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Surface expression of CD4 or CD8 is commonly used
to identify T-cell subsets that recognize antigen
presented by class II MHC or class I MHC, respectively.
This holds true for T cells that respond to allogeneic
MHC molecules that are directly recognized as
foreign, as well as peptides from allogeneic MHC
molecules that are indirectly presented by self MHC
molecules. CD4 or CD8 expression was initially
believed to define cytokine secreting helper T cells
or cytotoxic cells, respectively. However, this associa-
tion of phenotype and function is not absolute, in that
CD4+ cells may possess lytic activity and CD8+ cells
secrete cytokines, notably IFNg. Recently, additional
fundamental differences in the immunobiology of
these T-cell subsets have been identified. These
include differences in costimulatory requirements,
cytokine responsiveness, cytokine production, cell
survival, and the maintenance of memory. This review
will survey these differences, emphasizing alloreac-
tive T-cell responses as well as relevant observations
that have been made in other systems.
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Functions of CD4 and CD8

The concept that subpopulations of T cells could be delin-

eated by specific cell surface markers was first estab-

lished in 1975 by Cantor and Boyse (1), who defined

murine T-cell subsets based on Lyt1 and Lyt2 antigens.

Their work, and subsequent independent studies with

both mouse and human cell lines established that this

phenotypic difference between T cells had a functional

importance as well, since helper CD4þ T cells (L3T4)

responded exclusively to antigens (Ag) presented by class II

MHC, while CD8 (Lyt2) cytotoxic T cells recognized Ag in

the context of class I MHC presentation (2–5). Indeed,

monoclonal antibodies (mAb) specific for CD8 and CD4

blocked T-cell interactions with class I and class II MHC–Ag

complexes, indicating an essential role for CD4 and CD8

as coreceptors for T-cell receptor (TCR) recognition of Ag in

the context of MHC [reviewed in (6)]. Both coreceptors

bind to their respective MHC molecule at sites distal from

the polymorphic antigen binding domains: CD4 binds to the

b2 domain of MHC class II, while the binding site of CD8

has been mapped to the a3 domain of MHC class I.

Coreceptor involvement with TCR engagement increases

the affinity of the TCR for Ag-MHC complexes, thereby

enhancing the activation of T cells 100-fold or more (7).

Though CD4 and CD8 both mediate coreceptor function

and are members of the immunoglobulin superfamily,

their structures differ greatly from one another. CD4 is

a 55–60-kDa monomeric glycoprotein consisting of 4

immunoglobulin-like domains with a flexible hinge between

the second and third domains (7,8). In contrast, CD8 is

expressed as a disulfide-linked homodimer of two a chains

(38 kDa) or as a heterodimer of a and b chains (28–30 kDa),

with each chain containing one immunoglobulin-like

domain (8). The CD8 isoforms are expressed in specific

contexts, with thymocytes and peripheral T cells express-

ing CD8ab, while intraepithelial lymphocytes in gut

express either CD8aa or CD8ab (9,10). CD4 and CD8

exert their coreceptor function through their association

with p56lck (Lck), a SRC family tyrosine kinase that phos-

phorylates several intracellular substrates, thereby initiat-

ing the signaling cascade of T-cell activation. Lck itself is

positively regulated by the common leukocyte antigen,

CD45. Signaling through CD45 activates a tyrosine phos-

phatase, which then dephosphorylates a COOH-terminal

tyrosine that negatively regulates Lck function. Engage-

ment of the TCR activates Lck, which in turn phosphoryl-

ates the immunoreceptor tyrosine-based activation motifs

(ITAMS) located at the cytoplasmic tail of the CD3 chains.

This allows for binding of the Syk family protein kinase

ZAP 70 to the z chains of the TCR, thus providing protein

kinase function for the TCR itself, which results in a series

of second messenger cascades (11). However, activation

of Lck through CD4 and CD8 is highly regulated and can

be affected by the isoform of CD45 expressed by the

T cell, the length of contact between Ag and TCR, and the
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presence of costimulatory molecules such as CD28

(6,7,12). Fundamental differences in CD4 and CD8 struc-

ture also play a role, as signaling initiated through CD4 or

CD8ab results in a greater activation of Lck than signaling

through CD8aa (6,7). In addition, CD8 association with Lck

appears to play an important role in the rapid activation of

effector and memory T lymphocytes (13).

Recent studies have demonstrated a role for CD4 and

CD8 coreceptors in lipid raft formation. These rafts,

which are rich in cholesterol and glycosphingolipids,

seclude specific proteins while excluding others, and

serve as platforms on the plasma membrane to facilitate

signaling (14). The sequestering of Lck within lipid rafts in

particular appears to regulate activation of the cell. For

instance, formation of lipid rafts stabilizes the association

of CD8 and Lck (15). Importantly, CD45 is excluded from

rafts, and its tyrosine phosphatase activity may activate

only coreceptor-associated Lck sequestered at the edge

of lipid rafts (14). In fact, visualization of immune synapse

formation showed that active Lck is only detected at the

periphery of synapse formation (16). The role of Lck and

coreceptors in the TCR mediated signaling appears to be

brief, since activated Lck and CD4 are no longer visualized

in the mature immune synapse (16,17).

CD8+ T Cells Have Survival Advantages Over
CD4+ T Cells

In both mouse (18) and man (19), cardiac allograft rejection

is characterized by the dominant presence of CD8þ cells

over CD4þ cells among graft infiltrating cell (GIC) popula-

tions. This may reflect preferential expansion of donor-

specific CD8þ cells in secondary lymphoid tissues (18) as

well as preferential apoptosis of CD4þ cells among the

GIC (19). Whether preferential recruitment and/or reten-

tion (20,21) of CD8þ cells contributes to this dominance

has not been established. The CD8þ GIC enrichment may

also be due to the fact that CD8þ cells have a selective

survival advantage over CD4þ cells. In infectious disease

models, CD8þ cells have been shown to have a greater

proliferative capacity than CD4þ cells (22) and may continue

to proliferate once the antigenic stimulus has been

removed (23). Further, CD8þ, but not CD4þ cells, may

undergo ‘bystander’ activation in response to bacterial

pathogens (24). Indeed, CD4þ cells appear to have an

intrinsically lower capacity for survival in general, which is

reflected by their gradual disappearance in thymectomized

animals and an increased sensitivity to apoptosis relative to

CD8þ cells (25). This is further emphasized by the finding

that virus-specific memory CD8þ cells persist in stable

numbers, whereas memory CD4þ cells decline with time

(26). The persistence of memory CD8þ cells is likely due to

high-level expression of the anti-apoptotic protein Bcl-2

(27). Collectively, these observations indicate that CD8þ

cells are generally ‘heartier’ than their CD4þ counterparts.

CD4+ and CD8+ T-Cell Interactions

Following the historic association of T-cell phenotype and

function (1–5), the concept that CD4þ cells provided the

necessary ‘help’ for CD8þ CTL received support from a

number of experimental systems (28–37). The nature of

the help provided by CD4þ cells for CD8þ CTL expansion

and development has been attributed to IL-2 production

(28) and CD40 ligand (CD40L) expression (35,36) by CD4þ

cells. CD40L expression by CD4þ cells is believed to acti-

vate CD40 expressing APC, thereby enhancing their

stimulatory capacity for CD8þ CTL (35,36). This notion of

CD4þ and CD8þ cell interactions was applied to allograft

rejection, where it became widely accepted that graft-

reactive CD8þ CTL served as the terminal effector cell

in the rejection response, while CD4þ cells provided the

signals required for CTL development and expansion

[reviewed in (38)]. This paradigm was supported by stud-

ies where in vivo treatment with anti-CD4 mAb markedly

prolonged allograft survival (18,39–42). Indeed, transient

depletion of CD4þ cells in cardiac allograft recipients elim-

inates IL-2 producing helper cells, prevents CTL activation,

and eliminates the development of intragraft inflammatory

endothelia, which is required for mononuclear cell infiltra-

tion into the graft (18). However, it should be noted that

CD8þ effector cells may develop independently of CD4þ

help, and that this process may be influenced by the route

of Ag delivery (43), the frequency of the CD8þ effector

cells (44,45), and the avidity of the TCR for Ag (46). CD4-

independent CD8 responses have been reported in models

of contact hypersensitivity (47), autoimmune diabetes

(48), tumor rejection (49), and islet xenograft rejection

(50), indicating that this phenomenon is widespread.

We reported that IFNg-deficient (IFNg –/–) cardiac allograft

recipients develop CD4-independent CD8þ effector cells

that are insensitive to treatment with anti-CD40L mAb

(51). This contrasts with cardiac allograft rejection in

wild-type (WT) recipients, which is prevented by treat-

ment with either anti-CD4 or anti-CD40L mAb. Treatment

of WT allograft recipients with anti-CD4 or anti-CD40L

mAb prevents CD8þ cell activation, yet allows these

cells to be maintained in a quiescent precursor state

(18,52). It is of interest that CD8þ cells represent a major

source of IFNg in WT cardiac allograft recipients (53), yet

the removal of this Th1 cytokine markedly influences the

behavior of CD8þ effector cells, making them much more

difficult to suppress. Unlike their CD8þ counterparts,

CD4þ effector cells in IFNg –/– mice are readily sup-

pressed by anti-CD40L therapy (51). Similar observations

were made by Newell et al. (54), who identified costimula-

tion blockade-resistant CD8þ, but not CD4þ cells in an

intestinal transplant model using IFNg sufficient CD4 –/– vs.

CD8 –/– mice as recipients. In this system, membrane

lymphotoxin (LT) serves as a critical effector molecule,

in that blocking membrane LT with a LT receptor

fusion protein inhibits rejection (55). Hence, under certain

Csencsits and Bishop

108 American Journal of Transplantation 2003; 3: 107--115



circumstances CD4-independent, costimulation blockade-

resistant CD8þ cells emerge that may be less susceptible

to immunosuppressive therapies than are CD4þ cells.

Whether these cells represent a distinct or differentiated

subset of CD8þ cells is not known; however, costimula-

tion blockade-resistant CD8þ cells have been reported to

express the surface marker, asialo GM1 (56). It should

also be noted that the appearance of costimulatory

blockade-resistant CD8þ cells may be influenced by the

mouse strain employed as the transplant recipient. Indeed,

Williams et al. (57) demonstrated that C57BL/6, but not

C3H/HeJ mice develop costimulation blockade-resistant

CTL and IFNg-producing cells following skin grafting.

The idea that the CD8þ CTL represents ‘the’ terminal

effector cell in allograft rejection (38) was initially called

into question by several reports that documented that

CD4þ cells could mediate rejection independently of

CD8þ cells (58–62). The mechanism(s) by which CD4þ

T cells mediate rejection have not been completely defined,

but polarized CD4þ cells that secrete either IFNg (Th1) or

IL-4 (Th2) are equally effective at inducing cardiac allograft

rejection (63). CD4þ Th1 likely mediate tissue damage

through a delayed type hypersensitivity (DTH) response

(64), as well as by promoting graft infiltration and

up-regulating the graft’s MHC for immune recognition by

graft reactive T cells (65). However, the mechanisms by

which CD4þ Th2 mediate rejection are less clear. We have

reported that depletion of CD8þ cells induces Th2 cytokine

production by CD4þ cells within cardiac allografts, which

is associated with the accumulation of eosinophils in the

transplant (59). Eosinophils and Th2 cytokines are not

readily detectable in unmodified cardiac allograft rejection,

where CD8þ cells and Th1 cytokines dominate the

response (18,53,59). This observation was further

explored by Braun et al. (66), who reported that IFNg
production by CD8þ cells inhibited IL-5 production by

CD4þ cells, which was responsible for the eosinophilia

within rejecting cardiac transplants. Hence, CD8þ cells

may negatively regulate cytokine production by CD4þ

cells. CD8þ cells that have been polarized to produce

Th2 cytokines also mediate cardiac allograft rejection,

which is characterized by an eosinophil influx (67). Further,

the CD4-independent, anti-CD40L-resistant CD8þ cells

that mediate cardiac allograft rejection in IFNg –/– mice

recruit numerous eosinophils and neutrophils into the

graft (51). However, eosinophils are not necessary for

rejection in the IFNg –/– mouse, since neutralizing

IL-4 abrogates eosinophil accumulation but does not

prevent rejection (51). Mechanisms by which eosinophils

may contribute to acute allograft rejection have been

recently reviewed (68), and eosinophils have been

implicated in chronic skin allograft rejection as well (69).

Hence, it appears that Th2 cytokine production by either

CD4þ or CD8þ cells results in ‘nontraditional’ mechanisms

of graft rejection, thereby detracting from the once

popular idea that Th2 may be beneficial in the context of

transplantation (70).

Collectively, these observations raise important points

regarding CD4þ/CD8þ T-cell interactions in transplant-

ation: First, transplant immunologists are accustomed to

the processes by which CD4þ cells regulate CD8þ T-cell

behavior and the rejection response [reviewed in (71)].

However, we are just beginning to understand CD8þ

T-cell regulation of CD4þ cell behavior and how this may

influence the composition of GIC. Second, under certain

conditions, CD8þ T cells have a mind of their own and

often choose not to play by what we view as the immuno-

logic rules.

Cytokine Regulation of CD4+ and CD8+

T Cells

Since the initial description of mouse CD4þ Th1 and Th2

clones (72), it has been well established that polarized

IFNg-producing Th1 and IL-4-producing Th2 may be

induced from heterogeneous populations of cells in both

mouse and man [reviewed in (73–75)]. While this was

originally found with CD4þ cells, it became apparent that

CD8þ T cells could also assume these polarized pheno-

types (76). Several factors are involved in Th1 vs. Th2

differentiation, and the local cytokine milieu markedly

influences which phenotype a T cell will adopt: IL-12 and

IFNg favor Th1 and IL4 favors Th2 development (74,75).

The down-stream regulators or ‘master switches’ for Th1

and Th2 development are the transcription factors T-bet

and GATA-3, respectively [reviewed in (75)]. GATA-3 is

strongly associated with Th2 differentiation, IL-4 produc-

tion and Stat 6 activation, and is not expressed in Th1 cells

(77–79). T-bet is expressed in Th1, but not Th2, and leads

to strong transactivation of the IFNg gene (80). Indeed,

transduction of T-bet into polarized Th2 converts these

cells into IFNg-producing Th1 and represses IL-4 and IL-5

production (80).

We have reported that alloreactive CD8þ cells do not

require biologically active IL-12p70 to differentiate into

IFNg-producing Th1 (53), suggesting that the Th1 pheno-

type represents the default pathway for CD8þ cells.

Indeed, CD8þ cells do not require signaling through Stat 4

for IFNg production when stimulated through the TCR,

whereas CD4þ cells do (81). Several factors may be

involved in the predisposition of CD8þ cells to acquire the

Th1 phenotype. For example, the IFNg promoter has been

shown to remain demethylated for prolonged periods

of time in CD8þ cells, even in the absence of repeated

TCR stimulation, favoring transcription of the IFNg gene

(82). Further, the IL-18 receptor (IL-18R) has been

reported to be expressed at higher levels on CD8þ cells

than on CD4þ cells (83). Since IL-18 shares Th1-inducing

activity with IL-12 [reviewed in (84)], preferential expres-

sion of IL-18R by CD8þ cells over CD4þ cells may explain

the differential responsiveness of these T-cell subsets to

this cytokine (85). Specifically, adding IL-18, but not IL-12

to primary mixed lymphocyte cultures (MLC) results in
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preferential expansion of CD8þ cells that produce 20- to

30-fold more IFNg upon secondary stimulation (85).

Finally, while the p40 subunit of IL-12 is antagonistic for

biologically active IL-12p70 on cells that have been stimu-

lated with mitogens or exogenous Ag (86), several reports

indicate that IL-12p40 may be stimulatory (53,87–89).

Indeed, we have found that alloreactive CD8þ cells

respond to IL-12p40 with increased IFNg production both

in vitro (87) and in vivo (53). Using p35 –/– and p40 –/– mice

as cardiac allograft recipients, we found that IL-12p40 may

substitute for IL-12p70 in promoting IFNg-producing CD8þ

cells (53). While not yet tested, it is interesting to specu-

late that these in vivo effects of IL-12p40 may result from

the ability of p40 to complex with p19, yielding the com-

posite cytokine IL-23 (90). Similarly to IL-12, IL-23 stimu-

lates IFNg production. If IL-23 mediates the stimulatory

effects of p40 on IFNg production in vivo, our observations

(53) would predict that IL-23 has preferential activity on

alloreactive CD8þ T cells over CD4þ cells.

Glimcher’s group recently reported that the Th1-inducing

transcription factor T-bet is required for IFNg production by

CD4þ and NK cells, but not by CD8þ cells (91). This very

interesting observation sheds further light on why CD8þ

cells acquire such a recalcitrant Th1 phenotype that is not

dependent on IL-12p70 (53) or Stat 4 activation (81).

Further piecing the puzzle together is a recent report

from Flavell’s group (92), which demonstrates that the

Th1-inhibiting activity of TGFb (93) is likely due to the

ability of TGFb to inhibit T-bet expression. Since CD4þ,

but not CD8þ cells are dependent on T-bet for IFNg pro-

duction, it now makes biologic sense that CD4þ and CD8þ

cells exhibit differential sensitivity to TGFb. Lotz et al. (94)

reported that human CD4þ clones are more sensitive than

their CD8þ counterparts to the antiproliferative effects of

TGFb. Further, we reported (95) that cardiac allograft

rejection by CD4þ cells is prevented by TGFb gene trans-

fer, whereas CD8þ cells are resistant to this therapy.

Interestingly, the protective effects of TGFb gene therapy

are associated with muted Th1 responses, and the pro-

tective effects on graft survival can be overridden by recipi-

ent treatment with exogenous IL-12 (95).

Finally, it appears that CD8þ cells are more dependent on

IL-15 as a growth and maintenance factor than their CD4þ

counterparts [reviewed in (96)]. IL-15 is structurally related

to IL-2 and signals through the IL-2R b and g chains com-

plexed with an IL-15 specific a chain [reviewed in (97)].

While IL-15 shares the T-cell growth factor (TCGF) activity

of IL-2, IL-15 is biologically distinct from IL-2 in several

ways (96,97). Unlike IL-2, IL-15 is produced by a variety of

cells types, but not by activated T cells. In addition, IL-15,

rather than IL-2, is required for the generation of primary

CD8þ effector cells during viral infections and the main-

tenance of CD8, but not CD4þ memory cells (98–101).

Unlike IL-2, IL-15 plays a role in homeostatic lymphocyte

recirculation (102) and may promote the survival of acti-

vated lymphocytes, as opposed to promoting activation-

induced cell death (AICD) (103). In the context of trans-

plantation, IL-15, rather than IL-2, is the TCGF most fre-

quently associated with rejection when human renal

biopsies are assessed for these cytokine transcripts

(104). Further, an antagonistic IL-15 fusion protein pre-

vents costimulation blockade-resistant rejection of allo-

geneic islets by CD8þ cells (105), and an antagonistic

soluble fragment of the IL-15Ra chain markedly prolongs

survival of minor Ag mismatched cardiac allografts (106).

In summary, the cytokine requirements for the growth,

maintenance, and function of CD4þ and CD8þ T cells are

quite dissimilar. Given this, it comes as no surprise that

selective cytokine manipulation aimed at preventing allograft

rejection by CD4þ and CD8þ T cells has met with limited

success. Indeed, manipulating cytokines combined with the

depletion of either CD4þ (106) or CD8þ (95) T cells has

proven necessary in experimental cardiac transplantation.

Costimulatory Requirements for CD4+ and
CD8+ T Cells

The importance of T-cell costimulation in allograft rejection

has been studied extensively [reviewed in (107–111)].

Hence, we will briefly highlight differences in costimula-

tory requirements for CD4þ and CD8þ cells here. While

costimulation blockade resistance is a recurring phenom-

enon for alloreactive CD8þ cells, this does not appear to

be the case for CD4þ cells (51,54–56,112). These studies

have examined the relative resistance of CD8þ cells to

blockade of the CD28/B7 and/or the CD40/CD40L path-

ways, and similar observations have been made in TCR

transgenic systems (113), in models of bacterial (114,115)

and viral (116,117) infection, and in TNFa-mediated dia-

betes (118). Yet conflicting reports exist, which demon-

strate a strict dependency on costimulation in CD8þ

effector cell development (35,36,119–121). The explanation

for costimulation dependence or independence of CD8þ

cells may lie in the strength and persistence of the stimu-

lating Ag. Indeed, Andreasen et al. (122) compared the

costimulation dependency of CD8þ cells during infection

with lymphocytic choriomeningitis virus (LCMV), which

replicates widely and extensively, and vesicular stomatitis

virus (VSV), which spreads poorly in mice. This study

demonstrated that the primary CD8þ effector cell response

to LCMV did not require CD40L or CD28, whereas the

CD8 (and CD4) response to VSV was markedly impaired.

While the CD28/B7 and CD40/CD40L pathways have

received the most attention in transplantation, other costimu-

latory molecules may contribute to effector cell devel-

opment and graft rejection [reviewed in (123)]. Of these,

4–1BB (CD137) and 4–1BBL have been implicated in the

development of CD8þ T cells [reviewed in (124)].

4–1BB and 4–1BBL are members of the TNFR and TNF

superfamilies, respectively. 4–1BB is primarily expressed

on activated T cells and 4–1BBL is expressed on mature
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dendritic cells (DC), activated B cells, and activated macro-

phages (123,124). Since 4–1BB and 4–1BBL expression

on resting cells is low or absent, it is believed that the

4–1BB/4–1BBL pathway plays a minor role in early activation

events in vivo. Indeed, stimulatory, agonistic mAb to

4–1BB have a greater effect on activated T cells than on

resting T cells (125), indicating that 4–1BB may play a

role in costimulation of T cells once CD28 has been

down regulated (126). Shuford et al. (127) reported that

costimulation though 4–1BB stimulates CD8þ cells to a

greater extent than CD4þ cells, while the converse holds

true for CD28 costimulation. Further, in vivo treatment

with stimulatory anti-4–1BB mAb amplifies H-2d-specific

CTL responses in a graft vs. host disease (GVHD) model,

and accelerates cardiac and skin allograft rejection (127).

Subsequent reports documented that 4–1BB ligation

favors the survival of CD8þ over CD4þ cells following

superantigen stimulation (128), and that 4–1BBL –/– mice

mount poor CD8þ but normal CD4þ T-cell responses to

LCMV infection (129,130). While both CD4þ and CD8þ

cells express 4–1BB following allogeneic stimulation in

MLC, 4–1BB ligation augments proliferation and IFNg pro-

duction by CD8þ cells to a greater extent than CD4þ cells

(131). Collectively, these studies suggest that 4–1BB is

involved in costimulation of CD8þ cells and plays only a

minor role in CD4þ cell activation. However, contrasting

reports indicate that 4–1BB ligation serves to costimulate

both CD4þ and CD8þ T cells (132–134), inducing IL-4

production from CD4þ cells and IFNg production from

CD8þ cells (133). Hence, differential utilization of the

4–1BB/4–1BBL costimulatory pathway by CD4þ vs.

CD8þ cells is controversial, and the involvement of

this pathway in transplant rejection remains to be

resolved.

Concluding Remarks

In summary, it appears that CD4þ and CD8þ T cells

have more dissimilarities than similarities. These differ-

ences are summarized in Table 1, along with relevant

references that support conflicting results. Hence, it

seems that the initial reports by Cantor and Boyse (1,2)

that T-cell phenotype correlates with function were cor-

rect. However, this association between phenotype and

function is much more complex than we had originally

envisioned. Rather than simply defining cells with lytic

(CD8þ) or helper (CD4þ) function, it is now apparent

that these T-cell subsets have differential costimulatory

and cytokine requirements for their maturation into

effector cells.
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Table 1: Summary of differences in CD4þ and CD8þ T-cell biology. Conflicting observations are noted by italics

CD4þ T cells CD8þ T cells Selected References

Cytokine requirements

IL-12p70 required for Th1 polarization Yes No (53)

Signaling through Stat-4 required Yes No (81)

IL-12p40 responsive No Yes (53,87–89)

Yes (88)

IL-18R expressed Low High (83)

T-bet required for IFNg production Yes No (91)

TGFb suppression Yes No (94,95)

Require IL-15 for growth No Yes (96–102)

Costimulatory requirements

CD28/B7 dependent Yes No (54,56,112–114,116)

Yes (122)

CD40/CD40L dependent Yes No (51,56,115,117,118)

Yes (35,36,119--122)

4–1BB/4–1BBL responsive No Yes (127–131)

Yes (132--134)

Roles in transplant rejection

Mediate CTL function No Yes (18,38,58,61)

Regulate CTL development Yes No (18,38)

Regulate CTL entry into the graft Yes No (18)

DTH response Yes Yes (38,61,63)

Promote eosinophil infiltration Yes (Th2) No (59)

Yes, if Th2 (51,67)
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