PDFlib PLOP: PDF Linearization, Optimization, Protection

Page inserted by evaluation version www.pdflib.com – sales@pdflib.com

Power Spectrum Analysis of Large Baseline Redshift Surveys*

Hume A. Feldman

Physics Department University of Michigan Ann Arbor, MI 48109

Given a set of redshifts of galaxies with known angular and luminousity criteria, our goal is to construct a descriptive statistic that measures the power spectrum of the underlying density fluctuation field. We assume that the fluctuation field is some homogeneous and statistically isotropic random process[1]. The present study follows the program laid down by Peebles in his pioneering series of papers[2] for statistical analysis of galaxy catalogues via low order correlation functions.

We make the usual assumption that the galaxies form a poisson sample[3] of the density field $1 + f(\mathbf{r}) = \rho(\mathbf{r})/\bar{\rho}$:

$$P(\text{vol element } \delta V \text{ contains a galaxy}) = \delta V \overline{n}(\mathbf{r})(1 + f(\mathbf{r})) \tag{1}$$

where $\overline{n}(\mathbf{r})$ is the expected mean space density of galaxies given the angular and luminosity selection criteria, and we wish to estimate the power spectrum

$$P(k) = P(\mathbf{k}) \equiv \int d^3r \xi(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}$$
 (2)

where $\xi(\mathbf{r}) = \xi(r) = \langle f(\mathbf{r}')f(\mathbf{r}' + \mathbf{r}) \rangle$ is the 2-point correlation function.

Our approach is to take the fourier transform of the real galaxies minus the transform of a synthetic catalogue with the same angular and radial selection function as the real galaxies but otherwise without structure. We also incorporate a weight function $w(\mathbf{r})$ which will be adjusted to optimize the performance. We define the weighted galaxy fluctuation field, to be

$$F(\mathbf{r}) \equiv \frac{w(\mathbf{r})(n_g(\mathbf{r}) - \alpha n_s(\mathbf{r}))}{\left(\int d^3 r \overline{n}^2(\mathbf{r}) w^2(\mathbf{r})\right)^{1/2}}$$
(3)

where $n_g(\mathbf{r}) = \sum_i \delta(\mathbf{r} - \mathbf{r}_i)$ with \mathbf{r}_i being the location of the ith galaxy and similarly for the synthetic catalogue which has number density $1/\alpha$ times that of the real catalogue.

Taking the fourier transform of $F(\mathbf{r})$, squaring it and taking the expectation value we find:

$$\langle |F(\mathbf{k})|^2 \rangle = \frac{\int d^3r \int d^3r' w(\mathbf{r}) w(\mathbf{r}') \langle [n_g(\mathbf{r}) - \alpha n_s(\mathbf{r})] [n_g(\mathbf{r}') - \alpha n_s(\mathbf{r}')] \rangle e^{i\mathbf{k}\cdot(\mathbf{r}-\mathbf{r}')}}{\int d^3r \overline{n}^2(\mathbf{r}) w^2(\mathbf{r})}$$
(4)

This work was supported in part by the National Science Foundation Grant NSF-PHY-92-96020

With the model of equation 1, the two point functions of n_g , n_s are

$$\langle n_{g}(\mathbf{r})n_{g}(\mathbf{r}')\rangle = \overline{n}(\mathbf{r})\overline{n}(\mathbf{r}')(1 + \xi(\mathbf{r} - \mathbf{r}')) + \overline{n}(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}')$$

$$\langle n_{s}(\mathbf{r})n_{s}(\mathbf{r}')\rangle = \alpha^{-2}\overline{n}(\mathbf{r})\overline{n}(\mathbf{r}') + \alpha^{-1}\overline{n}(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}')$$

$$\langle n_{g}(\mathbf{r})n_{s}(\mathbf{r}')\rangle = \alpha^{-1}\overline{n}(\mathbf{r})\overline{n}(\mathbf{r}')$$
(5)

so

$$\langle |F(\mathbf{k})|^2 \rangle = \int \frac{d^3k'}{(2\pi)^3} P(\mathbf{k'}) |G(\mathbf{k} - \mathbf{k'})|^2 + P_{\text{shot}}$$
 (6)

where

$$G(\mathbf{k}) \equiv \frac{\int d^3 r \overline{n}(\mathbf{r}) w(\mathbf{r}) e^{i\mathbf{k} \cdot \mathbf{r}}}{\left(\int d^3 r \overline{n}^2(\mathbf{r}) w^2(\mathbf{r})\right)^{1/2}}$$
(7)

and

$$P_{\text{shot}} \equiv (1 + \alpha) \frac{\int d^3 r \overline{n}(\mathbf{r}) w^2(\mathbf{r})}{\int d^3 r \overline{n}^2(\mathbf{r}) w^2(\mathbf{r})}.$$
 (8)

For a large baseline survey $G(\mathbf{k})$ is a rather compact function with width $\sim 1/D$, where D characterizes the depth of the survey. Provided we restrict attention to $|\mathbf{k}| \gg 1/D$, which is really just the requirement that we have a 'fair sample', and provided $P(\mathbf{k})$ is locally smooth on the same scale, then

$$\langle |F(\mathbf{k})|^2 \rangle \simeq P(\mathbf{k}) + P_{\text{shot}},$$
 (9)

so the raw power spectrum $|F(\mathbf{k})|^2$ is the true power spectrum plus the constant shot noise component and our estimator is

$$\hat{P}(\mathbf{k}) = |F(\mathbf{k})|^2 - P_{\text{shot}},\tag{10}$$

finally we average over a shell in k-space:

$$\hat{P}(k) \equiv \frac{1}{V_k} \int_{V_k} d^3k' \hat{P}(\mathbf{k}'), \tag{11}$$

where V_k is the volume of the shell.

Equations (3), (9-11) provide our operational definition of $\hat{P}(k)$. To use these we must specify the weight function $w(\mathbf{r})$ which so far has been arbitrary, and we must choose some sampling grid in k-space. In order to set these wisely — and also to put error bars on our estimate of the power — we need to understand the statistical fluctuations in $\hat{P}(\mathbf{k})$.

From equation (11) the mean square fluctuation in P(k) is

$$\sigma_P^2 \equiv \langle \left(\hat{P}(k) - P(k) \right)^2 \rangle = \frac{1}{V_k^2} \int_{V_k} d^3k \int_{V_k} d^3k' \langle \delta \hat{P}(\mathbf{k}) \delta \hat{P}(\mathbf{k'}) \rangle. \tag{12}$$

An interesting model for the two point function of $\delta \hat{P}(\mathbf{k})$ is to assume that the coefficients $F(\mathbf{k})$ are gaussian distributed, in which case $\langle \delta \hat{P}(\mathbf{k}) \delta \hat{P}(\mathbf{k}') \rangle = |\langle F(\mathbf{k}) F^*(\mathbf{k}') \rangle|^2$. A generalisation of the steps leading to (6) gives us

$$\langle F(\mathbf{k})F^*(\mathbf{k}')\rangle = \int \frac{d^3k''}{(2\pi)^3} P(\mathbf{k}'') G(\mathbf{k} - \mathbf{k}'') G^*(\mathbf{k}' - \mathbf{k}'') + S(\mathbf{k}' - \mathbf{k}), \quad (13)$$

where we have defined

$$S(\mathbf{k}) \equiv \frac{(1+\alpha) \int d^3 r \overline{n}(\mathbf{r}) w^2(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}}{\int d^3 r \overline{n}^2(\mathbf{r}) w^2(\mathbf{r}),}$$
(14)

and, in the same approximation that led to equation (9) we obtain

$$\langle F(\mathbf{k})F^*(\mathbf{k} + \delta \mathbf{k})\rangle \simeq P(\mathbf{k})Q(\delta \mathbf{k}) + S(\delta \mathbf{k})$$
 (15)

where

$$Q(\mathbf{k}) \equiv \frac{\int d^3 r \overline{n}^2(\mathbf{r}) w^2(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}}{\int d^3 r \overline{n}^2(\mathbf{r}) w^2(\mathbf{r})},$$
(16)

and therefore

$$\langle \delta \hat{P}(\mathbf{k}) \delta \hat{P}(\mathbf{k}') \rangle = |P(\mathbf{k}) Q(\delta \mathbf{k}) + S(\delta \mathbf{k})|^2. \tag{17}$$

If the shell we average over in equation (11) has a width which is large compared to the coherence length then the double integral in (12) reduces to

$$\sigma_P^2(k) \simeq \frac{1}{V_k} \int d^3k' |P(k)Q(\mathbf{k}') + S(\mathbf{k}')|^2, \tag{18}$$

so, with the definition of $Q(\mathbf{k})$ and $S(\mathbf{k})$ and using Parseval's theorem, the fractional variance in the power is

$$\sigma_P^2(k)/P(k)^2 = (2\pi)^3 \int d^3r \overline{n}^4 w^4 (1 + 1/\overline{n}P(k))^2 / V_k \left[\int d^3r \overline{n}^2 w^2 \right]^2. \tag{19}$$

We seek $w(\mathbf{r})$ which minimises this. Writing $w(\mathbf{r}) = w_0(\mathbf{r}) + \delta w(\mathbf{r})$ and requiring that $\sigma_P^2(k)$ be stationary with respect to arbitrary variations $\delta w(\mathbf{r})$ we obtain

$$\frac{\int d^3 r \overline{n}^4 w_0^3 \left(\frac{1+\overline{n}P}{\overline{n}P}\right)^2 \delta w(\mathbf{r})}{\int d^3 r \overline{n}^4 w_0^4 \left(\frac{1+\overline{n}P}{\overline{n}P}\right)^2} = \frac{\int d^3 r \overline{n}^2 w_0 \delta w(\mathbf{r})}{\int d^3 r \overline{n}^2 w_0^2}$$
(20)

and it is easy to see by direct substitution that this is satisfied if we take

$$w_0(\mathbf{r}) = [1 + \overline{n}(\mathbf{r})P(k)]^{-1}$$
 (21)

This is the optimal weighting (under the assumption that the fluctuations are gaussian).

References

- [1] Feldman, H.A., Kaiser, N. & Peacock, J., 1993 in preparation.
- [2] Peebles, P.J.E. & Hauser, G.M., 1974 ApJ Suppl. 28 19; Yu, J.T. & Peebles, P.J.E., 1969 ApJ 158 103.
- [3] Peebles, P.J.E. 1980, The Large Scale Structure of the Universe, Princeton U. Press.