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INTRODUCTION

Many of the blood coagulation factors circulate in the plasma as inactive
precursors (zymogens), which upon activation by limited proteolysis become
proteolytic enzymes with a high degree of substrate specificity.’* Like the
pancreatic digestive enzymes, the blood coagulation factors are serine proteases
possessing an Asp, Ser, His at their active site.!»? Unlike the pancreatic en-
zymes, most of the blood coagulation factors, upon activation, retain a large
polypeptide chain linked by a disulfide-bridge to the chain containing the active
site. Although crystals of thrombin have been grown,* no three-dimensional
structure has yet been adduced, but it seems clear that the blood coagulation
serine proteases will share many of the active-site features revealed by X-ray
crystallography of the pancreatic enzymes, chymotrypsin A, trypsin, and
elastase. Such studies have explained the difference in specificity of these en-
zymes > ¢ however in their case almost all of the peptide bonds of the required
specificity are cleaved; in the case of the blood coagulation factors only a few
of the many arginyl bonds are cleaved.’-* In spite of the dearth of three-
dimensional structures, amino acid sequence data are providing clues to under-
standing the diversity of this enzyme family.

Several investigators " have built gene phylogenies (genealogies) of the
serine proteases using data sets of limited sizes. De Haén et al.” concluded that
the presence of disulfide bridges and deletions/insertions might prove better
phylogenetic markers than the sequences themselves. However, the recent
publication of several new amino acid sequences provides us with an opportunity
to shed some light on serine protease evolution by using the maximum parsimony
method and extending earlier studies.® ®* The maximum parsimony approach
assumes that evolution has taken the shortest course to reach the present array
of diversity: it has been used effectively on such protein families as the hemo-
globins,? intracellular calcium-binding proteins,** and carbonic anhydrase iso-
zymes.'? In this preliminary report, we describe the iree of lowest nucleotide
replacement length that we found for each of the data sets used and draw
some general conclusions about the evolution of the blood coagulation factors.

* This work was supported by National Science Foundation Grant DEB-7810717.
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MATERIALS AND METHODS

The available amino acid sequences (TABLE 1) were grouped into four
data sets and aligned to maximize homology, a procedure that even when com-
puterized contains a large subjective input. To test whether aligned sequences
showed significant homology with each other, an alignment statistic was used.?
The aligned data sets created were:

1) SP—16 enzyme chain sequences which are more than 95% complete.
For alignment, using the one-letter amino acid code (see TABLE 2). 2) SPIN-
COMPL—The above 16 sequences with an additional 13 partial sequences.
Since these align straightforwardly with the 16 complete sequences, the align-
ment for this data set is not illustrated, 3) VIT K—9 sequences (5 complete)
representing the NH,-terminal regions of the vitamin K-dependent blood co-
agulation factor zymogens. 4) KRINGLE—9 kringle loop structures of pro-
thrombin and plasminogen aligned with 4 regions of putative homology in
factor X, factor IX, protein C, and haptoglobin a chain.

For each data set, the maximum parsimony method was used to construct
the tree that requires the fewest nucleotide replacements to explain the descent
of extant sequences.1?: 11 Proteins are grouped so as to maximize the number of
shared derived nucleotide replacements. Using a branch-swapping algorithm,
many thousands of alternative trees are tested. No assumptions of constancy of
rate of evolution are needed to construct genealogical trees by this method.
The trees produced can be “rooted” subjectively (i.e. given a time dimension);
however, inclusion of a bacterial serine protease enables the root to be placed
on the branch to the eukaryotic serine proteases (see discussion **).

RESULTS AND DISCUSSION
Tree Derived for 16 Serine Proteases (SP)

After testing many trees, that with the lowest nucleotide replacement length
(1936 NR) is shown in FIGURE 1. The main features of the tree are:

1. The close grouping of the factors involved in fibrin-clot formation, sup-
porting the view that blood coagulation was once a simple process involving
perhaps a single thrombin-like enzyme that clotted a fibrinogen-like material.

2. The distant separation of plasmin from these blood coagulation factors.
This was tested by submitting several alternative trees with widely different
positions for plasmin. In all cases, plasmin was successively moved by the
branch-swapping algorithm to its final position in the tree illustrated.

3. The finding that protein C was the first of the vitamin K-dependent
factors to become a separate lineage, before the duplications that resulted in
the factor IX and factor X lineages.

Haptoglobin is closely related to the blood coagulation factors. Like them,
it is of hepatic origin, but during evolution it has lost the active-site His and
Ser residues and its present role seems to be to bind hemoglobin virtually ir-
reversibly.® Our tree is compatible with that of Kurosky er al.,? if they were
to place the root of their tree in the same position as ours,
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TABLE 1
AMINO AcID SEQUENCE DATA USED *
Non-Enzyme Enzyme Refer-
Protein Species Region Chain ences
Prothrombin Human 322 (100%) 259 (100% ) 14-16
Ox 323 (100%) 259 (100%) 17-20
Chicken 45 (14%) 0(0%) 21
Factor X Ox 191 (100%) 256 (100%) 22,23
Factor IX Ox 181 (100%) 235 (100%) 24
Protein C Ox 169 (100%) 242 (99%) 25
Factor VII Ox 13 (?) 25 (~10%) 26
Protein S Human 13(D) 0(0%) 27
Ox 13 (7)) 0(0%) 27
Factor X1 Ox, Human —  _______. 36 (~14%) 28,29
Factor XII ox .. 40 (~16%) 30
Plasminogen Human 560 (100% ) 230 (100% ) 31,32
Haptoglobin Human 83 (100%) 245 (100%)  9,33,34
Rat 0 (0%) 40 (16%) 34
Rabbit 0 (0%) 40 (16%) 34
Dog 0(0%) 40 (16%) 34
Kallikrein Pig (pancreas)  __ .. ... 233 (96%) 35
Trypsinogen ox .. 223 (100%) cf. 7,36
Pig 223 (100%) cf.7
Dogfish . _____. 222 (100%) f.7
Trypsinogen B African lung fish .. ______ 147 (66% ) cf. 7
Cocoonase Sitkmoth = ________ 30 (~12%) 37
RVV-V activator Russell’s viper ... .___. 14 (~6%) 38
Crotalase Rattlesnake _____.__ 45 (~18%) 39
Complement CIr Human  _._____. 20 (~8%) 40
Complement Cls Human  _______. 20 (~8%) 40
Complement Factor D  Human ... _____ 50 (~20%) 41
Group Specific Rat (intestine)  _______. 224 (100%) 42
Protease
Chymotrypsinogen A ox 230 (100%)  cf.7,36
Chymotrypsinogen B ox . 230 (100% ) cf. 7,36
Proelastase B Pig . . 240 (100%) cf. 7,36
Bacterial trypsin Streptomyces  ______.__ 221 (100%) 43
griseus

* In the case of some zymogens, the non-enzyme chain region has been sequenced,
but is not used in this presentation.
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Tree Derived for 29 Serine Proteases (SPINCOMPL)

After testing many trees, that with lowest nucleotide replacement length

(2076 NR) is shown in FIGURE 2. The main features are:
1. The addition of 13 partial sequences has altered the arrangement of the
pancreatic enzymes (trypsin, chymotrypsin, elastase, kallikrein) and the rela-

HUMAN

()

FACTOR Xo

FACTOR Xao

PROTEIN C

HAPTOGLOBIN
KALLIKREIN (GLANDULAR)
GROUP SP. PROTEASE

—
L §
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CHYMOTRYPSIN A
CHYMOTRYPSIN B
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AUGMENTED NUCLEOTIDE REPLACEMENTS

FIGURE 1. Genealogy of serine proteases based on data set SP (16 sequences more
than 95% complete: TABLE 2). This tree has a nucleotide replacement length of
1936, the lowest found for this data set. The tree was “rooted” by use of the bacterial
(Streptomyces griseus) trypsin. It should be noted that Hartley “ * continues to
believe that this gene is not of bacterial origin, having been inserted into the bacterial
genome. It still seems to be the most distantly related of all the serine proteases
examined in this data set. Other bacterial serine proteases, e.g. Streptomyces griseus
protease B,* are clearly homologous to these proteases but many more insertions and
deletions are required to align them. In earlier work (R. A. Marlar and D. Hewett-
Emmett, 1976, unpublished), we included protease B and found that the “rooting” of
the tree was identical, although plasmin was not available for inclusion at that time.
Branch lengths are augmented to compensate for undetected multiple mutations in
long separate lineages.™ The branches are drawn to scale, their lengths being the
augmented nucleotide replacements per enzyme chain. @ represent gene duplications.

tionship of plasmin. At an intermediate stage of the work, before complement
factor D and crotalase were added to the data set, plasmin still represented
the earliest ancestral eukaryotic branch. It may well be that the addition of a
complete complement factor sequence will be necessary to resolve the true posi-
tion of plasmin in the genealogy. In general, experience with the hemoglobins
has shown that additional sequences iron out discordances.1°
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FIGURE 2. Genealogy of serine protease based on data set SPINCOMPL. This tree
has a nucleotide replacement length of 2076, the lowest found for this data set. As in
FIGURE 1, the tree was rooted by use of S. griseus trypsin. Broken lines indicate the
13 partial sequences whose positions in the tree are necessarily much less reliable. @
represent species divergencies; remaining bifurcations in the tree are gene duplications.
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2. From the small stretches of sequence available, clotting factors VII,
XI and XII show most affinity for factor IX. However, as with the comple-
ment factors, complete sequences will be needed to decide whether or not this
is true. Factor XIIa probably possesses a disulfide bridge (residues 136-202)
not present in the vitamin K-dependent coagulation factors.3°

3. The snake venom proteases are clearly trypsin-like and not thrombin-like
- in their evolutionary relationship. This is supported by the probable presence
of a disulfide bridge (residues 22-157 in TABLE 2) that is absent in all the
hepatic serine proteases.3®: 3¢

4. From the available data, it seems that the complement factors may not
form a single grouping. It has been pointed out that factor D shows most
similarity to the pancreatic serine proteases,*! and in our tree it clusters with
group-specific protease and kallikrein.

5. The relationship of haptoglobin to the blood coagulation factors is un-
altered by the addition of the 13 partial sequences.

Tree Derived for NH,-Terminal Regions of Vitamin K-Dependent
Factors (VIT K)

After testing many trees, two with equal nucleotide replacement lengths
(112 NR) were found. One tree split up the two partial protein S sequences
and so the other tree is considered more likely to represent the true genealogy
and is illustrated in FIGURE 3. The main features are:

1. The branching pattern is similar to that in FiIGUrRes 1 and 2. However,
the limited factor VII data indicate that it diverged earlier than was indicated
in Frcure 2. Until the full sequence is known this discrepancy cannot be re-
solved.

2. Based on equally weak evidence, protein S seems to be most closely
related to factor X. Its function is not presently known.

Tree Derived for Kringle and Homologous Regions (KRINGLE)

The tree illustrated in FIGURE 4 is that with lowest nucleotide replacement
length (504 NR). In this case, we know the order of the kringle regions on
the plasminogen gene. Fitch #® has pointed out that some phylogenies are in-
compatible with simple unequal crossover events. We have illustrated a mecha-
nism involving unequal crossover events and gene deletions (7 events) whereby
the observed kringle order can be derived. We disagree with Fitch ¢® inasmuch
as he does not allow gene deletion events in his scheme. It is of interest that
the trees proposed by Young et al.® and Kurosky et al.® require at least 10
extra nucleotide replacements, although they require only 3 gene duplication
events instead of 7 unequal crossover events in the scheme we advocate. The
main features of the tree are:

1. The plasminogen kringle loops are most closely related to prothrombin
kringle 1. It has been noted previously that prothrombin kringle 1 has been
more conserved than kringle 2 or the vitamin K-dependent Ca?+-binding region
of prothrombin during mammalian evolution.*®: *® No function has yet been
ascribed to this region of either prothrombin or plasminogen however,
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2. The branching pattern differs from those of FIGURES 1-3 inasmuch as
factors X and IX do not share a period of evolution with prothrombin, as-
suming of course that the root has been placed correctly.

3. The putative kringle loops of factor X, factor IX, protein C, and hapto-
globin are only weakly homologous with those of prothrombin and plasminogen
using the Moore and Goodman 13 test. It is notable that on a less permissive
visual test used previously,3° factor X showed no detectable homology with
either prothrombin kringle. Clearly if they are truly homologous, the kringle
loops of protein C, factor X, and factor IX have diverged considerably while
retaining significant homology to each other.

86 HUMAN
196 . 0 ox PROTHROMBIN
a3 L CHICKEN
us 329 ox FACTOR IX
1 ., 18.7 o FACTOR X
1 r—--— HUMAN

i e s ox 1 PROTEIN S

L ox FACTOR ¥IL

oX PROTEIN C

TIME

Ficure 3. Genealogy of data set VIT K, representing regions homologous to
residues 1-65 of bovine prothrombin (TaBLE 3). This tree has a nucleotide replace-
ment length of 112 and is one of two found with that length; the other split up the
two protein S partial sequences and was considered less likely to represent the true
genealogy. The tree was rooted using information derived from FIGURES 1 and 2,
i.e. that protein C was the first separate lineage of those represented. This is sup-
ported by divergence data; protein C represents the longest branch. Broken lines
indicate the 4 partial sequences. Branches have a time dimension and are not drawn
to scale. The figures on the branches representing complete sequences are augmented
nucleotide replacements per 100 codons. @ represent gene duplications.

CONCLUSIONS

This section will describe general conclusions based on the trees in FIGURES
1-3.

1. The order of gene duplication among the serine proteases involved in
blood coagulation seems to be as follows:

Trypsin—>Trypsin—Plasmin—Trypsin—Thrombin-Plasmin—»

Trypsin—Thrombin-Protein C-Plasmin—

Trypsin—-Thrombin—Factor X-Protein C-Plasmin—

Trypsin—-Snake Venom Protease-Thrombin—Factor X—Factor I1X-Protein C—

Plasmin
The true place of factors VII, XI, XII, and the complement factors must await
completion of their amino acid sequences.

2. The kringle loop structure regions provide strong evidence that plasmino-
gen may be a hybrid gene, with kringle loops derived from prothrombin kringle
1 coding region having been fused to the plasmin light-chain coding region
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much later in time than the gene duplication generating the plasmin and
thrombin lineages.

3. It seems clear that haptoglobin was once a hepatic serine protease that
lost its proteolytic activity.? Our trees (FIGURES 1 and 2) are compatible with
those of Kurosky et al.® provided that they alter the root of their tree. By con-
trast, the tree suggested by Doolittle 3! underestimates how closely related
haptoglobin is to the hepatic serine proteases and, in particular, the blood
coagulation factors.
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[Note added in proof: Since the meeting, several relevant amino acid
sequences of serine proteases have been published. In particular, Bradshaw
et al.5? describe a chymotrypsin-like collagenase from the hepato-pancreas of
the fiddler crab and a trypsin-like protease that comprises the y-subunit of
mouse nerve growth factor. Brunisholz et al.5® provide substantial structural
data on bovine and porcine plasminogen, which further emphasize the con-
servative nature of the kringle structure. Mole and Nieman 3¢ have partially
sequenced human complement factor B, which is a novel serine protease and
shows most similarity with plasminogen and rat intestine group-specific protease;
as stated in the text, the addition of complement sequences may be necessary
to identify the true phylogenetic relationships of plasminogen. Group-specific
protease is now known to derive from atypical mast cells of the intestine and,
in an excellent minireview on this topic, Woodbury and Neurath %5 describe a
different but homologous protease from rat peritoneum and skeletal muscle
mast cells. Interestingly, atypical mast cells do not contain heparin which is
known to interact with lysine residues and the atypical mast cell protease
contains almost 50% less lysine than the mast cell protease. Finally, Petersen
et al.>® have determined the amino-terminal sequence of protein Z from bovine
plasma whose homology with the other vitamin K-dependent plasma clotting
factors was previously inferred but not firmly proved by Prowse and Esnouf.%"
Protein Z contains y-carboxyglutamic acid, but seems only distantly related to
the other vitamin K-dependent factors.]
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