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Given a set of redshifts of galaxies with known angular and luminousity 
criteria, our goal is to construct a descriptive statistic that measures the power 
spectrum of the underlying density fluctuation field. We assume that the fluc- 
tuation field is some homogeneous and statistically isotropic random process[ 11. 
The present study follows the program laid down by Peebles in his pioneering 
series of papers[2] for statistical analysis of galaxy catalogues via low order 
correlation functions. 

We make the usual assumption that the galaxies form a Poisson sample[3] 
of the density field 1 + f(r) = p(r)/p: 

P(v01 element SV contains a galaxy) = 6V?t(r)(l + f(r)) (1) 

where E(r) is the expected mean space density of galaxies given the angular 
and luminosity selection criteria, and we wish to estimate the power spectrum 

P ( k )  = P(k) G /d3r((r)eik.r (2) 

where t(r) = ( ( r )  = (f(r‘)f(r’ + r)) is the 2-point correlation function. 
Our a proach is to take the fourier transform of the real galaxies minus 

the transzrm of a synthetic catalo ue with the same angular and radial se- 
lection function as the real galaxiessut otherwise without structure. We also 
incorporate a weight function w(r) which will be adjusted to optimize the 
performance. We define the weighted galaxy fluctuation field, to be 

where ng(r) = Cj S(r - ri) with ri being the location of the ith galaxy and 
similarly for the synthetic catalogue which has number density l/a times that 
of the real catalogue. 

Taking the fourier transform of F(r),  squaring it and taking the expecta- 
tion value we find: 

. . .  
(4) 
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With the model of equation 1, the two point functions of ng, ng are 

so 

where 

and 

J d3r~(r)w(r)eik*r 

(J d3rA2(r)w2(r)) 1’2 
G(k) = (7) 

For a large baseline survey G(k) is a rather compact function with width - l /D,  where D characterizes the depth of the survey. Provided we restrict 
attention to lkl >> l /O,  which is really just the requirement that we have a 
‘fair sample’, and provided P(k) is locally smooth on the same scale, then 

(IF(k)I2) N P(k) t Pahot, (9) 

so the raw power spectrum IF(k)I2 is the true power spectrum plus the con- 
stant shot noise component and our estimator is 

k(k)  = IF(k)I2 - Pshoti (10) 

finally we average over a shell in k-space: 

1 k(k) 3 - 1 d3k’k(k’), 
vk vk 

where v k  is the volume of the shell. 
Equations (3), (9-11) provide our operational definition of @(k). To use 

these we must specify the weight function w(r) which so far has been arbitrary, 
and we must choose some sampling grid in k-space. In order to set these 
wisely - and also to put error bars on our estimate of the power - we need 
to understand the statistical fluctuations in P(k). 

From equation (11) the mean square fluctuation in k(k) is 
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An interesting model for the two point function of 6k(k) is to assume that 
the coefficients F(k)  are gaussian distributed, in which case (GF(k)SF(k’)) = 
l(F(k)F*(k’))12. A generalisation of the steps leading to I 

(F(k)F*(k’)) = 1 -P(k”)G(k - k”)G*(k’ - k”) 

( 6 )  g’ ives us 

t S(k’ - k),  

where we have defined 
(1 + a) J d3r5i(r)w2(r)e’1.r 

J d3rs2(r)w2(r), 
S(k) = 

and, in the same approximation that led to equation (9) we obtain 

(F(k)F*(k + 6k)) N P(k)Q(dk) t S(6k) 
where 

J d3rn2( r)w2 ( r)eik’r 
Q(k) Jd3rE2(r)w2(r) ’ 

and therefore 
(6F(k)bP(k’)) = IP(k)Q(bk) t S(bk)12. 

If the shell we average over in equation (11) has a width which is large 
compared to the coherence length then the double integral in (12) reduces to 

op(k) N - /d3k’lP(k)Q(k’) t S(k’)I2, 

so, with the definition of Q(k) and S(k) and using Parseval’s theorem, the 
fractional variance in the power is 

(18) 
2 1 

Vk 

2 
~ ; ( k ) / P ( k ) ~  = ( 2 ~ ) ~ / d ~ ~ ~ % ~ ( i  i- l / ~ P ( r C ) ) ~ / v ~  [ / d 3 m 2 ~ 2 ]  . (19) 

We seek w(r) which minimises this. Writing w(r) = q ( r )  + 6w(r) and 
requiring that o $ ( k )  be stationary with respect to arbitrary variations 6w(r) 
we obtain 

and it is easy to see by direct substitution that this is satisfied if we take 

wo(r) = [I + i z ( r )~(k) ] - ’  . (21) 
This is the optimal weighting (under the assumption that the fluctuations are 
gaussian). 
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