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SUMMARY Heterochrony, the classic framework in which to
study ontogeny and phylogeny, in essence relies on a univariate
concept of shape. Though principal component (PC) plots of
multivariate shape data seem to resemble classical bivariate
allometric plots, the language of heterochrony cannot be
translated directly into general multivariate methodology. We
simulate idealized multivariate ontogenetic trajectories and
explore their appearance in PC plots of shape space and
size–shape space. Only if the trajectories of two related species
lie along exactly the same path in shape space can the classic
terminology of heterochrony apply and pure dissociation of

size change against shape change be detected. Regional
heterochronyFthe variation of apparent heterochrony by
regionFimplies a dissociation of local growth fields and cannot
be identified in an overall PC analysis. We exemplify a geometric
morphometric approach to these issues using adult and subadult
crania of 48 Pan paniscus and 47 Pan troglodytes specimens.
On each specimen, we digitized 47 landmarks and 144
semilandmarks on facial curves and the external neurocranial
surface. We reject the hypothesis of global heterochrony in the
cranium of Pan as well as regional heterochrony for the lower
face, the upper face, and the neurocranium.

INTRODUCTION

The study of heterochrony has a long history incorporating

extended debates, many of them lacking a consensus even

today (see e.g., Gould 1977; Alberch 1985; McKinney

and McNamara 1991; Godfrey and Sutherland 1995, 1996;

Raff 1996; Zelditch and Fink 1996; Klingenberg 1998). The

term ‘‘heterochrony’’ has also been appliedFvery controver-

siallyFto explain human evolution (Bolk 1926; de Beer

1951; Pilbeam and Gould 1974; Gould 1977; Montagu 1989;

Shea 1989; Penin et al. 2002). One prime example of het-

erochrony among primates is Pan paniscus, the pygmy chim-

panzee, which is often regarded as pedomorphic relative to

Pan troglodytes (Coolidge 1933; Giles 1956; McHenry and

Corruccini 1981; Shea 1983a, b, 1989). These and many

other older studies rely on bivariate allometric plots of some

selected distance measurements. The advancement of land-

mark-based geometric morphometrics (Bookstein 1991; Mar-

cus et al. 1996; Dryden and Mardia 1998; O’Higgins 2000a, b;

Slice 2005) makes possible far broader analyses of onto-

geny and phylogeny based on an extended list of shape

variables and a multivariate statistical toolkit (see e.g.,

O’Higgins et al. 2001; Ponce de Léon and Zollikofer 2001;

Penin et al. 2002; Bookstein et al. 2003; Mitteroecker et al.

2004a).

In this article, we attempt an appropriate fusion of these

two lines of argument. We argue that the classic univariate

notion of shape does not provide a scientifically effective

concept of heterochrony in any canonical way to translate the

most commonly applied morphometric definitions of het-

erochrony from Gould (1977) and Alberch et al. (1979) into a

multivariate framework. Using simulated data we demon-

strate how to interpret principal component (PC) scores along

the lines of heterochrony and exemplify this approach in

an analysis of the cranial development of P. paniscus and

P. troglodytes.

The classical concept

Natural selection is based on biological variability, which in

turn emerges through differences in ontogenetic pathways.

Developmental biology has thus become a central discipline

for evolutionary studies (see e.g., Raff 1996; Hall 1999; Wag-

ner 2000; Arthur 2002). Heterochrony has played a crucial

role in the study of ontogeny and phylogeny since its intro-

duction by Ernst Haeckel (1866), who invented it as a class of

exceptions to his theory of recapitulation. It was Gavin de

Beer (1930, 1951) who redefined and broadened the concept

into a more active and significant evolutionary mecha-

nism. He understood heterochrony as relative retardation or
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acceleration in the rate of development of the body as com-

pared with the reproductive organs. He also acknowledged

that these temporal alterations may be mosaicFdevelopmen-

tal retardation or acceleration can be different from organ to

organ. Gould (1977, 1992) provides a detailed historical dis-

cussion of this topic.

Today’s experimental developmental biologists know

many examples of how temporal shifts of actual biological

processes like gene expressions or tissue inductions alter adult

morphology (see e.g., McKinney and McNamara 1991; Raff

1996; Hall 1999). Heterochrony is also applied as an explan-

atory framework for purely descriptive morphometric data.

This is especially the case in paleontology, primatology, and

anthropology, where experiments are rarely possible. The

most influential work on the morphometrics of heterochrony

comes from Stephen J. Gould and colleagues. His book On-

togeny and Phylogeny (Gould 1977) provided a terminology,

called the clock model, based on three variables: age, size, and

shape (as a proxy for development). The adult morphology of

a species can differ from that of an ancestor in any or all of

these three aspects, and the word ‘‘heterochrony’’ refers to the

evolutionary dissociation of size, shape, and age during on-

togeny (Fig. 1). As biological age is often not available, most

studies focus on the dissociation of size and shape alone.

Alberch et al. (1979) extended this approach to compare

growth trajectories in age-versus-shape or size-versus-shape

plots. In this scheme, a linear (or linearized) ontogenetic tra-

jectory can be sufficiently specified by five control parameters:

a for the onset age of growth, b for the age of cessation of

growth, kS for change in size, ks for change in shape, and S0
for the initial size at the commencement of the growth period.

When differences between ontogenetic trajectories are de-

scribed as perturbations of these five parameters, there results

a terminology of different heterochronic processes. Figure 2A

shows two trajectories in age–shape space. Both species reach

maturity at the same age, but the descendant’s shape (devel-

opment) is retarded relative to its ancestor. This, again, is the

case of neoteny.

Central to both approaches is the use of a single shape

variable, usually construed as a ratio of two length measure-

ments. These univariate approaches provide a heterochronic

term for every possible version of size–shape dissociation.

Figures 1B and 2B illustrate the terminologies of Gould

(1977) and Alberch et al. (1979), respectively, that interpret

every possible pattern of parameters in terms of heterochrony.

But this renders the general description of heterochrony un-

testable, as it cannot be falsified in any way (Zelditch and

Fink 1996; Roopnarine 2001). The classic scheme is descrip-

tive rather than explanatory.

Multivariate morphometrics

Methodological improvements in the study of heterochrony

are closely bound to improvements in the multivariate char-

acterization of shape. Classic multivariate morphometrics

usually is based on a set of log-transformed distance meas-

urements (Blackith and Reyment 1971; Jungers et al. 1995).

Modern morphometric techniques are landmark-based in-

stead, so as to include more information than classical meth-

ods do. Geometric morphometrics is the statistical analysis of

landmark coordinates after the forms are superimposed by

Procrustes registration (Bookstein 1991; Marcus et al. 1996;

Dryden and Mardia 1998; O’Higgins 2000a). This superim-

position includes three steps: translation to a common origin,

scaling to a common size, and a rotation to minimize summed

squared interlandmark distances among the forms (Rohlf

and Slice 1990). The resulting Procrustes coordinates cap-

ture shape information only, whereas overall size is explicitly

Fig. 1. Clock model of Gould (1977): The hands for size and shape describe the morphology of a species relative to its ancestor. The dashed
line in the middle marks the position when ancestral and descendent values are identical. (A) Neoteny: Size is the same for both species being
compared but shape is retarded (paedomorph) in the descendent. (B) The possibilities for altering size, shape, and age separately during
evolution.
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expressed in the variable called Centroid Size. As the Pro-

crustes approach to geometric morphometrics distinguishes

between size and shape from first principles, it is highly ap-

propriate for studying heterochrony (Penin et al. 2002). The

arguments in this article, however, apply to other multivariate

morphometric approaches like Euclidian distance matrix

analysis (EDMA) (Lele and Richtsmeier 1991; Richtsmeier

and Lele 1993) as well, as long as they are cast into a space of

explicit shape variables permitting the necessary least-squares

operations that underlie the regression on size.

Heterochrony in a multivariate framework

With the advance of modern morphometrics, there have been

several attempts to translate heterochrony into a multivariate

setting (e.g., McKinney and McNamara 1991; Richtsmeier

and Lele 1993; Godfrey and Sutherland 1996; Zelditch and

Fink 1996; Bruner and Manzi 2001; Ponce de Léon and

Zollikofer 2001; Roopnarine 2001; Eble 2002; Penin et al.

2002; Vinicius and Lahr 2003; Mitteroecker et al. 2004a).

These studies vary in the way the univariate concept of het-

erochrony is adapted to a multivariate framework. In both

original approaches, Gould (1977) and Alberch et al. (1979),

shape is measured by a single variable. Relative to its ancestor

the descendent development (i.e., shape change) can be trun-

cated, extended or differently associated with size and/or age.

It is implicitly assumed that both ontogenies undergo the

same sequence of shape changesFjust differently timed. Oth-

erwise no single shape variable would be sufficient to describe

the differences in ontogeny. For this to apply to multivariate

data, the species must share the same ontogenetic trajectory in

multivariate shape space, differing only in length or associated

size when plotted in size–shape space (see Fig. 3 and Godfrey

and Sutherland 1996; Roopnarine 2001; Vinicius and Lahr

2003; Mitteroecker et al. 2004a). The shape variable in Gould

(1977), which is b in Alberch et al. (1979), would correspond

to the position along this common shape trajectory. In other

words, both species must maintain the same allometric de-

velopment but differ in their duration or timing of develop-

mentFthey are ‘‘ontogenetically scaled.’’ To distinguish

between the specific heterochronic modes (like neoteny, pro-

genesis, etc.) additional information on the age of the inves-

tigated specimens as well as their phylogenetic relationship is

often necessary, so that not all cases can be diagnosed by size

and shape information alone (Fink 1982; Godfrey and Suth-

erland 1995; Klingenberg 1998). However, the general hy-

pothesis of heterochrony can be rejected without information

on time or phylogeny if the ontogenetic trajectories do not

overlap in shape space.

Allometry is the linear or linearized characterization of the

dependence of shape on size. It is frequently used to describe

average trends of shape change during ontogeny. Multivariate

allometry for interlandmark distance data is often estimated

by the first eigenvector of the variance–covariance matrix of

log-transformed distances (Jolicoeur 1963) as long as all

loadings of this eigenvector are positive. For landmark data, it

is the multivariate regression of the shape coordinates on log

Centroid Size (see Bookstein 1991 and Klingenberg 1996, for

general reviews of that topic). Generally, the first PC for in-

terlandmark distance data as well as that for landmark co-

ordinate data often correlates with overall size, but usually the

first PC is not precisely the optimal description of allometry

in the presence of any other factors or grouping variables.

The regression of shape on size, in contrast, is the optimal

least-squares prediction of shape change during growth.

In grouped studies, for instance, the resulting (linear or

Fig. 2. Two ontogenetic trajectories in age–shape space: (A) Neoteny: Age (size) is identical for ancestor and descendent but shape became
retarded during evolution. (B) Terminology of heterochrony for typical trajectories following Alberch et al. (1979). Redrawn after
Klingenberg (1998).
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nonlinear) regressions, one for each group, can be tested for

equality and the positions of adults along these trajectories

can be compared.

In geometric morphometrics, principal component analysis

(PCA), which is called relative warp analysis when applied to

Procrustes coordinates (Bookstein 1991; Rohlf 1993), has be-

come the standard tool for the analysis of ontogeny and

phylogeny (see e.g., O’Higgins and Jones 1998; Dean et al.

2000; O’Higgins 2000a, b; O’Higgins et al. 2001; Ponce de Léon

and Zollikofer 2001; Ackermann and Krovitz 2002). However,

identity of position or direction between different growth tra-

jectories in a PCA has to be examined with care. A scatterplot

of the first two PC scores for more than two species often

reveals similar trajectories for at least two of the investigated

species. But this can be an artifact of the plot: in displays

of more than two PCs these trajectories usually will differ (see

Fig. 4 and also Oxnard 1983; Cobb and O’Higgins 2004).

PCA is a projection of a high-dimensional dataset onto a

few components that summarize most of the variance present

in the data. Two PCs, however, are not enough to depict all

differences of even two ontogenetic trajectories. Three dimen-

sions are necessary for a complete representation of two dif-

ferent (linear) trajectories. Figure 5 illustrates that different

projections of such a three-dimensional space onto paper yield

strikingly different apparent relations between the two trajec-

tories. This is a general phenomenon, not restricted to PCA or

to linear trajectories. Consider any four different forms de-

scribed by at least three shape variables that define two non-

parallel ontogenetic trajectories (two young and two adult

forms). In all but exceptional cases the resulting three-dimen-

sional shape space can be projected onto two dimensions so

that the trajectories either intersect, are parallel, are skew, or

diverge from one single point (compare also Bookstein 2001).

This theorem can even be extrapolated to the choice of

measurements itself. Imagine any four different biological

formsFagain constituting two ontogenetic sequencesFthat

differ in several morphological characteristics. There is in-

duced a high-dimensional (theoretical) space of description

(that is actually still unmeasured). Measuring two distances

on each form can be seen as a projection of this high-dimen-

sional space onto these two variables. Dependent on the

choice of the two variables, the ontogenetic trajectories in a

scatterplot of the two variables can again possess any of the

geometries described above.

The identity of trajectories in shape space is a geometric

matter that cannot be read from any single projection or

bivariate plot of measurements. It has to be shown in all

principal projections or in the full space by testing that all the

regressions of shape on size lie on the same curve. Only then

can heterochrony (differences in regressions along this curve)

be tested.

Regionally dissociated heterochrony

It is unlikely that any global heterochronic process, such as

early cessation of overall growth or over-expression of some

global growth hormones, would result in an ideal allometric

scaling uniform for all variables. Experiments of Corner and

Shea (1995) and Shea et al. (1987, 1990) indicate that many

but not all variables scale identically even between normal

mice and a transgenic mouse population with a very high

global level of growth hormone. Circulating hormones that

have overall effects on growth can also have specific local

effects and can stimulate the localized production of other

growth factors in particular tissues. These tissue-specific ef-

fects are mediated by the expression of hormone receptors

and the organization of the corresponding second messenger

systems in the target tissue. Additionally, there is autono-

mously controlled growth in individual structures expressed

by a number of locally acting growth factors (Raff 1996).

Thus, there may exist many more localized effects of allo-

metric scaling in morphometric data (‘‘mosaic heterochrony,’’

David (1990) or ‘‘dissociated heterochrony,’’ McKinney and

McNamara (1991)). Independent evolutionary change of local

Fig. 3. Ontogenetic trajectories of two related species with three landmarks each: These triangular forms can be completely described by two
Bookstein shape coordinates along with baseline length. The trajectories overlap in shape space (A) but diverge in size–shape space (B):
heterochrony is a valid description. If two trajectories diverge in shape space instead (C), a global description in terms of ontogenetic scaling
is not possible.
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Fig. 4. Principal component (PC) analysis of cranial landmarks from adult and subadult Homo sapiens, Pan paniscus, Pan troglodytes,
Gorilla gorilla, and Pongo pygmaeus (from Mitteroecker et al. 2004a). The forms are superimposed by a Procrustes registration so that the
analysis is of shape only. The PCs are rotated so that the common direction of allometry is aligned with component 1. (A) Scores of
component 1 versus 2 and a schematization of the five growth trajectories in this space (B). Note that P. paniscus, P. troglodytes, and Gorilla
overlap in this plot. (C) Components 1 versus 3. (D) Schematization of the respective growth trajectories. The three previously overlapping
trajectories now diverge.

Fig. 5. Two hypothetical trajectories in a three-dimensional space that is rotated into three different orientations. The relation of the
trajectories is fundamentally different across these two-dimensional projections onto the paper.
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growth processes does not result in an overall dissociation of

size and shape (i.e., pure heterochrony) but in the dissociation

of local growth fields (Gould 1977; Raff and Wray 1989;

Godfrey and Sutherland 1996). The effects of dissociated he-

terochronic processes need not necessarily be restricted to

isolated and adjacent regions; they may be overlapping or of a

hierarchical nature. In Mitteroecker et al. (2004b), we showed

that two ontogenetic trajectories in shape space diverge even if

they differ only in regionalized ontogenetic scaling. When the

regions of dissociated heterochrony are analyzed separately

instead, the local trajectories overlap and differ only in length

(Fig. 6). But even when regional allometric scaling can be

found, the descriptive data alone cannot clarify whether a

change in a single global hormone with tissue-specific re-

sponse or instead a series of alterations in local growth control

systems is responsible for the different adult phenotypes.

Whereas the first possibility would require evolutionary

change of a single factor only, the latter one involves several

independent evolutionary adaptations.

When studying regional ontogenetic scaling, it turns out to

be difficult to find the actual regions that possess a common

evolution of ontogeny for all their morphometric variables.

The focus moves from a classic study of allometry and het-

erochrony to the study of modularity (Raff 1996; Bolker 2000;

Callebaut and Rasskin-Gutman 2005). Expectations about

modularity are often based on ‘‘good biological intuitions

about the nature of developmental and evolutionary pro-

cesses’’ (von Dassow and Munro, 1999, p. 308), but they

can also come from the data themselves. Allometric growth

within a species can be visualized by principal strains (Book-

stein et al. 1985), as a thin-plate spline deformation grid

(Bookstein 1991), or as displacement vectors for each land-

mark. All these visualizations are local descriptions that

can be used to find similar ontogenetic trends for different

regions separately. Another approach is the iterative search

of modules to find an optimal description of the data by

regional heterochrony (Williams 2001). Of course, if the de-

scription is reduced to a series of single variables, each of them

Fig. 6. In a dataset of midsagittal cranial landmarks of adult and subadult Pan paniscus we calculated allometric growth and visualized it by
a thin-plate spline deformation grid (A). This allometric vector was modified to construct a regionally pedomorphic artificial species:
landmark displacement of the lower facial landmarks was divided by two (B). As such, this results in two different shape deformations (A
and B), one for each species, that are identical in the neurocranium and differ in the face by allometric scalingFthe second species’ face is
paedomorphic. We then sampled 20 artificial specimens along each of the two growth vectors and performed a principal component analysis
(PCA) of Procrustes coordinates (C). The two trajectories diverge in this shape space. When analyzing the neurocranium and the face
separately the trajectories overlap (D and E). In the PCA of the face, the modified species’ trajectory is shorter than the original one,
revealing the constructed allometric scaling among the two species (E). After Mitteroecker et al. (2004b).
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can be interpreted separately as heterochrony, but then this

description would lose its power again. The more variables

one single description of (regional) allometric scaling can ex-

plain (i.e., the larger the modules), the more powerful is that

description.

The identification of spatial modules can also be based on

the covariance structure among morphometric variables (Ol-

sen and Miller 1958; Cheverud et al. 1989; Cheverud 1996) or

on the covariation of asymmetry (Klingenberg et al. 2001).

However, modularity seems to be a question of degree instead

of discrete and clearly distinct modules (Klingenberg et al.

2003). It is thus not to be expected that a decomposition of

the total structure in several parts would often result in a

pattern of regionalized allometric scaling as clear as that sim-

ulated in Fig. 6.

Misinterpretation of PC scores

Some authors (e.g., McKinney and McNamara 1991; Eble

2002) suggest interpreting PC plots of interlandmark distance

data in very much the same way as allometric plots. They

diagnose different heterochronic types when the trajectories

differ in a plot of the first two PCs. But this is not consistent

with any of the classic concepts and does not make sense in a

multivariate morphometric context. For instance, when the

first PC is something like General Size, the second PC is al-

ways a contrast of two ways of attaining that size, and so

necessarily refers to two different combinations of distances,

such as arise from two different regions. If one region is

hypermorphic, the other is necessarily neotenous at the same

time. There is another methodological mistake in the litera-

ture when interpreting PC scores along the lines of het-

erochrony that is most explicitly formulated in Eble (2002).

He declares for each PC separately that a species is neotenous

for this particular PC, or progenetic, and so forth. But PCs

are statistical constructions that, especially in data spanning

several anatomical regions over several species, almost never

correspond to actual biological factors. (For instance, PCs are

forced to be mutually uncorrelated, but real biological factors

will rarely be completely independent.) Additional informa-

tion about genetic and epigenetic control of development is

always needed to interpret linear combinations of the original

variables as responsive to different biological processes. It is

of little interest whether some artificial linear combinations of

the data are neotenous or not and it presumably answers no

reasonable biological or paleonthological question. This kind

of misinterpretation seems to originate in the superficial re-

semblance of PC plots to the plots of size (or age) versus

shape in Alberch et al. (1979). But the appropriate extension

of this formalism should be the one we presented above. Also,

when breaking down the interpretation to the different PCs

separately, there is again the problem that any single com-

ponent can be described separately as heterochronic without

any possibility of falsification. PCs should not be read com-

ponent by component; rather, the first few PCs should be

interpreted jointly (Oxnard 1983).

Some authors (e.g., Ponce de Léon and Zollikofer 2001;

Penin et al. 2002; Berge and Penin 2004) interpret different

but parallel trajectories as heterochronic if one of them is

longer or shows different associations with age. But if the

compared species do not share the same trajectory they can-

not be regarded as heterochronic variants. In the late devel-

opmental period that is investigated, both species seem to

possess the same direction of shape change, which might be as

a result of the same developmental processes; yet they do not

result in heterochronic morphologies. A longer trajectory for

a given time period reflects more and thus accelerated shape

change, but this should not be called heterochrony so as to

keep the terminology straight. Zollikhofer and Ponce De

Léon (2004) suggest the term ‘‘generalized heterochrony’’ to

describe two ontogenetic trajectories that are parallel for some

segments. Adding yet another label, however, does little to

disentangle the contradicting terminology of heterochrony.

Also, the problems with PCA hold true for notions about

parallel ontogenetic trajectories as well. Figure 5 shows that

two trajectories with different origin and direction in full

shape space can appear parallel in a two-dimensional projec-

tion. Ponce de Léon and Zollikofer (2001), Ackermann and

Krovitz (2002), and Penin et al. (2002) report parallel trajec-

tories for different hominoid species, but display just two

components of their data. As the data of Ackermann and

Krovitz (2002) included five species, the relation of the tra-

jectories would be expected to change when more PCs are

considered (Cobb and O’Higgins 2004). Whenever two tra-

jectories are known not to be parallel in full space, but ap-

pear parallel in some PCA or similar projection, biological

interpretations should not be based on the assumption of

identical directions of allometric shape change (as in Berge

and Penin 2004).

Allometric heterochrony

Many authors (e.g., Shea 1983a, 1985, 1989; Leigh et al.

2003) focus their attention on the simplest case of allometric

scaling, the extension or truncation of ontogenetic trajectories

in a logarithmic plot of two size variables. The bivariate con-

cept of allometric scaling is a hypothesis that has an alter-

native, namely a modification of the ancestral allometry (i.e.,

the trajectories differ). This alternative can also easily be test-

ed statistically by a test of equal slopes and intercepts for

regressions within different taxa. When this approach is fre-

quently applied to several measured variables simultaneously,

different pairs of variables are judged visually or statistically

for allometric scaling and conclusions about ‘‘overall’’ allo-

metric scaling are drawn from the presence of ‘‘some’’ pairs of

variables that scale allometrically. But this kind of conclusion
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is problematic. Overall allometry is maintained in a descend-

ent species only if all bivariate allometries keep the same for

the two species. If only one bivariate allometric coefficient

differs, then overall allometry has changed (compare Fig. 7

and Vinicius and Lahr 2003). The hypothesis of global allo-

metric scaling needs to be tested with appropriate multivariate

methods (see Klingenberg 1996, for a review). Especially

when using interlandmark distance data, it is of unclear bi-

ological importance to know that some variables scale allo-

metrically if we are not told how the others scale at the same

time.

A multivariate analysis from first principles can deal with

some of the formal problems mentioned above. Instead of

applying heterochrony as a post hoc typology for single shape

variables, the multivariate formulation allows one to state a

hypothesis of global ontogenetic scaling. The hypothesis is

verified just when the studied ontogenetic trajectories overlap

in multivariate shape space and differ only in initial or final

position (Fig. 3). In all other cases, the trajectories differ in

shape space and so the hypothesis is falsified. Different po-

sitions along the common trajectory can be quantified by

calculating ‘‘allometry scores.’’ If a is the normalized p-di-

mensional vector of common allometry (e.g., regression co-

efficients of Procrustes coordinates on log centroid size) and F

the n� p matrix of specimens then Fa is the n-dimensional

vector of scores along the direction of allometry. These scores

can be averaged among age cohorts and used as a shape

variable in the formalism of Alberch et al. (1979). Thus, in this

special case the classic terminology can still be applied. In fact,

in the majority of cases in primates that we have checked, this

model does not fit the data at all well; and whenever the

ontogenetic trajectories differ in shape space no global expla-

nation in terms of heterochrony can be applied.

Ontogenetic trajectories can also be studied in size–shape

space, which is best constructed as a PCA of the Procrustes

shape variables augmented by the natural logarithm of Cent-

roid Size (Mitteroecker et al. 2004a). If the trajectories overlap

in this space, then the descendent retains the ancestral rela-

tionship of size and shapeFthey are ontogenetically scaled in

full size–shape space. The same conclusion can be drawn from

overlapping but extended or truncated trajectories in a PCA

of length measurements, as overall size is not partialed out

from that kind of data. This comes closest to the multivariate

version of Shea’s ‘‘allometric scaling’’ wherein size and shape

remain associated during evolution.

Statistical tests for heterochrony

When ontogenetic trajectories overlap in shape space but dif-

fer in length or in size–shape space, heterochrony is a valid

and useful description. If the trajectories clearly differ without

overlap of the groups in a PCA plot then heterochrony can be

rejected. But we have shown above that overlapping trajec-

tories in the first PCs are no guarantee for overlapping tra-

jectories in full shape space; a test based on all variables

should be preferred. Some authors (e.g., Zelditch et al. 2000

and several studies in Zelditch 2001) suggest a resampling

approach to test the angle between two linear trajectories and

accepts heterochrony when an angle of zero cannot be re-

jected significantly. This test criterion is insufficient as parallel

trajectories (differing by an angle of zero degrees) might still

be not identical and the adult morphologies would not be

Fig. 7. Three variables are compared with a size variable (A–C): The two trajectories scale allometrically for traits 1 and 3 but do not share
the same allometry with respect to trait 2. A principal component analysis (D) shows that the multivariate (i.e., overall) ontogenetic pattern
differs between the two groups.
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heterochronic variants of each other. Roopnarine (2001)

compares the initial and final points of Procrustes landmark

displacement vectors among different species. The hypothesis

of heterochrony, however, does not require same initial and

final points for such vectorsFthey are, after all, permitted to

differ in their position along the common trajectory.

We suggest a permutation test based on within-species

multivariate regressions of the shape variables on size (the

logarithm of centroid size for landmark data). The regressions

can be linear, quadratic or even of higher order. If these re-

gressions were identical among some species, their trajectories

would be identical in full size–shape space (for a given size, the

average forms of all species would be identical). This is a test

criterion for an elongation or truncation of growth when size

and shape remain associated. A different heterochronic proc-

ess involves decoupling of size and shapeFfor a given size,

the species shapes need not be identical but would have to lie

on the same growth trajectory in shape space. Although the

regressions thus would not necessarily be identical, still their

curves would need to overlap.

A test statistic for the first case (identical regressions) might

be the summed squared residuals of the within-species re-

gressions. Compute for each species separately a multivariate

regression of the shape variables on size, then sum the squared

residuals for each shape from its prediction. Randomly reas-

sign the species affiliation for each specimen and recompute

the new ‘‘species’’Fspecific regressions and the summed

squared residuals on the permuted data. Repeat this last step

a large number of times. Under the assumption of identical

trajectories, the original test statistic should not be an outlier

in the permutation distribution of summed squared residuals.

For N permutations, the hypothesis of identical trajectories in

size–shape space is rejected when (C11)/(N11) � a, where C
is the number of cases that result in a smaller test statistic than

that for the original data.

For the second case (overlapping trajectoriesFi.e., regres-

sion curvesFin shape space) the test statistic cannot be the

total sum of squared residuals of the regression. When a de-

coupling of size and shape occurs the shapes would vary in

position along one single trajectory. For this second test, the

regression residuals should be taken only as the component

normal to the regression curve in shape space, ignoring de-

viation along the trajectory. The test for overlapping trajec-

tories is then similar to the test explained above except that

the test statistic is not the summed squared residual but rather

the summed squared distance from each shape to its nearest

point on the regression curve. Note that these residuals do not

take into account the size–shape relationshipFthe residuals

are normal to the regression curve in ‘‘shape space.’’

It is possible that a PCA of an ontogenetic dataset might

show overlapping trajectories in the first few dimensions even

though the permutation test rejects overlapping trajectories.

We find that a projection of the shape space that is more

specific than PCA usually gives a clearer picture to assess

heterochrony. For this purpose, we suggest a PCA of pre-

dicted shapes along the trajectories (that is ignoring the var-

iation perpendicular to the trajectories, which is of course not

ignored in standard PCA). Calculate the within-species mul-

tivariate regressions of the shape variables on size and choose

reasonable size values (say, for each species, 10 equally dis-

tributed values in their total within-species size range or the

size values of the specimens themselves). For each regression,

then, calculate the predicted shapes for the sizes and perform

a PCA of these shapes. The shapes of the original specimens

can then be projected into this new space (compare Figs. 10

and 13).

To yield a two-dimensional projection of their shape space,

Penin et al. (2002) and Berge and Penin (2004) used the vector

of common allometry and a discriminant function as the two

components to produce their scatterplots. In both studies,

they found these two components to be approximately or-

thogonal and the ontogenetic trajectories appeared parallel in

this projection. Both results, however, are more or less a for-

mal necessity. A discriminant function is the vector of group

differences multiplied by the inverse of the within-group co-

variance matrix (see e.g., Johnson andWichern 1998). In most

cases, the major factor in an ontogenetic sample is allometry;

multiplying by the inverse of the covariance matrix then

mainly means reducing the contribution of allometry to the

group difference vector. If the groups did not differ by allo-

metric scaling alone, the vector of common allometry and the

discriminant vector tend to be orthogonal. For two ontoge-

netic trajectories that are different in direction and origin, the

best vector of discrimination is the one perpendicular to both

trajectories. When taking common allometry as the first com-

ponent and the discrimination function as the second, this

corresponds to a projection of the shape space so that the

trajectories appear to be parallel. We have shown above that

such a rotation is possible for any kind of two trajectories

with at least three shape variables (Fig. 5). Therefore, both

findings in the two studies are nearly independent of the

actual data.

EXAMPLE: CRANIAL GROWTH IN P. PANISCUS
AND P. TROGLODYTES

Hypotheses about chimpanzee development

We analyze craniofacial growth of P. paniscus and P. trog-

lodyteswith a geometric morphometric approach applying the

principles introduced above. Diverse theoretical and empirical

work supports the assumption that ontogenetic trajectories of

related species will diverge during ontogeny after a conserved

stage in midembryonic development (von Baer 1828; Schultz

1924; Sander 1983; Richtsmeier et al. 1993; Slack et al. 1993;

Richardson 1995, 1999; Raff 1996; Wimsatt 1996; O’Higgins
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2000a; Galis and Metz 2001; O’Higgins et al. 2001; Mitt-

eroecker et al. 2004a; Cobb and O’Higgins 2004). Several

morphometric studies on primate cranial development indi-

cate that this divergence may be early in development, so that

species differences are already established around birth

(Bruner and Manzi 2001; O’Higgins et al. 2001; Ponce de

Léon and Zollikofer 2001; Ackermann and Krovitz 2002;

Penin et al. 2002; Vidarsdottir et al. 2002; Berge and Penin

2004; Mitteroecker et al. 2004a). One classic assumption is

that the ontogenetic divergence of common chimpanzee and

pygmy chimpanzee is between size and shape onlyFthat is,

global heterochrony of the skull (Coolidge 1933; Giles 1956;

McHenry and Corruccini 1981; Shea 1983a, b, 1989). P. pan-

iscus, the pygmy chimpanzee, is then regarded as a pedomor-

phic variant of its sister taxon P. troglodytes. Other, more

recent, multivariate approaches do not confirm this notion,

but find that allometric scaling can explain the morphological

differences between the two species at least in part (Williams

et al. 2002, 2003; Mitteroecker et al. 2004a).

We can formulate several alternative hypotheses concern-

ing the pair of ontogenetic trajectories in shape space:

H1: Ontogenetic scaling. The trajectories in shape space are

ontogenetically scaled and may differ in length and as-

sociation with size and/or age (i.e., divergence in size–

shape space)Fglobal heterochrony in the cranium.

H2: Parallel ontogenetic trajectories. The complete divergence

in shape occurs before the investigated time range (pre-

natally). Thereafter both species of Pan share the same

postnatal morphogenetic processes in the cranium. These

parallel trajectories in late development might have the

same or different lengths.

H3: Different ontogenetic directions in shape space. As dis-

cussed above, this can arise for different reasons. The

differences of morphology might not be explained by

heterochrony at all, or perhaps a single global hetero-

chronic cause might result in a mosaic pattern of mor-

phological effects as different modules respond to a

global signal like a growth hormone. There could also be

several more localized and dissociated heterochronic

processes that sum to a pattern of mosaic heterochrony.

These two possibilities of dissociated heterochrony (one

cause with several distinct responses vs. several causes)

cannot be distinguished on the basis of morphometric

data alone. We can examine, however, whether the glo-

bally different trajectories can be decomposed into re-

gional trajectories that are each allometrically scaled.

We do not study form differences below the species level such

as sexual dimorphism or subspecific differences. But see

Schaefer et al. (2004) for a more detailed analysis.

MATERIALS AND METHODS

Three-dimensional coordinates of 191 anatomical landmarks and

semilandmarks on ridge curves and the neurocranial surface

(Fig. 8) were measured on a cross-sectional sample of dried skulls

of 48 P. paniscus and 497 P. troglodytes including both sexes. The

age of the specimens ranged from newborns to adults in both

species. The measurements were taken by a single person in two

separate sessions per skull because not all landmarks could be

reached in one orientation. The two sets of landmarks were

matched by superimposing five fiducial points that were measured

in both sessions. For detailed information on the sample and the

measurement protocol, see Bernhard (2003) and Mitteroecker et al.

(2004a).

Semilandmarks are points sampled along outlines that are

allowed to slide along these curves or surfaces so as to minimize

Fig. 8. Juvenile skull of a chim-
panzee with the 191 landmarks
and semilandmarks.
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‘‘bending energy’’ (Bookstein 1997; Bookstein et al. 1999; Gunz

et al. 2005). Under reasonable assumptions, the sliding warrants

the use of semilandmarks in the subsequent analytic toolkit of

geometric morphometrics as if they had been homologous point

locations. Coordinates were superimposed using generalized least-

squares Procrustes superimposition (Rohlf and Slice 1990) and

analyzed using PCA, which is called relative warp analysis when

applied to Procrustes coordinates (Bookstein 1991; Rohlf 1993). As

discussed above, biological interpretations based on two-dimen-

sional scatterplots of PC scores can be influenced by the choice of

projection of a higher-dimensional phenomenon onto two dimen-

sions. We try to minimize this effect by showing reasonable rota-

tions of the first three components of the data decomposition. This

gives us a much better chance to understand the complex pattern of

trajectories in their high-dimensional space. The 3D graphs are

isometricFtheir axes are scaled equallyFbut due to the rotation

they can appear foreshortened when printed.

Ontogenetic allometry is estimated by multivariate regression

of the Procrustes shape coordinates on the natural logarithm

of Centroid Size. For testing the identity of regressions among

the two species we use a permutation test as described above.

All the morphometric and statistical routines were programmed by

P. G. and P. M. in MATHEMATICAs.

RESULTS

A plot of PC1 versus PC2 of the Procrustes coordinates re-

veals different ontogenetic trajectories for the two species of

Pan (Fig. 9). They clearly already differ at the earliest stage

and seem to diverge until adulthood. The linear within-species

shape regressions differ by an angle of about 141 in full shape

space. A permutation test, however, does not indicate signif-

icant differences in the direction of the two trajectories

(P�0.14). P. troglodytes possesses a clearly longer trajectory

than P. paniscus. Figure 10 also shows that the differences

between shapes with the same size in both species (gray de-

formation grids) do not coincide with shape changes as a

Fig. 9. Principal components of Procrustes coordinates (relative
warps) of Pan troglodytes (dark points) and Pan paniscus (light
points). The small points are subadult and the large ones adult
individuals. The youngest specimens are a few days old in both
groups.
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result of growth (colored grids) as would be expected for

heterochrony.

For further regional analysis we have chosen three distinct

parts: the neurocranium, the upper face, and the lower face.

The neurocranial analysis includes 95 landmarks, mainly sur-

face semilandmarks, from the cranial vault and the cranial

base. The PCA in Fig. 11 clearly shows different trajectories.

In the PCA of the upper face, 62 landmarks and semiland-

marks on the nasal aperture, the orbit, the brow ridge, and the

zygomatic arch are included. Figure 12 indicates different

trajectories again. The analysis of the lower face comprises

semilandmarks along the alveolar ridge, landmarks on the

palate, hormion, prosthion, and nasospinale (a total of 20

landmarks). The analysis of the first three relative warps sug-

gests overlapping trajectories in shape space with P. troglo-

dytes slightly extending this common trajectory (Fig. 13A). A

permutation test as described above, however, rejects over-

lapping trajectories with Po0.01. To visualize these differ-

ences between the trajectories we project all specimens onto a

low-dimensional space that results from a PCA of predicted

shapes along the two trajectories. Figure 13B shows that

within this projection the two trajectories differ from the ear-

liest stage on.

SUMMARY AND DISCUSSION

Analysis of heterochrony

In their 1991 discussion of heterochrony, McKinney and

McNamara note that ‘‘As long as we can say that the de-

scendent species has more of something than the ancestor,

produced by faster, sooner, or later acting processes, we can

make meaningful inferences (pp. 25–26).’’ We would argue

instead that as this view of heterochrony can describe nearly

everything it rarely allows any useful inference. Likewise, any

single measurement or a single PC can always be interpreted

in terms of heterochronyFthere is no alternative description.

The general univariate hypothesis of heterochrony cannot be

falsified. We think that a single morphological characteriza-

tion, descriptions in terms of bigger/smaller or more/less of

something, should generally not be subjected to heterochronic

interpretation, nor should single ratios. Multivariate analysis

circumvents this theoretical problem when heterochrony is

defined as multivariate ontogenetic scaling along a common

ontogenetic trajectory.

Heterochrony, global or local, is a sufficient description

only if ‘‘the same morphogenetic processes,’’ inducing several

variables, are at work but are differently timed. It is falsified

whenever the ontogenetic trajectories differ in their central

tendency within shape space. Such a test does not yet require

a choice for the metric of developmental time, which is a

controversial issue (Godfrey and Sutherland 1995; Klingenb-

erg 1998; Roopnarine 2001), nor does it require information

on the phylogenetic context. Whereas heterochrony is always

true for the bivariate case, it becomes theoretically less prob-

able when the number of variables that are included in a

multivariate analysis increases. This closely resembles the idea

of Popper that the probability of a hypothesis to be true

inversely relates to its predictive power and thus its empirical

value. We therefore argue that heterochrony is intrinsically a

multivariate concept that should be described and tested only

via the appropriate multivariate methods.

In fact, the shape axis in Alberch et al. (1979) needs to be a

multidimensional shape space, and the arc-like scale for shape

(Fig. 1) in Gould (1977) should be a hemisphere or hyper-

hemisphere instead. When heterochrony is found, the single

shape variable of either classic approach may be taken as the

position along the common ontogenetic trajectory in shape

space. However, the actual biological processes behind this

class of morphologies (like different amounts of global or

local growth factors, timing of tissue inductions, etc.) can only

rarely be inferred from morphometrics alone.

Heterochrony in the chimpanzee skull

Cranial development of the common chimpanzee and the

pygmy chimpanzee is often cited as a classical example of

allometric scaling crucial for the understanding of hominoid

evolution. Our analysis of the complete data has falsified H1,

Fig. 11. Relative warp analysis of the neurocranial landmarks. The
trajectories are different from birth on. The legend here and in all
subsequent figures is as in Fig. 9.

Fig. 12. Relative warp analysis of the landmarks from the upper
face. The trajectories are different from birth onward.
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the hypothesis of global heterochrony. The trajectories are

clearly different in the PCA plot of Fig. 9. The hypothesis of

parallel trajectories, H2, could not be rejected by a permuta-

tion test. But the sample is highly unbalanced concerning

ageFthere are far fewer subadults than adults; the test for

H2 thus lacks power. Three regional analyses show different

trajectories for the three different parts. The hypothesis of

regional allometric scaling is thus falsified as well, confirming

the analyses by Williams et al. (2002, 2003) who found that

neither global nor regional heterochrony could suffice to ex-

plain P. paniscus and P. troglodytes shape differences.

Outlook

Several multivariate studies reevaluating traditional assump-

tions about heterochrony do not find overlapping trajectories

and thus contradict the classic explanations (e.g., Zelditch et

al. 2000; Ponce de Léon and Zollikofer 2001; Roopnarine

2001; Webster et al. 2001; Williams et al. 2001, 2003; Ack-

ermann and Krovitz 2002; Penin et al. 2002; Berge and Penin

2004; Mitteroecker et al. 2004a). It seems that global onto-

genetic scaling is rarely found in higher animals, nor can

clearly separated regional allometric scaling be identified eas-

ily. So, ironically, the concept of heterochrony that was and

still is so popular in morphometrics, partly because of its

simplicity, is hard to apply when defined strictly.

A promising approach to study the evolutionary signifi-

cance and morphological effects of heterochrony, however,

might be experiments manipulating specific regulatory sys-

tems of growth and development. Corner and Shea (1995)

and Shea et al. (1987, 1990) compared growth patterns be-

tween normal and giant transgenic mice and found many

although not all variables to scale allometrically. It does not

seem likely that evolution results in such isolated changes of

single developmental processes like the expression of specific

hormones, yet a description of the real evolutionary changes

in terms of these isolated effects is often desirable. Knowing

the morphological effects of increased or decreased levels of

specific growth factors allows inferences from data on mor-

phological evolution onto their physiological and deve-

lopmental background. It might be possible to study het-

erochrony not merely of single measurements or of particular

regions but instead of shape changes that are known to be

responsive to specific factors. Experiments could provide di-

rections of shape changes (linear combinations of morpho-

metric variables) that are then used to describe actual

evolutionary alterations.

Summarizing, we think that future research should leave

behind the search for vague similarities among bivariate allo-

metric patterns in order to focus on how multivariate onto-

genetic trajectories ‘‘differ’’ among regions and age periods.

Within the scope of such an analysis, multivariate het-

erochrony found for particular regions, time frames, or a pri-

ori known developmental factors would be of much higher

theoretical and biological importance than studies based on

classic bivariate analyses.
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