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Performance Assessments of Nuclear Waste Repositories: 
A Dialogue on Their Value and Limitations 

Rodney C. Ewing,’ Martin S. Tierney: Leonard F. Konikow,3 and Rob P. Rechard2 

Performance Assessment (PA) is the use of mathematical models to simulate the long-term 
behavior of engineered and geologic barriers in a nuclear waste repository; methods of 
uncertainty analysis are used to assess effects of parametric and conceptual uncertainties 
associated with the model system upon the uncertainty in outcomes of the simulation. PA 
is required by the U.S. Environmental Protection Agency as part of its certification process 
for geologic repositories for nuclear waste. This paper is a dialogue to explore the value and 
limitations of PA. Two “skeptics” acknowledge the utility of PA in organizing the scientific 
investigations that are necessary for confident siting and licensing of a repository; however, 
they maintain that the PA process, at least as i t  is currently implemented, is an essentially 
unscientific process with shortcomings that may provide results of limited use in evaluating 
actual effects on public health and safety. Conceptual uncertainties in a PA analysis can be 
so great that results can be confidently applied only over short time ranges, the antithesis 
of the purpose behind long-term, geologic disposal. Two “proponents” of PA agree that 
performance assessment is unscientific, but only in the sense that PA is an engineering 
analysis that uses existing scientific knowledge to support public policy decisions, rather than 
an investigation intended to increase fundamental knowledge of nature; PA has different 
goals and constraints than a typical scientific study. The “proponents” describe an ideal, six- 
step process for conducting generalized PA, here called probabilistic systems analysis (PSA); 
they note that virtually all scientific content of a PA is introduced during the model-building 
steps of a PSA, they contend that a PA based on simple but scientifically acceptable mathemat- 
ical models can provide useful and objective input to regulatory decision makers. The value 
of the results of any PA must lie between these two views and will depend on the level of 
knowledge of the site, the degree to which models capture actual physical and chemical 
processes, the time over which extrapolations are made, and the proper evaluation of health 
risks attending implementation of the repository. The challenge is in evaluating whether the 
quality of the PA matches the needs of decision makers charged with protecting the health 
and safety of the public. 
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1. INTRODUCTION 

Probabilistic systems analysis, exemplified by a 
procedure called performance assessment (PA), has 
become the standard regulatory approach in analyz- 
ing and evaluating the long-term performance of nu- 
clear waste repositories in the United States. Uncer- 
tainties in site characterization, the extrapolation of 
models over time, and the complexity of the analysis 
have led to concerns about the usefulness and limita- 
tions of PA in evaluating actual health and safety im- 
pacts. 

This paper examines and discusses some impor- 
tant issues that have persisted for over 20 years re- 
lated to the use of performance assessment of nuclear 
waste repositories. We have cast this paper in the 
form of a dialogue in order to provide the reader 
with different views of these issues. The intent is 
not to win an argument, but rather to find common 
ground and carefully identify issues that require fur- 
ther attention. 

In the analysis of complex systems, PA provides 
a systematic and disciplined means of evaluating the 
extent to which one reaches an endpoint (e.g., compli- 
ance with a regulation). Once the PA has been imple- 
mented, its results can then be used to (1) identify 
major sources of uncertainty and deficiencies in un- 
derstanding, (2) focus resources on the scientific and 
technical issues that have the most effect on perfor- 
mance, and (3) evaluate alternative designs and mate- 
rials. Finally, to the extent that the analysis is “trace- 
able” and “transparent,” PA can be a powerful tool 
in communication with the public and can provide 
a valuable, largely objective input to public policy 
decisions. Although performance assessment is re- 
quired as a condition for licensing certain waste-dis- 
posal sites, there is no a priori reason that the public 
or scientific community should uncritically accept a 
PA analysis; on the contrary, any PA analysis should 
be carefully scrutinized and improvements will inevi- 
tably result. 

Two “proponents” (M.S.T. and R.P.R.) describe 
PA, its history, and its strengths and limitations (Sec- 
tion 2). Two “skeptics” (R.E. and L.K.) describe their 
concerns and try to illustrate the limitations of PA 
when applied to geologic systems (Section 3). The 
“dialogue” is a series of questions about PA method- 
ology that a knowledgeable person might ask, fol- 
lowed by answers provided by the PA proponents 
(Section 4). Not every important question has been 
raised (e.g., Is there a better way?), nor can all ques- 
tions be fully answered within the limitations of this 

paper. We hope that this discussion is useful to the 
scientific and engineering communities that are in- 
volved in conducting PAS, as well as to the public 
and government institutions that use PA results to 
set public policy. The opinions expressed in this paper 
are solely those of the individual authors and in no 
way reflect the policies or official positions of the 
institutions with which they are affiliated. 

2. WHAT IS PERFORMANCE ASSESSMENT? 

2.1. Brief History of PA in the United States 

An in-depth history of PA and its relation to 
other types of probabilistic system studies is given in 
another paper in this issue of Risk Analysis (Rechard, 
“Historical Relationship Between Performance As- 
sessment and Other Types of Risk Assessment”). 

Probabilistic risk analysis and geological waste 
disposal systems were first brought together in 1976 
at the Bishop’s Lodge Workshop on Geologic Data 
Requirements for Radioactive Waste Management 
Assessment Models.(’) Participants in the workshop 
included team leaders and scientists from waste man- 
agement programs sponsored by the U.S. Energy Re- 
search and Development Administration (ERDA), 
the U.S. Nuclear Regulatory Commission (NRC), 
and the U.S. Environmental Protection Agency 
(EPA). The points of view were equally diverse: NRC 
team members, mainly nuclear engineers and mathe- 
maticians, advocated methods developed for the 
safety analysis of engineered systems, in particular, 
the methods employed in the “Rasmussen Study” 
of the safety of nuclear power plants,” as tools for 
assessing the long-term safety of geologic waste dis- 
posal. ERDA team members, mainly geoscientists 
and geotechnical engineers, were skeptical of the use 
of mathematical models for assessing risks of disposal 
of radioactive wastes in a geologic repository; they 
suggested a qualitative assessment of the safety of 
proposed waste repositories based on systematic 
identification of those natural and anthropogenic 
“features, events, and processes” (FEPs) that could 
cause or contribute significantly to failure of the re- 
pository to meet design or regulatory standards. EPA 
team members generally supported the views of the 
ERDA representatives; later, in developing stan- 
dards for a high-level radioactive waste repository 
(see below, Section 2.2), EPA clearly indicated that 
it recognized the limitations of mathematical models 
in a regulatory process. 
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Different agency teams took different paths in 
their work on PA methodologies after 1976. Sandia 
National Laboratories (SNL), funded by NRC, devel- 
oped a methodology for licensing of geologic reposi- 
tories for commercial high-level waste and spent fuel 
that included many features of modem PAS: lists 
of natural and anthropogenic phenomenon for the 
screening of FEPs, probability models of FEPs, mod- 
els of transport of radionuclides with dissolved com- 
pounds in groundwater, environmental pathway and 
health effects models, even “simulation analysis ap- 
plied to questions of geological stability.”c3) But the 
ERDA team at Pacific Northwest Laboratories 
(PNL) was first to propose simulation as a method for 
identifying and evaluating potential loss-of-isolation 
scenarios, and also first to remark on the unsuitability 
of fault-tree methods for quantifymg risks attending 
geologic waste disposal Scientists from the 
U.S. Geological Survey also urged caution in the ap- 
plication of mathematical models to predicting long- 
term behavior of geologic waste reposit~ries.(~) 

The PA methodology eventually used by U.S. 
agencies was developed during the decade 1978- 
1988. Reports on major features of that methodology, 
e.g., scenario selection procedures, groundwater flow 
and contaminant transport codes, pathways-to-man 
models, and sensitivity analysis techniques, are cited 
in Cranwell et al.@) Use of Monte Carlo integration, 
in particular the Monte Carlo variant called Latin 
hypercube sampling (LHS);’) to propagate uncer- 
tainty through mathematical models of phenomena 
associated with geologic waste disposal was first pro- 
posed in 1981.(’) In spite of these early innovations, a 
coherent and well-documented collection of methods 
for conducting a PA did not take form until 1987 
when methods proposed by Cranwell et a/.@) were 
adopted and modified by the Performance Assess- 
ment Group for the Waste Isolation Pilot Plant 
(WIPP). By 1985, “performance assessment” had be- 
come the term of choice to denote those geologic 
waste repository studies formerly called “risk analy- 
ses” or “probabilistic safety analyses.’’ 

The WIPP Group’s 1989 approach to PA, total- 
system simulation, is similar to methods first pro- 
posed by Bartlett et ~ l . ( ~ )  and later by the Sandia PA 
Group for the Yucca Mountain Project.(9) The central 
feature of total-system simulation is a set of coupled 
computer models under the control of a single 
“driver” code, with each model simulating one or 
more of the processes or events that are judged to 
affect releases of waste from the repository. Another 
characteristic of this method is use of event trees to 

identify scenarios, and probability distributions of 
model parameters to calculate scenario probabili- 
ties.(”.”) Some European and Canadian programs for 
assessing the safety and regulatory compliance of 
geologic waste repositories use methods similar to 
total-system simulation.(’*J3) 

Applications of total-system simulation to PAS 
since 1989 include three preliminary assessments for 
the WIPP,(14-16) total-system performance assessments 
(TSPAs) for the Yucca Mountain project,‘”) and the 
1996 Compliance Certification Application (CCA) 
for the WIPP.(’*) Clear and relatively brief reports of 
the CCA work are Helton et al.(19) and the article by 
Helton et al., “Performance Assessment in Support 
of the 1996 Compliance Certification Application for 
the Waste Isolation Pilot Plant,” in this issue of 
Risk Analysis. 

2.2. The Origin of Performance Assessment in 
EPA Standards 

The term “performance assessment” (PA) was 
first defined in the context of a standard promulgated 
by the U.S. Environmental Protection Agency(*’): 40 
CFR Part 191.13, “Containment Requirements,” 
states 

(a) Disposal systems for spent nuclear fuel or high- 
level or transuranic radioactive wastes shall be de- 
signed to provide a reasonable expectation, based 
on performance assessments [emphasis added], that 
the cumulative releases of radionuclides to the acces- 
sible environment for 10,ooO years after disposal 
from all significant processes and events that may 
affect the disposal system shall: 

(1) Have a likelihood of less than one chance 
in 10 of exceeding the quantities calculated 
according to Table 1 (Appendix A); and 

(2) Have a likelihood of less than one chance in 
1,0oO of exceeding ten times the quantities 
calculated according to Table 1 (Appendix 
A).(” 

Performance Assessment is defined in paragraph 
191.12(q) to be 

. . . an analysis that: (1) Identifies the processes and 
events that might affect the disposal system; (2) ex- 
amines the effects of these processes and events on 
the performance of the disposal system; and (3) esti- 
mates the cumulative releases of radionuclides, con- 
sidering the associated uncertainties [emphasis 
added], caused by all significant processes and 
events. These estimates shall be incorporated into 
an overall probability distribution of cumulative re- 
leases to the extent practicabIeJm) 



936 Ewing, Tierney, Konikow, and Rechard 

The EPA does not rely entirely upon the PA process 
to determine the actual safety of a site: 

(b) Performance assessments need not provide com- 
plete assurance that the requirements of 191.13(a) 
will be met. Because of the long time period involved 
and the nature of the events and the processes of 
interest. . . . Proof of the future performance of a 
disposal system is not to be had in the ordinary sense 
of the word in situations that deal with much shorter 
time frames.@’) 

These “Containment Requirements” are unique 
for several reasons. The requirements are among the 
first federal standards and regulations to mandate 
use of numerical models of a proposed technological 
system in a formal determination of system accept- 
ability. The requirements also express numerical per- 
formance standards in terms of allowable limits on 
the exceedunce probability of the performance mea- 
sure (here, cumulative release of radionuclides to the 
accessible environment over a 10,000-year period); 
usually, limits are placed on the magnitude of the 
performance measure itself. Lastly, the requirements 
are the first federal standard to require an explicit and 
quantitative treatment of uncertainty. Mathematical 
procedures called “The Propagation and Analysis of 
Uncertainty”(zl)are now central features of the EPA’s 
approach to setting performance standards for geo- 
logic waste repositories. 

Numerical but nonprobabilistic performance cri- 
teria for geologic waste repositories were also set 
out in NRC rules 10 CFR Part 60(”); these criteria 
antedated the EPA standards and were in the form 
of performance objectives for different parts of the 
waste disposal system, e.g., the geologic setting and 
the engineered-barrier systems. However, since EPA 
standard 40 CFR 191 was remanded in terms of its 
application to the proposed Yucca Mountain reposi- 
tory for high-level waste, the NRC is currently devel- 
oping new regulations for this facility. These new 
regulations will be issued as 10 CFR Part 63. 

2.3. Performance Assessment and Probabilistic 
Systems Analysis (PSA) 

The foregoing history (Section 2.1) suggests that 
in the United States, methods for studying long-term 
performance of geologic waste disposal systems grew 
out of techniques employed in earlier probabilistic 
risk analyses (PRAs) for nuclear power plants.” PAS 
and PRAs therefore have many “probabilistic” 
methods in common and can be regarded as instances 

of a wider category of investigations that will here 
be called “Probabilistic Systems Analysis” (PSA, 
Section 2.3.1). PRAs, however, usually apply to man- 
made systems, whereas PAS may treat systems that 
are partly engineered and partly natural. The natural 
parts of a PA system are usually heterogeneous, phys- 
ically inaccessible, and therefore hard to map and 
characterize in the detail required for effective study 
of the system via mathematical models. Natural sub- 
systems such as rock strata or aquifers are most effec- 
tively modeled as systems with continuously distrib- 
uted variables and parameters, i.e., modeled by 
partial differential equations, in contrast with the dis- 
crete-element, lumped-parameter, ordinary differen- 
tial equation approach usually taken in safety studies 
of engineered systems. This continuous versus dis- 
crete model dichotomy mainly affects the way in 
which parametric uncertainty is treated in the two 
kinds of systems studies, but also may affect the prac- 
ticability of computations (Section 2.3.1.2). Finally, 
the fact that natural features may act as “barriers” 
to the release of waste from a geologic repository 
dictates that system failure will be a process occurring 
over times comparable to the expected operational 
life of the system. In contrast, engineered systems, 
such as nuclear power plants or light bulbs, usually 
fail in time intervals that are very short compared 
with their expected operational lifetimes. This differ- 
ence in time scales for system failure determines the 
kinds of mathematical tools that are most effective 
in analyzing the performance of the two types of 
systems. 

2.3.1. Structure of an Ideal Probabilistic 
Systems Analysis 

The main distinction between “ordinary” and 
“probabilistic” systems analyses (PSA) is that, in or- 
dinary systems analysis, point estimates of model sys- 
tem behavior are used to draw conclusions about the 
behavior of the real system. In a probabilistic system 
analysis, the system is imperfectly characterized from 
the investigators’ points of view and attempts are 
made to quantify uncertainties in model input param- 
eters and propagate them through the models to ob- 
tain probability distributions that quantify uncer- 
tainty in model system outcomes. A presentation of 
quantitative uncertainty in model results can give 
investigators and project sponsors a much better idea 
of how closely the real system would come to meeting 
performance standards. The methods of PSA can be 
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applied to the study of any technological system that 
is capable of being mathematically modeled, is imper- 
fectly characterized, and for which numerical stan- 
dards of performance can be stated. PSA may also 
be applied to assessments of the effects of proposed 
social programs or legislation (e.g., land-use planning 
or air-quality standards). Morgan and Henrion call 
these kinds of applications “policy analyses.”(21) 

There are six essential steps in conducting the 
ideal probabilistic systems analysis: 

1. 

2. 

3. 

4. 

5. 

6. 

Identify numerical measures of performance 
for the system. 
Characterize the system, i.e., identify, under- 
stand, and (if necessary) make site-specific 
measurements of those phenomena, features, 
events, and processes that may affect the sys- 
tem’s performance. 
Using knowledge of the factors identified in 
Step 2, build mathematical models of the sys- 
tem whose dependent variables, or “output,” 
are the performance measures identified in 
Step 1. 
Quantify uncertainties in modeling relation- 
ships and model parameters by the assign- 
ment of weights or probability distributions. 
Analyze uncertainty; i.e., propagate the un- 
certainties assigned in Step 4 through the sys- 
tem model to predict uncertainty in the per- 
formance measures. 
Compare predicted performance measures, 
including measures of uncertainty developed 
in Step 5 ,  with operational or regulatory crite- 
ria for the performance of the real system. 
Interpret results to sponsors and regulators. 

Choices of quantitative measures of perfor- 
mance (Step 1) are guided by operational or regula- 
tory constraints placed upon the real system. The 
chosen measures of performance are expressed as an 
M-tuplet of numbers, y = (yl, y2, y 3 , .  . . , yH) ,  where 
each number y, denotes some quantity that we 
should like to compare with a predetermined value 
that is derived from some goal or standard placed on 
the real system’s performance. For example, there 
are two numerical measures of repository perfor- 
mance in the EPA’s long-term containment stan- 
dards@): two exceedance probabilities for cumulative 
releases of radionuclides to the accessible environ- 
ment in a 10,000-year period, with one probability 
measured at unit normalized release, and another at 
ten times the unit normalized release (Section 2.2). 

2.3.1.1. The Model-Building Process. Steps 2 and 

3 taken together can be called the “model-building 
process.” What is done during Steps 2 and 3 almost 
entirely determines the empirical foundations and 
scientific content of a PSA and consequently the de- 
gree of reliability of the knowledge about the real 
system that is produced by an analysis with models 
that mimic the real system. The ideal model-building 
process can be summarized as follows. A “first-or- 
der” mathematical model of the system is created 
and used to make testable predictions of properties 
associated with the system. The predictions are then 
compared with actual observations of associated 
properties, and discrepancies between model predic- 
tions and observations are noted. Discrepancies are 
then examined and interpreted with the purpose of 
finding ways in which the model can be modified 
to more adequately reflect empirical evidence. The 
model is then modified to accommodate observa- 
tions, and new predictions of system behavior are 
made-the process just described begins all over 
again and is repeated until it stops when investigators 
judge that agreement between empirical evidence 
and model results is satisfactory. 

The final result of the model-building process in 
a PA is a computational model of the total system, 
usually composed of many coupled submodels, that 
is capable of generating values of the performance 
measures (yl, y,, y3 ,  . . . , yy) given values of the 
model’s input parameters x = (xl, xp,  x3, . . . , xN).  It 
is convenient to view the total-system model as a 
function y = f(x) that maps a point in the N-dimen- 
sional parameter space 2, to a point y in the M- 
dimensional performance measure space C,. Think- 
ing of the total-system model as a function suggests 
an unconventional but revealing interpretation of the 
standard approach to the “probabilistic” part of a 
probabilistic systems analysis(u): Observe that the 
vector function f(x) traces out M distinct surfaces in 
an (N + 1)-dimensional space, y,,, = fm(x), rn = 1, 2, 
3, . . . , M, as the vector of parameters x take all 
values in the space ZN. These surfaces, sometimes 
called “response surfaces,” represent all possible in- 
formation concerning the performance measures y 
that is contained in the total-system model. 

Model building for performance assessments 
does not usually achieve the ideal. In recent  PAS,('^-'') 
the total-system model is built up by stringing to- 
gether submodels of widely different levels of detail 
and whose solutions require widely different degrees 
of computational power. The most complicated of 
these submodels can involve numerical solutions of 
time-dependent, nonlinear partial differential equa- 
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tions in two spatial dimensions; this type of model is 
often called a “mechanistic” or “phenomenological” 
model and may have been built up through several 
cycles of the ideal model-building process. The sim- 
plest submodels involve solutions of algebraic equa- 
tions and are ad hoc constructions based on an inves- 
tigator’s knowledge and interpretation of the physical 
principles that govern the particular phenomenon be- 
ing studied. Because of the long time scales and the 
inaccessible and heterogeneous media involved in 
PAS for geologic waste repositories, none of these 
submodels can be validated or verified in the usual 
sense of these terms. 

All submodels in a total-system model need not 
have the same level of phenomenological detail. The 
capacity to prioritize submodels in terms of their rela- 
tive contributions to total-system’s performance is a 
strength of the total-system simulation approach to 
PA. Resources for conducting site characterization 
and laboratory studies are inevitably limited, and it 
is appropriate to allocate resources to experimental 
and analytical studies that reduce the uncertainty in, 
and improve scientific quality of, those submodels 
that, as a result of sensitivity analyses, appear to domi- 
nate total-system performance. Some examples: 
Complicated models of flow and transport in the Rus- 
tler formation of the WIPP site would not be neces- 
sary if analyses of scenarios for inadvertent explor- 
atory drilling through the WIPP repository were not 
required by the EPA (Section 2.3.1.2). Similarly, 
models of vadose-zone percolation of water and air 
at the proposed Yucca Mountain repository site 
could be much simpler than they are if there was 
less uncertainty concerning long-term waste-canister 
degradation mechanisms in vadose-zone mines. Re- 
quirements of basic realism can usually be met for 
the less important submodels, or the “first cut” of 
the model-building process, by basing initial models 
on physical and chemical principles in textbooks, e.g., 
Freeze and Cherry(24) for groundwater flow and solute 
transport problems. 

2.3.1.2. Uncertainty and Sensitivity Analysis. It is 
seldom possible to specify every model parameter 
precisely, particularly if the model is of some hetero- 
geneous natural system. Usually, all that is known 
confidently about some parameters is that their true 
values lie between two numbers that are constrained 
only by experimental evidence or the accepted phys- 
ics of the situation (e.g., the speed of every material 
body lies between zero and the speed of light). If 
there are many such imprecisely specified parame- 
ters, say Nu of them, it becomes necessary to view 

system performance no longer as a point in M-dimen- 
sional space, but again as surfaces, now imbedded in 
an (Nu + 1)-dimensional space (assuming of course 
that N - Nu of the parameters are precisely specified). 
Since the topography of these surfaces could vary 
considerably as the uncertain parameters take all al- 
lowable values in their ranges, specification of system 
performance on the basis of only a few point esti- 
mates could lead to erroneous conclusions about the 
system’s behavior. But one need not search through 
the entire space of uncertain parameters to map the 
system’s possible behaviors. Investigators can use 
empirical evidence, data from field measurements, 
and values from compilations in handbooks to bound 
the ranges on the Nu uncertain parameters, thereby 
limiting the extent of the M response surfaces in 
(Nu + 1)-dimensional space. 

Step 4 of the ideal PSA process becomes neces- 
sary when there is uncertainty on the part of investi- 
gators concerning values to be assigned to some 
model parameters (a situation called “parametric un- 
certainty”) or when empirical evidence supports 
more than one mathematical expression of some phe- 
nomenon in the model (in PA, a situation called 
“alternative conceptual models” or “model uncer- 
tainty”). We here assume that model uncertainty can 
be treated in the same way as parametric uncertainty: 
that is, by assignment of a probability distribution 
to the indices (usually 1, 2, 3, . . .) that label each 
alternative conceptual model. In our unconventional 
view of PSA, the purpose of introducing probability 
distributions is to limit the size of the region in Nu- 
dimensional space that must be studied in order to 
gain insight into the range of model system behav- 
iorcZ3); probability distributions are chosen so as to 
limit the ranges of the Nu uncertain parameters to 
regions of EN where investigators have reason to be- 
lieve that true values of the parameters x will lie. 

The conventional view of an uncertainty analysis 
(Step 5 )  is that of a process of quantifying uncertainty 
in the model’s dependent variables that results from 
uncertainty in the model’s independent variables.(21) 
An equally correct view of uncertainty analysis re- 
gards that subject’s associated mathematical tech- 
niques as tools for statistically mapping the topogra- 
phy of the M response surfaces in (Nu + 1)- 
dimensional space described above.c’) In either view, 
computational uncertainty and sensitivity analyses al- 
ways reduce to numerical calculations of some statis- 
tical property of these surfaces-the average eleva- 
tion of a surface’s topography, the variance in the 
heights of the topography-or in sensitivity analyses, 
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the average slopes of the response surfaces along 
the coordinate “axis” of some parameter. The most 
general statistical property of these surfaces is the 
joint cumulative probability distribution (CDF) of 
the performance measures, 

G(u) = Pr{Y, 5 ul, Y2 5 u2, Y3 5 u3, . . . , YM 5 uM} 

where Pr{A} stands for the probability that statement 
A is true (in the example above, A is the statement 
“Yl is less than or equal to ul, and Y2 is less than or 
equal to u2, and Y3 is less than or equal to u3, etc.”). 

Estimating G(u) requires numerical evaluation 
of a multidimensional integral of the form 

where U(. . .) is the unit step function [U(s) = 1 if 
s > 0, V(s) = 0 if s 5 01, and F(x) is the joint probabil- 
ity distribution of imprecisely known model parame- 
ters that was prescribed in Step 4. Popular methods 
for numerically evaluating multidimensional inte- 
grals such as Equation (1) are the Monte Carlo meth- 
ods, in particular, crude Monte Carlo(”) or Latin hyp- 
ercube sampling (LHS)>’) 

Monte Carlo methods have benefits and possibly 
prohibitive costs associated with their effective use. 
Benefits arise from the intentional exploitation of 
the aleatory uncertainty implicit in random number 
generators to infer properties of response-surface to- 
pography using the tools of classical statistics. By 
making independent, identically distributed esti- 
mates of the value of a multidimensional integral such 
as Equation (1) investigators can place numerical 
confidence intervals on predicted response-surface 
properties that are being compared with performance 
standards. The costs of Monte Carlo methods become 
apparent when limitations on the time and funds that 
can be devoted to a calculation preclude the taking 
of a sufficiently large (>lO,OOO) number of samples 
in the integration process. In such a case, when small 
sample sizes are necessarily used with complicated, 
nonlinear, and long-running computer models, the 
resulting confidence intervals on critical performance 
measures may be so wide that no meaningful compar- 
isons can be made with performance criteria or stan- 
dards. 

We end this section with an illustration of the 
way sensitivity and uncertainty analysis can be used 
to establish relative importance of submodels in the 
total-system approach to PA. The evolution of pre- 
dicted performance measures for two submodels of 

the WIPP total-system model over the years 1990- 
1996 is depicted in Fig. 1. Performance measures in 
this figure are represented by the complementary 
cumulative distribution function (CCDF) for normal- 
ized release of radionuclides to the accessible envi- 
ronment over a 10,000-year period (Section 2.2). 
Note that a CCDF is one way of displaying the out- 
come of an uncertainty analysis; it is simply the proba- 
bility that some prescribed value of a quantity rele- 
vant to system performance (in this case, cumulative 
release of radionuclides) will be exceeded during a 
realization of the particular release scenario. Figure 
1 applies to scenarios in which the WIPP repository 
is penetrated by exploratory drillers at least once in 
the 10,000-year period following closure; Fig. l a  
shows CCDFs for direct releases to the surface during 
the drilling events (radioactive material is brought to 
the surface in the drill cores and cuttings); Fig. l b  
shows CCDFs for indirect releases to the environ- 
ment that occur by way of the groundwater pathway 
as a consequence of exploratory drilling. We note 
that past calculations have consistently shown that 
there is virtually zero release to the accessible envi- 
ronment along groundwater pathways in the absence 
of exploratory drilling. 

It is seen that, apart from 1990 results, the esti- 
mates of maximum direct release to the surface dur- 
ing drilling (Fig. la)  did not change appreciably be- 
tween 1991 and 1996 and were always at least a factor 
of 10 larger than the releases via the groundwater 
pathway; these curves are stable because the model 
for direct release of radionuclides through explor- 
atory drilling, and the values assigned to that model’s 
most sensitive parameter, remained almost the same 
throughout the study period. On the other hand, esti- 
mates of maximum releases via the groundwater 
pathway (Fig. lb) changed by many factors of 10 
throughout the study period, decreasing by more than 
four orders of magnitude between 1991 and 1996. The 
reasons for these decreases lie in the incorporation in 
1991, 1992, and particularly in 1996 of increasingly 
detailed models of flow of gas and brine, and of corro- 
sion chemistry, within the repository. Also, better, 
empirically based estimates of model parameters 
were made during this period of time. The effect of 
these model improvements was to reduce drastically 
estimates of the amount of contaminated brine that 
could reach the groundwater pathways starting at the 
points where hypothetical boreholes penetrated the 
Culebra (one of the aquifer-bearing formations over- 
laying the WIPP repository). Thus, parallel improve- 
ments made between 1992 and 1996 in the WIPP 
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model of contaminant transport in the Culebra 
proved to be unnecessary, since the source term for 
this model turned out to be so small. See Section 
3.2.2.2 for further discussion of contaminant trans- 
port models. 

3. ISSUES IN PERFORMANCE ASSESSMENT 

range of temporal and spatial scales that are modeled 
and finally coupled in order to provide a total system 
PA. This is illustrated by a plot of the characteristic 
space and time scales in Earth system processes(28) 
(Fig. 2). A typical PA includes models of molecular- 
scale corrosion of waste forms and canisters, complex 
interactions of fluids, waste forms, and rock in the 
near-field, transport (dilution, dispersion, and sorp- 

To the extent that PA is an organized and logical 
analysis of a complex system providing the basis for 
regulatory decisions, it makes sense; however, many 
remain skeptical of the methodology,@6) particularly 
the probabilistic analysis of geologic systems over 
extended periods. As performance and risk assess- 
ments become the basis for decisions of public policy, 
the limitations of these tools become important. In 
an assessment of the environmental movement's atti- 
tude toward risk assessment, Tal notes that, "Without 
enhanced scientific validity, they [environmental 
groups] will oppose the growing influence of risk 
numbers over environmental health It 
is the issue of the "scientific validity" of probabilistic 
risk analyses that we examine in this section. 

tion) of radionuclides through the far-field, probabi- 
listic analyses of seismic and volcanic events, and 
climate change effects on precipitation. Each submo- 
del may be extremely sensitive to assumed boundary 
conditions, is coupled to other submodels, and the 
behavior of the total system is extrapolated over long 
periods. Output of one model becomes either input 
(e.g., radionuclide concentration in solution) or a 
boundary condition for other models (e.g., percola- 
tion rate and thermal field). Each submodel (e.g., 
spent fuel corrosion, climate change, fluid flow, ther- 
mal-hydrologic-chemical-mechanical interactions, 
dose-to-person calculations) represents a major ef- 
fort and challenge within its own subdiscipline. 

Much has been written, and need not be summa- 
rized here, on the scientific method, predictive capa- 
bilities of science, and need for testable hypotheses. 
Much less has been written on the unique aspects of 
a historical science (PA looking backward) such as 
geology. The projected performance of a geologic 
system over time (past or future) is the challenge of 

3.1. Philosophical Issues 

One of the unique and daunting challenges of 
PA is that the effort is almost unprecedented in the 
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an evaluation of the performance of a nuclear waste 
repository. This paper has already summarized the 
history of PA and the methods of PSA, both growing 
out of a need to describe and analyze the perfor- 
mance of engineered systems, such as nuclear power 
plants. The crux of this discussion is to determine the 
extent to which the PA analysis of engineered systems 
can be extended to natural, geologic systems over ex- 
tended intervals of time, in some cases, geologic time 
scales (104 to 106 years). No question exists that mathe- 
matical models can be extrapolated over time; how- 
ever, can these extrapolations actually capture the 
physical and chemical behavior of the geologic sys- 
tems over extended time? 

Although seldom appreciated in discussions of 
PA, analysis of large-scale, complex systems over 
time is an old issue for geologists, who deal mainly 
with reconstructing the Earth’s past history. Similar 
issues arise when describing the future behavior of 
large-scale, natural systems over time, such as the 
performance of a nuclear waste repository. The geo- 

sciences not only can provide the required raw data 
for a PA, but should also contribute to the conceptual 
approaches used in the analysis. Early and important 
examples of such discussions include G. K. Gilbert’s 
1886 “The Inculcation of the Scientific Method by 
Example,”(29) T. C. Chamberlin’s 1890 “The Method 
of Multiple Working Hypotheses,’Q’) and D. John- 
son’s 1933 “Role of Analysis in Scientific Investi- 
gation.”Q1) 

The value of alternative conceptual models was 
clearly articulated in Chamberlain’s paper, and as 
early as 1933, J. Hoover Mackin had already con- 
trasted the “rational” method, as it had developed 
in the geologic sciences, with “engineering” or “em- 
pirical” methods that were closely tied to the growing 
capacity to develop quantified Ran- 
domness and uncertainty have also received consid- 
erable attention in the geosciences. Krauskopf,”) in 
his Presidential Address to the Geological Society 
of America (GSA), discussed, as an example, the 
difficulty of characterizing igneous rocks of the Inyo 
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Batholith, a satellite suite of rocks on the east side 
of the Sierra Nevada Batholith. He discussed the 
difficulties of describing this small part of the Earth’s 
crust and answering even simple questions about the 
origin of these plutons and their sequence of em- 
placement. Krauskopf argued that there is a limit to 
what can be known about this geologic system and 
that this limit is associated with uncertainty in the 
description of the rocks and random interactions in 
their history. This Presidential Address caused con- 
siderable discussion(”) and a rare reply from a retiring 
GSA president(35) in which he emphasized that by 
“random” he means “beyond the limit of possible 
measurement.” In subsequent years, the discussion 
has ~on t inued( )~ -~~)  with recent exchanges on these 
same 10 plutons.(“42) We recommend this series of 
papers to the reader because we believe that they 
demonstrate the difficult issues of describing and pre- 
dicting the behavior of geologic systems. 

The noted paleontologist, G. G. Simp~on;~~) fur- 
ther distinguishes among deterministic phenomena 
that are called “random.” There are immanent pro- 
cesses (governed by scientific laws) that provide the 
basis for deterministic models (process-based mod- 
els), as contrasted with the state of a system (configu- 
ration) which is the sum of its previous history. The 
geologic history of a portion of the Earth’s crust or 
the future behavior of a repository are both defined 
by “configurational changes through time, i.e., a se- 
quence of real, individual but interrelated 
In a PA, these are features, events, and processes 
(FEPs) that may affect the repository, and the PA 
analysis captures the sequence of configurations by 
conditional probabilities and explicit assumptions 
about time-dependent boundary conditions on the 
system. Outcomes become predictable, in principle, 
if all necessary immanent processes are known, but 
as soon as configuration is included as “one of the 
necessary causes which must always be done in histor- 
ical science [or, the skeptics might add, the prediction 
of future repository performance], the situation may 
become extremely, often quite impossibly compli- 
cated. Prediction is possible only to the extent that 
correlation can be established with pertinent, ab- 
stracted and generalized, recurrent elements in con- 
figuration~.”(~~) Thus, geologic systems are extremely 
difficult to model over extended periods, and uncer- 
tainties are so large that careful attention has to be 
paid to possibilities of alternative conceptual models, 
incomplete descriptions of natural systems, and diffi- 
culty of describing future configurational patterns 
correctly. The challenge to PA is to demonstrate the 

practical extent to which an analysis can capture this 
sequence of configurations and provide useful infor- 
mation on long-term behavior. 

The geosciences do not have unique intellectual 
tools with which to address problems of analysis of 
repository systems, but experience in the geosciences 
does provide a unique and extremely useful perspec- 
tive on this problem. Note that Krauskopf‘s and 
Simpson’s discussions of r a n d ~ m n e s d ~ ~ . ~ ~ . ~ ’ )  are based 
on actual examples, real experience in describing geo- 
logic systems. In contrast, the formulation of PA 
methodology is a prescribed sequence of  step^.(^.^^) 
The only possibility of an interplay between inductive 
and deductive methods is the recurring iterative anal- 
ysis of a PA, and yet this iterative analysis requires 
time and associated increases in cost and delays in 
licensing. The failure to bridge the gap between the 
elegance of the mathematical formulation of PA and 
actual, demonstrable practice of describing geologic 
systems is one reason many remain skeptical of PA 
results. At the very minimum, PA must provide a 
demonstrable basis for its acceptance as a methodol- 
ogy for describing the long-term behavior of a geo- 
logic system. This might be done by designing labora- 
tory or field-scale experiments to challenge the 
coupled submodels used in a PA. E. Bullen, a mathe- 
matician, in his acceptance of the Day Medal of the 
Geological Society of America (given for the applica- 
tion of physics and chemistry to geologic problems) 
said, “a mathematical model of the natural world has 
value to the extent that it represents the observa- 
tional data and has the capacity to inspire new obser- 
vational tests.”(&) This should be a requirement of 
all models used in PA. 

Geology provides many examples of the results 
of failing to use the correct conceptual model. At 
the end of the nineteenth century, a classic scientific 
controversy occurred over the age of the Earth.(47) In 
the second half of the nineteenth century, geologists 
and biologists were reaching the end of nearly 300 
years of effort, culminating in Darwin’s Origin of 
Species and the concept of natural selection operating 
over great periods of time. At the same time, physi- 
cists, led by Lord Kelvin, were establishing the funda- 
mental laws of thermodynamics. Lord Kelvin applied 
energy laws to the Sun as an energy source and to 
the cooling of the Earth, and calculated a relatively 
short age of the Earth, tens of millions of years, with 
great confidence and mathematical skill. The mod- 
eled results were not consistent with observational 
evidence in the biological and geological sciences that 
suggested much longer times; at least hundreds of 
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millions of year were required. However, Kelvin so 
dominated the discussion that Darwin retreated in 
his advocacy of a great age of the Earth. Kelvin was 
wrong because he used the wrong conceptual model. 
He failed to consider the heat generated by radioac- 
tive decay. Failure to establish firmly the basis of the 
conceptual models (there will be hundreds in a single 
PA, each coupled to the next) and failure to challenge 
these conceptual models can have a profound effect 
on the results. 

A source of data and the opportunity to test 
conceptual models can be provided by “natural ana- 
logue” studies. There is an abundance of literature 
on the use of natural  analogue^,(^-^^) and yet little 
is actually used in the probabilistic PA, either for 
submodel testing or as a source of fundamental data 
for the PA. The failure to utilize fully these data is 
a failure of the PA probabilistic methodology; that 
is, the PA methodology has such a structured format 
for input parameters that simple, often qualitative 
but relevant observations cannot easily be included 
in the analysis. 

A final set of philosophical issues has to do with 
proper use of models in general and the specific limi- 
tations of their use in describing geologic systems. A 
useful and provocative summary of these issues has 
been given by Oreskes et al.(53) Their paper deals 
directly with issues of verification and validation with 
special attention to use of numerical models in earth 
sciences. Their paper generated an immediate re- 
sponse from the nuclear waste c ~ m m u n i t y ( ~ ~ * ~ ~ )  and a 
continuing response (hundreds of citations) across a 
wide range of disciplines. Their most cogent point is 
that “In areas where public policy and public safety 
are at stake, the burden is on the modeler to demon- 
strate the degree of correspondence between the 
model and the material world it seeks to represent 
and to delineate the limits of that corre~pondence.”(~~) 

lems.” A dialogue between geoscientists can be found 
in the “Forum” discussion in GSA One of 
the speakers, Victor Baker, captures the central issue 
of the discussion: “Given the established modes of 
engineering and scientific reasoning . . . , it is clear 
that the model-centered viewpoint of Earth-system 
science embodies a highly questionable hybridization 
of engineering and scientific reasoning.”(57) 

At the scientific level, significant errors in PA 
may occur because of the selection of the wrong de- 
terministic model for a phenomenon, an incorrect 
mathematical solution for the model, an incomplete 
description of the system to be modeled, or because 
the “abstractions” of the models may not capture the 
essential behavior of the phenomena in the system. 
Moreover, complicated coupled systems may behave 
nonlinearly. In the PA of a nuclear waste repository, 
two essential elements of the system are (1) the chem- 
ical interactions between fluids, the waste package, 
and surrounding rock and (2) the transport of fluids 
and radionuclides to the accessible environment. 
Thus, we illustrate and discuss the limitations of PAS 
by consideration of two important disciplines in the 
PA of a repository: geochemistry and hydrology. 
Both of these disciplines already have developed 
rather sophisticated, deterministic-based models. 
The models have a strong experimental and observa- 
tional database. Still, even when experimental and 
field data are abundant and the present state of 
knowledge is utilized, capturing the long-term behav- 
ior of a geologic system has proven to be difficult. 
These geochemical and hydrologic models are more 
sophisticated than those commonly included in a PA 
analysis, for which the geochemical and hydrologic 
models are only a small part of the total system analy- 
sis. The following sections discuss some specific ex- 
amples of the difficulties encountered in geochemical 
and hydrologic systems. 

3.2. Practical Limitations and Experience 3.2.1. Geochemistry 

Earth science provides the most fertile ground 
for determining the extent to which one should ex- 
pect to successfully model large-scale, complex geo- 
logic systems over extended periods of time. This 
subject has a long history in the geosciences and con- 
tinues to be the subject of active discussion. As re- 
cently as the fall of 1997, the Geological Society of 
America (GSA) sponsored a special symposium enti- 
tled, “Predictive Modeling in the Earth Sciences: Ap- 
plication and Misapplication to Environmental Prob- 

Although there is a substantial understanding of 
the behavior of various chemical elements, one must 
compare the expectations of the PA against what 
has actually been demonstrated to be possible with 
geochemical models of geologic systems. Geochemi- 
cal models have had limited, although increasing suc- 
cess in describing water-rock interactions. Good ex- 
amples of this work can be found in the series 
Reviews in Mineralogy: Chemical Weathering Rates 
of Silicate Minerals(S8) and Reactive Transport in Po- 
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rous Media.(59) Still, the evolution of groundwater 
compositions over time is difficult to predict, as are 
the phase assemblages formed during the alteration 
and weathering of even common minerals; particu- 
larly difficult to model are groundwater trace element 
compositions and their host phases. Further, geo- 
chemical models of even simple systems (e.g., O2 
fugacity set by sulfide equilibria) may not have 
unique solutions@); and despite impressive progress 
in quantitative analysis of the time-space transport 
of solutes and their reaction with minerals,'6*) the 
limiting conditions of such calculations make them 
difficult to apply with confidence. Steady-even spec- 
tacular-progress has been made in predicting the 
behavior of geochemical systems; the progress is most 
often made, however, by systematic studies of well- 
controlled systems.(") 

Nordstrom,@) BethkeJM) and Read@) provide 
examples and discussions of the limits of geochemical 
and geochemical-transport models. These include: 

1. Lack of adequate characterization of the sys- 
tem and the identification of chemical compo- 
nents that have the primary effect on systems. 

2. Lack of knowledge of species in solution or 
changes in speciation with evolving solution 
composition and temperature. 

3. Lack of fundamental data (e.g., thermody- 
namic data for relevant actinide phases, e.g., 
uranium@) has proven to be an enormous un- 
dertaking and many gaps and inconsistencies 
in the data remain). 

4. Selection of the correct conceptual model (ki- 
netic vs. equilibrium models; transport as mo- 
lecular species in solution vs. colloids). 

5. Use of the wrong kinetic rate constants be- 
cause the experimentally determined rate 
laws do not apply to the natural system (e.g., 
due to a change in reaction mechanism). 

6. Difficulties in scaling from well-constrained 
laboratory experiments to field-scale inter- 
pretations. 

7. Extrapolation of short-term laboratory data 
to long periods of time. 

Finally, inadequacies in the conceptual models 
or associated databases cannot be entirely overcome 
by the use of elicited expert opinion because the 
expert opinion itself relies on a knowledge and ap- 
preciation of the conceptual models and the database. 

The quality of the thermodynamic data used in a 
geochemical model can seriously affect model output. 
As an example, under oxidizing conditions, second- 

ary phases formed during corrosion of UOz are domi- 
nated by U6+ phases.(67@) However, thermodynamic 
data for these uranyl phases are extremely limited, 
and rather small variations in the measured or esti- 
mated Gibbs free energy may cause appreciable 
changes in the modeled results. Consider the impor- 
tant system Si02-Ca0-U03-H20. Stability relations 
among the uranyl phases that are found frequently 
in oxidized uraninite ore deposits and which are ex- 
pected to form during oxidative corrosion of spent 
nuclear fuel are shown in Fig. 3. The Gibbs free 
energies for metaschoepite, soddyite, and becquere- 
lite used in constructing Figs. 3a and 3b are identical 
(Table I). Other thermodynamic data necessary to 
construct Figs. 3a and 3b are from Grenthe et al.@) 
However, the Gibbs free energy for uranophane is 
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.. . zm ' ' uranophane 
m 

4 6 e 10 12 14 

log [Ca2']/[H+]2 

Fig. 3. Activity-activity diagrams for the system Si02-Ca0- 
U03-H20  constructed using different AGjm values of urano- 
phane (Table I) with compositions of typical groundwaters 
from crystalline rocks plotted as squares(24) and the Yucca 
Mountain ground water composition as a circle. Horizontal 
dashed lines represent quartz and amorphous silica equilibria. 
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Table I. AG;m for Uranyl Phases used in Constructing Figs. 3a 
and 3b (kJlmol)a 

~~ ~~ ~ ~ 

Uranyl phases Fig. 3a Fig. 3b MIE 
metaschoepite -13,092.@"' -13,092.0(") M 
becquerelite -10,329.1" - 10,329.1(@) E 
soddyite -3,655.7("' - 3,655.7(@) M 
uranophane -6,192.3' -6,210.6' M 

methods, the most serious limitations are the use 
of radionuclide solubilities or sorption distribution 
constants whose values are not coupled to changes in 
solution chemistry during transport. If all significant 
interactions among geochemical and hydrologic pa- 
rameters are not included in the model, the probabi- 
listic risk assessments and sensitivity analyses may 
be misleading."(73) 

M, measured; E, estimated. 
Calculated by Chen et al.(@) based on the solubility data of Casas 
et ~l . '~ ' ' )  
Calculated by Chen et al.") based on the solubility data of Nguyen 
et ~ l . ( ~ "  

taken from two different studies. In Fig. 3a, SG of 
uranophane is -6,192.3 kJ/mol, as calculated by 
Chen ef a1.(69) based on the solubility data of Casas 
et ~ l . ( ~ ' )  Figure 3b uses a SG of -6,210.6 kJ/mol based 
on experimentally determined solubility data.(71) Al- 
though both values were obtained from solubility 
experiments and the difference between these two 
values is only 0.3%, the stability relations among the 
phases (Figs. 3a and 3b) are significantly different. 
The stability field for becquerelite is much larger in 
Fig. 3a. Representative groundwaters from crystal- 
line rocks plot in either the soddyite or uranophane 
stability fields and are close to becquerelite, indicat- 
ing that uranophane and soddyite should be the most 
common uranyl phases in nature and as the reaction 
proceeds, becquerelite may be associated with soddy- 
ite or uranophane or both. In contrast (Fig. 3b), sod- 
dyite cannot equilibrate with becquerelite in aqueous 
solutions because all groundwater compositions are 
in the uranophane stability field, far from the bequer- 
elite field. The stability fields for solid phases shift 
dramatically even for small variations in measured 
or estimated Gibbs free energies. If the conceptual 
model for radionuclide retardation involves the in- 
corporation of radionuclides into the alteration 
phases (e.g., the formation of becquerelite), then the 
conceptual model may change greatly due to very 
small variations (in this case 3%) in experimentally 
determined data. This is not a new observation. In 
1992, the International Association for Mathematical 
Geology compiled a monograph of contributed chap- 
ters on the status and limitations of models of geo- 
logic In the chapter, "Geochemistry," 
Siege1 et al. provide this concluding evaluation of 
geochemical systems: 

"The problem is exacerbated by the current lack of 
good thermodynamic and kinetic data for the chem- 
istry of some radionuclides. In currently available 

3.2.2. Hydrology 

If a geologic repository were to violate compli- 
ance and radioactive contaminants in excess of what 
is permitted by regulation were to reach the accessi- 
ble environment, the most likely pathway would be 
through water-saturated rocks, and the release mech- 
anism would include the processes of advective and 
dispersive transport of constituents in flowing 
groundwater. Thus, PA must incorporate models of 
groundwater flow and solute transport through rocks 
and aquifers between the repository and the accessi- 
ble environment. Even though the overall PA model- 
ing procedure is probabilistic in nature, it is based 
on the use of deterministic groundwater flow and 
transport models. Can such deterministic groundwa- 
ter models reliably predict future conditions? The 
PA process itself must be linked adequately with 
deterministic groundwater models, and neither the 
PA sampling procedure nor the coupling of ground- 
water models with other subsystem models should 
induce significant errors or bias into the predictive 
process. 

Six essential steps in conducting the ideal proba- 
bilistic systems study were outlined previously. But 
what if the actual implementation deviates signifi- 
cantly from the ideal? The models will still work 
and generate numbers that will provide a basis for 
estimating risks. 

A major concern is that fundamental differences 
exist in the characterization of engineered versus nat- 
ural systems. In engineered systems, geometry, initial 
conditions, boundary conditions, and most properties 
of components are fairly well known, and the degree 
of uncertainty also can be fairly well characterized. 
System properties are generally homogeneous for 
given materials. Most operating processes are also 
well known. In modeling natural hydrogeologic sys- 
tems, however, significant uncertainty typically exists 
about which variables and processes should even be 
incorporated into the model. That is, significant un- 
certainty may be associated with the conceptual 
model represented by the partial differential equa- 
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tions that are being solved. Thus, if the PA models 
generate mathematically accurate solutions to the 
wrong equations (i.e., wrong conceptual model), this 
“accuracy” does not mean that the PA analysis is 
reliable or meaningful. 

For natural systems, we expect the “model- 
building process” (Steps 2 and 3 in Section 2.3.1) to 
be imperfect to some degree. Because natural sys- 
tems are heterogeneous, and because costs of field 
testing typically leave us with only a very limited 
number of measurements and samples, accurate and 
precise characterization of system properties, their 
spatial variability, and their uncertainty is prob- 
lematic. 

The ideal model-building process also is charac- 
terized by using initial models to make testable pre- 
dictions, then making measurements to test predic- 
tions, then improving the model on the basis of these 
tests and observations. The PA process is not typi- 
cally implemented this way. Also, in model applica- 
tion, it is rare to make a true prediction and then 
wait to observe the outcome; the usual order is to 
observe the system, then calibrate the model to match 
the observed history. Although this may be called a 
prediction, it is the known past that is being “pre- 
dicted.” A groundwater model may adequately re- 
produce historical data, but fail to predict future re- 
sponses under a new or extended set of stresses; a 
good match with historical behavior does not validate 
the 

3.2.2.1. Predictive Accuracy of Groundwater 
Models. Predictive applications of deterministic 
groundwater models have become fairly common 
during recent years, and their goals include assess- 
ments of groundwater availability, assessments of 
subsurface contaminant migration at toxic waste 
sites, design of cleanup schemes for contaminated 
aquifers, prediction of saltwater intrusion in response 
to withdrawals from supply wells, and PA for pro- 
posed radioactive waste repositories.(75) The latter 
might represent the most extreme example of reli- 
ance on groundwater model predictions because reg- 
ulations may require the assurance of site compliance 
for 10,OOO years into the future. 

Because of natural heterogeneity of geologic sys- 
tems, hydrogeologic properties and boundary condi- 
tions of an aquifer system cannot be defined accu- 
rately and uniquely. Therefore, parameter estimates 
in groundwater models usually are calibrated through 
history matching for a specific site before the model 
is used to predict the future state of that system. 

One method of assessing the predictive accuracy 

of groundwater models is to compare the actual re- 
sponse of a groundwater system with that predicted 
by a calibrated model and to perform such a compari- 
son for a sufficiently long time after the prediction 
was made so that the state of the system at the time 
of evaluation will not be dominated by its “memory” 
of conditions during the calibration period for the 
model (typically, this may require several years).(75) 
This type of assessment of model reliability has been 
called a pos ta~di t . (~”~)  

One of the few documented postaudits was for 
a deterministic distributed-parameter model devel- 
oped to predict regional water-level changes in the 
alluvial aquifer system of the Salt River Valley and 
the lower Santa Cruz River basin near Phoenix, Ari- 
zona. The model included a calibration period of 
more than 40 years.@’) Water-level declines over the 
next 10 years were predicted using the calibrated 
model. Predicted and observed water-level changes 
in 77 wells (Fig. 4) indicate poor predictive accuracy 
and the presence of a bias in the model predictions.(76) 
Also, data show a relatively wide scatter, indicating 
that model prediction was imprecise. 

This one example is not atypical of results seen 
in other published postaudits. The errors in a 10- 
year prediction of water-level changes based on a 
calibration period of 40+ years can be contrasted 
with expectations for a 10,000-year prediction of 
transport (a more complex process) based on a model 
having a negligible calibration period. In general, re- 
sults from all postaudits show that predictive accuracy 
is typically 

When model parameters have been adjusted 
during calibration to obtain a best fit to historical 
data, a bias toward extrapolating existing trends is 
present when predicting future conditions because 
predictions of future stresses often are based on ex- 
isting trends. Thus, although one advantage of deter- 
ministic models is that they represent processes and 
so have cause-and-effect relations built into them, 
estimating future stresses can be the major source of 
error in predictions of future effects (system re- 
sponses). Furthermore, concepts inherent in a given 
model (e.g., two-dimensional flow and vertically aver- 
aged parameter values) may be adequate over the 
observed range of stresses, but may prove to be over- 
simplified or invalid approximations under a new 
type of stress or for a larger magnitude of stress or 
over a significantly longer period of time. 

Discrepancies between observed and predicted 
responses of a system such as were noted in published 
postaudits are a manifestation of errors in the mathe- 
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Fig. 4. Relation between predicted and observed changes in water level in the Tempe-Mesa-Chandler area of the Salt 
River Basin, Arizona, 1964-1974. Solid line shows where predicted equals observed values.(76) 

matical model. In applying groundwater models to 
field problems, there are three sources of 
(1) conceptual errors or theoretical misconceptions 
about the basic processes that are incorporated in 
the model, (2) numerical errors, and (3) uncertainties 
in input data. Conceptual errors include both neglect- 
ing relevant processes and representing inappropri- 
ate processes (e.g., application of a model based upon 
Darcy’s law to materials where Darcy’s law is inap- 
propriate). Numerical errors include truncation er- 
rors and numerical dispersion, and usually are negli- 
gible in solving the flow equation, but are often of 
concern in solving the solute-transport equation. Un- 
certainties and inadequacies in input data reflect an 
inability to describe aquifer properties, stresses, and 
boundaries, and, together with conceptualization 
problems, are the most common sources of 

A key assumption in PA appears to be that un- 
certainty in parameters and boundary conditions can 
be adequately characterized so that the statistical dis- 
tribution of the outcomes of a large enough number 
of samples will yield meaningful risk values. Hydro- 
geologists with extensive field experience, however, 
may remain skeptical because they think that the 

degree and nature of uncertainties are themselves 
highly uncertain and difficult to characterize, and this 
does not appear to be accounted for in the PA 
analysis. 

Uncertainty in conceptual models of the system 
and of governing processes may be incorrectly taken 
into account or neglected. Sensitivity analyses per- 
formed with the PA models can examine sensitivities 
of parameters only within the framework of the cho- 
sen models. PA models themselves cannot evaluate 
their sensitivity to other concepts or processes not 
incorporated into the model. Sampling over a large 
range in values of coefficients of governing equations 
does not correct this deficiency. Solving the wrong 
equations (i.e., using a flawed or erroneous concep- 
tual model) many times, based on a wide range of 
parameter values, will not necessarily yield a mean- 
ingful probabilistic distribution of outcomes. If a 
flawed groundwater model is incorporated into the 
PA process, then results obtained by applying the 
model must be flawed. The seriousness of the “flaw” 
is difficult to assess. 

3.2.2.2. Groundwater Models in Performance As- 
sessment A basic tenet of the PA process appears to 
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be that making many simulations based on realiza- 
tions sampled from a wide range of parameter values 
can generate a meaningful statistical distribution of 
outcomes in which sampling procedure inherently 
compensates for (1) ignorance and uncertainty in pa- 
rameter values, boundary conditions, and future 
stresses, (2) simplifications and linearizations of com- 
plex processes, and (3) uncertainty in underlying con- 
ceptual models. This is a major and critical underpin- 
ning that is virtually unprovable and must be accepted 
on faith. One could argue that if distributions to be 
sampled are wide enough, then all possible outcomes 
will be encompassed. However, if sampled distribu- 
tions are very wide because of ignorance rather than 
because of physical or chemical heterogeneity, the 
statistical properties assumed for those parameters 
will be in error. 

The incorporation of groundwater models into 
PA can introduce subtle errors in PA results from a 
variety of sources, including the PA parameter sam- 
pling procedure itself, inappropriate scaling of model 
parameters, numerical errors in transport models, 
and inconsistent linkages between different models. 
As with many complex modeling procedures, “the 
devil is in the details.” For example, to generate sta- 
tistical distributions from which risks are calculated, 
many simulations of hydrogeologic processes are per- 
formed to generate an adequate sample size. The 
approach to varying values of many parameters in 
multiple realizations can introduce errors into the 
final analysis. In particular, if hydrogeologic variables 
that are correlated strongly are sampled indepen- 
dently and the correlations are ignored, then some 
realizations may be based on unreasonable or un- 
likely combinations of parameters; such individual 
simulations will skew the statistical results. The per- 
formance assessment for the Waste Isolation Pilot 
Plant (WIPP) separately sampled and independently 
varied aquifer transmissivity, fracture spacing, and 
porosity, although good reasons exist to suspect that 
these variables are interrelated. 

To illustrate, suppose that a strong positive corre- 
lation exists between two critical model parameters 
(Fig. 5a) and that all data points will fall within the 
indicated bounds. Furthermore, assume that a safety 
failure for the geologic repository will occur only if 
values for both parameters are large (Fig. 5a). If the 
PA sampling procedure generates values for both pa- 
rameters independently from uniform distributions 
for a sample size of 25, for example, then the 25 realiza- 
tions can be expected to be based on parameter values 
distributed uniformly in the sample space (Fig. 5b). A 

plot of joint values of the two parameters should be 
expected to yield one point in each of the 25 squares 
in the grid. In this case, only one of the 25 realizations 
(representing the value in the upper right corner of the 
grid) will yield a failure, and the probability of failure 
would appear to be 0.04. Twelve of the samples, how- 
ever, were obtained from outside of the bounds of the 
feasible set of values. If these 12 are discarded, the fail- 
ure probability is only 1 of 13 (or about 0.077), or 
nearly twice as great as when the correlation between 
these two variables is ignored. 

Much recent hydrogeologic research has clari- 
fied the importance of aquifer heterogeneity in 
controlling solute transport. Heterogeneity at a par- 
ticular scale causes greater variation in solute concen- 
tration than in hydraulic head. Thus, an adequate 
definition of formation heterogeneity for a flow 
model may be inadequate for solving the equation 
for transport in the same formation. Konikow(82) pre- 
sented results indicating that the 1996 WIPP PA con- 
sistently underpredicted migration distance of a 
plume emanating from a human intrusion borehole. 
Errors arising from several sources, including numer- 
ical dispersion and spatial truncation errors in the 
transport code, poor resolution from using a grid 
that is too coarse for the scale of the problem, and 
overestimates of the size of a solute source area, 
cause an artificial spreading of the calculated width 
of the plume, which is offset by an underestimate of 
the length of the plume. An alternative analysis using 
a model in which transmissivity variations are repre- 
sented on a smaller scale, using a 2-m grid spacing 
rather than the original 50-m grid spacing, results 
in a much longer, but narrower, plume that has a 
significantly shorter travel time to the regulatory 
boundary.@*) 

As noted in the discussion in Section 2.3.1.2 re- 
lated to Fig. lb,  concern about errors in the WIPP 
Culebra model are made moot by changing the as- 
sumptions in other subsystem models that calculate 
releases to the Culebra and result in negligible quan- 
tities of contaminated brine being released to the 
Culebra. In the specific case of WIPP, the soundness 
of some of these new assumptions (especially relative 
to the interconnectedness of the repository, the vol- 
ume of brine likely to escape from deeper geologic 
formations, and the need to consider potential incur- 
sions from waterflooding operations in nearby hydro- 
carbon production areas) is still questioned. Regard- 
less, groundwater models used in a PA must be based 
on sound conceptual models and reliable parame- 
ter identification. 
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Fig. 5. Example to illustrate effect on calculated risks of independently sampling values of 
two parameters that are strongly correlated. (a) All data points (paired values) fall within 
indicated bounds (or confidence intervals). (b) Independent sampling can yield paired values 
that are “out of bounds” and should be excluded from the PA. 

3.3. Effect of Probabilistic Analysis on Regulatory uncertainties in processes and events and in the bio- 
sphere and critical population group, which will in- 
crease with time, will not invalidate the results of 
the evaluation. Reasonable confidence must exist that 
the uncertainties in the reference calculation for the 
rime span can be identified and quantified in a proba- 
bilistic formar.@‘) [Italics added] 

Time Frame 

Another important result and limitation of using 
probabilistic analysis may be the limited time frames 
proposed or accepted by most regulatory require- 
ments. Time frames that are commonly discussed are 
in the range of tens of thousands of years. Two rea- 
sons for arriving at such geologically short periods 
of time are: (1) During the first 10,OOO years, there 
is a substantial decrease in the radiotoxicity of the 
spent nuclear fuel because of decay of short-lived 
fission products; however, total activities because of 
actinides and their daughter products remain ele- 
vated (as compared with natural uranium ores) for 
periods extending beyond one million years.(83) (2) 
Beyond 10,OOO years, uncertainties in the probabilis- 
tic analysis increase substantially. The Advisory 
Committee on Nuclear Waste(” has noted: 

The ACNW(=) has proposed a two-step analysis: 
(1) An explicit regulatory time requirement for a 
shorter period such that “extrapolations of significant 
processes and their rates can be made robustly with 
reasonably modest uncertain tie^."@^) (2) A second 
part of compliance would be based on assessments 
extending from the shorter specific compliance pe- 
riod to the calculated time of the peak risk to a criti- 
cal group.(=) 

The National Academy of Sciences (NAS) com- 
mittee has noted that the peak risks will probably 
occur after a 10,000-year period, and thus “the basis 
for the standard should be the peak risk, whenever 

The dilemma in developing a TOC [time of compli- 
ance] is that the time span must be suf6ciently long to 
permit evaluation of potential processes and events 
leading to the loss of integrity of the repository and 
transport of radionuclides to the critical population. 
Yet the period must be short enough that inherent 

it occurs [within the limits imposed by the long-term 
stability of the geologic envir~nment].’’(~) The 
ACNW finessed the obvious difficulties that arise 
from the NAS recommendation by noting that, for 
the second step of the analysis: 
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“There is no definitive measure of compliance in the 
sense of a numeric match between a standard and 
the calculated peak risk, and this second part should 
not be allowed to become a de fact0 regulation. A 
comparison between the standard used in the first 
part and the calculated peak risk should lead to 
identification of important performance factors that 
define risk to the critical group. Depending upon the 
extent to which the peak risk exceeds the standard, 
ameliorating actions to reduce this difference should 
be initiated, such as increasing the integrity of the 
engineered barriers, improving site characterization 
to more closely bound uncertainties, or, in the ex- 
treme, abandoning the candidate site.”(ss) 

Thus, what is the final regulatory result of a 

1. The regulatory time for geologic disposal be- 
comes remarkably short as compared to geo- 
logic periods. A 10,000-year period barely in- 
cludes the time frames over which geologic 
systems operate. One of the ironies of the 
concept of geologic disposal at Yucca Moun- 
tain is that the rocks themselves are so young, 
approximately 10 million years, located in the 
Basin and Range Province, a broad region of 
the western United States that from a geo- 
logic perspective, is a region of active tecton- 
ism and vulcanism. The fundamental geologic 
characteristics of the region may not be cap- 
tured in this 10,000-year “snapshot.” 

2. The probabilistic analysis is still carried for- 
ward for extended time periods (but not as a 
‘‘de fact0 regulation”) despite the inevitable 
propagation of large uncertainties in the anal- 
ysis. Ironically, the more effective the reposi- 
tory is in extending the time of peak risk to 
a critical population, the further out in time 
the probabilistic analysis must be extended. 

3. Abandoning a demonstrably poor site be- 
comes an “extreme” possibility after having 
undertaken an expensive and time consum- 
ing process. 

We suggest that the unsatisfying inconsistencies in 
the present situation have much to do with the reli- 
ance on probabilistic analysis. 

probabilistic analysis? 

4. DIALOGUE 

In order to focus the dialogue on a few specific 
issues, the “skeptics” have posed a series of questions 
in bold type to be answered by the “proponents.” 
Background for some of these questions can be found 

in an early paper on the geologic disposal of nuclear 
wastes by Bredehoeft et U L ( ~ )  and a more recent paper 
by Oreskes er 

1. What is the basis for selecting a conceptual 
model? Is it the ability of a model to capture 
the fundamental physical and chemical pro- 
cesses of the system the main criterion, or is 
it computational simplicity? We understand 
that both criteria must be used, but where is 
the balance? This is an important issue be- 
cause the computational demands of a PA of 
the entire system are such that submodels in 
the total-system model must often be “ab- 
stracted,” that is, reduced to computationally 
efficient modules that are supposed to capture 
the physical and chemical behavior of the sub- 
model system. Is the abstraction compared 
with the model, or is it compared with actual 
experimental data or field observations? In 
what sense can the abstracted models used in 
a PA be tested? Are they tested? 

The only rational bases for selecting conceptual 
models of a system are that they fully capture those 
features and physical processes occurring in the real 
system that are believed to be essential to assessing 
the ability of the system to perform as intended, and 
they are not inconsistent with observations or general 
physical and chemical principles. Conceptual models 
need not be unique. A given conceptual model can 
support many mathematical models at different levels 
of detail; the computational simplicity (or cornplex- 
ity) inherent in a mathematical model should not be 
an initial consideration in determining the acceptabil- 
ity of its associated conceptual model. The balance 
struck between computational simplicity and a mod- 
el’s ability to capture essential effects is ideally deter- 
mined by sensitivity analyses and comparisons of re- 
sults of runs with alternative mathematical models; 
if two distinct models produce virtually the same re- 
sults, the computationally simpler of the two will of 
course be preferred; if two different but physically 
acceptable models produce radically different results, 
the one that produces the more conservative results 
(conservative in the sense of moving performance 
measures toward violation of standards) will be se- 
lected, regardless of its computational complexity. 

Two kinds of “abstraction” are used in current 
PAS. First, there is the process of replacing a 
complicated and computationally cumbersome 
model having, say, N uncertain parameters with a 
much simpler function that is constructed by least- 
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square fitting a limited number of outcomes of the 
complicated model to an analytically convenient 
formula for a surface in (M + 1)-dimensional space. 
Usually, M 4 N, and the M independent variables 
of the formula are ideally chosen from the most 
sensitive of the complicated model’s parameters. 
This trick for simplifying complicated models works 
well when the complicated model’s response surface 
in (N + 1)-dimensional space is known to be nearly 
“flat” everywhere throughout the domain of the 
uncertain variables, i.e., the complicated model’s 
dependent variables are very nearly linear functions 
of the Nu uncertain parameters (see Section 2.3.1.2). 
But the technique should be applied with caution 
when working with submodels that are known to 
be highly nonlinear or whose sensitive parameters 
have not been fully explored: In these instances, 
blind application of this kind of abstraction can 
lead to the erasure of essential features on the 
complicated model’s response surface and, conse- 
quently, erroneous conclusions about the ranges of 
the performance measures. It makes no sense to 
compare this kind of abstracted model with its 
more complicated “parent” or with empirical evi- 
dence that could be used to verify the parent 
model. 

A second kind of abstraction involves volume- 
averaging a system of partial differential equations 
(PDEs) over each material domain in the computa- 
tional grid to obtain a much more computationally 
tractable system of ordinary differential equations. 
The abstracted model that results from volume-aver- 
aging globally conserves the same quantities that are 
locally conserved in the original model, but now all 
knowledge of spatial variation in locally conserved 
quantities (e.g., solute mass densities in liquid and 
solid phases) is lost. But knowledge of spatial varia- 
tion may be inessential in some applications, e.g., 
estimating the rate of natural bioattenuation of 
groundwater contaminants from a localized spill.@‘) 
Results of these volume-averaged abstractions are 
often easier to compare with field and laboratory 
data than the voluminous results of solving their par- 
ent PDEs. 

Abstracted models used in a PA may sometimes 
be compared with field and laboratory data, as indi- 
cated above; more often, because of extreme ex- 
penses of useful confirmatory experiments, they are 
only amenable to “testing” through peer review. Are 
they tested? In the sense of “testing by peer review” 
just mentioned, and in an ideal PA, the answer is 
yes. 

2. To the extent that the hypotheses concerning 
the selection of the abstracted models or the 
databases used in the models are not testable, 
then is PA fundamentally unscientific? 

The PA process could be said to be fundamen- 
tally unscientific, but only in the sense that a PA is 
not intended to be a scientific investigation. Scientific 
investigations seek to establish “reliable knowledge” 
of some part of the universe.(@) In contrast, a PA is a 
type of engineering analysis that uses existing scientific 
knowledge to assess, in as rational and objective man- 
ner as possible, the ability of a proposed geologic 
waste repository to meet the standards and regula- 
tions that apply to it. A performance assessment is 
simply a way of providing objective, science-based 
input to public-policy makers. Of course, use of the 
methodology of scientific investigation, including the 
hypothetico-deductive method mentioned by the 
skeptics, is mandatory in field and laboratory studies 
that support an engineering analysis and provide an 
empirical basis for model parameters. 

But, does the fact that the PA process does not in 
every respect conform to the hypothetico-deductive 
paradigm for scientific investigation necessarily imply 
that performance assessment is always “bad science” 
and is therefore useless, perhaps harmful, as input to 
public-policy making? We think not. Over 20 years 
ago, concerns were voiced about the effects of bad sci- 
ence on decision making in the environment and 
health areas.@‘) In reply to these concerns, M. Granger 
Morgan(go) acknowledged the need for good science, 
but noted that “Good science and good policy analysis 
are not the same thing and do not serve the same ends. 
. . . Good policy analysis recognizes that physical 
truth may be poorly or incompletely known. Its objec- 
tive is to evaluate, order, and structure incomplete 
knowledge so as to allow decisions to be made with as 
complete an understanding as possible of the current 
state of knowledge, its limitations, and its implications. 
. . . But with or without full understanding, society 
and its policy makers make decisions.”@) 

Later, this point was made again in answer to the 
question, “Is Risk Assessment A Science?”: “Risk 
assessment cannot be intensive nor selective in the 
way traditional science is. It must deal with questions 
as they arise without regard to their disciplinary as- 
signment or to the quality and completeness of the 
data that are obtainable or at hand. . . . The risk 
assessment process is an interface between science 
and the society that created it and looks to it for 
advice.”(91) 
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3. A common feature of research programs de- 
signed in support of repository licensing is the 
development of experimental programs that 
“confirm” or “validate” models and data- 
bases. Research that challenges the concep- 
tual or abstracted models used in the PA (and 
thus may move the program further away 
from compliance) are given a low priority. 
This is certainly not the scientific method, 
which is fundamentally a testing process de- 
signed to invalidate hypotheses. By what 
method does PA preserve the scientific ap- 
proach of invalidating hypotheses? 

Ideally, research programs in support of reposi- 
tory licensing have the purpose of reducing uncer- 
tainty in those alternative conceptual models, mathe- 
matical model formulations, and parameters that 
have been proposed to describe the real system in 
the PA. The “interior analyses” of these research 
programs may indeed consist of hypothesis invalida- 
tions. We have already remarked on the impossibility 
of strict-sense confirmation or validation of most 
mathematical models used in PA. 

We have also remarked on the fact that PA 
methodology need not follow the hypothetico-deduc- 
tive doctrine of scientific investigation to produce 
results useful to decision makers. For example, very 
different roles are played by the concept of alterna- 
tive conceptual model in a scientific investigation and 
in a performance assessment. In scientific investiga- 
tions, alternative conceptual models are sets of 
hypotheses that are tested against empirical evidence; 
the hypothesis that best accounts for all evidence 
is temporarily accepted as the “truth” until further 
experimental evidence forces its replacement with a 
more explanatory hypothesis. In PA, considerable 
uncertainty may exist concerning which of several, 
equally valid conceptual models of a subsystem best 
mimics the real-world situation; in such a case, and 
pending further observations that could reduce un- 
certainty, the conceptual model that produces the 
most conservative effects on total system’s perfor- 
mance (i.e., “conservative” in the sense of con- 
sciously erring on the side of safety) is accepted as 
the truth. 

4. When is the description of the system (e.g., 
site characterization) sufficiently complete to 
provide a satisfactory analysis? How is this 
demonstrated? Ideally, site characterization 
and the model-building process proceed si- 
multaneously. Model-based estimates of un- 

certainty could be compared to actual uncer- 
tainty as data on the site become available. 
Does this happen? If not, why not? If such 
comparisons are made, what is the basis of 
considering the predicted values to be in 
agreement with measured values? 

Ideally, site characterization is complete when 
all features, events, and processes (FEPs) associated 
with the site that could significantly affect waste con- 
tainment have been identified, these FEPs have been 
incorporated into mechanistic models of system be- 
havior, and data have been obtained through field 
or laboratory measurements which are sufficient to 
establish values of the mechanistic models’ parame- 
ters. How does one know that all significant FEPs 
have been identified? One is really never sure, but 
failure to discern essential processes or detect poten- 
tially disruptive features seems unlikely given mod- 
ern remote-sensing techniques and international da- 
tabases on geophysical processes. Also, if the site has 
been selected for development as a waste repository 
as a result of a rational site-selection process, signifi- 
cant features of the site that relate to its ability to 
contain waste will already have been identified by 
literature searches or preliminary field investigations; 
it is unlikely that a rational site-selection process will 
lead to selection of a waste repository site in an un- 
mapped and poorly understood geologic domain. 

We agree that submodels of a total-system PA 
should ideally be developed interactively and in par- 
allel with site characterization activities (Section 
2.3.1.1). We know of only one instance where model- 
based estimates of uncertainty were compared with 
actual uncertainty in site-specific data: Distributions 
of average far-field permeability and average far-field 
pore pressure for halite and anhydrite at the WIPP 
site were predicted with a bootstrap model using 
small-scale measurements of these quantities taken 
near walls of openings(16); the predicted distributions 
of permeability were later found to compare favor- 
ably with empirical distributions of intermediate- 
scale measurements of halite and anhydrite perme- 
ability. In general, the “goodness of fit” of a mea- 
sured distribution to a predicted distribution can be 
tested by application of the chi-square test or the 
Kolmogorov-Smirnov test .(%) 

5. What is the basis for extrapolating models 
beyond the temporal and spatial scales of ex- 
perimental data, field observations, or human 
experience? Relatively simple but coupled 
systems may exhibit nonlinear behavior in 
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which experimental and mathematical dis- 
continuities confound accurate and useful de- 
scriptions of the system. Why should we ex- 
pect greater success in accurately describing 
the behavior of more complex geologic 
systems? 

Extrapolation of results of a mechanistic model 
to temporal and spatial intervals well beyond those 
used in formulating the model is often justified by the 
fundamental belief that the physical laws on which a 
model is based are invariant under translations in 
time and space. Note that this is not to say that rates of 
physical and chemical processes are invariant under 
translations in time and space, or that the phenomena 
being studied are only amenable to a deterministic 
description. 

Relatively simple real systems and the nonlinear 
equations used to describe them may indeed exhibit 
complex, even chaotic behavior (Question 6); but an 
honestly chaotic model, one whose equations are not 
underdetermined or numerically unstable, does not 
necessarily preclude a quantitative and useful de- 
scription of the phenomenon being studied; indeed, 
chaotic behavior might be the essence of that phe- 
nomena. If a complex geologic system actually be- 
haves in an intrinsically stochastic manner (see the 
“10 plutons” controversy mentioned in Section 3.1) 
and a properly posed model of that system also turns 
out to be intrinsically stochastic, then the modeling 
effort should be viewed as a success, rather than a 
failure. It is true, however, that PA may not be able 
to make direct use of intrinsically stochastic models. 
How to conduct sensitivityhncertainty analyses of 
intrinsically stochastic models is, in our opinion, an 
open and interesting research problem. 

In general, physical scientists can expect 
“greater success” with deterministic models soundly 
based on macroscopic, classical physics (as are most 
submodels of a PA) than with models based on micro- 
scopic statistical physics (e.g., models of plasma tur- 
bulence) because classical physics predicts phenome- 
non on spatial and temporal scales that humans find 
most comfortable for experimentally testing results 
of model predictions. 

6. Is it possible to distinguish between uncer- 
tainty that cannot be reduced by additional 
experiments or data acquisition and the un- 
certainty that is inherent in the system? This 
is an important distinction that may be forgot- 
ten once compliance is demonstrated. 

Two kinds of uncertainty can arise in studies of 
any real system. The first kind is called epistemic un- 
certainty because it arises from the investigator’s im- 
perfect knowledge of some system characteristics. 
Some examples of epistemic uncertainty: One knows 
that there must be a formula expressing the relation- 
ship between mass flux through a porous medium and 
fluid pressure in that medium, but does not know the 
precise mathematical form of that relationship. One 
knows that the spatially averaged effective porosity 
of a particular 1000-m3 volume of rock is a number 
between zero and one, but does not know the precise 
value of that number. In each of these examples, the 
degree of uncertainty could, in principle, be reduced 
by performing certain experiments. Almost all uncer- 
tainty encountered in modeling engineered systems is 
epistemic. In the skeptics’ discussion of uncertainty 
(Section 3.1), it appears that G. G. Simpson was con- 
cerned with Laplacean epistemic uncertainty in geo- 
logic and evolutionary  system^.(^'.^^) 

Note that within the category of epistemic uncer- 
tainty one must include instances of ignorance: One 
is simply unaware of the existence of a thing or phe- 
nomenon. A good example of “uncertainty as igno- 
rance,” i.e., the Lord Kelvin versus Charles Darwin 
debate, is cited earlier in this paper (Section 3.1). 

The second kind of uncertainty is called aleatory 
uncertainty. This kind of uncertainty is inherent in 
the outcomes of trials with chance devices: e.g., a 
throw of dice, a spin of a roulette wheel, an hour’s 
worth of counts of a Geiger counter. In all of these 
examples, uncertainty cannot be reduced-even in 
principle-by experiments performed in advance of 
making the trial throw, spin, or count. Until recently, 
under the mechanistic and deterministic Laplacean 
view of the universe, it was believed that aleatory 
uncertainty is ultimately epistemic in nature.(93) The 
discovery of chaotic dynamical systems by Henri 
Poincare and development of the concepts of forced 
and intrinsic stochasticity(w) have strengthened the 
idea that aleatory uncertainty has an objective exis- 
tence independent of epistemic uncertainty. The case 
for believing that “chance is real” receives further 
support from results of studies showing that many 
natural systems and phenomenon, from flour-beetle 
populations(gs) to global atmospheric circulation,(%) 
behave as chaotic dynamical systems. Currently, ale- 
atory uncertainty enters PA models only through the 
intentional employment of “random number” gener- 
ators to generate sample values of imprecisely speci- 
fied parameters necessary for the Monte Carlo inte- 
grations of sensitivityhncertainty analyses. 
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7. Expert opinion is an important part of a PA. 
A difficulty arises when expert opinion be- 
comes the substitute for data that could other- 
wise be obtained in reasonable amounts of 
time. Occasionally, the expert elicitation is 
described as a “placeholder” until experi- 
ments can be completed, but the use of expert 
opinion in the PA analysis is such an in- 
grained part of the process that the placehold- 
ers may become permanent. A solicitation of 
expert opinion is a much faster and cheaper 
way of obtaining parameter values than actu- 
ally doing the required site characterization 
or laboratory experiments. Is the use of ex- 
pert opinion clearly identified in a PA? Can 
the analysis distinguish between data that are 
elicited from experts and actual data? What 
would be the typical proportions of each in 
a PA? 

We agree that expert opinion should not be 
the sole basis for assigning values to sensitive model 
parameters in an uncertainty analysis whose results 
will be used in an application for certification of 
compliance; and of course, there should be reason- 
able connections between values assigned to less- 
sensitive parameters and real conditions prevailing 
at the proposed repository site. Ideally, the most 
sensitive model parameters in a phenomenological 
model are identified by sensitivity analyses con- 
ducted during site characterization; results of these 
analyses are then used to set priorities on further 
experimental programs that could provide an empir- 
ical basis for, and reduce uncertainty in, the criti- 
cal parameters. 

On the other hand, since “The purpose of com- 
puting is insight, not numbers,’’(97) there can be no 
harm in exclusive use of expert opinion to assign 
ranges and distributions of parameters for purposes 
of sensitivity analyses. The purpose of a sensitivity 
analysis is to rank parameters in the order of their 
importance for determining model outcomes; and the 
model’s investigators need only choose parameter 
ranges within which they believe the true value of 
the parameters will lie (Section 2.3.1.2). 

Use of expert opinion to formulate models and 
assign values to model parameters should always 
be clearly identified in reports of work supporting 
a PA. Of course, computational models “see” only 
numbers, and cannot distinguish between numbers 
that are derived from empirical data and numbers 
based on considered, but subjective judgments of 

experts; thus, it is impossible to discern the effects 
of, say, just the expert-judgment parameters alone 
in postanalysis results of a sensitivity or uncer- 
tainty study. 

Of more than 1,500 parameters employed in the 
performance assessment for the WIPP CCA,(’*) 
roughly 40% were precisely known (i.e., physical con- 
stants, radionuclide half-lives, etc.) or were based on 
empirical data from field or laboratory experiments. 
The remaining 60% of parameters could be said to 
be based on expert judgement, but this would be 
misleading since many of these were reasonable ana- 
logues of empirically based quantities, or were refer- 
ence values for waste properties set by the CCA’s 
implementing agency, or were “model configuration 
parameters,” numbers that must be assigned by the 
investigator to configure scenarios or to make compu- 
tational models run efficiently. 

8. A typical PA analysis may well be beyond the 
comprehension of a group of knowledgeable 
experts. The PA for the Waste Isolation Pilot 
Plant in New Mexico has over 1,500 parame- 
ters. The PA for Yucca Mountain will be even 
more complex. The complexity increases be- 
cause of an apparent desire to demonstrate 
completeness, but this may have little to do 
with the real, expected performance of the 
repository. Does the increased complexity im- 
prove the analysis or obscure a thoughtful 
consideration of the result? 

The sheer size of reports and apparent complex- 
ity of technical analyses that support development 
and licensing of geologic waste disposal systems do 
not, we think, arise from investigators’ inherent de- 
sires to demonstrate completeness or technical prow- 
ess. More likely, the complexity of the process for 
licensing a waste repository is a response to the pub- 
lic’s hypercritical assessment of nuclear power and 
the requirements of administrative and environmen- 
tal law in an increasingly litigious society. The frustra- 
tions expressed in this question are understandable; 
but opinions differ as to whether “increased complex- 
ity improves the analysis or obscures thoughtful con- 
sideration of results.” The regulatory agencies, EPA 
and NRC, apparently believe that a thorough and 
painfully detailed reporting of PA results is neces- 
sary. Regulatory agencies may also strongly constrain 
the acceptable forms of analysis that can be used to 
test model systems against their own standards and 
regulations (Section 2.2).(%) 
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While recognizing the necessity of following reg- 
ulatory agency guidelines for reporting a compliance 
application, at the technical level we proponents be- 
lieve that in building quantitative models of large 
and complicated technological systems, “the object 
should not be prediction but, rather, insight that can 
guide the development of heuristic policy strate- 
gies.”(21) We also know that simple, sometimes “back- 
of-the-envelope,” calculations often yield greater in- 
sight into certain technical issues than could immedi- 
ately be gained by calculations with an elaborate com- 
puter model. But some sponsors and regulators will 
not readily accept insights that are so simply ob- 
tained. 

9. How does one grade or score a PA? Given 
the complexity of a PA of a repository, what 
are the characteristics of a well done PA? 
What are the characteristics of a poorly 
done PA? 

We know of no objective and practicable way 
to score a PA. Cost/benefit analysis cannot be used 
to determine the value of a PA because the costs 
involved in conducting an engineering analysis of a 
large, technological system are usually a tiny fraction 
(in the “noise”) of the costs of implementing that 
system. PAS are like other engineering analyses in 
that they are ultimately scored by the people who 
sponsor, produce, review, and use them; the scores 
come in the form of subjective opinions, and a con- 
sensus on a final grade (i.e., well done or poorly done) 
is not to be expected. The sponsor of an engineering 
analysis will give the study a high score depending 
upon whether the study meets the commissioned ob- 
jectives and is submitted on time and within budget. 
The analysts who produce the study are likely to 
grade their own work on the basis of the number of 
compromises in technical quality they had to make 
in the course of the study in order to meet sponsors’ 
deadlines and stay within funding constraints. Tech- 
nical reviewers will give the study a passing grade 
depending upon whether knowledge in the reviewers’ 
specialty area is properly used in formulating concep- 
tual models and in drawing conclusions from the asso- 
ciated computational models. The users of a PA 
might include those study sponsors who use study 
results to support licensing actions with regulatory 
agencies. After taking into account their own techni- 
cal reviewers’ opinions of the study, regulators will 
give the work a good grade according to the degree 
to which the report of work does adhere to their 

agency’s form-and-content guidelines for a license 
application. 

5. CONCLUSIONS 

Performance assessment offers a reasonable ap- 
proach, in theory, to evaluating risks of geologic 
waste disposal when faced with uncertainties. A 
method closely related to PA, Reliability Analysis, 
has proved successful in evaluating and predicting 
risks of some engineered systems. A major concern 
expressed in this dialogue focuses on the question 
of whether uncertainties in natural geologic systems 
over long periods, both in defining critical processes 
and in quantifying model parameters, are so large or 
difficult to characterize that the methodology fails. 
That is, if underlying conceptual models are weak 
or unproved or both and numerical models that are 
components of the PA process consequently contain 
significant but unmeasurable errors, are calculated 
risks accurate or meaningful? The authors of this 
paper agree that a need exists for additional research 
into this issue. 

The total system being simulated in a series of 
PA models includes the natural geologic, geochemi- 
cal, and hydrogeologic environment that contains the 
engineered and constructed repository. The hard-to- 
quantify characteristics of a geologic system provide 
the multiple natural barriers to contaminant migra- 
tion that underlie the concept of geologic disposal. 
This makes it even more important to test scientifi- 
cally, evaluate critically, and improve wherever possi- 
ble the models and data representing the natural 
system. 

PA methodology inherently requires the use of 
simplified models. Model simplification must, how- 
ever, be justified and tested to avoid’oversimplifica- 
tion. This critical testing appears to the skeptics to 
be missing in some cases, while it appears to propo- 
nents to be generally adequate. Loss of inessential 
details during model simplification is obviously not 
critical; one must be concerned about (1) loss of es- 
sential details, (2) lack of proper evaluation of effects 
of using oversimplified conceptual models, and (3) 
lack of data to support assumed statistical distribu- 
tions of parameters and correlations among parame- 
ters. Such critical testing can lead to more reliable 
and defensible levels of simplification in models and 
(or) to simple methods to compensate for recognized 
errors or bias induced by the simplifications. 

Skeptics and proponents agree that the real 
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value of the results of any performance assessment 
will ultimately depend on (1) the degree of under- 
standing of site-specific relevant physical and chemi- 
cal processes, (2) the capability of the chosen models 
to simulate those processes, (3) the degree to which 
model parameters can be associated with site-specific 
conditions, (4) the length of real time for which simu- 
lations are required, and (5) the care taken in imple- 
menting and documenting the results of the PA. 
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