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Abstracl-The skewness criterion of phylogenetic structure in data is too sensitive to character 
state frequencies, is not sensitive enough to number of characters (degree of corroboration) and 
relies on counts of arbitrarily-resolved bifurcating trees. For these reasons it can give misleading 
results. Permutation tests lack those drawbacks and can be performed quickly by using approxi- 
mate parsimony calculations, but the test based on minimal tree length can imply strong 
structure in ambiguous data. A more satisfactory test is obtained by using a support measure 
which takes multiple trees into account. 

Introduction 

Following Fitch’s (19’79) early suggestion, Le Quesne (1989)) Huelsenbeck 
(1991) and Hillis (1991) have all recommended assessing the phylogenetic 
structure in systematic data according to the skewness of the distribution of tree 
lengths. We point out here that such evaluations can be misleading; arguments for 
that approach are not well-considered. 

The permutation method of Archie (1989) and Faith and Cranston (1991) 

seems more promising for this purpose, but it requires excessive effort and may 
underrate the departure of data from randomness. We describe a much less 
laborious implementation and a stronger evaluation. Most importantly, the exist- 
ing method may suggest significant structure for quite ambiguous data. 

To resolve this problem we introduce a test based on a new measure-total 
support-which takes multiple most parsimonious trees into account. Our fast 
method for approximating support may prove useful in analyses of very large data 
matrices. 

Skewness 

The distribution of tree lengths (DTL) . 1s obtained by finding the length’ of 
each bifurcating tree for the data; multifurcating trees are not included. When 
there are too many terminals to evaluate every tree, trees are sampled at random. 

1 Throughout, the smallest number of steps needed for the characters as coded and weighted to rvolvc 
on the tree. 
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The g, index (of Sokal and Rohlf, 1981) 1 IS used to quantifj skewness. It ia ~ppicAl\ 
negative when the distribution is left-skewed, that is, when the median exceeds tht 
mean. 

The skewness index itself is routine statistics; the further interpretation is not. 
Degree of negative skewness of the DTL is supposed to indicate strength of phylo- 
genetic signal (as Hill calls it). But it need not do so, as can he seen on comparing 
results from data matrices One and Two. 

One Two 

1111100000 
1111100000 
1111100000 
1111100000 
1111100000 
0000011111 
0000011111 
0000011111 
0000011111 

0000011111 

1100000000 
0011000000 
0000110000 
0000001100 
0000000011 
10 0 0 0 0 0 0 0 1 
0 1 10 0 0 0 0 0 0 

0001100000 
0000011000 
0000000110 

Rows are characters; columns are terminals. 
All 10 characters of One match the same division of the terminals. While One 

does not determine a fully resolved tree, the signal that it does provide is strong 
and definite. 

Two yields two distinct most parsimonious trees (using the exact-solution, 
i.e. command of Hennig86), each supported by five of the 10 characters. Those 
trees have no informative groups in common: their consensus (from the Hennig86 
nelsen command) is entirely unresolved. Two could be said to mix two incon- 
gruent signals, or to lack a coherent signal. Either way, the net signal is certainly 
weak. 

Exhaustive enumeration of bifurcating trees, the root (outgroup) being held 
fixed, provides the DTL of One. 

Steps 10 20 30 40 50 
Trees 11025 154 350 668 250 936 000 257 400 

This distribution was obtained using Farris’ dtl program. The skewness is g, = 
-0.288. 

Similar processing of Two gives: 

Steps 15 16 17 18 19 20 
Trees 30 2475 37 050 237 525 755 100 994 845 

Here, g, = -0.959. The skewness criterion produces the thoroughly unreasonable 
conclusion that ambiguous Two has a stronger signal than One. 

It is seen that DTL skewness can be more strongly influenced by the frequencies of 
states within characters than by congruence among characters. Characters dividing 
the terminals into large groups of similar size (as in One) make the DTL more 
symmetrical. Characters setting off small groups (as in Two) increase left-skewness. 
The implications of this effect have been neglected, as will be seen. 

DTL skewness also has the property of insensitivity to the number of characters. 
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The matrix comprising five copies of each of the characters of Two has the same 
skewness as Two. One shows just one type of character distribution.~ The DTL 
skewness is the same, whether that character distribution is represented one, 10 or 
50 times. 

The skewness-based assessment of weak signal in One may be reasonable when 
there is just one such character, but it is highly implausible when there are 50. A 
measure of strength of phylogenetic structure in data must surely reflect the degree 
to which conclusions are corroborated, but DTL skewness does not seem to do this. 

Permutation 

The approach of Archie (1989) and Faith and Cranston (1991) (hereinafter 
AFC) provides a significance test for phylogenetic structure. The underlying 
mathematics is discussed in more detail by Farris (1991), whose treatment we 
generally follow. 

Permutation methods compare the observed data to randomizations of 
those data. A randomization is a matrix generated by permuting (rearranging) 
the entries within each row (character) of the original data matrix. A separate 
permutation is chosen at random for each character, so that congruence among 
characters in a randomization is just that produced by chance associations. 

In the AFC procedure, congruence is assessed simply from the length of the 
most parsimonious tree(s) for a matrix, here for brevity termed the minimal 
length (ML). MLs are calculated for the observed data and for each of a sample 
comprising a number Wof randomizations. The MLs for some number E of those 
randomizations exceed that for the observed data. If the lower tail probability 
(error rate) cr’ = 1 - l$‘( Wt 1) is small enough (no greater than 5%, say), the data 
differ significantly from randomizations.3 

Evaluated against W = 999 randomizations (using the kara program, discussed 
later), Two yields LY’ = 470/1000-comfortably far from significance. The level of 
incongruence in Two is near the median of that resulting from random association 
of characters. One gives the very highly significant (Y’ = 1 /lOOO, a more satisfacton 
assessment than that suggested by skewness. 

Unlike DTL skewness, (Y’ is sensitive to the number of characters. Matrices having 
one, two and three of the characters of One give (Y’ values lOOO/lOOO, 7/1000 and 
l/ 1000, respectively, so reflecting degree or corroboration. But as (Y’ can be no less 
than l/( W t 1), that sensitivity is limited. It can be improved by the standardized 
score methods described below. 

This procedure lacks the peculiar sensitivity to state frequencies shown by DTL 
skewness because permutation does not change those frequencies. Randomizations 
differ from the observed data only in the joint-not marginal-frequencies of 
states. This is like the usual chi-square test of independence, in which expectations 
of joint frequencies are calculated with the marginals held at their observed values. 
It is instructive to extend that comparison. 

The chi-square could be performed by randomization, but that is unnecessary 
as distribution tables are available. Randomization is used with ML because of the 

L’ There might be two it apomorphies were specified. 
’ .Arrhic’s (1989) wording incorrectly implied significant structure when a’ is largeenough 
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difficulty of calculating the distribution directly. The two tests have the same formal 
null hypothesis. They employ different measures of departure from independence 
(randomness) because the chi-square is designed for a broader class of alternatives. 
The ML criterion is intended to identify hierarchic structure in particular. 

It might be supposed-’ that holding the marginal frequencies fixed rests on the 
assumption that they are fixed in nature. But, in fact, in both the chi-square and 
ML tests the observed values of those frequencies are used in order to assess 
just the correlations among variables. The null hypothesis, that is, postulates only 
independence, not anything about the marginal distributions. 

It is possible, of course, to include specific marginal expectations in a null 
hypothesis, but this is not a useful way to study congruence, which is a kind of 
correlation. A test of such a hypothesis would reject on data not matching the 
hypothesized marginals, regardless of correlations among variables. 

Models 

Hillis (1991) proposed a skewness-based significance test. Conclude significant 
structure when g, for the data DTL is below the fifth percentile (say) of DTL g, for 
matrices produced under his null model. The characters of such matrices are 
generated randomly and independently, with all states having the same expected 
frequency. 

Data depart from that model when characters are highly congruent, but also 
simply when states have different frequencies. As skewness is influenced by both 
congruence and state frequency, Hillis’ test confounds the two effects. 

A character with equally abundant states might, of course, be poorly correlated 
with phylogenetic relationships. But it also might well distinguish a large mono- 
phyletic group. It is obvious that characters whose states depart from equal 
frequency occur in real data. But that leaves open the question of whether those 
characters are congruent, and it is nonsense to view them as providing a strong 
phylogenetic signal when they are poorly congruent. 

Reckoning phylogenetic signal by departure of states from equal frequency is 
thus surely ill-founded. Further, if for some reason one wanted to test such 
departure, a conventional chi-square test of equality of marginal frequencies would 
suffice; no new method would be needed. 

Huelsenbeck’s (1991) advocacy of skewness was based on results from simula- 
tions. The most parsimonious tree for simulated data, he found, is likely to be 
accurate (match the simulated tree) when the DTL is strongly left-skewed, less so 
otherwise. 

In those simulations, all branches of the tree had the same probability of 
character change. Accuracy of the most parsimonious tree is determined by that 
probability; it is best for intermediate values. If the change probability is too small, 
the simulated characters are likely to be invariable or autapomorphic. If it is too 
large, the character distributions become independent of the tree. 

Skewness is likewise determined by the change probability. It is 0 when all 
characters are invariable or autapomorphic. It is strongest for intermediate 
change probabilities, when states are most likely to depart from equal frequencies. 

4 Both W. Maddison and D. Faith (!) did so at the 1991 meeting of this Society 
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Skewness is weak when the change probability is large, for then the expected 

frequencies of states become equal--as in Hillis’ null model. 
Accuracy of the most parsimonious tree is thus correlated with DTL skewness in 

Huelsenbeck’s study. But that correlation is not general, for it results from a 
restriction of his simulations: that al! branches have the same change probability. 

Data such as One might, for example, be found when the studied species 
comprise two anciently separated but recently diversified groups. Then character 
change would be much more likely in the tree’s basal branches than in others, 
SQ that Huelsenbeck’s assumption would not apply. Under those circumstances 
parsimony analysis might well correctly identify those groups, despite the weak 
skewness of the DTL. 

Le Quesne (1989) compared real to randomly generated matrices, finding 
that DTLs of the “ratter showed weaker skewnesss and lower variance. His random 
matrices were produced by permutation (although he did not use that term) of the 
real data: so that state-frequency differences did not confound his contrasts. 

Nonetheless, Le Quesne did not draw his conclusion carefully enough (p. 406) : 

Large, it must be added, compared to random data with the same array of state 
frequencies. Without that qualification, the difficulty exemplified by One and Two 
can easily arise. 

Speed 

While free of that difficulty, the permutation method has problems of its own, 
the most obvious of which is effort. Since a’ can be no smaller than l/ ( W+ 1)) MLs’ 
must be found for at least 99 randomizarions to demonstrate a highly significant 
departure from randomness-and more for higher significance. 

Archie (1989) and Faith and Cranston (199I) calculated most parsimonious 
trees as exactly as they could with PAUP: by branch and bound for small matrices, 
by global branch-swapping for larger ones. They had to prepare a separate input 
matrix for each randomization of data; 3’ values were obtained by gleaning results 
from PAUP outputs. For even a moderately large data matrix, all this might easily 
take a week. 

Most of that work is unnecessary. The test requires only the length of a most 
parsimonious tree for each matrix, whereas much of the time expended by PAUP 
was spent on identifying multiple trees. For exact parsimony calculations it would 
be several times faster to use :he Hennig86 ie command, which is designed. to find 
,just one most parsimonious tree. 

But Hennig86.s single-pass hennig command is much faster still, while the 
length that it yields seldom departs from the exact ML by more than a few percent. 
The test uses only the number of randomizations whose MLs exceed that for the 
data. If the same method is a plied to both kinds of matrices, such small approxi- 
mation differences are unlikely to have much effect on that number. 

Finally, a suitable program can generate and process randomization internally, 
obviating the need to handle numecous input matrices and output listings. We 
have combined these features with a simple hennig algorithm in the kara program, 
part of whose output is illustrated in Fig. 1. This is a bar-chart of the distribution of 
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) IO 20 30 40 50 60 70 80 90 100 & hush 

Fig. 1. ML distribution for the data of Crisci et al. (1990). 

MLs obtained from 9999 randomizations of the restriction-site data of Crisci et al. 
(1990). MLs are shown as fractions of the length of the unresolved tree.” 

The left-most bar of that chart represents the ML for the observed data. As this 
is well separated from the rest of the distribution, there is little chance that the 
approximate parsimony calculations have produced an incorrect conclusion. The 
approximation is equally safe for poorly-structured data such as Two: the data ML is 
well within the distribution. It might be more problematical in cases of marginal 
significance-but then those are problematical anyway. 

This approach makes the permutation method much easier to use. For the data 
of Crisci et al., which have n = 65 characters and t = 11 terminals, 10 000 ML calcula- 
tions require just 915 seconds on a 20 megahertz 80386DX (to which timings refer 
throughout). Young’s (1981) data, with 12 = 41 and t = 34, take 577 seconds for 
1000.6 Dahlgren and Bremer’s (1985), with n = 61 and t = 50, take 342 seconds 
for 100. The present program is a prototype, and we expect that its speed can be 
further improved. 

Faith and Cranston (1991) suggested (but did not pursue) the alternative of 
comparing quickly approximated MLs for randomizations to the (or a more) exact 
ML for the observed data. They felt that this would provide a conservative test, that 
is, one less likely to yield specious conclusions of significant difference. But if any- 
thing their proposal would have the opposite effect. 

In a case of near-significance the observed data would show smaller ML than 
most of the randomizations, supposing all MLs to be exact. As approximate MLs 
exceed corresponding exact values, Faith and Cranston’s suggested procedure 
would increase the apparent difference between real and randomized matrices. 
This would worsen the risk of a false conclusion of significant congruence. 

5 For given data, no tree is longer than the bush, and permutation does not affect bush length 

(cf. Farris, 1991). 
6 In view of Riggins and Farris’ (1983) cornmen& on Young’s coding, his data are treated as nonadditive 

throughout. 
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Departure 

Ideally the permutation test would employ the exact distribution of MLs for the 
statistical population of possible randomizations. A sample of randomizations is 
used instead because it is not presently feasible to calculate that exact distribution 

in any but simple cases. 
,4 test based on the exact distribution would have as its error rate lower tail 

probability cr. the population probability that a randomization of the observed 
data yields ML. no greater than that for the data. For some limited number W of 
randomizations, this population (Y may be much less than l/( W + 1). When this 
occurs, the LY’ value from the sampling technique will understate the departure of’ 
the data from randomness. 

An improved evaluation can sometimes be obtained by approximating the popu- 
lation LY. b’e will discuss methods based on the standardized score Z = (A - L),/S. 
Here, I. is the ML for the observed data; A and Sare, respectively, the mean and the 
standard deviation of MLs from the sample of W randomizations. Suppose that W 
is reasonably large (99 or more), so that this sample % is likely to be close to its 
population value. 

Archie’s (1989) suggested use of Student’s I-test is in this category: the t statistic 
amounts to Z. Unfortunately, the standard t tables would yield accurate tail proba- 
bilities (significance levels) only if lengths from randomizations were normally 
distributed. Archie correctly noted that requirement, but did not maintain that it is 
satisfied. That it is not generally satisfied can be seen from the exact distributions 
tabulated by Farris (1991) and from the sample distribution figured here. 

Those distributions are left-skewed (this has little to do with DTL skewness), with 
a left tail thicker than that of a normal distribution. Tail probabilities from the 
standard t tables may then be considerably smaller than the accurate values; their 
use would increase the chance of an erroneous finding of significant congruence. 
It is safer to employ a conservative approximation to the tail probability, that is, one 
bounded below by the population (Y. 

A very conservative approximation a!’ = (l/Z)? is given directly by Chebyshev‘s 
theorem (cf. Walpole, 1983), which uses no information about the form of the 
exact distribution. A much closer, though typically still quite conservative. value 
cr* = YL can be obtained by using the fact that the exact distribution falls off faster 
than exponentially in the left tail. The latter approximation is not reliably conservative 
ii‘ there are too few informative characters, but this is seldom a drawhack irl 
practice. 

Neither of these formulae is useful when % is small or negative. But when % is 
big enough, using (Y” or CY* can considerably reduce the effort of establishing high 
significance for a large matrix. An example is provided by Hamby’s (1990) ribo- 
somal RNA sequence data. 

These data have 471 sites for 60 terminals, and it takes nearly 38 minutes to find 
cr’ = l,/lOO. But in the bar-chart (Fig. 2) the ML for the observed data is widely 
separated from a narrowly concentrated distribution of MLs for randomiza- 
tions. This makes for a large Z = 65.7, so that even cy” is only about 0.00023. TO 
obtain such a significant CY’ would require W > 4300 and over 27 hours of 
computation. No feasible amount of computer time would suffice for (Y’ to match 
cy* = ‘1 c) x lO-Y~l, i.. 
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Because LY” and cy* are conservative, the sample LY’ can he smaller than either; the 

smallest value should be used to determine the significance level for a data matrix. 

As an example take Young’s ( 1981) morphological data (Fig. 3). In this case the 

ML for the real data is much nearer the distribution of MLs for randomizations, 
so that % is only 8.06, U’ = 0.015. and (Y * = 3.2 X lO--‘. The (Y’ found from 9999 
randomizations is more significant at lo-‘. 

% continues to increase as congruent characters are added to data. Matrices 
having five, 10, 20 and 50 of the characters of One yield % values of 6.3, 103, 17.1 
and 29.0, respectively. Using 9999 randomizations all those matrices have the same 

a’ value, lo-.I. When thr number of characters is large, the standardized score thlls 
provides a more sensitive indication of strength ofcorrohol-ation. 



Faith and Cranston (1991) advocated (1 - a’) as an index of “cladistic 

covariation”7 (hierarchic structure). This would be 0.99 for Hamhy’s data. 0.9999 

for Young’s The latter is larger because the feasible number of randomizations 
is greater for the smaller matrix, but that hardly indicates better structure. Taking 
the precaurion of fixing W at (say) 100, ( I - (u’) would be the same Ii)r thr, two 

matrices. 
That t.valuation does not reflect the greatc1- departure from random11t.ss iI1 

Hamby’s rlata. evident on comparing Figs 2 and 3. It would probably bc mo1-~’ 

riseful to base an index on standardized scores. Here. however. we concentratt. OII 
tt’sts rathu than indices. Choice of a measure c)f structure should in any case takes 

the r-esults of the next section into account. 

support 

A diffcrenr kind of difficulty with the AM: method is illustratrd b\, data r1tatriu 

Three. As before, rows arc characters. 

I 1 1 1 1 0 0 0 0 0 
I 1 1 1 I 0 0 0 0 0 
0 1 1 1 I I 0 0 0 0 
0 1 1 1 1 1 0 0 0 0 

0 0 1 1 1 1 1 0 0 0 

0 0 I 1 I 1 1 0 0 0 
0 0 0 I I 1 I I 0 0 
0 0 II 1 I 1 1 1 0 0 
0 0 0 C) I 1 I 1 I 0 
0 0 0 0 I 1 I I I 0 

‘Three yields 10 distinct most parsimonius tree’s, whose consenscis is cntii-rl\. 

u11resolvetl. No well-defined h&art hit str11c.turc is prcscn1. \ri’t CY’ = I 1000. 
showing a very highly significant departure fi-on1 randomness. 

N’hilr Three indeed gives shorter trees than clo most of its ra1ldo1ni~atiorls~ this 
need nor mean that the data show unambiyuous hierarchic structure. B’hat ir 

tit~c~dcc! i5 2 mt2sure that reflects such structu1.4.. M’c will tie&e ant* ti-om rti~~tho(l4 
r~sed in earlier work. 

.-\mbiguiry is usually detected by finding multiple most parsimonious INYY, 

the unambiguous part of the structur-e (that wmn~m to the sta\~~~al trtsc’sf t)cGng 
rc~covercd as a consensus tree. Sometimes 1ree5 longer bv some dnio1111~ C1lt’ 

included as well, although the choice of such ;I xdue is acldorn cxplailiet!. 

F;rrris et al. ( 1982) approached that problem of‘ c-hoice b!- fi)rmali7ing- (Y~I litsr 
ideas from distance analyses. Adding trees in ortlrl- of c!ecrcasing goodness 01 fit. 
t!icxy calciilatt~c! a series of consensus trees, noting thr !e\.t*l of fit at which gro1ip\ 

\verc losl from the consens11s. They s1iggrsted usiiig the coiiwism of ttiow 11 t’c.\ 
ctpr-ated from others by a large gap in good1iess of fit (cf. Farris, 19X;)). 

Hr~‘inci. ( 198X) tmployed similar sc%I-ie\ O~C~~IISCII~~I~ trt33 ill !~;irsinlo~i? ;Irl:t1>\tsa. 
adding trees in ordei- of increasing lcngtli. C’nlili<* Fai-i-is ~‘1 at., hc 1154 “htric.t“ 
COI~S~S~I~ trrrs. That ~vpr of conse11\us is CM I(> calc1llatc, and ~7 use it ht~i-t,. 
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It provides a minimal assessment of common structure-perhaps too much so- 
but other available consensus techniques have faults as well. 

On this view, a group on a considered most parsimonious tree is supported 
by strong evidence when a large increase in length of included trees is required 
before that group is lost in the consensus. The strict consensus lacks any group 
absent from any included tree. We thus define the &mm .support ot‘ such a group 

as the difference in length between the considered tree and the shortest tree(s) 
lacking that group.8 

Assessing support in this way offers some advantages. Strength of evidence for 
monophyly of a group is usually equated to number of synapomorphies. But that 
number may not be clearly defined if there are several parsimonious reconstruc- 
tions of character states for the stem species of the tree. One might take evidence as 
the minimum number of synapomorphies among reconstructions. But even this 
may overstate the case, if some most parsimonious tree lacks the group. 

The support measure takes both these problems into account. When characters 
are perfectly congruent and the reconstruction unique, the Bremer support of a 
group is the (possibly weighted) sum of character changes that set off that group, 
that is, the number of synapomorphies. Otherwise, this amount is reduced to the 
degree that alternative groupings or character interpretations are parsimonious. It 

is zero when the group is absent from some most parsimonious tree. 
Faith (1991) has described a support-based” test for evidence of monophyly 

of specific groups. We will not pursue that subject here, but employ support to 
evaluate hierarchic structure in the data as a whole. For this purpose we use total 
supporl, the sum of group supports. 

Total support is typically greater in well-structured data than in randomizations. 
Bearing this is mind, the new measure is easily incorporated into a permutation 
test. If a number Xof the Wrandomizations yield total support no less than of the 
observed data, then the error rate on concluding significant structure is upper tail 
probability (Y:= (X+ l)/( Wt 1). 

Standardized scores for total support can be used in Chebyshev and exponential 
approximations to the population upper tail probability cy,. Unlike the ML test, we 
have not yet encountered a real data matrix for which aTis much less than LY:. but 
this lack seems unlikely to be permanent. 

For a data matrix of any great size, it is not practical to evaluate support exactly 
within a permutation method. Fortunately, an approximation may reasonably be 
used. Notice that c$ depends just on the number of randomizations showing total 
support no less than than of the observed data. A small cx: should then give a 
reliable indication of significant structure, provided only that the approximated 
total support is large only for a well-structured matrix. 

To obtain a fast approximation in kara we use a simplified branch-swapping 
algorithm. It considers just trees that can be obtained from the hennig tree by 
replacing branches one at a time. With W= 99 the support test of Young’s (1981) 
data requires 244 seconds, less than 2.5 seconds per matrix. In contrast, the bb 

8 Donoghue et al. (1992) called Bremer’s length difference “decay”. That seems an unfortunate choice: 

the most strongly supported groups would he most decayed. 
9 Not mentioning consensus trees or connected work, Faith attributed the measure to a suggrstion bv 

Felsenstein. 
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command of Hennig86 takes 184 seconds just to produce 100 most parsimonious 
trees for the observed data. 

While no doubt capable of improvement, that method seems to give satisfactory 
results. For ambiguous Three kara gives the thoroughly non-significant a: = 
lOOO/lOOO. Whenever the consensus of most parsimonious trees is unresolved, 
total support is zero, so that the population a, is necessarily unity. For One (Y: = 
1/ 1000, as is surely appropriate. 

For a practical example, compare Young’s (1981) morphological data with 
Hamby’s (1990) rRNA sequence data. Both pertain to relationships among higher 
groups of angiosperms. The ML test assesses Young’s matrix as very highly 
significantly structured. But Riggins and Farris (1983), who analyzed Young’s data 
in detail, found them quite feebly-structured. 

The support test of Young’s data gives (Y: = 84/100-worse than the majority of 
randomizations and far from significance. For Hamby’s data cr: = l/100, showing 
highly significant hierarchic structure. As with Three, the support test seems better 
able to recognize poorly structured data than is the test based only on minimal length. 

With extremely large matrices it has until now often been impractical to find 
more than a single approximately most parsimonious tree. As this gives no 
indication of ambiguity, even an approximation to support would be a consider- 
able benefit. Because of its speed, kara’s support approximation is feasible for large 
matrices and so may prove valuable in such cases. 

A full assessment of strength of evidence should take the reliability of characters 
into account, but evaluation of characters may itself be influenced by congruence. 
While the present program does not do so, support can be calculated with con- 
gruence-based weights. This would complicate the test procedure somewhat, as 
weights would vary among randomizations. It nonetheless seems feasible to use a 
weighted support measure, and we plan to investigate this possibility elsewhere. 

statistics 
A last argument for skewness (cf. Hillis, 1991) fits here because it concerns multiple 

trees, but it also serves to summarize the thinking behind the skewness approach. 
A strongly left-skewed DTL (this reasoning runs) will have a long, thin left tail, in 

which case relatively few trees will be most parsimonious or nearly so. If the DTL is 
less skewed, the left tail will be less attenuated, so that relatively many trees 
have minimal or near-minimal length. DTL skewness would thus seem to measure 
ambiguity of data in the same sense that support does. 

But skewness does not measure just the ends of tails. Determined predominantly 
by the central mass of the distribution, skewness is negative when the median 
exceeds the mean, whether the left tail is greatly attenuated or not. That difficulty 
is particularly obvious when there are many terminals and DTL skewness is esti- 
mated from a random sample of possible bifurcating trees. 

The skewness index itself can be estimated quite precisely from such a sample. 
But for as few as 20 terminals, there are over 2.2 X 102” bifurcating trees, and even 
a sample of 1000 000 trees would comprise only a tiny fraction of the possibilities.1’1 

I” In PAUP, recommended for this purpose by Hillis (1991) and Huelsenbeck (12991). the drfault is 
1000 trees. 
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If the left tail is very attenuated, the sample is unlikely to capture much of it, let 
alone the nearly and most parsimonious trees in particular. 

The very trees on which the reasoning depends have little chance of affecting the 
estimated skewness. To make such an argument properly, a more suitable index for 

assessing the DTL would need to be developed. But there is little to be gained 
by doing so, for the DTL itself can be misleading. According to the DTLs, highly- 
structured One has a much greater number of most parsimonious trees than does 
ambiguous Two. 

The DTL is based only on bifurcating trees. One’s single most parsimonious tree 
is poorly resolved, and so corresponds to many “‘distinct“ bifurcating arrange- 

ments. Each of Two’s most parsimonious trees is better resolved, and they are rep- 
resented in the DTL by fewer bifurcating schemes. Counting arbitrary resolutions 
as distinct leads to exactly the wrong assessment of ambiguity in these matrices. 

Rnterpreting DTL skewness as strength of phylogenetic structure, in short. 
consists of using a poorly-chosen statistic to summarize a poorly-chosen distribu- 

tion. 
Recent emphasis on statistical methods has a parallel in earlier stress on quanti- 

tative approaches. Valuable as it was, the earlier idea nonetheless fostered 
a plethora of now-vanished phenetic techniques. All the methods discussed here 
are statistical in some sense. That does not mean that they are all equally useful in 

hylogenetic systematics. 
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