l,



45

Upon substitution one obtains

M
mlmg

(my - 1) 4=+ (mp - 1) + (mg -

This is then rewritten as

M M
(mn - l) +mn (mn_l - l) +Hlnmn_l(mn_2 - l) + .. +-I;i-a'2— (m2 - l) +HI

remembering the scheme for generating the base vectors. All but the follow-

ing terms add out:

a+ 2 M owo.
my

my
This means that Expression (4-2) is equivalent to Expression (4-1). Con-

sider next the quantity:

M
(m2 - l) m]__m2 + (m5 - l) mlm2m3 .+ (mn - l)
which is equal to
(m, - 1) +m, (m -1) +m, m (mpo - 1) + «ov + (mp - 1) M
n n \rn-1 : n n-1 n- mymo

The above expression reduces to

1+ M

oy
From this the conclusion is clear.
To determine the sign of a mixed base number it is necessary to
have a partitioning of'elements representing consecutive integers into two

classes. The first coordinate gives such a partitioning if m; 1is even,

. 12
i.e., x <mf2 &, 0< X< M2,

12 The relevance of the mixed base number system to the problems of sign
detection, magnitude comparison, and additive overflow has been cited
by Garner and Svoboda.
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When applying the €arry Algorithm to the reduction of the

expression

a0y + agls + ... + apthy
(Oﬁ is a base vector of the mixed base system) one must increase by
one aé for every multiple of mj+l contained in a3+l (The notation

here is consistent with that contained in the discussion of the Carry
Algorithm). This indicates that a carry may be propagated from the n-th
coordinate to the first. Therefore, when adding two elements of the mixed
base system, one unit of time is required to produce the unreduced sum
and up to n-1 units of time may be required to propagate carries.
Borrowing is accomplished by reducing aé by 1 and increasing a3+l
by ms4] - Again up to n-1 units of time may be required to perform
subtraction or complementation.

Multiplication of two elements of the mixed base system was
discussed and an example given in Chapter III.

Theorem 13. When two mixed base numbers are added, the carries
are binary and a position which produces a carry cannot also propagate a
carry.
Proof: The largest Jj-th component of the unreduced sum occurs when
the Jj-th components of the addend and the augend are maximum, i.e.,
equal to mj - 1. The maximum sum will be my - 2.

Let Jj=n. The maximum unreduced n-th component will be
2m, - 2; therefore, the carry can only be zero or one. Consider J = n-1.
The component 2mp.7; - 2 will produce a carry. If a carry was generated
by the n-th position mp_1-2 + 1 =my_7 - 1<my_7; therefore, no

carry is both propagated and generated.
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Assume the results true for J=m. In this case 2my_ 7 - 2
will generate a carry of one, and 2my_7 - 2 + 1 will also give rise

to a carry of one.

L.2 Overflow

A problem of the residue number system which can be solved
with the mixed base system is overflow. In a mixed base number system
where m; = 2, the integers less than M/2 are represented in the sys-
tem. Therefore, overflow is defined to be the condition where the true
arithmetic result is an integer larger than or equal to M/2. First addi-
tive overflow will be discussed and then various conditions for the ab-
sence of multiplicative overflow will be demonstrated. (Due to sign
detection and overflow conditions it will be convenient to assume m; = 2
for the remainder of this chapter. In this chapter all n-tuples will be
elements of the mixed base number system.)

Theorem 14%. If the sum of two positive elements of the mixed

base system is (zl, ..., 2 ) additive overflow occurs if and only if
n
Zl-l
Proof: (21, zp, ..., zy) represents the integer
M M
21 5 + 22 3 + ...+ 2z, mod M (4-3)

and overflow occurs when

M M
Zl§+Z2-2;2-+ cee + Z

v
M=

This will clearly be the case 1f 2z = 1.



-4 8-

The largest value that zp E%E + +.. T 2, can attain has been
shown to be g - 1. The largest sum possible is % -1+ % -1=M-2<M
Thus Expression (M—}) becomes zj % + 2o EM— + ... + 2, and the other

mp

conclusion follows.

To insure that multiplicative overflow will not occur, conditions
will be given which will insure that no multiplicative overflow will occur
as the partial products are formed. It is also necessary that overflow

does not occur when the partial products are summed. This also will be

treated.
Consider (y1, yp, -eos ¥p) * (%3, Oy +o0, O). Since
(xl, O, vouy O)-—-xl % , overflow will occur unless VI =Vp T co0 =Y, = 0
Consider next (yy, yo, cees Yp) (0, %0, 0, ..., 0) and note
that (0, x0, 0, vvu, 0)==xp E%E . Therefore, the condition which is

necessary and sufficient for the absence of multiplicative overflow in

this partial product is:

YL =¥2 = «ev Ypo1 =0 and xp -y, <mp .

. M
Since (O,O,x5,0,..,,0} represents Xz oo and (yl,yg,e.o,yn)
_ M
represents Y =y, + y, 1My * Yool ] F oo F yl EI s @& necessary and

sufficient condition to prevent overflow is

M
X3 2mpmz T < 2 (4-k)

or

x5 Y < momz .
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Thus it is seen that condition (4-4) becomes

x5(yn + yn-lmn) < m2m5 (4-5)
and

Yl=y2:---=yn_2=0.

Since y, <m, we may substitute for Expression (4-5)

Xan(yn-l + l) < momsz

to obtain a sufficient condition.
Consider now the general partial product

(yl, Yos cves yn) - (0, ..., O, X5, 0, ooy 0). In this case

M

Xy ——— . To guarantee
2m2- 0 .mj

(0, ..., O, X5, 05 veey 0) represents
that no overflow will occur we must satisfy the inequality x3Y <mp ... mj

or

£5(yp + Vpop My +oeee T Y (j-2)™n e c Pao(§-3)
M i
* Ypogel Mplin ] -ee Mp_jop *oeee + Y1 7)< momamy (4-6)

The condition becomes

Yn-j+1 = Ypoj T eve TV 0 and

Xj(yn + Ypoqly t oo +.yn-(j-2)mn"°mn-(j-5)) < mpmam; . (4-7)

This constitutes a necessary and sufficient condition that this partial
product does not produce an overflow. Again there are simpler inequali-

ties the validity of which will imply the validity of (4-7). These
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inequalities are

Xj [(yn_l + l) m, + ...+ yn-(j-2)mn"'mn-(j-5)] < m2m5.o. mj,
X3 [(yn-E + l)'mnmn-l + .. F yn-(j—E)mn"°mn-(j—5)] < MMz« o o105

o s

X3 [(yn-(j-E) + 1) mn"'mn-(j_B)] < Mplz .« « o1

The sufficiency of the above inequalities stems from Theorem 15.

Theorem 15. If %y <my ; Then

°

X+ Xpmp + x5mlm2 T X MMy woe My o < MqMp eoo My 7 -

Proof: The maximum value that

X1 + Xommy + X5m1m2 + ... + Xp 1Mo oo Mo

can attain is

(ml - l) + (mg - l) m; + <m5 - l) my + ... (mk-l - l> mmp. ..M o

=mlm2 P mk_2 mk_l - l<mlm2 P mk_l .

Even when none of the partial products of a multiplication in-
volve multiplicative overflow, overflow may result when the partial prod-
ucts are summed. Such overflow will be avoided only if the first coeffi-
cient of the unreduced sum is zero and no carry is propagated into that

position.

4.3 Division in the Mixed Base System

Utilizing the overflow rules given in this chapter, one may now

state rules for performing division in the mixed base system. The conditions
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for the absence of multiplicative overflow and rules for forming partial
products provide a means for estimating trial divisors. The subtraction
rules then allow one to determine the new dividend. The method will be
demonstrated before the formal rules are stated.

Example: Divide 95 by 14 using the mixed base system where m = 2,

my = 3, mz = >, and m, = T.

95 < (
1L <—>(

O O

,2,3,4)
,0,2,0)

Step 1: Determine first divisor

a
0,0,2,0 ) 0,2,3,h

It is seen that it is necessary for & = 0 to avoid overflow.

Step 2: Determine second divisor

O:g
O}O)E}O ) )5)

Again to avoid overflow B = O.

°

Step 3: Determine third divisor

i 0}0}7
0,0,2,0 [0,2,3,h

From overflow considerations it is seen that 7 =1 1is satisfactory.

0,0,1

0,0,2,0 / 0,2,3,4

0,2,4,0

It is seen that 7 =1 1is too large; therefore, 7 = O.

Step 4: Determine fourth divisor
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From reference to overflow rules and multiplication the estimate is

tE = 6.
0,0,0,6

0,0,2,0 /0,2,3,8

0,2,2,0
0,0,1,4
The division is completed giving 95 = g < 14 + 11 .
The procedure for determining the trial divisor is as follows:
1. Consult the conditions for the absence of multiplicative
overflow to determine the possible range of trial divisors.
2. Use the rules for forming partial products to determine
a trial divisor which will yield the required zero(s) in
the most significant place(s) and a non-zero component in
the most significant non-zero position (k-th) of the
divident. (The k-th component must‘be less than or equal
to the k-th component of the divident.)
%3, Subtract the partial product from the divident and if
necessary revise the quotient so that the least possible

non-negative result is achieved.

L4 Digit Fill-In

An addition problem which can be solved by using the mixed base
system is the problem of digit fill in. If one is given the coordinates
of a vector representing the integer relative to the basis
A= {oi,O@,...,05} and base moduli my,mo,...,m,, the problem is to ex-
press the integer s in terms of coordiﬁates relative to be basis
{61’52"°"6n’6n+l"’°’Bn+m} =B and base moduli my,mp,...,Mp,mn1,

«osMn4m. The my are pairwise relatively prime.
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Since one can represent s as a vector relative to the base
moduli my,mp,...,m,, s 1s less than ;ﬁE m . Therefore, if s 1is
expressed in the mixed base system relative to the moduli mp47,mp4o,

oo oyl 5Ty 5Mp, ooy, The coordinates with weights greater than or
equal to {ﬁi m; must be zeros. The weights of the last n components
of the mixed system will be, in reverse order, 1,m,,mymn_q,...,00, 1
++. M. These weights are the same as the weights of the components in
the mixed base system relative to the primes my,mp,...,m,. Therefore,
digit fill-in is accomplished as follows:

1. Perform the change of basis operation from the basis A

to the mixed base system.

2. Prefix the m =zeros to produce the correct representation

in the extended mixed base system.

3. Perform the change of basis operation, this time from the

extended mixed base system to the basis B.



CHAPTER V

OTHER NUMBER SYSTEMS RELATED TO THE
RESIDUE NUMBER SYSTEM

5.1 Partitioning Properties

In Chapter IV it was noted that the mixed base number system
representations corresponding to consecutive integers are partitioned
by the first coordinate. It was this property which lead to the solu-
tion of the outstanding problems of the residue number system. A ques-
tion arises whether number systems exist which possess the desirable
partitioning while having simpler rules of arithmetic manipulation. It
will be shown that the only related number system to achieve a partition-
ing of elements representing consecutive integers is the mixed base sys-
tem.
Lemma 2: For any integer k within the range 1 < k < p, there exists

an integer £ such that
p<fk<2p where £ <p and p> 2,
Proof: It -is evident that k .cannot lie in the range

l1<k< -2 |

p-1

for

p>2, p-2>0

2p-2 > p

2(p-1) > p ;
therefore,

L_<2

p-

-5k
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Thus there exists an integer # such that

D P i
<k < 7T with p> 4

b S

and one concludes p < £k < Z£I p<2p, Q.E.D.

Theorem 16. If the base moduli are ordered My, Mpy «ooy My,

only the mixed base number system gives a partitioning of the elements

(c+1l)M

my
but greater than or equal to c %%, where c¢ 1is the first coordinate of

into those elements which represent integers in the range less than

the element.
Proof: We will consider all number systems which give the desired par-
titioning and conclude that they are all identical to the mixed base sys-
tem.

Consider the number system based on the vectors < £1, Bpo, ..., Bp>.
It is assumed that this number system achieves the desired partitioning.
Here B7 corresponds to By; Po to Bp; etc. An element of this number

system ¥ = (yl, Yo, cees yn) represents the integer
lel + yéB2 + o0y By mod M.

For the set < By, ..., By > to be a basis it must be triangular; there-

fore, ore may state
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where
J
0 < kj< QJZ my .
Consider yp =¢ and vy = 0 for i ¥ 1. The expression
M
y9By + ¥pBp + ... + y B, mod M becomes c ki o mod M.

Clearly, cM < cky M < (e+1) M for ¢ <m requires k3 = 1.

One condition which must be satisfied is y; =0 .=, ¥ < %i . This
requirement becomes
YoBp + y3Bs + ... + ypBp =2z mod M (5-1)

M
where  z < ﬁi for all yop, YZs eoes Yp -

Consider first the case

y2*01y5=-a-=yn:0.

We have

_ M
YeBp = Voo s

If there is an integer £ in the range O < 4 < mp such that

M e M on (5-2)
m m)mo

condition (5-1) is violated. Expression (5-2) may be written
mp < fkp < mymp. (5'5)

By Lemma 2, it is seen that for ko > 1, we can find an integer in the
range O < 4 <m such that my, < fko < 2my. Since my > 2, 1inequality

(5-3) is satisfied. Therefore, k, = 1.
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Assume that we have shown ky =1 for 1 =1,2, ..., m
Let y3 =my -1 for 1 =1,2, ..., myype1 X0, and yp+2 = Ym+3
=inn=yn=01

Consider

(m, ;)M
M + + - ti~1 M

-1, cee + —————
(m2 1) m) mpm3, mimp. . .My V1 ¥m+1 MM« o oIy

mymo
or

(m2 - l)mB...mn+(m5 - l)mq...mﬁ+...+(mm - l)mm+l'°'mn+ym+lkm+lmm+2"“mn

which yields

(mpmz .. . .mp) - (W41 eempy) + Y1 Kpad O - oy

But — = m2m5...mn .

Thus the sum s 1is

M
S = T Mmel ccc n T Ymifmfpe2 coc On o

If

M
ﬁSS<M (5-&-)

condition (5-1) will be compromised. Expression (5-4) becomes

M
Myl o+ M < YpeiKgelMgep -or Ty < (mp - 1) my gy oeee Tp

which upon substitution for M yields

Mpsl - Mp < YpedKptllpee -oo M < [mp oo mp(mg - 1) + 1] mgsy oo my



-58-

Removing the common factor in the above expression one obtains
Myl < Yprl¥m+l < [mo ... mnﬂml - 1) +1] Myl - (5-5)

If moq <k < (m-Lmy .oompy , (5-5) is satisfied by yp .4 = 1.
If kp4p <mpyy and kyyy > 1, Lemma 2 guarantees that there exists a
Yp+1 Such that

M+l < ym+lkm+l < 2m'm+l

but since
2 < [m2 . mm(ml - 1) +1]

It is necessary that kp,; =1 or that

(ml - 1) mp ... Mppy < Ky <mp oo Mgy -

To see that k47 cannot be in the range

(my - 1) mp wov My < Kpyy <mpmp el My

consider y,,; =1 and y; =0 for 1 #m+ 1. Then

8 = By Kprfpep ¢ Op

and

. mn < s < mlm2 ve. I

o ocee Mpyo - mte 0 Ty

Again we have satisfied condition (5-4); it is necessary that kp+1 = 1.
Therefore, the only number system which effects the partition
described is that system having k; =1 for i =1, ..., n. This system

is the mixed base number system.
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Theorem 17. If the base moduli are ordered my, Mp, ..., My,
there is only one number system with the property that the first coordi-
nate partitions elements which represent consecutive integers into m;
classes. That number system is the mixed base number system.

Proof: Theorem 16 shows that there exists but one number system which
partitions the elements into those elements which represent integers in
the range less than (c + l)%i but greater than or equal to ¢ %I s
where c¢ 1is the first coordinate of the element. By definition this
number system is the mixed base number system.

It remains to show that no number system exists which effects
the same partitioning for ¥ % c. Assume such a number system exists

with basis Bi, Bé, ceey 55 . An element of the number system represents

the integer

yB) +yBy + ... +y B} mod M . (5-6)

Again we may state

Bﬁ = kn
! =
n-1 kn-lm n
n
B' =k, W—F m
J i=3+1

2
J
where 0 < kj < g]‘ m,. The range imposed on k; is O <k <m .
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Thus we have
Bl =k Mm
and Expression (5-6) becomes
vk M mod M when yq % O, yo = vvo =y, = 0.
1°1 ml n

It will now be shown that there exists an integer c¢ 1in the range

0 <c<m such that

M M M
c o < vk o mod M < (c+1) - (5-7)

cannot be satisfied for 0 < ky <my, 0<y) <m, and  yy % c .

Take ¢ = 0.

Expression (5-7) becomes

0 < yqk Moeame X, (5-8)
< ik

my

Condition (5-8) will be satisfied only if
y1k] =0 mod my . (5-9)

Since yp # 0, (5-9) requires that ky = 0. This is the desired contra-

diction which completes the proof.

Collary 1: If the base moduli are ordered m; = 2, mp, M3, 0.y Np there
is one and only one number system with the property that the first coordi-
nate partitions the elements into two classes, the representations of the

integers less than %, and the representations of integers greater than

or equal to % .
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Proof: This corollary follows from Theorem 17 with m; = 2.
One now asks whether a number system with base moduli
My, Mp, +v., W, exists which partitions elements which represent con-

secutive integers into my classes with the first coordinate where

J 12
The number of elements having the same Jj-th coordinate in

any system having my as a base prime is
n

M. Mmy

m i=1
1£]

Likewise, the number of elements associated with a particular value of
the first coordinate is
n
M/ml = g:g ms
The number of elements in the two cases differ and the greatest common
multiple is one. Therefore, the answer to the question posed in the
preceding paragraph is negative.

A similar argument shows that no number system with base moduli
my, My, ..., my where (m, m) = (mp, m) = ... = (my, m) =1 exists
which partitions with the first coordinate elements which represent con-
secutive integers into two classes, one class the elements of which repre-
sent integers less than M/m and the other class representing integers
greater than or equal to M/m. The argument follows:

Since M is relatively prime to m, m_* M, Dut m'M - 4 vwhen 0< 4 < m.

et M- 4 =0y If m<m,m}M- L If m>m

ml+ M -4 for cm <4< (c+l)mp .
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Suppose kmj = £, then m - f =m m ... my - mk but (m, ml) = 1;
therefore, m + M - £ which is a contradiction. The only related number
system which produces a partitioning is the mixed base number system and;
therefore, the proof is completed.

From the theorems and arguments advanced thus far in this chap-
ter, one concludes that the mixed base number system is the only number
system which partitions the elements representing consecutive integers.
In particular only the mixed base system with m; even partitions the
elements representing consecutive integers into two groups-—(l) elements
corresponding to positive integers and (2) elements representing comple-
ments. Thus if one wishes to use a number system to determine the sign
of the residue element, he will find it necessary to use the mixed base
system.

5.2 Number Systems Allowing Sign Detection
with Fewer Than n-Carries

It has been suggested that the use of number systems which are
neither strictly residue nor strictly mixed base might ease the carry
situation in sign determination. Such systems are those in which a cer=-
tain number of carries are eliminated from the operation of expressing
a vector in the mixed base system.

As developed in the chapter concerning the Carry Algorithm, a
vector X with coordinates (Xl, Xpy woey xn) relative to the basis
< Bys Boy eevs By > 1s expressed with coordinates (yl, Yo, «evs Ipn )
relative to the mixed base basis < O, Op, ..., Oy > by determining
the Q = ]lqijll matrix and following with the matrix multiplication

X +@Q =Y, The elements of the Q matrix are governed by the equation

5:]. =qilOCl T e +qinO£n for i:l, 2) ceoy I (5_10)
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The Y so obtained will not in general be a linear form with restricted
coefficients. Carrys must then be propagated from each position to the
next more significant position. The general conversion will require up
to n-1 carries. To reduce the maximum possible number of carries which
can occur by say m-1 carries, it will be necessary and sufficient to
guarantee

ka <m for k =n-m, ..., n. (5-11)

This is in turn equivalent to the condition

qik = Sik for i,k =n-m, ..., n . (5-12)

Condition (5-12) may be expressed as

n-m-1

B = Oy + = c; % for k=n-m, ..., 0. (5-13)

IT I]aijll is the array of the mixed base basis vectors, con-
sider the m x m sub-array in the lower right corner. Equation (5-13)
states that this sub-array must be preserved in l|bij||, the array of
the B vectors. The only other requirement is that llbijll be tri-
angular. Other considerations which affect the selection of the remain-
ing elements in the P array stem from a desire to simplify the carry
structure in the B system.

Since ajj = bij for i, j = n-m, ..., n the carry structure
in the last m positions is fixed. Carries from the k-th components to
the j-th components where

k=n-m, .o, n

1,2, ..., n-m-1

[N
]
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can be prevented by the following constraint

1]

b:. =0 for i

13 Nn-M, ..., 0

1,2, ..., n-m-1 .

.
It

Further carries can be eliminated by making the upper right partition of
the P array the identity matrix.

Since aij = bij for i, j =n-m, ..., n carries from the J£-th
component to the (£-1)-st component will occur for £ = n-m+l, ..., n.
Therefore, at least m-1 carries will occur in the B system. The total
number of carries in the B system for a subtraction followed by sign
detection is at least as great as for subtraction in the residue number
system and conversion to the mixed base system.

Such number systems do not appear practical, for nothing is
gained in addition and sign detection. In fact, from the Multiplication

Algorithm of Chapter III, it is clear that much speed is sacrificed in

multiplication.



CHAPTER VI

SUMMARY AND CONCLUSIONS

The general question of the algebraic properties of the residue
number system was treated. By considering the set of elements of the
residue number system as a pseudo-vector space (the R-space) it was possi-
ble to define and describe the properties of a whole class of number sys-
tems related to the residue number system. Meaningful definitions of
linear independence, linear transformations, and matrix multiplication
were formulated. However, such vector space concepts as rank and row
echelon form have no analogous interpretations in the R-space.

It was proven that any triangular array of vectors will define
a number system related to the residue number system if the elements on
the principal diagonal are relatively prime to the associated base modu-
lus. The Carry Algorithm and a variation, the Borrow Algorithm were given
which allow arithmetic operations in number systems related to the resi-
due number system.

The mixed base number system has been known to afford solutions
to the problems of sign determination, magnitude comparison, and additive
overflow. Solutions to the problems of multiplicative overflow digit fill-
in, and division were shown. The R-space analysis led quite naturally to
the known solutions as well as the new solutions of the problems of the
residue number system. ©Solutions are possible because the mixed base num-
ber system partitions elements representing consecutive integers with the
first coordinate. Thus when employing the mixed base number system the

magnitude of the first coordinate gives the sign. The partitioning places
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weights on the coordinates and allows magnitude comparison. Since over-
flow may be regarded as a variation of magnitude comparison, overflow
problems may be solved. With these problems solved division by the
Euclidean Algorithm is possible.

The mixed base number system was proven to be the only number
system related to the residue number system which incorporates the desired
partitioning. Further, number systems were investigated which would re-
quire fewer carries for sign detection than the residue number system and
possess fewer arithmetic carries than the mixed base system. It was shown
that no net savings would be possible.

The number systems related to the residue number system may be
classified according to the maximum length of carry chains involved in
addition. If this is done it is noted that the residue number system with
carry chains of zero length possesses the simplest carry structure while
the mixed base system with a possible n-1 carries is the most complex.
The desirable properties and the problems of the residue number system
arise from its carryless structure. Similarly the solution to the resi-
due number system problems exist because the mixed base system involves
carry chains of maximum length. Thus one concludes that of all the num-
ber systems related to the residue number system only the residue and
mixed base systems are of primary interest.

The solutions to the problems of the residue number system de-
pended upon the partitioning properties of the mixed base number system.
In a pertain sense these solutions are unique; therefore, it is not antici-
pated that the residue number system will achieve wide application in

general purpose digital computers.



BIBLIOGRAPHY

Birkhoff, G. and Maclane, S. A Survey of Modern Algebra. New York:
The Macmillan Company, 1941.

Cheney, P. W. A Digital Correlator Based on the Residue Number System.
Technical Document LMSD-702670, Lockheed Aircraft Corporation, Palo Alto,
Calif., 1960.

Garner, H. L. "The Residue Number System." IRE Trans. PGEC, Vol. EC-8,
June 1959, p. 140-7.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers.
London, England: Oxford University Press, 1956.

McCoy, N. H. Rings and Ideals. Buffalo, New York: The Mathematical
Association of America, 1948.

Svaboda, A. Rational Number Systems of Residual Classes. Stroje Na
Zpracovani Informaci, Sbornik, V, 1957.

van der Waerden, B. L. Modern Algebra. New York: Frederick Ugar
Publishing Company, Vol. I and II, 1950.

-67-



